首页

> 学术期刊知识库

首页 学术期刊知识库 问题

硫化汞入药机理研究论文

发布时间:

硫化汞入药机理研究论文

随着医学的发展,中西药搭配使用越来越普遍了,但是两者搭配也有一些禁忌的。下面是我带来的关于中西药配伍禁忌论文的内容,欢迎阅读参考!中西药配伍禁忌论文篇1:《中西药配伍禁忌》 摘要:中西药联用在临床日趋普遍,如若配伍不当,则易发生一系列变化,从而引起疗效降低,增加毒副作用或发生药物不良反应。从药物配伍时发生的变化,谈谈对药动学,药效学的影响,目的在于提醒临床,注意中西药配伍的变化,避免不良反应的发生。 关键词:中西药配伍;相互作用;配伍禁忌 大量的临床实践表明,中西药合理应用具有提高疗效,降低毒副作用,扩大治疗范围,缩短疗程等优点,但中西药之间的相互作用是错综复杂的,如配伍不合理,会产生单一药没有的不良反应,合用后产生拮抗作用,甚至增加毒性。因此深入探讨中西药的配伍变化,对临床中西药合用的药物治疗具有一定的指导意义。如下从几个方面对中西药配伍产生的相互作用做一简析。 1 对药动学的影响 对吸收的影响 理化因素对吸收的影响 由于中药成分复杂,所以中西药合用产生的理化变化对药物吸收的影响也是多方面的,是中西药相互作用对吸收影响的主要因素。它包括中西药成份之间的络合、螯合、吸附等作用,根据中药的成分,分别从以下几个方面说明。 ①络合、螯合作用对吸收的影响:主要含有钙离子、镁离子、铝离子铁离子、铋离子等阳性金属离子的中药及其制剂不宜与四环素类、异烟肼等配伍。因此类药物结构中含有酰胺基和多个酚羟基,与含上述金属离子的中药合用后。生成难溶性的络合物或螯合物,影响药物的吸收。含钙离子的中药:石膏、海螵蛸、石决明、虎骨、龙骨、龙齿、牡蛎、蛤壳、瓦楞子等;含铝离子的有明矾;含铁离子的有代赭石、自然铜、禹余粮;含铁、镁离子的有礞石;含镁、铝离子的有滑石;含铁、镁、铝的有磁石;含铁、铝、镁、钙的有赤石脂,钟乳石等。含鞣质较多的中药可与维生素B1、B6形成螯合物使两者的作用均受影响。 ②形成难溶性盐影响吸收:含有雄黄、朱砂、鞣质成分的中药及其制剂遇部分西药易形成难溶性盐影响吸收。雄黄的主要成分为AsS,这类药物与含有铁盐的西药同服时,可发生化学反应,生成硫化砷酸盐,不利于机体吸收,导致其疗效降低;朱砂的主要成份为硫化汞,含朱砂的中药和中成药与还原性溴化钾、碘化钾、三溴合剂配伍时,汞离子可与溴或碘络合生成溴化汞或碘化汞沉淀,腐蚀胃肠道黏膜引起出血,引起药源性肠炎;含有鞣质成份的中药遇铁剂形成不溶性沉淀,沉淀物不能被小肠吸收;含有鞣质较多的中药可与地高辛等强心药生成盐沉淀,难于吸收;含有有机酸成份的中药可与钙离子、镁离子、铝离子等金属离子发生中和反应,生成相应的盐,不利于吸收。 ③吸附作用影响吸收:煅炭的中药如血余炭、蒲黄炭、炮姜炭、地榆炭、棕榈炭等,在炮制过程中可生成大量具有吸附作用的活性炭,使煅炭中药在胃肠道中产生强大的吸附作用,能吸附蛋白质、维生素、生物碱、激素、抗生素等,所以各种酶制剂、维生素及抗生素不宜与之联用,由于其吸附作用,影响其吸收;吸附作用还表现在含鞣质的中药及其制剂中,因为鞣质具有吸附作用,可使上述药物的透膜吸收减少。含鞣质较多的中药有大黄、虎杖、五倍子、石榴皮、侧柏叶、地榆、枣树皮、仙鹤草等。 酸碱因素对吸收的影响碱性较强的中药不宜与酸性较强的中药合用,而含有机酸的中药不宜与在碱性环境中吸收的中药合用。碱性中药如硼砂、煅牡蛎、女金丹等,可使氨基糖苷类抗生素等药物在碱性条件下排泄减少,吸收增加,血药浓度上升,同时增加脑组织中的浓度,使其毒付作用增强,故长期应用时要进行血药浓度监测;相反与使尿液酸化药物诺氟沙星、呋喃妥因、吲哚美辛、头孢类抗生素合用时,使此类药物的解离度增多,排泄加快,使作用时间和作用强度降低;冰硼散可使尿液碱化,增加青霉素与磺胺类药物的排泄速度,降低药物的有效浓度,使其抗菌作用明显降低;含有有机酸的中药如乌梅、山楂、五味子、山茱萸、木瓜、陈皮、川芎、女贞子等中药及其制剂,可使磺胺类及大环内酯类药物的溶解度降低,增加肾毒性,引起结晶尿或血尿;红霉素在碱性条件下作用强,当与山楂冲剂同服时,可使血浆pH值降低,导致红霉素分解,失去抗菌作用。 含有皂苷的中药如人参、三七、桔梗等中药不宜与酸性较强的药物如维生素C同服,酸性环境中皂苷易在酶的作用下水解而失效;含有蒽醌类物质的药物如大黄、虎杖、何首乌等在碱性溶液中易氧化失效,故不可与碱性药物同服。 药理因素对吸收的影响 中西药合用常常产生药理性的拮抗作用或增加毒副作用。如含蛋白质及其水解物的中成药珍珠丸、清热解毒丸等不宜与小檗碱同服,因其所含蛋白质等成份水解生成的多种氨基酸可拮抗小檗碱的抗菌效果,影响其抗杆菌的疗效;含氰苷的中药如杏仁、桃仁、枇杷叶等,如与中枢镇咳药长期配伍,中药所含氰苷在胃酸作用下经酶水解生成具有镇咳作用的氢氰酸,可在一定程度上抑制呼吸中枢,二者联用加重中枢镇咳药抑制呼吸中枢的作用,产生不良反应。因此含氰苷的药物不宜与吗啡、杜冷丁等麻醉、镇静、止咳药及氨基糖苷类、多黏菌素类合用,严重者可致呼吸衰竭;含强心苷的中药如夹竹桃、万年青、福寿草等与羧苄西林、两性霉素B联用可引起低钾血症,低钾血症可增加心肌对含强心苷类药的敏感性,诱发中毒反应;含酶的中药如神曲、麦芽、豆豉及其制剂,不宜与抗生素类同服,产生拮抗作用,不仅降低前者的药物活性,也降低后者的抗菌活性,如果联用要间隔3h。 其它 因素对吸收的影响甘草、鹿茸、何首乌具有糖皮质激素样作用,有水钠潴留和排钾效应,还能促进糖原异生,加速蛋白质和脂肪的分解,可使甘油、乳酸等各种成糖氨基酸转化成葡萄糖导致血糖升高,从而减弱胰岛素、甲苯磺丁脲、格列本脲等到降血糖药物的疗效;含碘的中药与异烟肼合用,在胃酸条件下,碘与异烟肼发生氧化反应,可使后者的抗痨作用下降;银杏叶与地高辛合用,可提高主动脉内皮细胞钙离子水平,使地高辛的血药浓度明显升高,易引起中毒,临床上两药合用时,注意适当降低地高辛的剂量,进行血药浓度监测;红霉素不宜与穿心莲同服,因红霉素可抑制穿心莲促白细胞的吞噬功能;含颠茄类生物碱的中药及制剂,不宜与强心苷类同服,因为颠茄类生物碱可抑制胃排空和肠蠕动,使强心苷类药物吸收增加,易引起中毒;颠茄类生物碱药物与红霉素合用时,可使红霉素在胃内滞留时间延长,被胃酸破坏而降低疗效。 对分布的影响 中西药配伍后,不同的药物的血浆蛋白结合率不同,使药物的血药浓度发生变化,从而影响其组织分布。如绣球葡属植物和黑柳可以取代与血浆蛋白结合率高的西药华法林与血浆蛋白结合,降低华法林的血浆蛋白结合率,影响治疗效果;含有鞣质类化合物的中药在与磺胺类药物合用时,导致血及肝脏内磺胺类药物浓度增加,严重者发生中毒性肝炎。 对代谢的影响 肝药酶诱导剂的作用中药的醑剂、酊剂、流浸膏剂中不同浓度的含有乙醇。乙醇是常见的肝药酶诱导剂,在与西药如苯巴妥、苯妥英钠、利福平、二甲双胍等具有酶促用的药物合用时,使上述药物在体内代谢加速,半衰期缩短,药效降低。 肝药酶抑制的作用麻黄及含有麻黄的中成药如大活络丹、人参再造丸、哮喘冲剂、半夏露、通宣理肺丸等中成药,不宜与单胺氧化酶抑制合用,如痢特灵、优降宁、苯乙肼、甲基苄肼、异烟肼等。二者合用时,单胺氧化酶抑制可抑制单胺氧化酶的活性,使去甲肾上腺素、多巴胺、5一羟色胺等单胺类神经递质不被酶破坏,贮存于神经未梢中,而麻黄中的有效成份麻黄碱,可促使这些递质大量释放,可引起头痛、头昏、恶心、呕吐、腹痛、呼吸困难、心律不齐、运动失调及心肌梗塞、严重可引起高血压危象。 对排泄的影响 尿液的酸碱性会影响肾脏的重吸收,酸化或碱化尿液可促进或减少药物的排泄。如山楂、乌梅等能酸化尿液,使利福平、阿斯匹林等酸性药物的吸收增加,加重肾脏的毒性反应;而与碱性药物四环素、大环内酯类药物合用时,使其排泄增加,疗效降低,其与磺胺类药物同服,使乙酰化后的磺胺溶解度降低,易在肾小管析出结晶,引起结晶尿或血尿。 2药效动力学的影响 若中西药配伍不当会使两者在疗效上产生拈抗作用,甚至产生严重的毒副作用。最常见的是甘草、鹿茸具有糖皮质激素样作用,会使阿斯匹林所致的溃疡的发生率增加,会使血糖升高,从而减弱降糖药的疗效;甘草与强心苷类药物合用,可使强心苷类药物中毒率增加;麻黄及含有麻黄的制剂不能与降压药合用,因麻黄碱可收缩动脉血管,使血压升高,台用时产生药理性拮抗。关于药理性的拮抗在影响吸收的因素中已经说过,对吸收的影响是药动学方面的,对药效学的影响是问题的另一方面,其结果是一致的,那就是影响临床联合用药的目的。 3讨论 上面主要阐述了中西药配伍对药动学和药效学的影响,由于中药成份的特殊性。中西药配伍的作用是错综复杂的,所以中西药配伍禁忌还不止于此,如中药注射液与常用输液间仍然存在着配伍禁忌,关于中西药配伍的问题还有待于在临床应用中引起注意,不断探索,使中西药合用更加合理,达到增加疗效降低毒副作用的目的。 中西药配伍禁忌论文篇2:《中西药配伍中的禁忌》 随着中西医结合的深入发展,中西药并用的机率也越来越高,因此,研究中西药之间相互作用就显得尤为重要。临床实践证明,有些中西药配伍应用,不仅不能提高疗效,反而使药物疗效降低,毒副反应增加,或引起药源性疾病,严重的甚至危及生命。现就近年来的临床研究如下。 1有些中西药联用,降低疗效 中西药联用生成难溶性络合物 含Fe2+、Fe3+、Mg2+、Al3+、Ca2+等多种二价以上金属阳离子的中成药,如桔红丸、明目上清丸、牛黄上清丸、牛黄解毒丸、清胃黄连丸、女金丹、朱砂安神丸、当归浸膏丸、复方五味子片、追风丸等,与四环素族抗生素、异烟肼联用,生成难溶性络合物,影响吸收,降低疗效。 中西药配伍形成沉淀,导致变性或失活 含鞣质的中药及中成药与金属离子制剂、强心苷、含氨基比林成分的药物等合用,能发生化学反应,使药物发生沉淀、变性、失活而降低药物疗效。含鞣质的中药及中成药与胰酶、淀粉酶、胃蛋白酶等合用,会使上述酶制剂灭活,降低其生物利用度,也能使多种抗生素、维生素B1、B6失去活性而影响其吸收利用。 黄连、黄柏、川乌、附子、麻黄、马钱子、洋金花、延胡索等含生物碱的中药及其制剂与酶制剂、金属盐类、碘化物联用,会产生沉淀反应,使药效降低或失去治疗作用。 中西药合用影响疗效 甘草、鹿茸及其制剂,如复方甘草合剂、甘草片、参茸片、鹿茸片等与本药降糖药胰岛素、优降糖、甲苯磺丁脲、降糖灵等同服,因甘草、鹿茸的类皮质激素功能有升血糖作用,多而降低了降血糖药物的疗效。 含乙醇的中成药,如国公药酒、骨刺消痛液等药酒,若与西药鲁米那、苯妥英纳、安乃近、胰岛素、甲苯磺丁脲等同服,因乙醇能增强肝药酶活性,使上述西药在体内代谢加速,从而降低疗效。 麻黄及其制剂的主要成分为麻黄碱,是交感神经兴奋剂,能对抗降压药的作用,故不宜与复方降压片、降压灵、胍乙腚等药物合用,也不宜与镇静催眠药如氯丙嗪等联用。 延胡索及其制剂不宜与咖啡因、苯丙胺等同用,因延胡索所含的生物碱有对抗中枢兴奋作用,而使药效降低。 含雄黄的的中成药,如牛黄消炎丸、六神丸、牛黄解毒丸、安宫牛黄丸等,不宜与亚铁盐、亚硝酸盐类同服,因雄黄的主要成分为ASS,可生成硫代砷酸盐使疗效下降。 2有些中西药联用,发生毒副反应 中西药联用,可能造成中毒 含大量有机酸的中药及制剂能增加呋喃妥因、利福平、阿司匹林、消炎痛等在肾脏的重吸收,加重对肾脏的毒性,故不宜长期合用。 含雄黄的中成药也不宜与硝酸盐、硫酸盐同服,因这些西药在胃液里可产生微量硝酸、硫酸,使雄黄所含的ASS氧化,增加毒性。 中药麻黄及制剂,不宜与洋地黄、地高辛、毒毛旋花子苷K等强心药配伍,因麻黄碱能兴奋心肌,而致心律加快,故增加强心药对心脏的毒性。 中西药配伍不恰当可发生危险 含麻黄的中成药,如大活络丸、人参再造丸、气管炎丸、气管炎糖浆、哮喘片、止嗽定喘丸等,若与西药单胺转化酶抑制剂如痢特灵、优降宁、闷可乐、苯乙肼等并用,因单胺氧化酶抑制剂口服后可抑制单胺氧化酶活性,使去甲肾上腺素、多巴胺、5-羟色胺等单胺类神经介质不被酶破坏而贮存于神经末梢中,而麻黄里的麻黄碱可促使贮存于神经末梢中的去甲肾上腺素大量释放,严重时可致高血压危象和脑出血。 桃仁、苦杏仁、白果、枇杷仁等含氰苷的中药及制剂若同麻醉、镇静、止咳等西药合用,会引起严重的呼吸中枢抑制,甚至使病人死于呼吸衰竭。 甘草及其制剂不宜与利尿酸、氯噻嗪类利尿药合用,因为合用能使血清钾离子浓度降低,有可能加重引起低血钾的危险。 中西药合用,有时可使用毒副反应增强 中药麻黄及制剂,不宜与肾上腺素联用,因麻黄碱有类似肾上腺素样作用,若与肾上腺素配伍应用,可增加后者的毒副作用。不宜与异烟肼联用,联用会使副作用增强;不宜与氨茶碱并用,虽二者均为平喘药,但临床观察表明,两药合用,疗效不仅不及单独使用,而且毒副反应如头痛、头昏、心律失常等的发生率明显增加。 含朱砂的中成药,如朱砂安神丸、健脑丸、人丹、七厘散、紫雪丹、苏合香丸、冠心苏合丸等,不宜与还原性西药如溴化钾、溴化钠、碘化钾、碘化钠、硫酸亚铁、亚硝酸盐等同服,以免生成有毒的溴化汞、碘化汞等沉淀物,引起赤痢样大便,导致药源性肠炎。 3小结 中药与西药的配合使用可能存在的的配伍禁忌也许不止这些,这就要求广大医药工作者在以后的工作和学习中不断 总结 和探索。 [参考文献] [1]谢惠民.合理用药[M].第4版.北京:人民卫生出版社,. [2]张象麟.药物临床信息参考[M].成都:四川科学技术出版社,. [3]夏秋欣.临床护理药理学手册[M].上海:文汇出版社,. [4]朱璐卡,胡国华,王井和,等.射干麻黄汤对小儿咳嗽变异性哮喘的临床疗效及血清IgE,IL-4,TNT-α水平的影响[J].中国中药杂志,2008,33(10):2265-2266. [5]李宁.关注中药注射剂临床应用[J].中国医药导报,2008,5(11):165. 中西药配伍禁忌论文篇3:《浅谈中西药联用及配伍禁忌》 近年来随着中西医结合治疗的深入发展,中西药联用的情况日趋普遍,且已成为我国临床治疗的重要和普遍的手段。中西药联合若用之得当则可产生协同作用甚至相加作用,达到增强疗效的目的,减低药物的毒副作用;反之如不了解各药物成分的性质,配伍不当,可降低药效甚至产生毒性[1]。因此,在临床治疗过程中应避免不合理的中西药配伍使用,保证用药安全有效。笔者就中西药联用的研究 方法 及临床常见的中西药配伍禁忌分析如下。 1 中西药联用的研究方法 药效学方法 此类研究方法是通过对如血压、血糖、血沉等临床可测数值的测定;或者通过对如头痛、咳嗽、溃疡愈合、抗菌活性等患者可感觉或临床可观察到的症状或现象的改变来评价配伍用药的结果。 药效学和药动学相结合的方法 这种方法既有药动学参数的采集,又有临床疗效的客观表现,使药物相互作用结果的判断更加趋于正确。 2 药物相互作用分类 传统的药剂配伍分类 ①理化的配伍变化:主要指药物伍用后产生沉淀、吸附、螯合、缩合、水解等理化反应;②药理的配伍变化:不利的药理伍用其结果可产生拮抗作用而影响疗效,使病情延误。如吗丁啉与654-2伍用可促进胃动力作用抵消;相加、协同作用增加毒副作用,如链霉素与庆大霉素伍用,抗菌作用增强,但耳毒性相加。 按药效学分类 主要指药物的药理作用相加、协同、拮抗。中西药之间的相互作用也可产生协同作用和拮抗作用。临床用药追求中西药的协同作用,但拮抗作用的机会同样也很多,这不但降低药效,而且还可导致不良反应发生,甚至诱发某些药源性疾病。例如:含钙离子的中药石膏、牡蛎、珍珠母等,对神经有抑制作用。与某些治疗心血管疾病的西药,如洋地黄类强心苷、心可定、心痛定等合用时可引起心律失常和传导阻滞。甘草、鹿茸具有糖皮质激素样作用,呈现水钠潴留和排钾效应,还可促进糖原异生,加速蛋白质和脂肪的分解,使甘油、乳酸及各种成糖氨基酸转化为葡萄糖。与水杨酸钠合用,能诱发或加重消化道溃疡的发病率;与强心苷类西药同服,可加重其毒性反应;与降糖药胰岛素、D860、优降糖等同服时,能产生相互拮抗,减弱降糖药的效应。与西药双氢克尿噻等排钾利尿剂合用,可导致低血钾症的发生。甘草制剂如甘草浸膏,不宜与利血平、降压灵、复方降压片等降压药并用。因甘草能可引起高血压及发生低血钾现象,与利血平等降压药物相拮抗。含麻黄碱的中药及其中成药,如复方川贝精片、莱阳梨止咳糖浆、复方枇杷糖浆等不宜与强心药、降压药合用。因麻黄碱具有兴奋心肌受体、加强心肌收缩力的作用,与洋地黄、地高辛等合用可使强心药的作用增强,毒性增加,易致心律失常及心衰毒性反应。另外,麻黄碱也具有兴奋α受体和收缩周围血管的作用,减弱降压药降压作用,使疗效降低,甚至使血压难以控制,严重者可使高血压患者的病情加重。 3 药物相互作用的处理原则 改变用药途径 如选择分开服用或注射用药,可避免直接的物理或化学作用和大多数影响药物吸收的配伍。 调整药量 主要指相加作用的配伍或监测血药浓度。 临床观察及血生化监测 主要指增加毒副作用的配伍。 拒绝调剂 无法用药剂方法解决的配伍应禁止伍用,请医师修改后再进行调剂。 4 配伍禁忌 四环素与异烟肼等不能与石膏、龙骨、牡蛎等含钙、镁离子丰富的药并用,因会生成难溶于水的络合物,影响前者的吸收,使疗效降低。 舒肝丸不宜与甲氧氯普胺合用,因舒肝丸中含有芍药,有解痉、镇痛作用,而甲氧氯普 胺则能加强胃肠收缩,两者合用作用相反,会相互降低疗效。 中成药止咳定喘膏、麻杏石甘片、防风通圣丸与化学药复方利血平、帕吉林不能同时服用,因前三种中成药均含有麻黄素,能使动脉收缩,升高血压,联合应用影响降压效果。 中成药蛇胆川贝液与吗啡、哌替啶、可待因不能同时服用,因前者含有苦杏仁苷,有抑制呼吸作用,同时服用易致呼吸衰竭产生[2]。 中成药益心丹、麝香保心丸、六神丸不宜与化学药普罗帕酮、奎尼丁同时服用,因有导致心脏骤停的可能。 抗结核药异烟肼不宜与昆布合用,因昆布片中含碘,在胃酸条件下与异烟肼发生氧化反应,形成烟酸、氧化物和氮气,失去抗结核杆菌的功能。 乳酶生不宜与黄连上清丸联合应用,因为其中的黄连素成份明显抑制乳酶生的活性,使其失去消化能力。 磺胺类药不能与富含有机酸的乌梅、五味子、山楂等同用,因可导致磺胺药在尿中形成结晶[3]。 双黄连注射剂与诺氟沙星、环丙沙星、氧氟沙星注射剂配伍后,溶液pH值升高,药物的溶解度降低,有沉淀产生;双黄连注射剂与庆大霉素、阿米卡星注射液配伍后,颜色变为棕黑色。 头孢曲松与川芎嗪注射液配伍后,可产生白色混浊及结晶;川芎嗪注射液与青霉素G配伍可产生沉淀。 红霉素注射液与菌栀黄注射液混合后可产生浑浊。 庆大霉素、阿米卡星与穿琥宁注射液配伍后可有沉淀产生。 刺五加注射液与双嘧达莫、维拉帕米注射液配伍后可有沉淀产生。 2 小结 中西药联合产生的相互作用极其复杂,可能发生的不良反应也很多,若用之不当,会造成较为严重的后果。在临床工作中,笔者认为无论是中医师与西医师,应在中西医药理论的指导下,在联合应用时,应从物理、化学、药理、用药顺序、用药时间、剂量和患者个体差异等方面加以综合考虑,了解中西药配伍禁忌,掌握配伍原则,力求进行最佳的配伍,谨慎用药,从而达到理想的协同作用,提高疗效,缩短疗程,达到安全、合理有效的目的。 参考文献 [1] 马瑜红,黄川峰.116张不合理中西药配伍处方分析.中国现代药物应用,2009,3(18):137. [2] 席秋红,任光瑞,马雅斌.中西药配伍不合理剖析.新疆中医药,2007,25(4):86-87. [3] 李靖.中西药不合理配伍应用的预防.中国医学研究与临床,2005,3(10):92-93. 猜你喜欢: 1. 浅谈中医药的文化养生 2. 药学论文精选 3. 关于安全合理用药的论文 4. 药学毕业论文3000字 5. 药学毕业论文题目 6. 关于药学的论文

铅汞化妆品的危害研究论文

激素会引发激素性皮炎,并且会产生依赖性;铅汞化妆品会导致荧光脸。

1、激素类的产品是让你对它产生依赖,用的时候很舒服,一停用皮肤就会发红、发痒甚至化脓。长时间使用含激素的产品,就会变成激素脸,易过敏,角质层也会越来越薄,皮肤锁不住水,最后变成依赖型皮炎。

2、铅汞属于有毒重金属,会对神经系统、消化系统、骨骼造血功能造成危害;含有铅汞化合物的物体会对人体骨骼、肾、肝、脑等造成伤害。

3、铅中毒会引起机体的神经系统,血液系统,消化系统的一系列异常表现,影响人体的正常机能;造成体内的蓄积,从而引起肌体各种不良反应。最主要的就是中枢神经系统,如失眠乏力、记忆减退、情绪变化。

4、汞对消化道有腐蚀作用,对肾脏,毛细血管均有损害作用。急性中毒多半由误服升汞引起,有消化道腐蚀所致的症状,吸收后产生肾脏损害而致尿闭和毛细血管损害而引起血浆损失,甚至发生休克。早期应用二巯基丙醇及其他对症措施,多数有效。

5、化妆品中一般含量在短期内使用不致于危及生命,虽然会起到临时美白的作用,但是长期使用含有铅汞的化妆品,不仅皮肤严重衰老,还会造成堆积,铅影响骨髓血液,汞会急性中毒。

扩展资料:

一、测试化妆品含铅汞的方法

1、银制品:可以取一枚银戒指沾一点化妆品,在手上一划,如含铅汞马上出现一条黑线。

2、硬币:一枚一角钱硬币和一张白纸,将硬币立面儿擦拭干净,将少许化妆品涂抹在白纸上,等它在纸上渗透后,用硬币的立面来回的划。如果没有任何变化,就可以初步说明不含铅汞,如果变黑了说明含铅汞,颜色越深,含铅汞量越高。

3、清水:准备一杯清水,把你平时所用的粉底或者乳液取适量放入水中,然后观察其反应。如果粘在杯边表示化妆品含有动物油;漂在水面上表示含有矿物油!沉在杯底表示化妆品中含有重金属,铅,汞。

二、激素脸是因为使用了含有激素的化妆品,引起激素的毒副作用而形成的一种严重的皮肤病。激素脸的养护方法:

1、保持良好的心态,要有战胜激素脸的决心。不要只求一时的效果,使用冷喷、热敷的方法,使激素脸愈演愈烈。洗脸时可使用与体温差不多的水,进行清洁面部。

2、不要使用激素类药物,防止对药物产生依赖性。虽然激素类药物效果非常明显,一旦停药后,症状不但没有改善,反而会更加严重。

3、遇到季节交替、气温骤升骤降时,往往会加重激素脸的症状。因此应采取一些防护措施,如夏天注意防晒,冬天可以戴口罩等。

参考资料:百度百科-铅

参考资料:百度百科-汞

参考资料:百度百科-激素脸

铅对人体有很多的危害,如果出现了铅过量或者出现了铅中毒,就会损伤好多脏器和神经。影响最大的是中枢神经系统和外周神经系统,会出现例如头晕、头疼、定向力和感知力减退,或者出现学习能力和智力的减退。如果是儿童,会出现注意力不集中、精力分散、多动、易冲动,并且造成语言学习等障碍的情况出现。对于成年人,会出现例如神疲乏惫、休息和睡眠不好、睡眠质量不佳、头晕、做梦等情况出现。对于消化系统会出现明显的消化和吸收不良,会出现腹痛、腹胀、恶心、呕吐、腹泻等情况,尤其是在脐周围会出现典型的脐周绞痛的情况。对于循环系统会造成明显的心悸、胸闷、气短、心律不齐和明显的心动过速等情况,最后还会造成严重的谵妄、全身抽搐等情况,最严重者还会出现意识丧失。

激素也许会引发激素性皮炎,并且会产生依赖性,具体要去医院检查治疗铅汞属于有毒重金属,虽然会临时美白作用,但是长期用会造成堆积,铅影响骨髓血液,汞会急性中毒正规牌子,不定期会有质监局进行检查,所以相对安全点;反之,突然爆红的产品,来路不明检查也没有的很危险(检查应该是国家质监局,而不是几片PS的图片能代替的)

一、铅汞化妆品对人体的危害铅汞化妆品的危害: 使用重金属超标严重的祛斑类化妆品,除了对皮肤产生直接危害外,汞通过皮肤吸收进入人体后,会损害人体神经系统、肾脏、造血系统、肝脏以及生殖系统,造成不孕不育。对于孕妇,还会通过胎盘影响胎儿发育。含汞的化妆品是为了容易附著於皮肤表面,使用时汞会渗入皮肤进入到人体内,由于重金属无法由人体经自然代谢排出体外,会在人体进行囤积,产生重金属中毒情况。一些具体的表现是掉头发、乏力等。但大多数人只表现是脸部比过去黑。含铅化妆品使用之后,也会产生金属中毒。而产母体中的铅过标也将导致体内宝宝出生后有一系列并发症。。。。对孩子的健康有影响。 汞(水银)可美白皮肤、防化妆品变质,但长期使用会致色素沉淀、皮肤出现褐色斑点,使用汞超标严重产品会慢性中毒;铅,铬等可使皮肤光滑、有亮泽,还可以增加附着性,长期使用皮肤变灰,铅含量超标会使人体铅含量积聚导致铅中毒、变痴呆; 激素可去红斑、抗过敏,但也会产生毛细血管扩张、色素沉积、毛囊炎、内分泌紊乱等副作用; 汞可以干扰皮肤黑色素形成,所以很多黑心厂家在美白产品里都添加了汞,汞的剂量越大,美白效果越好。汞是对人体健康有严重危害的一种重金属。容易被生物体吸收,进而对人体的神经、消化系统等产生严重危害,对孕妇和哺乳期的妇女还可能危害胎儿和婴儿的健康,影响大脑和神经细胞的生成。 长期使用汞超标的化妆品会导致慢性汞中毒,病人常出现不同程度的头晕、头痛、口腔溃疡、失眠、性情烦躁、记忆力减退、头发脱落等症状,尿汞也常超出正常值。严重可导致尿毒症。 2.增白荧光剂增白荧光剂是一种用在化妆品里的化学物质,如用来防止细菌滋生的防腐剂,就含有荧光成分。接触可能引起皮肤发痒、过敏或出现斑点。荧光过敏的消费者使用后,可能引起皮肤过敏,甚至可能造成色素不均匀沉积,产生斑点,令美容效果适得其反。3 化妆品含有激素对人体的危害当化妆品含有糖皮质激素时,刚开始应用会令皮肤嫩白、有弹性。但经常使用会使皮肤变薄变脆,同时糖皮质激素经皮肤吸收进入人体,时间长就会产生许多不良反应,如满月脸、浮肿、痤疮、多毛,高血压、高血脂、低血钾、糖、尿,骨质疏松,还可能诱发或加重某些疾病以及令胎儿致畸等等。现在国家对化妆品成分要求比较严格,绝对不允许含有糖皮质激素。糖皮质激素的依赖性 :(1)、刺激真皮层,皮肤变脆弱。抵抗力减退,容易衰老。 (2)、身体内分泌紊乱 (3)、对肝脏和肾脏不好 4.含激素护肤品的副作用 长期使用含激素的护肤品,不仅会造成皮肤多种皮肤伤害,而且还可能经皮肤吸收进入血运循环,引起体内伤害。 二、常见的皮肤损害包括:1.化妆品接触性皮炎这是激素副作用中最难治的一种。 临床表现为皮肤敏感性增高,反复过敏,停用后加重复发,微小血管弥漫性扩张,面部潮红,遇冷热刺激后皮肤发红、发痒、发涨等等多种症状。 长期使用糖皮质激素,皮肤的“抗体形成”、“抗原—抗体反应”、“炎症促进因子”长期被抑制;简而言之是皮肤的免疫功能长期被抑制,进而使炎症扩散。因此,治疗时间长,治疗难度大。 2.早衰 糖皮质激素长期使用会抑制胶原合成,皮下弹性纤维断裂导致皮肤松弛,形成早衰和多皱 3. 真皮斑 临床多见化妆品接触性皮炎患者,面部黑色斑点增多,成不规则状态分布,无明显对称性,为皮肤被伤害后,抵御紫外线能力下降,为紫外线损伤所致。4. 皮肤硬化 临床上多见化妆品接触性皮炎患者,面部皮肤硬化现象,硬化部位出现于颧骨斜下内侧及印堂处。硬化处毛孔圆而粗大,污垢感增强,略呈灰白色。 油性皮肤,且长期使用激素类化妆品者,偶尔可见整脸硬化,皮肤颜色灰白,为硬皮症。

工业硫化氢处理工艺研究论文

问题一:气体中的硫化氢一般怎么去除 加点石灰水吧,硫化氢能跟他反应 H2S+Ca(OH)2===CaS+2H2O 工业上为了考虑经济问题一般都用石灰水(氢氧化钙)来吸收的 问题二:硫化氢如何去除 可以用碱来吸收,工业上为了考虑经济问题一般是用石灰水(氢氧化钙)来吸收的。 H2S+Ca(OH)2===CaS+2H2O 问题三:工业生产中如何处理硫化氢气体 H2S的危害与防治 硫化氢极毒,人吸入浓度为1g/m?;的H2S在数秒钟内即可死亡。此外,硫化氢的化学活动性极大,电化学失重腐蚀、“氢脆”和硫化物应力腐蚀、破裂等对金属管线的腐蚀作用强烈。 煤炭资源生产过程中瓦斯内的硫化氢气体异常(瓦斯中H2S气体的浓度)也时有显现。在煤巷掘进过程中,因巷道开拓的煤量有限,且热化学分解、硫酸盐热化学还原作用导致煤矿瓦斯中H2S气体异常的浓度一般小于1%,当闻到强烈的臭鸡蛋气味时,掘进面、H2S气体异常工作面封闭,目前暂不开采。因此,煤矿生产中未出现重大伤亡事故。但若存在岩浆成因带来的无机H2S气体,将会对煤矿安全生产构成极大危害。 硫化氢毒性极大,但硫化氢比空气重(相对密度为),且极易溶于水而形成氢硫酸。故地势低处危险性比高处大;下风向硫化氢浓度大,上风向则浓度低等;在突发事故中用湿毛巾等捂嘴鼻、向高处避毒、向上风向撤离等,均可避免或减轻伤亡。 目前在天然气工业中普遍应用的在井口引出H2S用火燃烧,使极毒H2S迅速转化为有慢性污染的SO2,此种方法在矿井下无法实施,井下H2S危害的防治方法有: (1)建立独立的通风系统。对于H2S气体异常浓度不超过1%掘进面或工作面,改变通风方式,增加异常区的供风量,掘进回风石门与总回风下山沟通,使乏风直接进入总回风系统不影响其它工作面。与此同时调节通风系统,采用对旋风机,使H2S异常区供风量增加以稀释H2S,使其浓度达到安全生产的要求。 (2)改变采煤方法。改走向长壁采煤法为倾向短壁采煤法,从而形成全负压通风系统,使乏风直接进入采空区。有条件的矿井改炮采为丁力采煤,炮采或机采时增加喷水量,使H2S气体溶于水,降低其浓度。 (3)设专职瓦斯检测员,配备便携式H2S检测仪、便携式CO检测仪以及CH4鉴定器,确保经常检查三种气体浓度,严禁在任何时间、任何有害气体情况下超限作业。 (4)安装风电沼气闭锁装置,实现沼气自动检测报警。 (5)放炮时、必须用湿泥填满炮眼及工作面端头有可能储气的洞穴,严禁局部瓦斯聚积。放炮后,用大量水冲刷煤壁.尽量稀释溶解H2S,降低其浓度。 问题四:硫化氢工业臭味怎样去除最省钱 用Ca(OH)2 问题五:硫化氢用什么去除 可以用碱来吸收,工业上为了考虑经济问题一般是用石灰水(氢氧化钙)来吸收的。 H2S+Ca(OH)2===CaS+2H2O 问题六:硫化氢(H2S)是一种有毒的气体,工业上产生的硫化氢要经过处理,使其变成硫单质.富玛克斯法治理硫化氢 (1)根据硫化氢与碳酸钠发生复分解反应的特点,结合题中反应生成两种酸式盐的信息,可写出反应的化学方程式为H2S+Na2CO3TNaHS+NaHCO3;(2)根据质量守恒定律,RNO与NaHS的水溶液反应生成硫、碱和RNHOH,可知生成的碱为氢氧化钠,则反应的化学方程式为NaHS+RNO+H2OTS↓+NaOH+RNHOH;富玛克斯法治理硫化氢的整个过程中发生H2S+Na2CO3TNaHS+NaHCO3、NaHS+RNO+H2OTS↓+NaOH+RNHOH、NaHCO3+NaOHTNa2CO3+H2O、2RNHOH+O2T2RNO+H2O,可发现Na2CO3、NaHS、NaHCO3、NaOH、RNHOH、RNO都是过程的中间产物,最终发生的反应为硫化氢与氧气反应生成硫和水,反应的化学方程式为2H2S+O2T2S↓+2H2O;RNO在过程中化学性质不变,过程中应起到催化剂的催化作用;(3)富玛克斯法治理硫化氢的过程把有毒气体硫化氢转化为硫,减小硫化氢气体对环境造成污染;过程中碳酸钠等物质通过循环可反复使用,使处理过程体现出反应物的循环利用等绿色化学的理念.故答案为:(1)NaHCO3(2)NaHS+RNO+H2OTS↓+NaOH+RNHOH;2H2S+O2T2S↓+2H2O;催化(3)可循环利用反应物,符合绿色化学理念.(类似回答也算正确.) 问题七:怎么样来处理工业硫化氢废气呢? 鑫森脱硫化氢活性炭不同于当今市场所供的其他臭气吸附活性炭,是一种由特殊生产工艺、选用活性原料及科学配方生产的活性炭产品,鑫森脱硫化氢活性炭有特别高的H2S去除能力。这种活性炭是不可浸渍的,在运输、使用过程中和废料处理上都不会遇到象其它碱性浸渍炭那样所带来的严重的安全问题,鑫森脱硫化氢活性炭的着火点大于450℃。 一、鑫森脱硫化氢活性炭是一种高比表面积的微孔活性炭,具有发达的孔隙结构,无浸渍意味着在对H2S的催化、氧化过程中鑫森脱硫化氢活性炭的所有孔径和表面积可供储存大量的硫元素。二、特性及优点: (1)具有特别高的H2S去除能力;(2)在炭床上具有很长的使用寿命,很少因检修而中断吸附,减少了运行成本;(3)具有很高的着火点,大于450℃;(4)无浸渍,可安全操作(无腐蚀);(5)当用完(失去效能)的时候不会因为PH问题产生危险(无腐蚀);(6)低压力降,床层阻力小;(7)使用时有技术支持及分析、检验方法。三、应用: 可成功地应用于现今使用浸渍炭或其他臭气控制炭的领域,CO2的存在水平不影响鑫森脱硫化氢活性炭对H2S及酸性气体的处理能力。4mm的粒径保证气流在吸附设备中的压力损失较小,同时较高的强度使得鑫森脱硫化氢活性炭产品在使用过程中很少产生粉料。主要应用领域: ・臭气控制 ・污水处理厂 ・冶炼、纸浆和造纸厂 ・酸性气体,如:HCL、SO2 ・易挥发的有机化合物 备注:H2S的穿透力用ASTM D6646-01方法测定。完成检测的步骤:含1Val%H2S的混合汽体,以1450cc/min的速率通过内经为1英寸经密实装填炭样的测定管,炭层高度为9英寸,H2S分析仪的穿透极限为50ppm。测定报告的结果以:g /cc表达。 硫化氢吸附量 问题八:盐中的硫化氢怎样去除 加点石灰水吧,硫化氢能跟他反应 H2S+Ca(OH)2===CaS+2H2O 工业上为了考虑经济问题一般都用石灰水(氢氧化钙)来吸收的 问题九:硫化氢的最佳处理方法? 用NaOH吸收, 工业上还可制取Na2S Na2S是一种化工原料,叫臭碱

目前一般大气量 硫化氢超过500mg的会选用湿法脱硫技术,小气量低硫化氢采用的是干法脱硫技术。目前湿法主要有DF888法和络合铁法。唐山专业一些

硫化氢含量低的采用干式脱硫,硫化氢含量高的采用湿式脱硫

深国安电子根据多年经验,提供以下方法参考;一.国内外硫化氢废气处理的方法总结这些年,关于H2S气体的净化方法研讨越来越活跃。依据各自的特点,可把硫化氢废气的净化方法分为:吸收法,物理溶剂吸收法、化学溶剂吸收法;吸附法,可再生的吸附法、不可再生的吸附法;氧化法,干法氧化法、湿法氧化法;生物法等。二.吸收法吸收法包含:物理吸收和化学吸收法。物理吸收法物理吸收法通常情况下是选用有机溶剂作为硫化氢的吸收剂,有机溶剂有两大优点:(1)能够有选择性地吸收硫化氢(2)加压吸收后只需降压即可解吸。物理吸收法流程简单,通常情况下只需吸收塔,常压闪蒸罐和循环泵,不需外加蒸汽和外加其他热源。物理吸收法对溶剂的要求:(1)H2S在溶剂中的的溶解度要比在水中溶解度高数倍,而烃类、氢气在溶剂中的溶解度比它们在水中的溶解度低(2)该溶剂的蒸汽压要求尽量的低,防止其溶剂的挥发而造成溶剂的丢失(3)该溶剂须具有很低的粘度和吸湿性(4)该溶剂对金属没有腐蚀(5)溶剂的成本相对较低。目前有机溶剂物理吸收H2S的技术有很多,运用的吸收剂有磷酸三定酷(埃斯塔索尔法)、N-甲基-2-砒咯烷酮(普里索尔法)、碳酸丙烯酷(福洛尔法)、甲醇(勒克梯索尔法)等。化学吸收法化学吸收发法是将被吸收的气体导入吸收剂中使被吸收的气体中的一个或多个组分在吸收剂中发生化学反应的吸收进程。硫化氢溶于水后,水溶液呈酸性,并且考虑到吸收液的再生问题,因此可以选用具有缓冲效果的强碱弱酸盐溶液处理硫化氢废气,如酚盐、磷酸盐、硼酸盐、氨基酸盐等,这些溶液的PH值大多在9~11之间。除此之外,还可选用一些弱碱,如二甘醇胺、乙醇胺类、氨、二甘油胺、二乙丙醇胺等水溶液作吸收剂来吸收含H2S气体的废气。化学吸收的溶剂通常是在常压加热下再生,化学溶剂对H2S的吸收率比物理溶剂高。三.吸附法吸附法即是运用某些多孔性物质具有的吸附功能,对H2S气体进行净化,该办法常用于处理H2S气体浓度较低的排放气。吸附设备通常选用固定床吸附器,为防止吸附颗粒被粉尘等阻塞,在气体流入吸附床层前,应先经过预净化设备。目前常用的吸附剂分为:可再生吸附剂与不可再生吸附剂。可再生吸附剂自1950年以来,工程上选用的吸附剂最早是水合氧化铁。常温下的氧化铁脱硫剂的脱硫进程反应方程式为:脱硫: Fe2O3·H2O+3H2S=Fe2S3+ 3H2OFe2O3·H2O+3H2S=2 FeS+S+4 H2O上述反应因为受到反应条件的影响,一式得到的产品Fe2S3易于再生为Fe2O3,而二式得到的产品FeS不易再生为Fe2O3,因此在实践运用中应防止二式反应的发生。再生: Fe2S3·H2O+3/2H2S= Fe2O3·H2O+3S2 FeS+3/2O2+ H2O=Fe2O3·H2O+2S(高温)不可再生吸附剂常用吸附剂是氧化锌,吸附反应为:ZnO+ H2S=ZnS+H2O300℃时经ZnO吸附脱硫后的净化空气中H2S浓度在14mg/m3以下。ZnO吸附剂的首要缺陷是不能经过氧化就地再生,须更换新的吸附剂。四.氧化法氧化法净化硫化氢废气,通常是把H2S气体直接氧化为单质硫。在气相中进行氧化的进程通常被称作叫做干法氧化,在液相中进行的叫湿法氧化。干法氧化干法氧化是在通常情况下使硫化氢气体氧化成单质硫或硫的氧化物,典型的有克劳斯法和选择性氧化法。脱除废气中氧化氢最早的办法之一是克劳斯法,首要优点是:从硫化氢气体中收回硫。该法适用于进气中硫化氢浓度较高的情况,它操作便利,设备简单,长期以来一向受到废气处理应用方的重视。克劳斯法的原理是,在克劳斯焚烧炉中内使废气中的一部分硫化氢氧化生成SO2,生成的SO2与进气中的H2S按下列反应方程式生成硫磺加以收回:H2S+SO2=2H2O+3/2S2铝矾土是反应的催化剂,使反应能够在不太高的温度下进行。催化剂的运用量为反应混合物的。反应器内温度必须小于650℃,否则催化剂结构受到损坏,当废气中有碳氢化合物时温度不得超过480℃。克劳斯法要求废气中的H2S的初始浓度应大于15%,否则,H2S的焚烧不能供给满足反应需求的热量,不能保持正常反应所需求的温度。选择性氧化法,是在催化剂的作用下把H2S用空气中的氧直接氧化为硫。这些年,选择性氧化技术有突破性发展,成功的研制出选择性好、对H2O和过量O2不灵敏的高活性催化剂。选择性氧化法硫的总收回率可达98%~99%。湿法氧化与干法脱硫比较,湿法处理能力能大,且操作弹性大。湿法氧化具有如下的特色:脱硫效率高,可使净化后的气体含硫量较低,,将H2S一步转化为单质硫;既可在常温常压下操作,又可在加压下操作,大多数脱硫剂可再生,运转成本低。液相催化法是中国近期研讨的热门,各种液相催化法的技能流程大致一样,均由脱硫和再生组成。五.结论硫化氢废气的净化办法多为回收类办法。对于量大、浓度较高的含H2S气体,通常经过吸收、氧化等进程收回硫磺。对于量小、浓度低的含H2S气体,通常用吸附法处理。氧化法具有处理量大、能够连续生产的优点,在工业生产中应用较多。

金属二硫化物研究论文

随着自由贸易的发展,我国所遭受的倾销越来越严重,运用反倾销 措施 来维护公平竞争的市场环境、保护国内企业的合法利益、保证产业安全已刻不容缓。下面是我为大家推荐的化工论文,供大家参考。

化工论文 范文 一:能源化学工程专业无机化学教学改革

能源化学工程专业[1]是利用化学、化工的理论与技术来解决能量的转换、储存及传输等问题,通过生产清洁、高效的新能源服务于人类生活的一门学科。无机化学是本专业所开设的第一门专业基础课,其教学质量直接影响到培养的应用创新型人才的质量。而目前无机化学的教学中面临着很多问题,如大一新生刚从高中迈入大学,面临如此信息量大的课程感到迷茫;教师面对课时量日趋减少的趋势,而传递的信息量大的困扰,不知如何把握日常教学;另外,加上教师科研压力等方面的因素,使得其未能全身心地投入教学中。因此,无机化学教学的改革与探讨在本专业教学过程、人才培养模式中的地位尤为重要。例如:

(1)武汉工程大学化工与制药学院从优化课程内容入手,对无机化学的 教学 方法 进行了改革[2];

(2)钦州学院化学化工学院从无机化学的重要地位出发,结合无机化学的教学目的,对无机化学多媒体课件进行了构建和探讨[3]。菏泽学院是一个应用型的地方性教学型本科院校,于2012年成功申请了与国家战略性新兴产业密切相关的能源化工专业。我系主要从教学目标、教学内容、现代化的教学手段等方面对无机化学的教学进行了改革与探索。

1明确合理的教学目标

根据能源化学工程专业的培养目标及培养模式,结合无机化学课程特点,菏泽学院化学化工系于2012年制定了能源化工无机化学教学目标。通过该课程的理论基础及实验实践的学习,能够使学生掌握无机化学基本知识和技能,为培养成高素质劳动者和化工专业技能人才做好准备;同时,也为今后学习专业知识和职业技能打下坚实的基础。此目标主要分为以下几个方面的目标。

知识目标

主要分为了解、理解、掌握三个层次方面目标。通过该课程的教学,应使学生了解:气体的扩散定律,气体分子的速率分布和能量分布;反应速率的概念及反应速率理论;强电解质解离、离子氛、活度系数的概念;微观粒子运动的特殊性;路易斯结构式,等电子体原理,分子轨道理论;化学电源与电解;卤素单质的物理性质,金属卤化物、拟卤素和拟卤化物、互卤化物和多卤化物;硫和硫化物、单质硫、硫化氢和氢硫酸的物理性质;硅的单质、硅烷、硅的卤化物、硅的含氧化合物。通过该课程的教学,应使学生理解和掌握:气体的状态方程及混合气体的分压定律;热力学第一定律,化学反应的热效应、热化学方程式、盖斯定律、生成热的概念及应用,化学反应进行方向的判断方法;浓度对反应速率的影响;缓冲溶液的原理及应用;沉淀溶解平衡及移动;核外电子运动的描述,核外电子排布和元素周期律及基本性质的周期性;价键理论,价层电子互斥理论及杂化轨道理论;基本概念:原电池、电极电势和电动势及能斯特方程;卤素单质的化学性质,卤化氢和氢卤酸的化学性质;氧、氧化物、臭氧、过氧化氢的物理化学性质,硫的含氧化合物的化学性质。掌握氮的氢化物、氮的含氧化合物的化学性质。

专业能力与素质目标

能力目标方面主要是培养学生谦虚的品格、勤奋好学的习惯以及知识迁移的能力;培养学生勤于动手创作、做事严谨的良好作风;培养学生学会运用唯物主义辨证的思维分析问题及解决问题的能力;培养学生工程质量意识和规范意识以及严谨、认真的工作态度。专业能力目标方面使学生能够掌握重要元素及其化合物的主要性质、结构、存在、制法、用途等基本知识;培养学生独立进行化学计算和利用参考资料等方面的能力;具有通过对实验数据的分析,绘制出特性曲线,能够写出规范实验 报告 并加以 总结 概括的能力。素质目标方面主要是培养学生具备良好的职业道德;培养学生勤苦奋斗、勇于创新、敬业乐业的工作作风。

2丰富合理的教学内容

科研成果与课堂教学相结合,保持教学内容的前沿性

科研成果与课堂教学相结合包含两部分内容:一是在教学过程,教师能将自己的科研成果带入教学内容之中。这就要求教师教学的同时展开科研,而科研课题也要紧紧围绕教学内容展开,这样会更能了解学科的前沿动态并能深入把握,有利于增强教学的深度、广度,有效地提高教学质量[4]。另外教师将科研成果带入课堂分析中,将科研成果与教学有机地结合起来,将最新知识与信息传递给学生,科研推动教学,教学促进科研。二是在教学过程中结合学科发展情况,充分利用别人的研究成果,及时补充教学内容,进行教材建设。另外,在教学实践中可采用“案例教学”,对具体科研案例进行讨论、分析,比较各种方案的优缺点及产生原因,选择合理方案。在项目设计过程中,通过教师的引导作用,学生可以自主查阅资料并开展项目的研究性学习。

建设开放的无机化学实验教学环境,理论与实验相结合

充分利用我系基础实验室和化学工程实验中心的仪器设备和师资力量,结合我系化学能源工程专业及无机化学教学内容的特点,试图探索出一套完善的开放式无机化学实验教学模式,注重实验与课堂教学相结合、开展系内实验技能竞赛及无机化学创新实验设计竞赛等项目,激励学生的学习积极性及培养今后创新实践的能力。开展大学生创新研究计划,引导学生在大三下学期进入教师的科研室进行锻炼,参与课题的研究,培养学生的创新意识和实践能力;鼓励大二学生参加无机化学实验技能竞赛,鼓励学生进行科技创新;另外聘请国内外无机化学研究领域的专家学者来我系作学术报告,增加学生的科研兴趣及全面了解无机化学的前沿动态,为今后的科研之路做好准备。

3多媒体与板书相结合的现代化教学手段

针对目前无机化学课时缩减而传递信息量大的情况,传统的板书教学手段已不能满足时代的需要,因此多媒体技术已广泛使用在课堂教学中。这样一方面将节省下的板书的时间能够用于重点难点的讲解,另一方面多媒体中引入一些无机化学演示实验、实物图像,将枯燥的理论教学表现的更加生动直观,提高了学生的学习积极性。然而仅利用多媒体也有一定的缺陷,如对一些公式的推导,仅利用多媒体会受到一定的限制,因此多媒体跟板书结合会更加有利于公式的推导。另外,还会避免仅利用多媒体的教学进度过快,学生不能融会贯通的缺点。总之,鼓励学生 课前预习 ,采用板书与多媒体技术相结合既能考虑教师的教学进度与学生的掌握程度,又能兼顾教学的广度与深度的问题,取得了较好的教学效果。

4结束语

无机化学是能源化学工程专业学生迈入大学的第一门专业基础课,其教学效果直接影响着学生学习本专业的积极性及掌握本专业基础知识的扎实程度。本系以上结合能源化学工程专业特点对无机化学的教学目标、教学内容及教学手段的初探具有一定的意义。今后会继续探索无机化学其他方面的改革。

化工论文范文二:油藏化学工程研究发展趋势

推动我国油藏化学工程研究与我国社会进步有着密不可分的联系。为了赶上发达国家对油藏化学工程研究的脚步,我国必须大幅度提升在这一方面的开发技术,更好地促进化学工程研究大步向前发展。

1油藏化学工程研究的发展背景

人类面临的最大危机之一就是能源问题,世界各国都在担忧石油问题。迄今为止,人类只开采了大约总储藏量1/3的原油,因此,油藏开发及提高效率是每一个科技工作人员的头等任务。半世纪以前,世界对石油的总需求量日益增长,工人们利用油藏工程的原理提高采收率来满足市场需求,同时也促进了油藏工程原理的发展。作为石油工程的重要组成部分,油藏工程主要负责各类研究,在掌握动态规律与原理的同时,也辅助了钻井与采油工程的开展。

2三次采油技术

自改革开放以来,世界各国石油界的精英们一直努力提高石油的采收率。一次和二次采油主要是靠自身压力和注气注水等方法,三次采油是采用之前的任何工业技术[2]。因而提高油藏采收率并没有局限在某一阶段或手段,它主要是靠原来油藏中没有的物料开采。它的定义与分类是不矛盾的。油藏化学工程是在三次采油的背景下发展起来的,它和化学工程学科共同发展。随着现代科技的迅猛发展,人们不断引进新技术,取得新成就。这一阶段也让人们认识到发展的多样性,开始探究多方面技术,涉及各种学科,主要有胶体与界面科学、化学工程学、化学反应动力学、渗流力学、热力学、计算数学等多种高等学科。

3化学复合驱技术

我国油田多数是陆相沉积,分布相当不均匀,原油中的蜡含量和芳烃含量比例较大,且黏度大,导致水驱采收率只在33%左右。三次采油的研究技术表明,化学复合驱能够有效提高采收率,它是在单一化学剂驱的基础上组合两种不同的化学剂,形成多种复合体系。通过实验证明,复合驱的相互作用比单一化学驱剂效果显著的多。随着各方面技术的发展和完善,复合驱逐渐成为我国提高原油采收率的主导技术。复合驱配方体系主要是由高浓度小段塞和低浓度大段塞2种体系组成。高浓度小段塞是利用表面活性剂和助剂,使油水形成中相微乳液体系,增强原油的乳化。典型的代表有胶束.聚合物驱体系,它的表面活性剂浓度在~,段塞小于,若形成微乳液,效率更大,能达到80%以上。低浓度大段塞是后期才引进的策略,它的驱油原理主要是毛管准数理论,利用碱和表面活性剂降低油水界面张力。这种体系应用相对广泛,高酸值和低酸值都适用。近年来,随着研究力度加强,新型产品不断出现,如梳形聚合物KYPAM,星形聚合物STARPAM,疏水缔合聚合物。这些新型耐温抗盐聚合物,有利于节约淡水资源,保护环境。也扩展了油藏水的矿化度和文档范围。

4油田堵水调剖技术

开发油田主要采用水驱开发在在这一过程中,因储存分布不均,导致注水过程中出现沿高渗透带窜流,水波效果差,油井含水快速上升,尤其当进入高含水阶段,会出现水短路的现象,加深开采工作难度。为改变这一现状,专家们提出采用“堵水调剖”这一方法。堵水调剖具有颇多优势,操作简洁、规模较小、周期短、效果显著,能有效提高注水开发效果。油田堵水调剖技术历经磨难,从单井油井堵水油井堵水到单井水井调剖,目前主要发展到调整深部调驱。直到2006年底,才开始着手整体堵水调剖示范工程,在采油研究院的带领下,全面开展现工作,有条理的分析堵水调剖工艺技术,给予独特的评价以及实地示范。为改善注水开发的现状,应做如下调整目标:将单井措施向区块整体转变;将近井剖面转向深部液流;阶段上实施一体化转变;评价上从单井向整体转变;应用上改用多种复杂油藏,不再局限在常规水驱油藏据调查,仍有多个区块可以进行整体调堵,由此看来,堵水调剖技术发展趋势将奋力往前。

5评价与改进

综上所述,虽然油藏采收率明显提高,技术也不断突破,但仍然要看清形势。在取得成果的同时,也要擅于总结 经验 ,找出不足,精心解析。例如耐温抗盐聚合物产品的溶解性和长期热稳定性都还不是很乐观,在现场实施过程中,不能有效地达到施工要求,高效率的完成任务。同样地,化学驱技术需要改进解决的问题也是各方面的,需要研究者在过程中分层次去进行。只有抱着永不止步的态度去钻研,去创新,去探索,才能攻克这些技术上遇到的“疑难杂症”,才能进一步将化学驱油技术往特色道路上发展,不断为油藏化学工程研究的发展做贡献。

6结束语

为推动我国油藏化学工程持续发展,还需加强工作。不停探索实验技术,顺应环境变化。掌握化学驱技术,在实际工作中解决问题。还要继续研究物理化学模型,对敏感参数进行验证。油藏化学工程研究的全方位发展,有利于解决能源紧缺问题,有利于稳定我国石油市场,有利于世界和平。

二硫化物在有机合成和生物体中具有重要的地位,生物体内二硫化物与巯基的可逆相互转化使得基于二硫化物的可生物降解材料在化学传感器、前体药物、水凝胶和纳米材料等领域广泛应用。本论文研究了通过相转移催化合成官能化二硫化物中各种反应条件的影响和相转移催化机理,利用相转移催化合成了双(羟基十一烷基)二硫化物和聚烷基二硫化物,并使用不同的还原剂对双(羟基十一烷基)二硫化物进行还原,探讨了DTT在不同溶剂体系中还原二硫化物的能力,提出了DTT还原二硫化物的反应机理,主要研究结论包括:1、通过对相转移催化合成烷基二硫化物过程中反应温度、反应时间、物料比等因素的研究,第I步反应中硫磺与硫化钠的配比决定了生成二硫根的反应平衡,决定了反应完毕后单硫根、二硫根和三硫根离子的浓度。2、相转移催化合成烷基二硫化物的第II步反应中,三种硫根离子与双十二烷基二甲基铵离子的结合能力顺序为:单硫根<二硫根<三硫根;相转移催化制备二硫化物过程中,硫根离子的浓度及其与相转移活性离子的结合能力决定了哪种离子能够被转移并生成相应的产物。3、利用相转移催化反应,通过控制优化的反应条件,可以制得纯度很高的双(羟基十一烷基)二硫化物;此外,调节Na2S2和1,10-二溴癸烷的摩尔比,在适当的反应条件下可以制备聚癸烷基二硫化物,这种聚合物为无色透明的聚合物。4、在双(羟基十一烷基)二硫化物的还原反应中,使用硼氢化钠作为还原剂可实现的还原比例为70%;使用Zn-乙酸体系可以实现还原率为80%,但易造成羟基的酯化反应;Zn-HCl体系的还原率为53%;三丁基膦基本上未发现还原活性。5、DTT还原双(羟基十一烷基)二硫化物与溶剂性质密切相关。在THF为主溶剂的体系中,随着质子性溶剂(水、甲醇)含量的增加,还原率越来越高,最高达到;在二氯甲烷为主溶剂体系中,当完全无水时,还原反应不能发生,而水含量仅为时,还原率可达到,然后随着水含量的增加而还原率降低。6、从反应机理来看,碱性条件下,二硫苏糖醇的两个巯基电离为硫离子,这种硫离子作为亲核试剂对二硫键中的硫原子进攻,在水、甲醇等质子性溶剂的促进作用下,使得二硫键断裂,形成硫离子;而二硫苏糖醇的两个硫原子闭环被氧化。

硫化锗的研究进展论文

锗,是德国化学家文克列尔发现的。是浅色得金属,半导体物质,其原子具有32个电子,电子在人体里受电子工学作用而膨胀,而且通过净化作用给细胞供氧。 成分:经过研究证明锗晶体里的原子排列与金刚石一样,硬而且脆,锗在自然界分布很散、很广。铜矿、铁矿、硫化矿以至岩石,泥土和泉水中都含有微量得的锗。在地壳中的含量为一百万分之七,锗石含有大量的有机锗及名贵的玉石粉、珍珠粉、麦矾石、中药材料、镁、铁、钙、碳、钾、钠、叶绿素等45种对人体有益的矿物质。世界上著名的锗元素研究专家日本的Asashi博士发表了以《锗和我的人生》著作为首的许多论文。他一生都致力于对锗的研究与对疑难病症的临床研究及治疗,终于,于1975年在世界上首次成功地研制出锗的有机化合物,受到全世界的广泛关注并因此获得了诺贝尔奖。Asashi博士指出:锗具有抗癌作用和强壮作用;锗可有效激活人体免疫系统;锗能为人增强健康水平,防疫疾病提供可靠保障。锗的功能:1、锗脱氢富集氧的作用锗能够使体能保持充足的氧,从而维护人体的健康。在人体中,食物的分解是借助氧气进行的,在食物分解过程中,需要消耗大量的氧,同时生成水和二氧化碳。如果没有充足的氧,就有可能使机体引起各种疾病。而有机锗能把人体内的氢离子带出体外,减少了机体对氧的需求量,从而有利于健康。锗进入人体后,可均匀地分布在各器官组织中,24小时完全排出体外,属于不会在身体中蓄积的微量元素,其毒性极低,无副作用。人体各器官细胞在生命过程中产生废物,一部分经过分泌系统排出体外,还有一部分以自由基的形式存在于各器官中,形成病变,导致器官功能下降影响健康,有机锗能与这部分自由基结合后排出体外,增强器官生命。2、锗的抗氧化作用 进入我们身体里的各种脂肪,由于新陈代谢异常而产生的物质称为过氧化脂质,一般油变质的情况成为氧化。原子在进行化学结合的时候由于带有电子所以原子经常结构分子,而分子常常带有原子上的电子,不带电子的分子或原子,既不带电子的状态为游离基。构成我们人体的细胞大约有60组,这已得到证实,日本GITASATOD大学医学部分孙生物研究组发现了锗还对癌症患者或关节炎患者等的血清有特殊的氧化作用。3、锗半导体和电位锗是半导体物质, 其原子具32个电子,电子在人体里受电子工学作用而膨胀,而且通过净化作用给细胞墙供氧,细胞是由微小的电气凝结而成的,所以每个细胞是在职定的电位中发挥作用。如果某个电位脱离正常的位置,就会引起病变,而锗起防止这种现象发生的作用,特别是它能引起到破坏癌细胞膜的电位的作用 ,从而抑制癌细胞增殖作用的活跃化。这就是生化上所说的通过脱氧化反应使癌组织的异常细胞被破坏。以治疗为目的的放射线疗法会影响到癌细胞周围的正常细胞和血球等。锗正是起着,抑制放射线引起的损伤从而减轻损害,恢复被破坏的细胞的作用。4、锗的清血作用如果血液循环酸化粘度增加,无法正常发挥提供氧和营养的作用,而且血管里的异物使血液浑浊。为了把这种异物排除血管外,自然会引起血液循环障碍和高压。引起高血压的最主要的原因是血液中钠和钾在身体里起生理作用的时候,无法保证盐分代谢均衡,给血管壁强烈的刺激,使血管收缩,血压增高。这里所说得锗的清血作用是给血液里的血球细胞增加供氧,一旦氧增加了,血液的粘度会自然降低,而且可以排除所有已被酸化的异常物质,从而起清血的作用。血球细胞活跃地起作用,氢离子自然也会增加,此时血球与氧相结合。通过锗的作用排除氢离子,使血液干净,保持的好的精神状态。5锗的生理特性锗具有半导体作用。在所有生物体的细胞内,都发现有核酸。核酸也是半导体,它有两种类型,即DNA和RNA。DNA含有遗传信息,RNA主要功能是合成蛋白质。锗所以能参与物质代谢和能量转换,与其半导体性质不无关系。6、锗的其它作用抗肿瘤、治疗老年痴呆、增强免疫功能、延缓衰老、预防及治疗动脉硬化、降低血液粘稠度、抗类风湿关节炎、调节内分泌、止痛消炎、降血压、治疗骨质疏松、调节内分泌、治疗慢性肝炎等方面。锗对机体的抗老化代谢起作用,使细胞活性化,具有延寿的作用。耐缺氧作用,可提高氧的利用率,可使受伤的细胞重新恢复。可清除体内垃圾,排除体内重金属,达到排毒养颜的作用。用于皮肤护品,由于它稳定性的特点对化妆品是很重要的。有机锗用于美容或化妆品可以制成不同的剂型,如乳剂、软膏、水剂、粉剂等,用含有有机锗钠盐对32~60岁有皮肤色素沉着的妇女实验,结果表明试测者皮肤变得光滑、丰润,小皱纹消失,色素及斑点改善,有机锗配成乳液加入必要的配料,涂手及面部,皮肤变得光滑而未产生过敏及其它副作用。锗石对人体还有有凉血止血,降逆止呕,清火平肝的效力,其原理和另外的含铁矿物药,磁石相仿, 从中医学角度来讲,接触自然矿物可以补充人体不足的元素和微量元素,吸收或排泄过剩的元素和微元素,使人体保持一个特有的正间值。

唐 任 寰 胡 少 文(北 京 大 学 技 术 物 理 系 北 京 100871)摘 要 综 述 了 有 机 锗 抗 肿 瘤 药 物 , 对 β ━ 羧 乙 基 锗 倍 半 氧 化 ( Ge ━ 132 ) 和 螺 锗 在 肿 瘤 学 中 的 作 用 以 及 抗 癌 效 应 机 制 作 出 评 价 。 自 80 年 代 起 至 今 , 又 有 含 硫 杂 、 柠 檬 酸 、 氨 基 酸 、 苯 基 锗 化 合 物 , 以 及 锗 酵 母 、 含 锗 中 草 药 等 被 先 后 合 成 出 来 。 在 几 类 具 有 生 物 活 性 的 有 机 锗 化 合 物 中 , 仍 首 推 Ge ━ 132 、 螺 锗 及 其 衍 生 物 为 低 毒 有 效 抗 肿 瘤 候 选 药 物 。 然 而 对 于 锗 导 致 的 毒 性 及 其 机 理 仍 需 进 一 步 加 以 探 讨 。关 键 词 β ━ 羧 乙 基 锗 倍 半 氧 化 物 , Ge ━ 132 , 螺 锗 , 抗 肿 瘤 药 物锗 是 位 居 元 素 周 期 表 第 IV 主 族 的 准 金 属 元 素 , 外 层 电 子 结 构 为 4s24p2, 有 可 利 用 的 4d 轨 道 , 通 常 为 4 价 。 锗 在 地 壳 中 的 分 布 属 于 典 型 的 稀 散 元 素 , 在 自 然 界 中 有 5 种 稳 定 同 位 素 : 70Ge()、 72Ge()、 73Ge()、 74Ge()、 76Ge()。锗 与 同 族 元 素 类 似 , 易 于 形 成 有 机 化 合 物 , Ge ━ C 键 能 为 238~247 kJ mol-1 , 热 稳 定 性 高 , 可 经 蒸 馏 ( 分 馏 ) 、 萃 取 、 色 谱 等 方 法 分 离 纯 化 。 很 多 植 物 中 都 含 有 限 量 锗 , 如 人 叁 、 党 叁 、 白 芷 、 枸 杞 、 灵 芝 草 、 芦 荟 和 茶 叶 等 在 内 。 尽 管 迄 今 尚 不 能 确 定 锗 是 人 体 必 需 的 微 量 元 素 , 但 是 由 于 某 些 药 物 的 医 疗 保 健 作 用 被 认 为 是 与 有 机 锗 有 关 。 1968 年 , 长 期 从 事 锗 化 学 研 究 的 浅 井 一 彦 等 即 从 人 叁 药 效 与 有 机 锗 含 量 的 相 关 性 出 发 , 首 次 合 成 了 具 有 广 泛 药 理 活 性 的 水 溶 性 有 机 锗 化 合 物 ━ β ━ 羧 乙 基 锗 倍 半 氧 化 物 ( Ge ━ 132 ) ; 1974 年 , 具 有 更 高 抗 癌 活 性 的 螺 锗 被 Rice . 和 Wheeler . 合 成 出 来 。 1984 年 , 刘 元 方 和 唐 任 寰 等 研 究 锗 对 四 膜 虫 细 胞 和 啤 酒 酵 母 菌 生 长 的 促 进 作 用 , 发 现 它 的 有 益 生 化 效 应 , 认 为 制 取 锗 酵 母 等 作 为 营 养 药 物 是 有 价 值 的 。 1986 年 , 唐 任 寰 等 进 而 指 出 锗 是 有 益 元 素 , 值 得 深 入 追 踪 。 [1]近 年 来 , 日 本 方 面 关 于 锗 的 医 疗 用 途 及 临 床 实 验 报 导 很 多 。 美 国 等 着 重 有 机 锗 与 防 癌 抗 癌 作 用 的 研 究 。 中 国 微 量 元 素 锗 研 究 会 1990 年 在 上 海 召 开 第 一 届 锗 研 讨 会 以 来 [2] , " 微 量 元 素 " 杂 志 即 于 1990 年 第 3 期 首 辟 锗 专 栏 配 合 。 迄 今 已 开 过 全 国 性 三 届 锗 研 讨 会 [3][4] , 并 与 中 国 有 色 金 属 工 业 稀 有 金 属 情 报 网 联 合 , 收 到 有 机 锗 方 面 论 文 数 以 百 篇 计 , 全 面 开 展 了 有 机 锗 化 合 物 从 合 成 、 分 析 、 毒 理 、 药 理 、 生 化 和 临 保 健 作 用 的 研 究 , 极 大 地 推 进 了 有 机 锗 生 物 化 学 和 医 药 学 的 迅 速 发 展 。 大 有 后 来 居 上 之 势 。在 具 有 生 物 活 性 的 几 类 有 机 锗 化 合 物 中 . 迄 今 首 推 有 机 锗 的 倍 半 氧 化 物 、 螺 锗 及 其 衍 生 物 为 低 毒 有 效 抗 癌 候 选 药 物 。1. β ━ 羧 乙 基 锗 倍 半 氧 化 物 ( Ge ━ 132 )自 浅 井 一 彦 等 最 早 报 导 具 有 抗 癌 活 性 的 有 机 化 合 物 Ge ━ 132 以 来 , 佐 藤 博 、 Shimauchi 、 Suzuki 等 用 它 对 艾 氏 腹 水 型 肝 癌 鼠 进 行 治 疗 , 结 果 平 均 存 活 时 间 明 显 延 长 。 80 年 代 以 来 , 国 内 学 者 始 关 注 有 机 锗 的 合 成 及 其 抗 癌 活 性 。 1989 年 , 南 开 大 学 白 明 章 等 合 成 了 15 种 锗 倍 半 氧 化 物 , 并 研 究 了 它 们 的 抗 癌 活 性 ; 广 州 军 事 医 学 研 究 所 和 广 州 医 学 院 药 理 研 究 室 随 后 也 报 导 了 Ge ━ 132 。β ━ 羧 乙 基 锗 倍 半 氧 化 ( 2 ━ Carboxyethyl germanium sesquioxide ) 简 称 Ge ━ 132 , 化 学 式 为 ( GeCH2CH2COOH ) 2O3 , 由 6 个 锗 原 子 和 6 个 氧 原 子 相 间 连 接 而 成 的 十 二 元 环 结 构 单 元 组 成 , 其 中 每 个 锗 原 子 与 3个 桥 氧 原 子 联 结 成 延 伸 的 片 层 结 构 , 从 而 使 Ge ━ 132 具 三 维 网 状 结 构 。 它 是 一 种 干 扰 素 诱 发 剂 , 具 抗 癌 性 干 扰 素 的 活 性 。 试 验 证 实 , 它 是 一 种 广 谱 抗 癌 药 物 , 治 疗 白 鼠 的 腹 水 肝 癌 和 肿 瘤 , 阻 止 淀 粉 样 变 性 的 发 生 ; 处 理 由 病 毒 细 胞 和 原 虫 类 引 起 的 各 种 疾 病 , 治 疗 生 殖 系 统 癌 症 , 且 有 免 疫 调 节 活 性 , 现 已 被 广 泛 地 用 于 各 种 疾 病 的 试 验 治 疗 之 中 。国 内 外 对 不 同 类 型 人 类 肿 瘤 进 行 了 有 机 锗 的 I 期 和 II 期 临 床 研 究 , 证 实 Ge ━ 132 在 人 体 内 的 吸 收 和 分 布 方 式 与 大 鼠 相 同 。 1985~1988 年 国 内 试 用 Ge ━ 132 治 疗 胃 癌 、 肝 癌 、 肺 癌 等 各 种 晚 期 癌 瘤 达 112 例 , 它 对 大 部 份 患 者 具 有 稳 定 作 用 , 显 着 减 轻 症 状 。 日 本 对 不 同 类 型 人 类 肿 瘤 的 临 床 试 验 结 果 , 发 现 对 胃 癌 、 肺 癌 、 胰 腺 癌 、 子 宫 癌 、 乳 腺 癌 、 前 列 腺 癌 以 及 多 发 性 骨 髓 瘤 均 有 较 好 的 疗 较 , 未 见 副 作 用 。 而 Ge ━ 132 的 抑 瘤 活 性 则 与 给 药 途 径 、 疗 程 有 关 。 近 年 有 关 Ge ━ 132 的 临 床 和 抗 肿 瘤 研 究 分 别 可 见 李 基 俊 等 (1995) 、 赵 蔷 和 苗 健 (1995) [4] 、 文 振 乾 (1993) [5] 、 顾 生 望 (1992) [6] 等 人 的 评 述 。卢 朝 晖 等 (1994) [7] 研 究 了 Ge ━ 132 对 实 验 诱 发 小 鼠 前 胃 癌 变 过 程 中 的 免 疫 作 用 ; 陈 越 等 (1994) 对 鸡 马 立 克 氏 病 毒 (MDV) 的 抑 制 效 果 ; 尹 浩 然 等 (1994) [8] 对 阻 抑 治 疗 胃 癌 前 病 变 , 宋 卫 生 (1991) [9] 对 抑 制 DMH 诱 导 大 鼠 大 肠 癌 、 罗 慧 玲 等 (1994) [10] 对 抑 制 EpsteinBarr 病 毒 抗 原 表 达 、 梁 光 裕 (1995) 对 胃 癌 、 肺 癌 的 治 疗 等 分 别 作 出 了 有 益 研 究 。木 村 郁 郎 (1991) [4] 介 绍 了 日 本 有 关 Ge ━ 132 抗 癌 防 癌 效 果 的 研 究 , 认 为 单 独 使 用 的 效 果 有 限 , 但 如 作 为 预 防 剂 使 用 , 则 效 果 明 显 。 Kuwabara M (1993) 、 Nakada (1993) [11] 、 SuzukiF (1987) 均 对 Ge ━ 132 的 抗 癌 功 效 作 过 研 究 。严 文 钰 等 (1990) [2] 、 Schauss . (1991) [12] 、 陈 风 麟 (1995) 、 王 铁 艳 等 (1995) 、 朱 朝 勇 等 (1995) 、 许 兰 文 等 (1995) 、 杨 文 秀 等 (1995) [4] 分 别 研 究 了 Ge ━ 132 的 毒 性 作 用 。孔 祥 瑞 (1992) [13] 曾 概 括 指 出 Ge ━ 132 的 毒 性 及 其 在 医 疗 保 健 中 的 作 用 。 Ge ━ 132 基 本 上 是 无 毒 、 无 副 作 用 并 具 有 增 强 免 疫 功 能 的 物 质 , 我 国 卫 生 部 已 批 准 它 作 为 食 品 新 资 源 的 保 健 食 品 添 加 剂 , 在 控 制 量 范 围 内 使 用 是 安 全 的 。 但 尚 未 批 准 有 机 锗 为 新 药 , 还 不 能 广 泛 的 作 为 药 用 。 此 外 , 英 国 在 注 意 到 锗 的 某 些 毒 性 时 , 于 1989 年 取 缔 了 锗 产 品 。毛 旭 峰 等 (1995) 和 张 树 功 等 (1995) [4] 将 Ge ━ 132 与 天 然 生 物 制 剂 ZY ━ 93 ━ 2 号 合 用 研 究 对 荷 瘤 小 鼠 的 作 用 ; 宋 卫 生 (1993) [8] 尝 试 用 中 华 麦 钣 石 和 Ge ━ 132 预 防 大 鼠 大 肠 癌 。 他 均 获 得 一 定 的 效 果 。2. 螺 锗螺 锗 (Spirogermanium, SG) 全 称 为 8 , 8 ━ = 烷 基 ━ 2 ━ 氮 杂 ━ 8 ━ 锗 杂 螺 [4][5] 癸 烷 。螺 锗 是 一 种 非 骨 髓 抑 制 性 的 新 型 抗 肿 瘤 药 物 。 对 治 疗 淋 巴 瘤 等 恶 性 肿 瘤 有 一 定 疗 效 , 且 具 有 毒 性 低 的 优 点 ; 它 对 骨 髓 、 器 官 移 植 造 成 的 自 免 疫 疾 病 有 医 疗 潜 能 。螺 锗 对 Hela 细 胞 、 K562 细 胞 等 瘤 株 均 有 体 外 杀 伤 作 用 ; 它 与 5 ━ FU 或 顺 铂 化 合 物 有 协 同 作 用 。 动 物 试 验 证 实 , 螺 锗 能 治 疗 腹 腔 移 植 性 瓦 克 氏 癌 肉 瘤 , 对 大 鼠 乳 腺 癌 和 前 列 腺 癌 具 有 中 度 抑 制 作 用 。80 年 代 以 来 , 日 本 、 美 国 、 瑞 典 等 国 家 进 行 了 较 广 泛 的 I 期 和 II 期 临 床 试 验 , 表 明 螺 锗 对 恶 性 淋 巴 瘤 、 卵 巢 癌 、 大 肠 癌 、 子 宫 颈 癌 、 前 列 腺 癌 及 黑 色 素 瘤 疗 效 较 佳 。王 雪 和 关 烨 第 (1993) [14] 介 绍 了 螺 锗 的 合 成 及 药 理 研 究 进 展 。 国 外 Ettinger al (1989) 对 螺 锗 等 的 抗 肿 瘤 效 应 , GoodWin al (1987) 对 中 枢 神 经 系 统 肿 瘤 , Bui al. (1986) 和 Dexeus al (1986) 分 别 对 前 列 腺 瘤 , Schulman al. (1984) 对 淋 巴 腺 瘤 、 肾 瘤 , Kuebler al. (1984) 和 Pinnamaneni al (1984) 分 别 对 乳 房 癌 进 行 了 II 期 临 床 试 验 研 究 。Dixon al (1984) [15] 曾 指 出 螺 锗 对 肺 部 的 毒 性 作 用 。 此 外 , 它 对 肝 、 肾 、 造 血 系 统 都 有 一 定 毒 性 。3. 有 机 锗 抗 癌 效 应 的 机 制陈 红 专 等 (1990) [2] 、 唐 任 寰 等 (1992) 、 (1996) [1] 曾 就 有 机 锗 化 合 物 的 抗 癌 效 应 及 其 可 能 机 制 作 过 评 述 , 大 致 如 下 : 抑 制 DNA 、 RNA 和 蛋 白 质 的 合 成 螺 锗 对 体 内 外 多 种 癌 细 胞 株 均 有 直 接 细 胞 毒 作 用 。 增 强 机 体 的 免 疫 功 能 研 究 最 多 的 是 Ge ━ 132 , 它 可 使 免 疫 功 能 低 下 的 人 的 免 疫 力 逐 步 恢 复 正 常 。 其 环 节 可 能 是 : 1. 首 先 刺 激 T 淋 巴 细 胞 产 生 淋 巴 因 子 ; 2. 淋 巴 因 子 活 化 巨 噬 细 胞 变 成 细 胞 毒 巨 噬 细 胞 以 及 激 活 自 然 杀 伤 细 胞 (NK) 活 性 ; 3. 细 胞 毒 巨 噬 细 胞 、 NK 细 胞 等 发 挥 杀 伤 癌 细 胞 活 性 。 抗 突 变 作 用 : 锗 化 合 物 可 能 通 过 抗 突 变 作 用 表 达 抗 癌 效 应 。 Ge ━ 132 能 抵 抗 γ 射 线 诱 发 的 大 肠 杆 菌 B/rWP2trp 的 突 变 作 用 。 自 由 基 清 除 作 用 : 从 而 具 有 抗 衰 老 的 作 用 。 Harisch (1985) 用 低 浓 乳 酸 ━ 柠 檬 酸 锗 提 高 大 鼠 肝 细 胞 内 还 原 型 谷 胱 甘 (CSH) 水 平 , 它 具 有 防 止 脂 质 过 氧 化 物 形 成 以 及 清 除 体 内 代 谢 所 产 生 粒 子 的 作 用 。 Nakamura 等 (1987) 研 究 证 实 , Ge ━ 132 体 外 即 具 有 对 活 性 氧 类 的 清 除 作 用 , 从 而 防 止 活 性 氧 对 细 胞 产 生 损 伤 作 用 。 生 物 电 位 说 : 一 切 病 变 部 位 细 胞 的 生 物 电 位 均 比 正 常 细 胞 高 , 癌 细 胞 也 是 如 此 , 因 而 它 迅 速 增 殖 变 化 。 有 机 锗 化 合 物 中 的 锗 原 子 可 产 生 电 荷 转 移 和 游 离 基 , 自 由 电 子 可 从 高 电 位 癌 细 胞 夺 取 氢 离 子 , 从 而 降 低 癌 细 胞 电 位 , 阻 抑 它 的 繁 殖 。4. 若 干 具 活 性 的 锗 化 合 物 乳 酸 ━ 柠 檬 酸 锗这 是 德 国 推 出 的 锗 化 合 物 , 它 对 小 鼠 S180 肉 瘤 、 黑 色 素 瘤 B16 和 Lewis 肺 癌 有 中 度 抑 瘤 效 应 , 对 小 鼠 结 肠 癌 C ━ 26 和 骨 髓 瘤 MP ━ 26a 也 有 一 定 抑 瘤 作 用 , 能 显 着 延 长 白 血 病 和 结 肠 癌 小 鼠 的 生 存 时 间 , 降 低 纤 维 瘤 等 的 发 生 率 。 在 I 期 临 床 试 验 中 , 它 能 使 子 宫 恶 性 肿 瘤 患 者 显 着 减 轻 症 状 , 治 疗 过 程 中 无 毒 性 副 反 应 出 现 。 氨 基 酸 锗上 海 第 二 医 科 大 学 陈 红 专 等 ( 1990 ) [2] 对 一 系 列 氨 基 酸 化 合 物 作 了 预 试 , 筛 选 出 具 有 较 强 抑 瘤 作 用 的 赖 氨 酸 锗 ( Ge ━ 401 ) 。 李 传 毅 ( 1991 ) 研 究 了 它 对 小 鼠 B 淋 巴 细 胞 产 生 抗 体 的 调 节 作 用 。第 二 军 医 大 学 葛 学 美 等 ( 1994 ) 研 究 了 丙 氨 酸 锗 的 抗 肿 瘤 活 性 及 免 疫 效 应 , 结 果 表 明 它 能 明 显 延 长 移 植 H22 肝 癌 腹 水 症 小 鼠 的 生 存 时 间 , 抑 制 S180 肉 瘤 的 生 长 。上 海 建 材 学 院 高 绍 仪 等 ( 1990 ) 和 第 二 军 医 大 学 赵 法 汲 等 ( 1990 ) [2] 分 别 研 究 了 氨 基 酸 锗 氧 化 物 ( AGO ) 的 抗 肿 瘤 活 性 及 其 毒 性 。 有 机 锗 Ge ━ M10西 安 医 科 大 学 陈 高 平 和 庞 志 功 等 ( 1994 ) [16] 用 Ge ━ M10 或 与 中 草 药 的 有 效 成 份 进 行 了 系 列 抗 肿 瘤 药 理 试 验 , 表 明 它 能 明 显 抑 制 小 鼠 S180 移 植 肉 瘤 的 生 长 , 并 对 艾 氏 腹 水 癌 小 鼠 有 明 显 延 长 存 活 期 作 用 , 是 一 种 有 希 望 的 免 疫 性 抗 癌 药 物 。 其 它张 树 功 等 ( 1993 ) [3] 合 成 和 试 验 了 对 ━ ( N , N ━ = 甲 氨 基 ) 苯 基 锗 倍 半 氧 化 物 ( Ge ━ 132 ) 的 抗 肿 作 用 ; 唐 博 恒 等 ( 1994 ) [18] 观 察 到 锗 酵 母 ( Ge ━ 168 ) 对 黄 曲 霉 素 B1 诱 发 肝 瘤 有 抑 制 作 用 ; 此 外 , jao al ( 1990 ) 探 讨 过 天 然 有 机 锗 的 活 性 , 刘 元 方 等 ( 1984 ) [19] 曾 指 出 锗 酵 母 的 营 养 价 值 。在 报 导 过 的 200 多 种 有 机 锗 化 合 物 之 外 , 近 年 来 , 南 开 大 学 、 中 科 院 长 春 应 用 化 学 研 究 所 相 继 合 成 了 14 种 新 型 有 机 锗 硫 杂 五 环 化 合 物 、 5 类 新 型 有 机 锗 倍 半 氧 化 物 及 硫 化 物 、 8 种 新 的 Ge ━ 132 胺 衍 物 、 2 种 锗 氨 基 酸 衍 生 物 、 对 一 ( 二 甲 氨 基 ) 苯 基 锗 倍 半 氧 化 物 及 a ━ 苯 基 — β — ( N━ 胺 基 ) 乙 基 锗 倍 半 氧 化 物 。 并 将 其 生 物 活 性 、 理 化 特 性 与 Ge ━ 132 进 行 了 比 较 。 北 京 大 学 合 成 了 一 系 列 新 型 烷 其 锗 丙 氨 基 酸 、 小 并 作 了 系 列 生 物 活 性 研 究 。 同 时 , 相 关 的 分 析 测 试 水 平 和 质 量 控 制 亦 迅 速 发 展 。 这 些 国 外 很 少 报 导 过 的 新 合 成 有 机 锗 化 合 物 、 为 寻 找 更 有 效 的 有 机 锗 抗 癌 药 物 开 拓 了 新 的 途 径 。 此 外 , 韩 国 Jang al. ( 1989 ) 研 究 过 烷 基 硫 杂 锗 化 合 物 。其 它 如 喃 锗 衍 生 物 、 锗 化 合 物 、 葡 萄 糖 酸 锗 等 络 合 物 , 也 有 一 定 生 物 活 性 。 无 机 锗 如 GeO2 、 Na2GeO3 等 的 生 化 作 用 及 其 毒 性 亦 有 人 进 行 研 究 。关 于 锗 化 合 物 除 抗 癌 作 用 外 , 还 有 在 抗 衰 老 、 类 风 湿 关 节 炎 、 糖 尿 病 、 慢 性 胃 炎 等 方 面 的 试 验 。除 上 述 对 有 机 锗 的 药 理 作 用 研 究 外 , 不 久 前 , 颜 钰 等 ( 1994 ) [20] 研 究 PET 技 术 ( 正 电 子 发 射 断 层 摄 像 术 ) 和 放 射 性 核 毒 68Ga 标 记 化 合 物 作 肿 瘤 阳 性 显 像 剂 , 由 于 心 肌 摄 取 高 、 显 影 清 晰 、 表 明 68Ga — BAT — TECH 可 作 为 心 肌 显 像 剂 , 其 中 68Ga 由 68Ga 经 轨 道 电 子 俘 获 衰 变 而 来 。 澳 大 利 亚 Meikle . et al. ( 199 ) [21] 使 用 200MBq68Ge/68Ga 发 生 器 实 现 对 乳 房 瘤 的 显 像 。 Tilbury . et al. ( 1991 ) 研 究 过 68Ge/68Ga 发 生 器 的 制 作 技 术 。 这 体 现 了 PET 技 术 的 发 展 方 向 。 程 琮 等 ( 1996 ) [22] 用 图 像 细 胞 分 析 技 术 ( ICM ) 研 究 了 Ge ━ 132 对 人 乳 癌 细 胞 株 BcaP ━ 37 的 生 物 学 作 用 。综 上 所 述 , 国 内 关 于 锗 的 研 究 卓 有 成 效 , 已 迅 速 与 国 际 先 进 水 平 齐 步 。 唐 任 寰 等 ( 1986 ) [1] 曾 指 出 锗 可 能 是 对 生 命 有 益 的 微 量 元 素 , 继 而 秦 俊 法 ( 1993 ) [3] 探 讨 了 锗 的 必 需 性 。 迄 今 , 有 机 锗 化 合 物 ━ 首 先 是 Ge ━ 132 和 螺 锗 已 显 示 为 人 类 预 防 和 战 胜 癌 魔 的 又 一 潜 在 武 器 。 继 续 开 展 有 机 锗 化 合 物 的 防 癌 抗 癌 疗 效 及 其 毒 理 研 究 将 是 功 德 无 量 的 工 作 。叁 考 文 献1. 王 夔 主 编 。 生 命 科 学 中 的 微 量 元 素 。 第 2 版 。 北 京 : 中 国 计 量 出 版 社 , ~ 8142. 上 海 市 微 量 元 素 学 会 , 上 海 市 营 养 学 会 编 。 全 国 第 一 届 锗 研 讨 会 资 料 汇 编 。 上 海 , 19903. 全 国 锗 研 究 联 络 组 编 。 全 国 第 二 届 锗 研 讨 会 论 文 集 。 江 苏 扬 州 。 19934. 中 国 微 量 元 素 锗 研 究 会 。 中 国 有 色 金 属 工 业 稀 有 金 属 情 报 网 。 中 国 微 量 元 素 科 学 研 究 会 编 。 全 国 第 三 届 锗 研 讨 会 & 全 国 第 六 届 锗 科 技 交 流 会 论 文 集 。 昆 明 。 19955. 文 振 乾 。 有 机 锗 抗 癌 临 床 研 究 进 展 。 广 西 医 学 。 1993(3) : 200 ~ 2016. 顾 公 望 。 有 机 锗 的 抗 癌 研 究 进 展 。 肿 瘤 研 究 与 临 床 。 1992(2) : 44 ~ 487. 卢 朝 晖 。 和 瑞 芝 。 千 高 峰 等 羧 乙 基 锗 倍 半 氧 化 物 对 实 验 诱 发 小 鼠 前 胃 癌 变 过 程 中 的 免 疫 作 用 。 河 南 肿 瘤 学 杂 志 。 1994 。 7(4) : 252 ~ 2548. 尹 浩 然 。 明 学 志 。 朱 正 网 等 阻 抑 治 疗 胃 癌 前 病 变 的 研 究 。 中 华 实 验 外 科 杂 志 。 1994 。 11(3) 146 ~ 1479. 宋 卫 生 。 倍 半 氧 化 羧 乙 基 酸 锗 ( Ge ━ 132 ) 抑 制 DMH 诱 导 大 鼠 大 肠 癌 的 研 究 。 癌 症 。 1991 。 (2) : 145 ~ 14610. 罗 慧 玲 。 吴 荫 棠 。 李 满 枝 等 Ge ━ 132 抑 制 Epstein ━ Barr 病 毒 抗 原 表 达 的 研 究 。 癌 症 。 1994 。 13(5) : 421 ~ 42311. Nakada T. Kuwabara of 2 ━ Carboxyethyl germanium sesquioxide ( Ge ━ 132 ) as an immunological modifier of post ━ surgical immumosuppression in dogs. J. Vet. Med. Sci. 1993,55(5): 795 ~ 79912. Schauss Nepheotoxicity and neuroboxicity in humans from organogermanium compounds and germanium dioxide, Biol. Trace . 1991. 29(3): 267~ 28013. 孔 祥 瑞 。 有 机 锗 的 毒 性 及 其 在 医 疗 保 健 中 的 作 用 。 中 华 医 学 杂 志 。 1993 。 73(8) : 454 ~ 45614. 王 雪 。 关 烨 第 。 新 型 抗 癌 药 物 ━ 螺 锗 的 合 成 及 药 理 研 究 进 展 。 中 国 药 理 通 报 。 1993 。 9(5) : 330 ~ 33315. Dixon C. Hagemeister F. Legha al. Pulmonary Toxicity associated with spirogermanium Cancer Treat. (6): 907~ 90816. 陈 高 平 。 庞 志 功 。 汪 宝 琪 。 新 型 有 机 锗 Ge ━ M10 对 肿 瘤 转 移 作 用 的 研 究 。 肿 瘤 研 究 与 临 床 。 1994 。 6(3) : 147 ~ 14817. 薛 文 桢 。 毛 旭 峰 。 韩 志 红 。 有 机 锗 对 ━ ( N , N ━ = 乙 氨 基 ) 苯 基 锗 倍 半 氧 化 物 ( Ge ━ 164 ) 抗 肿 瘤 作 用 的 初 步 研 究 。 肿 瘤 防 治 研 究 。 1994 。 21(3) : 197 ~ 19818. 唐 博 恒 。 莫 卓 寿 。 黄 诗 旦 等 。 高 锗 酵 母 的 研 究 。 解 放 军 预 防 医 学 杂 志 。 1994 . 12(37) : 179 ~ 18319. 刘 元 方 。 石 进 元 。 唐 任 寰 等 。 锗 对 梨 形 四 膜 虫 细 胞 和 啤 酒 酵 母 菌 生 长 的 促 进 作 用 。 科 学 通 报 。 1984 。 29(4) : 235 ~ 23720. 颜 钰 。 李 文 苹 。 朱 国 涨 等 。 PET 技 术 及 电 子 放 射 性 核 素 68Ga 初 步 应 用 。 医 学 研 究 通 讯 。 1994 . 23(3) : 26~ 2821. Meikle SR. Bailey emission and transmission measurements for attenuation correction in whole-body . (9): 1680 ~ 168822. 程 琮 。 何 更 生 。 陆 瑞 芳 。 Ge ━ 132 对 人 乳 癌 细 胞 株 BCaP ━ 37 的 生 物 学 作 用 。 微 量 元 素 与 健 康 研 究 。 1996 。 13(1) : 3 ~ 5--------------------------------------------------------------------------------

锗 一种化学元素。化学符号Ge,原子序数32 ,原子量属周期系ⅣA族。1871年俄国.门捷列夫根据元素 周期律预言存在一个性质与硅相似的未知元素,命名为类硅。1886年德国C.温克勒在分析硫银锗矿时分离出这个元素,为纪念他的祖国Germany,命名为germanium。 性质: 元素名称:锗 元素符号:Ge 元素英文名称:Germanium 元素类型:金属元素 原子体积:(立方厘米/摩尔) 元素在宇宙中的含量:(ppm) 元素在太阳中的含量:(ppm) 元素在海水中的含量:(ppm) 太平洋表面 地壳中含量:(ppm) 锗粒. 相对原子质量: 氧化态:Main Ge+2, Ge+4 化学键能: (kJ /mol) Ge-H 288 Ge-C 237 Ge-O 363 Ge-F 464 Ge-Cl 340 Ge-Ge 163 原子序数:32 质子数:32 中子数:41 摩尔质量:73 所属周期:4 所属族数:IVA 电子层排布:2-8-18-4 晶体结构:晶胞为面心立方晶胞,每个晶胞含有4个金属原子。 晶胞参数: a = pm b = pm c = pm α = 90° β = 90° γ = 90° 莫氏硬度:6 声音在其中的传播速率:(m/S)5400 电离能 (kJ/ mol) M - M+ M+ - M2+ 1537 M2+ - M3+ 3302 M3+ - M4+ 4410 锗矿石 M4+ - M5+ 9020 M5+ - M6+ 11900 M6+ - M7+ 15000 M7+ - M8+ 18200 M8+ - M9+ 21800 M9+ - M10+ 27000 颜色和状态:银白色固体 密度:克/厘米^3 熔点:℃ 沸点: 2830℃ 原子半径: 122皮米,Ge4+半径53皮米 发现人:文克勒 发现年代:1886年 发现过程:1886年,德国的文克勒在分析硫银锗矿时,发现了锗的存在;后由硫化锗与氢共热,制出了锗。 物理性质 锗是银灰色晶体,熔点℃,沸点2830℃,密度克/厘米3(2 锗锭 0℃),莫氏硬度~,室温下,晶态锗性脆,可塑性很小。锗具有半导体性质,在高纯锗中掺入三价元素(如铟、镓、硼)、得到P型锗半导体;掺入五价元素(如锑、砷、磷),得到N型锗半导体。常温下,锗在空气中不被氧化,但在加热时,锗能在氧气、氯气和溴蒸气中燃烧。锗不与水作用,不溶于盐酸和稀硫酸,硝酸和热的浓硫酸能将金属锗氧化为二氧化锗,锗还溶于王水。锗易溶于熔融的氢氧化钠或氢氧化钾,生成锗酸钠或锗酸钾。在过氧化氢、次氯酸钠等氧化剂存在下,锗能溶解在碱性溶液中,生成锗酸盐。锗的氧化态为+2和+4。 用途 高纯度的锗是半导体材料。从高纯度的氧化锗还原,再经熔炼可提取而得。掺有微量特定杂质的锗单晶,可用于制各种晶体管、整流器及其他器件。锗的化合物用于制造荧光板及各种高折光率的玻璃。锗单晶可作晶体管,是第一代晶体管材料。锗材用于辐射探测器及热电材料。高纯锗单晶具有高的折射系数,对红外线透明,不透过可见光和紫外线,可作专透红外光的锗窗、棱镜或透镜。锗和铌的化合物是超导材料。二氧化锗是聚合反应的催化剂,含二氧化锗的玻璃有较高的折射率和色散性能,可作广角照相机和显微镜镜头,三氯化锗还是新型光纤材料添加剂。 锗,具有半导体性质。对固体物理学和固体电子学的发展起过重要作用。锗的熔密度克/厘米3,为银灰色脆性金属。锗可能性划归稀散金属,锗化学性质稳定,常温下不与空气或水蒸汽作用,但在600~700℃时,很快生成二氧化锗。与盐酸、稀硫酸不起作用。浓硫酸在加热时,锗会缓慢溶解。在硝酸、王水中,锗易溶解。碱溶液与锗的作用很弱,但熔融的碱在空气中,能使锗迅速溶解。锗与碳不起作用,所以在石墨坩埚中熔化,不会被碳所污染。锗有着良好的半导体性质,如电子迁移率、空穴迁移率等等。锗的发展仍具有很大的潜力。现代工业生产的锗,主要来自铜、铅、锌冶炼的副产品。 在火法炼锌过程中,锗以氯化物或氧化物的形式进入烟尘中,并得到富集。煤燃烧或炼焦工业产生的锗都富集在烟道灰中。用盐酸处理这些烟尘和烟道灰,可得四氯化锗,通过精馏法提纯后,水解得高纯二氧化锗,放在石英管内,加热到680℃,用氢气还原得高纯锗。再用直拉法或区域熔炼法制得锗的单晶。在电子工业中锗虽已大部分被硅代替,但由于锗的电子和空穴迁移率比硅高,在高速开关电路方面锗的性能也比硅好,因此锗在红外器件、γ辐射探测器方面仍占有优势。锗还可作为煤的氢化和石油炼制的催化剂,锗酸铋用于闪烁体辐射探测器。 对人的影响 锗对人体的影响主要是可以恢复疲劳;防止了贫血;帮助新陈代谢等等。很多地方被当作医疗辅助用具。但却没有临床证明是有效的。最多也就是会说:身体会变轻,疼痛会减少等等。如果服用的话,曾经有过死亡的例子。临床研究者认为是有危险的东西。会对肾脏产生不好影响。 但是在日本,在珠宝首饰行业被当作健康用具内装在项链,手链里贩卖。价格不菲。 至今为止,没有发现锗是人体必需的微量元素,也没有发现生物体

锗在微量元素的生物学地位及生物活性研究报道文章较多,有机锗化合物具有抗癌、抗衰老、抗高血压、抗炎镇痛、抗氧化和调节免疫功能作用,但是尚未为生物体必需的微量元素,众所周知,微量元素究竟是有益的还是有害的,是生命必需的还是非必需的,均相对而言的,随着人类对自然界认识深化,以往认为人体不必须的微量元素,现在可能发现它对生物体是有益和必需的,虽然研究尚未完全证实是人体必需微量元素,但证明它是对人体有益的微量元素,通过进一步研究,锗在将来有可能列为人体必需微量元素。由于其在生物体中含量相当少,目前没公布有富含锗元素食物。

相关百科

热门百科

首页
发表服务