材料科学 Materials ScienceMaterials science or materials engineering is an interdisciplinary field involving the properties of matter and its applications to various areas of science and engineering. This science investigates the relationship between the structure of materials and their properties. It includes elements of applied physics and chemistry, as well as chemical, mechanical, civil and electrical engineering. With significant media attention to nanoscience and nanotechnology in recent years, materials science has been propelled to the forefront at many universities. It is also an important part of forensic engineering and forensic materials engineering, the study of failed products and material of choice of a given era is often its defining point; the Stone Age, Bronze Age, and Steel Age are examples of this. Materials science is one of the oldest forms of engineering and applied science, deriving from the manufacture of ceramics. Modern materials science evolved directly from metallurgy, which itself evolved from mining. A major breakthrough in the understanding of materials occurred in the late 19th century, when Willard Gibbs demonstrated that thermodynamic properties relating to atomic structure in various phases are related to the physical properties of a material. Important elements of modern materials science are a product of the space race: the understanding and engineering of the metallic alloys, and silica and carbon materials, used in the construction of space vehicles enabling the exploration of space. Materials science has driven, and been driven by, the development of revolutionary technologies such as plastics, semiconductors, and the 1960s (and in some cases decades after), many materials science departments were named metallurgy departments, from a 19th and early 20th century emphasis on metals. The field has since broadened to include every class of materials, including: ceramics, polymers, semiconductors, magnetic materials, medical implant materials and biological materials.[edit] Fundamentals of materials scienceIn materials science, rather than haphazardly looking for and discovering materials and exploiting their properties, one instead aims to understand materials fundamentally so that new materials with the desired properties can be basis of all materials science involves relating the desired properties and relative performance of a material in a certain application to the structure of the atoms and phases in that material through characterization. The major determinants of the structure of a material and thus of its properties are its constituent chemical elements and the way in which it has been processed into its final form. These, taken together and related through the laws of thermodynamics, govern a material’s microstructure, and thus its old adage in materials science says: "materials are like people; it is the defects that make them interesting". The manufacture of a perfect crystal of a material is currently physically impossible. Instead materials scientists manipulate the defects in crystalline materials such as precipitates, grain boundaries (Hall-Petch relationship), interstitial atoms, vacancies or substitutional atoms, to create materials with the desired all materials have a regular crystal structure. Polymers display varying degrees of crystallinity, and many are completely non-crystalline. Glasses, some ceramics, and many natural materials are amorphous, not possessing any long-range order in their atomic arrangements. The study of polymers combines elements of chemical and statistical thermodynamics to give thermodynamic, as well as mechanical, descriptions of physical addition to industrial interest, materials science has gradually developed into a field which provides tests for condensed matter or solid state theories. New physics emerge because of the diverse new material properties which need to be explained.[edit] Materials in industryRadical materials advances can drive the creation of new products or even new industries, but stable industries also employ materials scientists to make incremental improvements and troubleshoot issues with currently used materials. Industrial applications of materials science include materials design, cost-benefit tradeoffs in industrial production of materials, processing techniques (casting, rolling, welding, ion implantation, crystal growth, thin-film deposition, sintering, glassblowing, etc.), and analytical techniques (characterization techniques such as electron microscopy, x-ray diffraction, calorimetry, nuclear microscopy (HEFIB), Rutherford backscattering, neutron diffraction, etc.).Besides material characterisation, the material scientist/engineer also deals with the extraction of materials and their conversion into useful forms. Thus ingot casting, foundry techniques, blast furnace extraction, and electrolytic extraction are all part of the required knowledge of a metallurgist/engineer. Often the presence, absence or variation of minute quantities of secondary elements and compounds in a bulk material will have a great impact on the final properties of the materials produced, for instance, steels are classified based on 1/10th and 1/100 weight percentages of the carbon and other alloying elements they contain. Thus, the extraction and purification techniques employed in the extraction of iron in the blast furnace will have an impact of the quality of steel that may be overlap between physics and materials science has led to the offshoot field of materials physics, which is concerned with the physical properties of materials. The approach is generally more macroscopic and applied than in condensed matter physics. See important publications in materials physics for more details on this field of study of metal alloys is a significant part of materials science. Of all the metallic alloys in use today, the alloys of iron (steel, stainless steel, cast iron, tool steel, alloy steels) make up the largest proportion both by quantity and commercial value. Iron alloyed with various proportions of carbon gives low, mid and high carbon steels. For the steels, the hardness and tensile strength of the steel is directly related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. The addition of silicon and graphitization will produce cast irons (although some cast irons are made precisely with no graphitization). The addition of chromium, nickel and molybdenum to carbon steels (more than 10%) gives us stainless significant metallic alloys are those of aluminium, titanium, copper and magnesium. Copper alloys have been known for a long time (since the Bronze Age), while the alloys of the other three metals have been relatively recently developed. Due to the chemical reactivity of these metals, the electrolytic extraction processes required were only developed relatively recently. The alloys of aluminium, titanium and magnesium are also known and valued for their high strength-to-weight ratios and, in the case of magnesium, their ability to provide electromagnetic shielding. These materials are ideal for situations where high strength-to-weight ratios are more important than bulk cost, such as in the aerospace industry and certain automotive engineering than metals, polymers and ceramics are also an important part of materials science. Polymers are the raw materials (the resins) used to make what we commonly call plastics. Plastics are really the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final form. Polymers which have been around, and which are in current widespread use, include polyethylene, polypropylene, PVC, polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. Plastics are generally classified as "commodity", "specialty" and "engineering" (polyvinyl-chloride) is widely used, inexpensive, and annual production quantities are large. It lends itself to an incredible array of applications, from artificial leather to electrical insulation and cabling, packaging and containers. Its fabrication and processing are simple and well-established. The versatility of PVC is due to the wide range of plasticisers and other additives that it accepts. The term "additives" in polymer science refers to the chemicals and compounds added to the polymer base to modify its material would be normally considered an engineering plastic (other examples include PEEK, ABS). Engineering plastics are valued for their superior strengths and other special material properties. They are usually not used for disposable applications, unlike commodity plastics are materials with unique characteristics, such as ultra-high strength, electrical conductivity, electro-fluorescence, high thermal stability, should be noted here that the dividing line between the various types of plastics is not based on material but rather on their properties and applications. For instance, polyethylene (PE) is a cheap, low friction polymer commonly used to make disposable shopping bags and trash bags, and is considered a commodity plastic, whereas Medium-Density Polyethylene MDPE is used for underground gas and water pipes, and another variety called Ultra-high Molecular Weight Polyethylene UHMWPE is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low-friction socket in implanted hip application of material science in industry is the making of composite materials. Composite materials are structured materials composed of two or more macroscopic phases. An example would be steel-reinforced concrete; another can be seen in the "plastic" casings of television sets, cell-phones and so on. These plastic casings are usually a composite material made up of a thermoplastic matrix such as acrylonitrile-butadiene-styrene (ABS) in which calcium carbonate chalk, talc, glass fibres or carbon fibres have been added for added strength, bulk, or electro-static dispersion. These additions may be referred to as reinforcing fibres, or dispersants, depending on their purpose.[edit] Classes of materials (by bond types)Materials science encompasses various classes of materials, each of which may constitute a separate field. Materials are sometimes classified by the type of bonding present between the atoms:Ionic crystals Covalent crystals Metals Intermetallics Semiconductors Polymers Composite materials Vitreous materials [edit] Sub-fields of materials scienceNanotechnology – rigorously, the study of materials where the effects of quantum confinement, the Gibbs-Thomson effect, or any other effect only present at the nanoscale is the defining property of the material; but more commonly, it is the creation and study of materials whose defining structural properties are anywhere from less than a nanometer to one hundred nanometers in scale, such as molecularly engineered materials. Microtechnology - study of materials and processes and their interaction, allowing microfabrication of structures of micrometric dimensions, such as MicroElectroMechanical Systems (MEMS). Crystallography – the study of how atoms in a solid fill space, the defects associated with crystal structures such as grain boundaries and dislocations, and the characterization of these structures and their relation to physical properties. Materials Characterization – such as diffraction with x-rays, electrons, or neutrons, and various forms of spectroscopy and chemical analysis such as Raman spectroscopy, energy-dispersive spectroscopy (EDS), chromatography, thermal analysis, electron microscope analysis, etc., in order to understand and define the properties of materials. See also List of surface analysis methods Metallurgy – the study of metals and their alloys, including their extraction, microstructure and processing. Biomaterials – materials that are derived from and/or used with biological systems. Electronic and magnetic materials – materials such as semiconductors used to create integrated circuits, storage media, sensors, and other devices. Tribology – the study of the wear of materials due to friction and other factors. Surface science/Catalysis – interactions and structures between solid-gas solid-liquid or solid-solid interfaces. Ceramography – the study of the microstructures of high-temperature materials and refractories, including structural ceramics such as RCC, polycrystalline silicon carbide and transformation toughened ceramics Some practitioners often consider rheology a sub-field of materials science, because it can cover any material that flows. However, modern rheology typically deals with non-Newtonian fluid dynamics, so it is often considered a sub-field of continuum mechanics. See also granular Science – any non-crystalline material including inorganic glasses, vitreous metals and non-oxide glasses. Forensic engineering – the study of how products fail, and the vital role of the materials of construction Forensic materials engineering – the study of material failure, and the light it sheds on how engineers specify materials in their product [edit] Topics that form the basis of materials scienceThermodynamics, statistical mechanics, kinetics and physical chemistry, for phase stability, transformations (physical and chemical) and diagrams. Crystallography and chemical bonding, for understanding how atoms in a material are arranged. Mechanics, to understand the mechanical properties of materials and their structural applications. Solid-state physics and quantum mechanics, for the understanding of the electronic, thermal, magnetic, chemical, structural and optical properties of materials. Diffraction and wave mechanics, for the characterization of materials. Chemistry and polymer science, for the understanding of plastics, colloids, ceramics, liquid crystals, solid state chemistry, and polymers. Biology, for the integration of materials into biological systems. Continuum mechanics and statistics, for the study of fluid flows and ensemble systems. Mechanics of materials, for the study of the relation between the mechanical behavior of materials and their microstructures. 材料科学材料是人类可以利用的物质,一般是指固体。而材料科学是研究材料的制备或加工工艺、材料结构与材料性能三者之间的相互关系的科学。涉及的理论包括固体物理学,材料化学,与电子工程结合,则衍生出电子材料,与机械结合则衍生出结构材料,与生物学结合则衍生出生物材料等等。材料科学理论物理冶金学 晶体学 固体物理学 材料化学 材料热力学 材料动力学 材料计算科学[编辑] 材料的分类按化学状态分类 金属材料 无机物非金属材料 陶瓷材料 有机材料 高分子材料 按物理性质分类 高强度材料 耐高温材料 超硬材料 导电材料 绝缘材料 磁性材料 透光材料 半导体材料 按状态分类 单晶材料 多晶质材料 非晶态材料 准晶态材料 按物理效应分类 压电材料 热电材料 铁电材料 光电材料 电光材料 声光材料 磁光材料 激光材料 按用途分类 建筑材料 结构材料 研磨材料 耐火材料 耐酸材料 电工材料 电子材料 光学材料 感光材料 包装材料 按组成分类 单组分材料 复合材料 [编辑] 材料工程技术金属材料成形 机械加工 热加工 陶瓷冶金 粉末冶金 薄膜生长技术 表面处理技术 表面改性技术 表面涂覆技术 热处理 [编辑] 材料的应用结构材料 信息材料 存储材料 半导体材料 宇航材料 建筑材料 能源材料 生物材料 环境材料 储能材料和含能材料 参考
你还想要几篇,英文文献一篇平均6页以上,还要翻译??????????
英语教学论文参考文献
在学习和工作中,许多人都写过论文吧,论文是描述学术研究成果进行学术交流的一种工具。写论文的注意事项有许多,你确定会写吗?以下是我帮大家整理的英语教学论文参考文献,希望能够帮助到大家。
戴维 洛奇 小说的艺术 北京:作家出版社,1998
高奋 西方现代主义文学源与流 宁波:宁波出版社,2000
侯维瑞 现代英国小说史 上海:上海外语教育出版社,1986
胡经之,王岳川主编 文艺学美学法论 北京:北京出版社,1994
黄晋凯主编 荒诞派戏剧 北京:中国人民大学出版社,1996
霍夫曼 佛洛伊德主义与文学思想 王宁译 北京:三联书店,1987
拉曼 塞尔顿编 文学批评理论 刘象愚,陈永国等译 北京:北京大学出版社,2000
霍纳 韦勒克 近代文学批评史(第4卷)上海:上海译文出版社,1997
李维屏 英美现代主义文学概观 上海:上海外语教育出版社,1998
柳鸣九编选 新小说派研究 北京中国社会科学出版社,1986
吕同六主编 20世纪世界小说理论经典 北京:华夏出版社,1995
罗伯特 斯皮勒 美国文学的周期——历史评论专集 王长荣译 上海:上海外语出版社,1990
罗德 霍顿 美国文学思想背景 房炜等译 北京人民出版社,1991
梅佛里德曼 意识流,文学手法研究 上海:华东师范大学出版社,1992
米兰 昆德拉 小说的艺术 孟湄译 北京:三联书店,1995
史志康主编 美国文学背景概观上海:上海:上海外语出版社,1998
徐葆耕 西方文学 心灵历史 北京清华大学出版社,1990 殷企平 小说艺术管窥 天津:百花文艺出版社,1995
包惠南,包昂编.实用文化翻译学.上海:上海科学普及出版社,2000
陈定安.英汉比较与翻译.北京:中国对外翻译出版公司,1991
陈福康 中国译学理论史北稿 上海:上海外语教育出版社,1997
陈延佑 英文汉译技巧 北京:北京外语教学与研究出版社,1980
陈文伯 英语成语与汉语成语 北京:北京外语教学与研究出版社,1982
崔永禄 文学翻译佳作对比赏析 天津:南开大学出版社,2001
单其昌 汉英翻译技巧 北京:北京外语教学与研究出版社,1990
杜成南,文军主编 中国当代翻译百论 重庆:重庆大学出版社,1994
方梦之 翻译新论与实践 上海:上海外语教育出版社,1999
冯庆华 实用翻译教程 上海:上海外语教育出版社,1997
辜正坤 中西诗鉴赏与翻译 长沙:湖南人民出版社,1998
郭建中编 文化与翻译 北京:中国对外翻译出版公司,2000
黄龙 翻译技巧指导 沈阳:辽宁人民出版社,1986
黄龙 翻译学 南京:江苏教育出版社,1988
姜治文,文军编著 翻译批评论 重庆:重庆大学出版社,1999
金堤 等效翻译探索 北京:中国对外翻译出版公司,1998
居祖纯 汉英语篇翻译 北京:清华大学出版社,1998
孔惠怡,扬承淑 亚洲翻译传统与现代动向 北京:北京大学出版社,2000
孔惠怡 翻译 文学 文化 北京:北京大学出版社,1999
连淑能 英汉对比研究 北京:高等教育出版社,1993
[1]霍叶敏.小学英语课后作业的有效布置之我见[J].学周刊,2016,11:197-198.
[2]陈庆华,魏茂玲.小学英语教学中导学案的运用[J].延边教育学院学报,2016,01:123-124+127.
[3]毛新.小学英语自主学习能力的培养方法管窥[J].华夏教师,2016,02:65.
[4]汪慧.小学英语课堂提问艺术研究[J].读与写(教育教学刊),2016,03:106-107.
[5]高建霞.小学英语课堂创新教学浅析[J].中国校外教育,2016,08:103.
[6]赵玉鑫.小学英语教学现状及反思[J].中国校外教育,2016,08:108.
[7]季娟.小学英语课堂生命化教学的缺失与重构[J].内蒙古教育(职教版),2016,03:55-56.
[8]刘娜.情感因素在小学英语教学中的运用[J].天津市教科院学报,2016,01:49-51.
[9]吕硕.如何培养小学低年级英语口语交际能力[J].学周刊,2016,30:182-183.
[10]沈青.小学英语形象联想教学法的实施[J].基础教育研究,2016,10:67.
[11]金文雅.浅谈“微课”在小学英语教学中的应用[J].考试周刊,2016,29:103.
[12]程方.网络环境下小学英语的模式构建[J].校园英语,2016,10:135.
[13]张春燕.新课改农村小学英语教学的策略[J].校园英语,2016,10:202.
[14]李安萍.基于多元智能理论的小学英语教学研究[J].校园英语,2016,12:90.
[15]王朝梅.小学英语歌曲教学的原则与方法[J].校园英语,2016,12:107-108.
[16]张敏.小学英语教学中听力教学“盲区”的突破[J].疯狂英语(教学版),2016,03:105-106.
[17]黄琳.小学英语绘本阅读教学实践研究[J].课程教育研究,2016,08:129.
[18]韩立霞.小学英语教学中“错误”资源的有效利用[J].英语画刊(高级版),2016,04:33.
[19]王赫微.小学英语课堂分级阅读教学应用初探[J].中国校外教育,2016,14:95.
[20]张琪.小学英语教学中激发阅读兴趣的探索[J].内蒙古教育(职教版),2016,05:43.
[21]李爱平.在农村小学英语教学中做好学困生转变工作[J].中国教育技术装备,2016,07:79-80.
[22]陈金业.构建小学英语快乐课堂初探[J].学周刊,2016,21:229-230.
[23]盛敏.小学英语各板块预习模式的探究[J].基础教育研究,2016,08:73-74.
[24]梁君玉.小学英语语法教学的现状和对策[J].西部素质教育,2016,10:171.
1.柯东霞(2005).交流与互动一一英语课堂教学模式的主旋律.全国教育科研“十五”成果论文集(第二卷).
2.曹逸韵(2012).浅析二语习得研究中的`输入假说与互动假说.《琼州学院学报》(4).
3.付凤文(2000).分阶段听力教学.《国外外语教学》(2).
4.方子纯(2006).语篇宏观结构分析与听力教学.《外语电化教学》(8).
5.卢仁顺(2002).“输出假设”研究对我国英语教学的启示.《外语与外语教学》(4).
6.陈丽清(2010).新的英语教学模式--民主与互动性教学.《语言与文化研究》(第六辑).
7.梁岁林(2004).图式理论下的听力课新型教学模式的运用.《新疆师范大学学报》(1).
8.董明(2004).大学英语课堂“生生互动”模式初探.《外语与外语教学》(5).
9.金海玉(2012).浅析语言输入、互动、输出假说与二语习得的关系.《海外英语》(18).
10.方申萍(2000).第二语言听力理解中的学习策略培训.《国外外语教学》(4).
11.沈昌洪.刘喜文.季忠民(2010).《第二语言习得导论》(英文版).北京:北京大学出版社.
12.宫力(2010).《交互式语言教学研究》.北京:人民教育出版社.
13.顾伟勤(2010).论“互动假说”的发展与局限.《外语学刊》(5).
14.何培芬(2003).解码理论在大学英语听力中的应用.《外语电化教学》(12).
15.李慧敏(2006).从图式理论看大学英语听力教学.《北京第二外国语学院学报》(外语版)(8).
16.刘玉红(2010).英语课堂教学生生互动模式管窥.《教学与管理》(9).
17.李燕.贾放(2001).“互动假说”与语言课堂教学互动策略及效用研究.《语言文字应用》(S1).
18.吕玉明(2000).改进听力教学的三个环节.《首都师范大学学报》(社会科学版)(S2).
19.穆育凤(2002).《新视野大学英语》教学中课堂互动环节的设计.《外语电化教学》⑵.
20.邱采真(2002).试论互动在第二语言习得中的作用.《高等函授学报》(哲学社会科学版)(15).
[1]费巧莲.激情教学法在小学英语教学中的应用[J].内蒙古教育(职教版),2016,05:72.
[2]李征娅.舞台式教学法在小学英语教学中的应用[J].英语教师,2016,06:78-80.
[3]李莉.夸张手法在小学英语课堂教学中的有效运用[J].教育现代化,2016,09:272-274.
[4]李彦子.浅谈小学英语课堂变革[J].亚太教育,2016,01:40.
[5]何轶君.PBL模式对小学英语自我效能的影响[J].科教文汇(中旬刊),2016,01:110-111.
[6]王东芳.如何让“动”成为小学英语课堂的主旋律[J].科学大众(科学教育),2016,02:68.
[7]韩笑.绿色背景下的小学英语课堂教学探析[J].生物技术世界,2016,02:244.
[8]宋丽敏.互联网+背景下小学英语未来课堂探微[J].中国教育技术装备,2016,01:120-121.
[9]杨进.小学英语教师创造性使用教材策略研究[J].中小学教材教学,2016,01:20-23.
[10]刘妲治.小学英语开展对话教学的策略[J].教育教学论坛,2016,02:267-268.
[11]路亚涵.浅谈小学英语教育中的创造教育[J].教育现代化,2016,01:228-229.
[12]完玛草.自然拼读法在小学英语教学中的应用[J].西部素质教育,2016,04:179.
[13]王秀国.小学英语课外阅读习惯的养成分析[J].西部素质教育,2016,02:166.
[14]王思佳.思维导图在小学英语词汇教学中的应用[J].读与写(教育教学刊),2016,01:101+112.
[15]刘思瑶.故事教学法在小学英语教学中的应用[J].黑龙江教育(理论与实践),2016,03:56-57.
[16]王凤英.浅谈小学英语两级分化的成因以及改进方法[J].才智,2016,04:193.
[17]沈丽萍.浅谈小学低年级英语听说能力的培养[J].科学大众(科学教育),2016,01:63.
[18]岳凌云.小学英语口语有效教学的设计[J].中国校外教育,2016,03:85.
[19]周海玲.浅谈小学英语教材插图资源的有效开发[J].中国校外教育,2016,05:98.
[20]卢林,张传福.论赏识教育在小学英语教学中的实施[J].学周刊,2016,10:146-147.
随着我国改革开放的不断深入,英语教学,作为基础教育的一部分,也日益受到人们的关注。 下文是我为大家搜集整理的关于小学英语论文参考文献的内容,欢迎大家阅读参考!小学英语论文参考文献(一) [1]朱梅. 小学英语教学中应如何培养学生的核心素养[J]. 英语广场,2016,07:161-162. [2]王静波. 互动教学在小学英语教学中的运用[J]. 中国校外教育,2016,06:1. [3]钟焕情. 小学英语课堂情境创设的探析[J]. 亚太教育,2016,13:25. [4]徐贺. 小学英语开放式课外作业的有效设计[J]. 教育实践与研究(A),2016,03:38-39. [5]水波. 基于语用的小学英语作业设计[J]. 宁波教育学院学报,2016,02:122-124. [6]江景干. 农村小学英语教学问题与对策探讨[J]. 海外英语,2016,06:12-13. [7]李建文. 问题引导法在小学英语教学中的应用策略[J]. 西部素质教育,2016,09:168. [8]夏凌. 刍议小学英语翻转课堂教学模式[J]. 中国校外教育,2016,11:118. [9]刘珊珊. 小学英语课堂有效教学研究[J]. 中国校外教育,2016,12:107. [10]邱菲菲. 新课程改革理念下的小学英语教学[J]. 学周刊,2016,17:154-155. [11]易凤. 浅谈小学英语教学中的单词记忆方法[J]. 学周刊,2016,20:200-201. [12]李文娜,梁付民. 微信辅助小学英语教学探析[J]. 中国教育技术装备,2016,05:37-38. [13]殷景芹. 信息技术在小学英语教学中的运用[J]. 中国教育技术装备,2016,05:47-48. [14]顾诗月. 也谈构建“生活化”的小学英语有效教学课堂[J]. 读与写(教育教学刊),2016,04:207-208. [15]林吉. 探究多媒体技术在小学英语教学中的运用[J]. 科学大众(科学教育),2016,04:60. 小学英语论文参考文献(二) [1]李爱平. 在农村小学英语教学中做好学困生转变工作[J]. 中国教育技术装备,2016,07:79-80. [2]陈金业. 构建小学英语快乐课堂初探[J]. 学周刊,2016,21:229-230. [3]盛敏. 小学英语各板块预习模式的探究[J]. 基础教育研究,2016,08:73-74. [4]梁君玉. 小学英语语法教学的现状和对策[J]. 西部素质教育,2016,10:171. [5]王赫微. 小学英语课堂分级阅读教学应用初探[J]. 中国校外教育,2016,14:95. [6]张琪. 小学英语教学中激发阅读兴趣的探索[J]. 内蒙古教育(职教版),2016,05:43. [7]费巧莲. 激情教学法在小学英语教学中的应用[J]. 内蒙古教育(职教版),2016,05:72. [8]李征娅. 舞台式教学法在小学英语教学中的应用[J]. 英语教师,2016,06:78-80. [9]李莉. 夸张手法在小学英语课堂教学中的有效运用[J]. 教育现代化,2016,09:272-274. [10]李彦子. 浅谈小学英语课堂变革[J]. 亚太教育,2016,01:40. [11]何轶君. PBL模式对小学英语自我效能的影响[J]. 科教文汇(中旬刊),2016,01:110-111. [12]王东芳. 如何让“动”成为小学英语课堂的主旋律[J]. 科学大众(科学教育),2016,02:68. [13]韩笑. 绿色背景下的小学英语课堂教学探析[J]. 生物技术世界,2016,02:244. [14]宋丽敏. 互联网+背景下小学英语未来课堂探微[J]. 中国教育技术装备,2016,01:120-121. [15]杨进. 小学英语教师创造性使用教材策略研究[J]. 中小学教材教学,2016,01:20-23. 小学英语论文参考文献(三) [1]张海娟. 针对小学英语高段教学中两级分化现象的研究策略[J]. 学周刊,2016,05:52. [2]李艳文. 浅谈如何构建小学英语高效课堂[J]. 学周刊,2016,05:104. [3]张盼静. 小学英语教学中学生学习兴趣的培养[J]. 学周刊,2016,05:185. [4]张婷婷. 如何提高小学英语词汇教学的有效性[J]. 学周刊,2016,08:63. [5]石丽君. 浅谈如何提高农村小学英语课堂教学的有效性[J]. 学周刊,2016,08:123. [6]张琦. 小学英语有效教学途径的几点尝试与探索[J]. 学周刊,2016,08:178. [7]骆北刚,陈伟娜. 性别差异对小学英语学习成绩影响的研究[J]. 教育观察(中下旬刊),2016,02:45-46+135. [8]陈欢. 小学英语口语教学存在的问题及建议[J]. 科教导刊(下旬),2016,01:130-131. [9]刘顺利. 小学英语歌谣情境剧课堂教学模式的研究[J]. 英语广场,2016,04:153-154. [10]马毅新. 让情感教育成为小学英语和谐课堂的催化剂[J]. 教育观察(下半月),2016,06:123-125. [11]彭熹. 小学英语翻转课堂教学模式应用探索[J]. 现代商贸工业,2016,09:178-179. [12]张婧. 小学英语教育理论与移动学习资源设计和应用的有效结合[J]. 电子测试,2016,07:165-166. [13]张桂莲. 小学英语教学策略探究[J]. 学周刊,2016,20:38-39. [14]张忠伟. 小学英语课堂情境教学研究[J]. 学周刊,2016,20:49-50. [15]郝晨霞. 自然拼读法在小学英语拼读教学中的应用研究[J]. 学周刊,2016,20:86-87. 猜你喜欢: 1. 英语论文的参考文献大全 2. 初中英语论文参考文献 3. 小学英语论文范文 4. 毕业论文英文参考文献 5. 小学英语论文大全
英文论文参考文献示例
无论在学习或是工作中,大家肯定对论文都不陌生吧,通过论文写作可以提高我们综合运用所学知识的能力。你写论文时总是无从下笔?以下是我收集整理的英文论文参考文献示例,供大家参考借鉴,希望可以帮助到有需要的朋友。
英语论文参考文献格式范本
用Times New Roman。每一条目顶格,如某一条目超过一行,从第二行起“悬挂缩进”2字符。参考文献中所有标点与符号均在英文状态下输入,标点符号后空一格。
参考文献条目排列顺序:英文文献、中文文献、网络文献。分别按作者姓氏字母顺序排列。文献前不用序号。
1)英文参考文献
(1)专著与编著
排列顺序为:作者姓、名、专著名、出版地、出版社、出版年。
例如:
Brinkley, Alan. The Unfinished Nation. New York: Knopf, 1993.
专著名中如果还包含其他著作或作品名,后者用斜体。
例如:
Dunn, Richard J ed. Charlotte Bront: Jane Eyre. New York: Norton, 1971.
A.两个至三个作者
第一作者的姓在前,名在后,中间用逗号隔开;其余作者名在前,姓在后,中间无逗号;每个作者之间用逗号隔开,最后一个作者的姓名前用“and”,后用句号。
例如:
Rowe, Richard, and Larry Jeffus. The Essential Welder: Gas Metal Arc Welding Classroom Manual. Albany: Delmar, 2000.
B. 三个以上作者
第一作者姓名(姓在前,名在后,中间加逗号)后接“et al.”,其他作者姓名省略。
例如:
Randall, John et al. Fishes of the Great Barrier Reef and Coral Sea. Honolulu: University of Hawaii Press, 1997.
C. 同一作者同一年出版的不同文献,参照下例:
Widdowson, Henry G. EIL: Squaring the Circles. A Reply. London: Lomgman, 1998a.
Widdowson, Henry G. Communication and Community. Cambridge: Cambridge University Press, 1998b.
(2)论文集
参照下例:
Thompson, Pett. “Modal Verbs in Academic Writing”. In Ben Kettlemann & Marko, Henry ed. Teaching and Learning by Doing Corpus Analysis. New York: Rodopi, 2002: 305-323.
(3)百科全书等参考文献
参照下例:
Fagan, Jeffrey. “Gangs and Drugs”. Encyclopedia of Drugs, Alcohol and Addictive Behavior. New York: Macmillan, 2001.
(4)学术期刊论文
参照下例:
Murphy, Karen. “Meaningful Connections: Using Technology in Primary Classrooms”. Young Children. 2003, (6): 12-18.
(5)网络文献
参照下例:
----“Everything You Ever Wanted to Know About URL” .
2)中文参考文献
(1)专著
参照下例:
皮亚杰.结构主义[M].北京:商务印书馆,1984.
(2)期刊文章
参照下例:
杨忠,张韶杰.认知语音学中的类典型论[J].外语教学与研究,1999,(2):1-3.
(3)学位论文
参照下例:
梁佳.大学英语四、六级测试试题现状的理论分析与问题研究[D].湖南大学,2002.
(4)论文集
参照下例:
许小纯.含义和话语结构[A].李红儒.外国语言与文学研究[C].哈尔滨:黑龙江人民出版社,1999:5-7.
(5)附录本
翻译学论文参考文献范例
参考文献:
奥马利 第二语言习得的学习策略上海:上海外语出版社,2001
陈保亚 20 世纪中国语言学方法论 济南:山东教育出版社,1999
丁言仁 英语语言学纲要 上海:上海外语出版社,2001
费尔迪南 德 索绪尔 普通语言学教程 长沙:湖南教育出版社,2001
冯翠华 英语修辞大全 北京:商务印书馆,1996
桂诗春,宁春言主编 语言学方法论 北京:外语教学与研究出版社,1998
桂诗春 应用语言学长沙:湖南教育出版社,1998
何兆熊 新编语用学概要 上海:上海外语教育出版社,2000
何自然 语用学与英语学习 上海:上海外语教育出版社,1997
侯维瑞 英语语体 上海:上海外语教育出版社,1988
胡壮麟 语言学教程(修订版)北京:北京大学出版社,2001
黄国文 语篇与语言的功能 北京:外语教学与研究出版社,2002
黄国文 语篇分析概要长沙:湖南教育出版社,1988
李延富主编 英语语言学基本读本 济南:山东大学出版社,1999
李运兴 语篇翻译引论 北京:中国对外翻译出版公司,2000
刘润清 西方语言学流派北京:外语教学与研究出版社,1999
刘润清等 现代语言学名著选读(上下册)北京:测绘出版社,1988
刘润清等 语言学入门 北京:人民教育出版社,1990
陆国强 现代英语词汇学(新版)上海:上海外语教育出版社,1999
拓展内容:
书写格式
1.参考文献标注的位置
2. 参考文献标标注方法和规则
3. 参考文献标标注的格式
2007年8月20日在清华大学召开的“综合性人文社会科学学术期刊编排规范研讨会”决定,2008年起开始部分刊物开始执行新的规范“综合性期刊文献引证技术规范”。该技术规范概括了文献引证的“注释”体例和“著者—出版年”体例。不再使用“参考文献”的说法。这两类文献著录或引证规范在中国影响较大,后者主要在层次较高的人文社会科学学术期刊中得到了应用。
⑴文后参考文献的著录规则为GB/T 7714-2005《文后参考文献著录规则》,适用于“著者和编辑编录的文后参考文献,而不能作为图书馆员、文献目录编制者以及索引编辑者使用的文献著录规则”。
⑵顺序编码制的具体编排方式。参考文献按照其在正文中出现的先后以阿拉伯数字连续编码,序号置于方括号内。一种文献被反复引用者,在正文中用同一序号标示。一般来说,引用一次的文献的页码(或页码范围)在文后参考文献中列出。格式为著作的“出版年”或期刊的“年,卷(期)”等+“:页码(或页码范围).”。多次引用的文献,每处的页码或页码范围(有的刊物也将能指示引用文献位置的信息视为页码)分别列于每处参考文献的序号标注处,置于方括号后(仅列数字,不加“p”或“页”等前后文字、字符;页码范围中间的连线为半字线)并作上标。作为正文出现的参考文献序号后需加页码或页码范围的,该页码或页码范围也要作上标。作者和编辑需要仔细核对顺序编码制下的参考文献序号,做到序号与其所指示的文献同文后参考文献列表一致。另外,参考文献页码或页码范围也要准确无误。
⑶参考文献类型及文献类型,根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:
专著M ; 报纸N ;期刊J ;专利文献P;汇编G ;古籍O;技术标准S ;
学位论文D ;科技报告R;参考工具K ;检索工具W;档案B ;录音带A ;
图表Q;唱片L;产品样本X;录相带V;会议录C;中译文T;
乐谱I; 电影片Y;手稿H;微缩胶卷U ;幻灯片Z;微缩平片F;其他E。
书写技巧
把光标放在引用参考文献的地方,在菜单栏上选“插入|脚注和尾注”,弹出的对话框中选择“尾注”,点击“选项”按钮修改编号格式为阿拉伯数字,位置为“文档结尾”,确定后Word就在光标的地方插入了参考文献的`编号,并自动跳到文档尾部相应编号处请你键入参考文献的说明,在这里按参考文献著录表的格式添加相应文献。参考文献标注要求用中括号把编号括起来,以word2007为例,可以在插入尾注时先把光标移至需要插入尾注的地方,然后点击 引用-脚注下面的一个小箭头,在出现的对话框中有个自定义,然后输入中括号及数字,然后点插入,然后自动跳转到本节/本文档末端,此时再输入参考文献内容即可。
在文档中需要多次引用同一文献时,在第一次引用此文献时需要制作尾注,再次引用此文献时点“插入|交叉引用”,“引用类型”选“尾注”,引用内容为“尾注编号(带格式)”,然后选择相应的文献,插入即可。
不要以为已经搞定了,我们离成功还差一步。论文格式要求参考文献在正文之后,参考文献后还有发表论文情况说明、附录和致谢,而Word的尾注要么在文档的结尾,要么在“节”的结尾,这两种都不符合我们的要求。解决的方法似乎有点笨拙。首先删除尾注文本中所有的编号(我们不需要它,因为它的格式不对),然后选中所有尾注文本(参考文献说明文本),点“插入|书签”,命名为“参考文献文本”,添加到书签中。这样就把所有的参考文献文本做成了书签。在正文后新建一页,标题为“参考文献”,并设置好格式。光标移到标题下,选“插入|交叉引用”,“引用类型”为“书签”,点“参考文献文本”后插入,这样就把参考文献文本复制了一份。选中刚刚插入的文本,按格式要求修改字体字号等,并用项目编号进行自动编号。
打印文档时,尾注页同样会打印出来,而这几页是我们不需要的。当然,可以通过设置打印页码范围的方法不打印最后几页。这里有另外一种方法,如果你想多学一点东西,请接着往下看。
选中所有的尾注文本,点“格式|字体”,改为“隐藏文字”,切换到普通视图,选择“视图|脚注”,此时所有的尾注出现于窗口的下端,在“尾注”下拉列表框中选择“尾注分割符”,将默认的横线删除。同样的方法删除“尾注延续分割符”和“尾注延续标记”。删除页眉和页脚(包括分隔线),选择“视图|页眉和页脚”,首先删除文字,然后点击页眉页脚工具栏的“页面设置”按钮,在弹出的对话框上点“边框”,在“页面边框”选项卡,边框设置为“无”,应用范围为“本节”;“边框”选项卡的边框设置为“无”,应用范围为“段落”。切换到“页脚”,删除页码。选择“工具|选项”,在“打印”选项卡里确认不打印隐藏文字(Word默认)。
注:以上在word中的处理是比较常用的做法,不过作者需要了解,投稿稿件是word格式或pdf格式或wps格式,但是很多期刊是用方正排版系统排版的,二者不“兼容”。因此,作者的word投稿只是编辑部排版的原稿,排版问题作者无需太过担心;而作者如想要编辑部出刊前最后的电子稿(有些作者着急要清样或已经排版的电子稿)其实也没有太大意义,因为没有方正的软件就无法打开这个电子稿。
参考文献的引用应当实事求是、科学合理,不可以为了凑数随便引用。下文是我为大家整理的关于翻译论文英文参考文献的内容,欢迎大家阅读参考!
1. 乔海清. 《翻译新论》. 北京:北京语言学院出版社. 1993.
2. 邵志洪. 《翻译理论、实践与评析》. 上海:华东理工大学出版社, 2003.
3. 邵志洪. 《英汉语研究与对比》. 上海:华东理工大学出版社, 1997.
4. 申丹. 《文学文体学与小说翻译》. 北京:北京大学出版社. 1995.
5. 申小龙. 《语言的文化阐释》. 上海:知识出版社, 1992.
6. 申小龙. 《汉语句型研究》. 海口:海南人民出版社, 1989.
7. 申小龙. 《汉语与中国文化》. 上海:复旦大学出版社, 2003.
8. 申小龙. 《文化语言学》. 南昌:江西教育出版社, 1993.
9. 申雨平(编). 《西方翻译理论精选》. 北京:外语教学与研究出版社. 2002.
10. 沈少华. 《英语趣味修辞格》. 北京:语文出版社, 1999.
11. 思果. 《译道探微》. 北京:中国对外翻译出版公司. 2002.
12. 孙全洲. 《现代汉语学习词典》. 上海:上海外语教育出版社, 1996.
13. 孙晓丽. 《广告英语与实例》. 北京:中国广播电视出版社, 1995.
14. 孙致礼. 《1949-1966:我国英美文学翻译概论》. 南京:译林出版社. 1996.
15. 谭载喜. 《翻译学》. 武汉:湖北教育出版社. 2000.
16. 谭载喜. 《新编奈达论翻译》. 北京:中国对外翻译出版公司. 1999.
17. 倜西、董乐山等(编). 《英汉翻译手册》. 北京:商务印书馆国际有限公司. 2002.
1. 王德春. 《语言学通论》. 南京:江苏教育出版社, 1990.
2. 王逢鑫. 《英汉比较语义学》. 北京:外文出版社, 2001.
3. 王还(主编). 《汉英对比论文集》. 北京:北京语言学院出版社. 1993.
4. 王季思. 《中国十大古典喜剧集》. 上海:上海文艺出版社, 1982.
5. 王克非. 《翻译文化史论》. 上海:上海外语教育出版社. 1997.
6. 王令坤(主编). 《英汉翻译技巧》. 上海:上海交通大学出版社. 1998.
7. 王希杰. 《汉语修辞学》. 北京:北京出版社, 1983.
8. 王希杰. 《修辞学导论》. 杭州:浙江教育出版社, 2000.
9. 王佐良、丁往道. 《英语文体学引论》. 北京:外语教学与研究出版社, 1990.
10. 王佐良. 《翻译:思考与试笔》. 北京:外语教学与研究出版社, 1989.
11. 魏志成. 《英汉语比较导论》. 上海:上海外语教育出版社. 2003.
12. 魏志成. 《英汉语比较导论》. 上海:上海外语教育出版社. 2003.
13. 翁显良. 《意态由来画不成?》 北京:中国对外翻译出版公司, 1983.
1. 陈保亚 20 世纪中国语言学方法论 济南:山东教育出版社,1999
2. 丁言仁 英语语言学纲要 上海:上海外语出版社,2001
3. 费尔迪南 德 索绪尔 普通语言学教程 长沙:湖南教育出版社,2001
4. 冯翠华 英语修辞大全 北京:商务印书馆,1996
5. 桂诗春,宁春言主编 语言学方法论 北京:外语教学与研究出版社,1998
6. 桂诗春 应用语言学长沙:湖南教育出版社,1998
7. 何兆熊 新编语用学概要 上海:上海外语教育出版社,2000
8. 何自然 语用学与英语学习 上海:上海外语教育出版社,1997
9. 侯维瑞 英语语体 上海:上海外语教育出版社,1988
10. 胡壮麟 语言学教程(修订版)北京:北京大学出版社,2001
11. 黄国文 语篇与语言的功能 北京:外语教学与研究出版社,2002
12. 黄国文 语篇分析概要长沙:湖南教育出版社,1988
《意林》的栏目大体上是按照生命、成功、生活、情感等方向来划分,设置了近百个不同栏目。栏目共分两级,每期有个一级栏目,包括励心小品”、“人与社会”、“生活锦囊”、“新知探索”、“精英潭”、“成长视窗”等。
《青年文摘》是一本面向全国、以青少年为核心读者群的文摘类综合刊物,刊物集萃来自报纸、期刊、图书等大众媒体的名篇佳作,旨在为青少年打造一个丰富生动、健康向上的精神空间。
《英语广场》是我国第一本完全定位中初级读者群体的英语课外阅读杂志。2000年创刊,期发行量13万册以上。刊物栏目丰富,题材广泛,每一栏目有难度适中的英语语篇若干,附以难点注释,部分语篇配有汉语译文。提供英语国家最新最热信息,集知识性、实用性、趣味性于一体。
适合高中生看的杂志排名有:《意林原创版》、《英语街高中版》《第一时间》、《Vista看天下》等。
1、《意林原创版杂志》简介。
励志、感动、启迪、提升是《意林》不变的追求,《意林》用一则则故事,改变读者的一生《意林原创版·讲述》的内容主要是全国一线作家专为《意林》杂志量身打造的原创意林精品故事和全国最近发生的新鲜重大的大爱情、名人、明星、财经热点人物故事。
2、《英语街高中版》简介。
由数百位英美籍教师和双语教学专家亲自担纲并精心打造。它是一本16开64页彩色精美印刷的专为高中生量身打造的青春时尚英语学习杂志,它集知识性、趣味性、时尚性、权威性、互动性为一体。它以高中生的视角来阅读世界,感知世界。
3、《第一时间》简介。
集学习性、思想性、新闻性于一体,是中国第一本专供高中生阅读的新闻类读本。其特点是:权威,全国上百所名校老师独家推荐精选的稿件;极致,第一时间提供高中生最需要的时政热点新闻;新颖,第一时间提供高中生最想知道的情事、学事、成长事……
4、《Vista看天下》简介。
《vista看天下》是由宁夏报业集团主办的一份时政新闻杂志,创刊于2005年,每月8、18、28日出版。杂志内容涵盖了时政、财经、社会、科技、文化、时尚、娱乐等领域。《vista看天下》注重新闻热点和网络信息的整合,并采用现代感的理念和包装,立足于为读者提供真正有趣、有价值的内容。
适合高中生看的英文杂志或者报纸有:《Reader's Digest》、《Vanity Fair》、《The Economist》等。
《读者文摘》(Reader's Digest),美国杂志,在全球多个国家和地区都有发行。1922年创刊,月刊。是一本能引起大众广泛兴趣的内容丰富的家庭杂志。它所涉及的故事文章涵盖了健康、生态、政府、国际事务、体育、旅游、科学、商业、教育以及幽默笑话等多个领域。
《读者文摘》是当前世界上最畅销的杂志之一,它拥有48个版本,涉及19种语言,并畅销于世界60多个国家。
这份每月出刊的杂志文章风格简明易懂,内容丰富广阔,且多富含恒久的价值和趣味;同时,它还致力于为各个年龄、各种文化背景的读者提供信息、开阔视野、陶冶身心、激励精神。
它所涉猎的主题有健康保健、大众科学、体育运动、美食烹饪、旅游休闲、金融与政治、家居与园艺、艺术与娱乐、商业与文化。其他固定的专栏还包括了笑话、谜语、测试、动画及读者来信。《读者文摘》是以通过为各个领域的读者提供他们所感兴趣的东西来吸引尽可能广大的读者群的。
出版文字:
《读者文摘》出版文字有:中文、捷克文、荷兰文、英文、芬兰文、法文、德文、匈牙利文、印度尼西亚文、意大利文、韩文、挪威文、波兰文、葡萄牙文、俄文、西班牙文、瑞典文、泰文、罗马尼亚文、克罗地亚文、斯洛文尼亚文。
材料学是学生接触材料领域、定位未来方向的入门课程,学习和掌握该课程内容意义至关重要。下文是我为大家整理的材料学方面论文的 范文 ,欢迎大家阅读参考!
浅析高分子材料成型加工技术
摘要:近些年来,国防尖端工业和航空工业等特殊领域的发展对高分子材料成型的加工技术要求更高,更精细。在此背景下,理清高分子材料加工技术的发展现状与发展趋势,探讨高分子材料的加工成型的 方法 ,对促进我国高新技术及产业的发展具有重要的意义。
关键词:高分子材料加工方法成型技术
一、前言
近些年来,国防尖端工业和航空工业等特殊领域的发展要求更高性能的聚合物材料,开发研制满足特定要求的高聚合物迫在眉睫[1]。在此背景下,理清高分子材料加工技术的发展现状与发展趋势,探讨高分子材料的加工成型的方法,对促进我国高新技术及产业的发展具有重要的意义。
二、高分子材料成型成型加工技术的相关定义
1.高分子材料
高分子材料是指由相对分子质量较高的化合物为基础构成的材料,其一般基本成分是聚合物或以含有聚合物的性质为主要性能特征的材料;主要是橡胶、塑料、纤维、涂料、胶黏剂和高分子基复合材料。高分子材料独特的结构和易改性与易加工特点,使它具有其他材料不可取代与不可比拟的优异性能,从而广泛运用到科学技术、国防建设和国民经济等领域,并已成为现代社会生活中衣食住行用等各方面不可缺少的材料。
2.高分子材料成型加工技术
在高分子工业的生产中分为高分子材料的制备与加工成型两个过程。高分子材料的成型加工技术就是运用各种加工方法对高分子材料赋予形状,使其成为具有使用价值的各种制品。高分子材料加工主要目的是高性能、高生产率、快捷交货和低成本;向小尺寸、轻质与薄壁方向发展是高分子材料成型技术制品方面的目标;成型加工方向是全回收、零排放、低能耗,从大规模向较短研发周期的多品种转变。判断高分子材料的成型加工技术的质量因素是加工后制品的外观性、尺寸精度、技能性中的耐化学性、耐热性等等。
三、高分子材料成型加工技术的方法
高分子材料的的成型方法有挤出成型、吹塑成型、注塑成型、压延成型、激光成型等。以下介绍的是现今高分子材料成型加工的主要技术方法。
1.挤出成型技术
挤出成型技术是指物料通过挤出机料筒和螺杆间的作用,边受热塑化,边被螺杆向前推送,连续通过机头而制成各种截面制品或半制品的一种加工方法。它的具体原理是高分子原材料自料斗进入料筒,在螺杆旋转作用下,通过料筒内壁和螺杆表面摩擦剪切作用向前输送到加料段,在此松散固体向前输送同时被压实;在压缩段,螺槽深度变浅,进一步压实,同时在料筒外加热和螺杆与料筒内壁摩擦剪切作用,料温升高开始熔融,压缩段结束;均化段使物料均匀,定温、定量、定压挤出熔体,到机头后成型,经定型得到制品。挤出成型又有共挤出技术、挤出注射组合技术、成型技术、反应挤出工艺与固态挤出工艺等。
2.注塑成型技术
注射成型技术是目前塑料加工中最普遍的采用的方法之一,可用来生产空间几何形状非常复杂的塑料制件[2]。注射成型技术根据组合材料的特征,又有以组合惰性气体为特征的气体辅助注射成型,以组合组成化学反应过程为特征的反应注射成型,以组合混合混配为特征的直接注射成型,以组合不同材料为特征的夹心成型等多种方法。
3.吹塑成型技术
吹塑技术一种发展迅速的塑料加工方法。热塑性树脂经挤出或注射成型得到的管状塑料型坯,趁热或加热到软化状态,置于对开模中,闭模后立即在型坯内通入压缩空气,使塑料型坯吹胀而紧贴在模具内壁上,经冷却脱模,即得到各种中空制品。根据型坯制作方法,吹塑可分为挤出吹塑和注射吹塑,新发展起来的有拉伸吹塑和多层吹塑。
四、高分子材料成型加工技术的发展新趋势
目前,高分子加工成型技术正在快速地进步,它的发展总方向是高度集成化、高度产量、高度精密化,不断实现对加工制品材料的聚集态、组织形态与相形态等的控制,最大程度地达到制品高性能的目的。具体的创新技术之处主要体现在以下几项新技术上。
1.聚合物动态反应加工技术
聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的[3]。这项技术解决振动力场下聚合反应加工过程中质量、动量和能量传递与平衡的难点,从技术上解决了设备结构集化的问题。
2.热塑性弹性体动态全硫化制备技术
这项技术引入振动立场到混炼挤出的全过程,实现混炼过程中橡胶相动态全硫化,控制硫化反直的进程,防止共混加工过程共混物相态发生发转。此技术非常有意义,研制发明出新的热塑性弹性体动态硫化技术与设备,能有效地提高我国TPV技术的水平。
3.信息存储光盘盘基直接合成反应成型技术
此技术是将盘级PC树脂生产、中间储运与光盘盘基成型三个过程融合为一体,联系动态连续反应成型技术,研制开发精密光盘注射成型装备,达到有效提高产品质量、节约能源,降低消耗的目的。该技术避免了传统方式中间环节多、能耗大、周期时间长、成型前处理复杂、储运过程易受污染等缺陷。
五、结语
综上所述,我国在新时期要把握高分子成型加工技术的前沿,注重培育自主的知识产权,努力打破国外技术的垄断,实现科学技术研究与产业界的良好结合的目的。这能有效地将科学研究成果转化为实际的生产力,有效地加快我国高分子材料成型加工技术及其相关产业的快速发展。
参考文献
[1] 王云飞;孙伟.浅谈高分子材料成型加工技术[J].城市建设理论研究,2012,(11): 32.
[2] 甄延波.高分子材料成型加工技术的进展[J].化工中间体,2012,(09): 25.
[3]黄贵禹.浅析高分子材料成型加工技术[J].东方 企业 文化 ,2011,(16): 97.
浅析高分子材料成型
摘要:我国的高分子材料成型技术在工业上取得了飞速的发展,本文主要阐述了高分子材料成型的原理以及高分子材料成型的加工技术。
关键词:高分子材料;成型;技术
一、前言
高分子材料是指以高分子化合物为基体组分的材料。高分子材料按来源可分为天然高分子材料、合成高分子材料;按化学组成分类可分为有机高分子材料、无机高分子材料;按性能可分为通用高分子材料、新型高分子材料。高分子材料比传统材料发展迅速的主要原因是原料丰富、制造方便、加工容易、品种繁多、形态多样、性能优异以及在生产和应用领域中所需的投资低,经济效益比较显著。高分子反应加工分为反应挤出和反应注射成型两个部分,目前我国普遍采用的设备包括螺杆挤出机和螺杆注射机。现阶段,我国的高分子材料成型也取得了较好的成绩。
二、高分子材料成型的原理
高分子材料的合成和制备一般都是由几个化工单元操作组成的,高分子反应加工把多个单元操作熔为一体,有关能量的传递和平衡,物料的输运和平衡问题,与一般单个化工单元操作完全不同。传统聚合过程解决传热和传质问题主要是利用溶剂和缓慢反应来进行的,但是在聚合反应加工过程中,物料的温度在数分钟内就能达到400℃~800℃,此时对于反应过程中产生的热,如果不能进行脱除的话,那么降解和炭化将会发生在物料中。传统的加工过程是通过设备给聚合物加热,而需要快速将聚合生成的热量通过设备移去是聚合反应加工所进行的,由此可见,必须从化学和热物理两个方面开展相应的基础研究。
高分子材料的物理机械性能、热性能、加工性能等均取决于其化学结构、分子结构和凝聚态的形态结构,而加工工艺与高分子材料的形态结构关系是非常密切的。
流变学,指从应力、应变、温度和时间等方面来研究物质变形和(或)流动的物理力学。它是力学的一个新分支,它主要研究物理材料在应力、应变、温度湿度、辐射等条件下与时间因素有关的变形和流动的规律。高分子材料成型加工成制备的理论基础是高分子材料流变学。高分子材料的自身的规律和特点是伴随化学反应的高分子材料的流变性质而产生的。
三、高分子材料成型的加工技术
(一)聚合物动态反应加工技术及设备
目前国外已经研发出可以解决其他挤出机作为反应器所存在的问题,即连续反应和混炼的十螺杆挤出机。在我国高分子材料成型加工工业的发展中占有极其重要的地位,但是我国的高分子材料成型的加工技术的开发目前还处于初步阶段。缩聚反应器的反应挤出设备就是指交换法聚碳酸酯连续化生产和尼龙生产中的比较关键的技术,除此之外,我国每年还有数以千万吨的改性聚合物生产,反应挤出技术及设备也是其关键技术。
采用传统的加工设备存在一些问题,例如传热、化学反应过程难以控制等,另外投资费用大、噪音大等问题。无论是在反应加工原理还是设备的结构上,聚合物动态反应加工技术及设备与传统技术都完全不同,将聚合物反应挤出全过程引入到电磁场引起的机械振动场,从而达到控制化学反应过程、反应制品的物理化学性能以及反应生产物的凝聚态结构的目的,这就是聚合物动态反应加工技术及设备。高分子材料成型加工是高能耗过程作业,无论是挤出、注射还是中空吹塑成型塑料原理都必须经过熔融塑化及输送这一基本和共性的过程,目前普遍采用的设备包括螺杆挤出机和螺杆注射机等。该技术使得控制聚合物单体及停留时间分布不可控的问题得到了解决,而且也使得振动立场作用下聚合物反应加工过程中的质量、动量以及能量传递和平衡问题得到了解决,同时也使得设备结构集成化问题得到了解决。新设备的优点很多,例如:体积重量小、适应性好、噪音低、可靠性高等等,而这些技术是传统技术和设备是比不了的。
(二)以动态反应加工设备为基础的新材料制备新技术
此技术的研究实现,加强了我国在该领域内的发言权。以动态反应技术为基础方向,进行深入的研究,从而产生了新的材料制备技术。我们以存储光盘盘基为基础原型,以反应成型技术直接作用于其上。通过对这些技术的研究改进,改变了传统技术中多环节、消耗大、复杂度高、周期长、而且环境污染比较严重等诸多不利因素。通过学习研究,可以把制作光盘的PC树脂原料工业、中途存放、盘基成型工业串联于一体,提高了工业生产效率、减少了资源浪费、能够完全有效的进行控制,而且产品的质量有大幅度的提高。
聚合物/无机物复合材料物理场强化制备新技术。研究表明,对无粒子进行适当的处理,可以得到一些好的效果,比如说利用聚合物进行原位表面改性处理、原位包覆、强制分散等处理后,就可以使我们复合材料成型。
热塑性弹性体动态全硫化制备技术。此技术将混炼引入到振动力场挤出全过程,为实现混炼过程中橡胶相动态全硫化,对硫化反直进程进行控制,从而使得共混加工过程共混物相态反转问题得到了解决。实现自主知识产权的热塑性弹性体动态硫化技术与设备研制开发出来,促进我国TPV技术水平的提高。
四、结语
我国必须根据自身的实际情况来发展高分子材料成型加工技术及设备,把握技术前沿,不断地培育自主知识产权,从而使得我国高分子材料成型技术及其产业发展不断加快。
参考文献:
[1] 黄汉雄. 高分子材料成型加工装备及技术的进展、趋势与对策(下)[J]. 橡塑技术与装备, 2006, (06) :13-18
[2] 黄汉雄. 高分子材料成型加工装备及技术的进展、趋势与对策(上)[J]. 橡塑技术与装备, 2006, (05) :17-27
[3] 王玉东, 付鹏, 李晓光, 赵清香, 刘民英. 尼龙612等温结晶的球晶形态与生成条件[J]. 高分子材料科学与工程, 2009, (09):76-79
[4] 吴刚. 高分子材料成型加工技术的进展[J]. 广东化工, 2008, (09) :8-12
[1]陶维屏,苏德辰.中国非金属矿产资源及其利用与开发.北京:地震出版社,2002.
[2]刘研,李宪洲.高岭土的深加工与新材料.世界地质,2004,23(2):195~200.
[3]孔浩.高岭土改性和层柱材料的制备与表征.天津:天津大学硕士论文,2002.
[4]中国矿床编委会编著.中国矿床.北京:地质出版社,1994.
[5]王怀宇,张仲利.世界高岭土市场研究.中国非金属矿工业导刊,2008,(2):58~62.
[6]吴铁轮.我国高岭土市场现状及展望.非金属矿,2004,27(1):1~4.
[7]张术根,刘小胡,丁俊.湖南辰溪仙人湾埃洛石型高岭土的矿物学特征与成因简析.岩石矿物学杂志,2006,25(5):433~439.
[8]张术根,刘小胡,丁俊.湖南辰溪仙人湾埃洛石型高岭土矿床特征及成因分析.矿物岩石,2006,26(4):1~7.
[9]张术根,丁俊,刘小胡,等.湖南辰溪仙人湾高岭土矿物学特征与应用途径探索.矿物学报,2006,26(4):357~362.
[10]李凯琦,刘钦甫,许红亮.煤系高岭岩及深加工技术.北京:中国建材工业出版社,2001.
[11] Frost R deformation in and Clay Minerals,1998,46(3):280~289.
[12] ,41:738.
[13]袁树来,等.中国煤系高岭岩(土)及加工利用.北京:中国建材工业出版社,2001.
[14] Ma C,Eggleton R layer types of kaolinite:Ahigh-resolution transmission electron microscope and Clay Minerals,1999,47:181~191.
[15] Frost R L,Kristof J,Schmidt J M,et spectroscopy of potassium acetate-intercalated kaolinites at liquid nitrogen Acta Part A,2001,57:603~609.
[16] Van Duin A C T,Steve R dynamics investigation into the adsorption of organic compounds on kaolinite Geochemistry,2001,32:143~150.
[17]刘摔摔,张培萍,吴永功.层状硅酸盐矿物填料在聚合物中的应用及发展.世界地质,2001,20(4):360~365.
[18]刘欣梅,潘正鸿,李国,阎子峰.用煤系高岭土制取白炭黑的研究.石油大学学报(自然科学版),2005,29(2):121~124.
[19]王万军,张术根,孙振家,刘纯波.用伊利石高岭石质煤矸石试制橡胶填料.中南大学学报(自然科学版),2004,35(5):769~773.
[20]张文良.非金属矿物高岭土在涂料中的应用.广东化工,2002,4:38~41.
[21]张怀彬,贾同文,等.沸石催化剂在精细化工中的应用.精细石油化工,1993,(1):6~11.
[22] Rong T J,Xia J catalytic cracking activity of the kaolin-group Letters,2002,57:297~301.
[23]王雪静,张甲敏,杨胜凯,杨风霞.偏高岭土水热合成NaY分子筛的机理研究.无机化学学报,2008,24(2):235~240.
[24]蒋荣立,孔德顺,夏小波,陈文龙.偏高岭石-碱-硅酸钠水热反应体系13X分子筛的合成.硅酸盐学报,2008,36(6):832~836.
[25]孙书红,马建泰,庞新梅,等.高岭土微球合成ZSM-5沸石及其催化裂解性能.硅酸盐学报,2006,36(4):757~761.
[26]蒋笃孝,魏红梅.由高岭土合成环境友好的无磷洗涤剂用沸石添加剂.现代化工,1999,19(12):27~28.
[27]沈水发,陈耐生,陈柽生,等.利用高岭土制备聚合氯化铝净水剂.无机盐工业,1999,31(5):33~35.
[28]陈国斌,唐课文,黄凯明.用高岭土制备聚氯化铝铁-淀粉复合絮凝剂及性能研究.湖南理工学院学报(自然科学版),2006,19(2):52~58.
[29]吴宏海,刘佩红,张秋云,何广平.高岭石对重金属离子的吸附机理及其溶液的pH条件.高校地质学报,2005,11(1):85~91.
[30]侯梅芳,崔杏雨,李瑞丰.沸石分子筛在气体吸附分离方面的应用研究.太原理工大学学报,2001,(3):135~139.
[31]刘燕.高岭土类粘土矿物材料对模拟核素Sr、Co、Cs的吸附性能研究.中国非金属矿工业导刊,2007,(5):25~28.
[32]李恒德.现代材料科学与工程词典.济南:山东科技出版社,2001:411~412.
[33] Bandyopadhyoy S,Mukerji of nitrogen content on the sintering behavior and properties of Sialon prepared from ,1993,19(3):133~139.
[34] Suvorov S A,Dolqushev N V,Zabolotskij A synthesis of dispersed sialon i Tekhnicheskaya Keramika,2002,4:2~5.
[35] Antsiferov V N,Gilev V materials from i Tekhnicheskaya Keramika,2001,2:2~8.
[36] Panda P K,Mariqppan L,Kannan T reduction of kaolinite under nitrogen Inter,2000,26(5):455~461.
[37] Panneerselvam M,Rao K microwave method for the preparation and sintering of β R Bull,2003,38(4):663~674.
[38]张海军,李文超,钟香崇.天然原料合成o′-Sialon-ZrO2-SiC复合材料.稀有金属,2000,34(1):25~29.
[39]张海军,李文超,钟香崇.粘土还原氮化合成o′-Sialon基复合材料.耐火材料,2000,34(3):137~140.
[40]李亚伟,李楠,王斌耀,等.β-赛隆(Sialon)/刚玉复合耐火材料研究.无机材料学报,2000,15(4):612~618.
[41]钱扬保,王福明,徐利华,等.粘土碳热还原氮化二步法制备β-Sialon结合刚玉复相材料.耐火材料,2002,36(2):77~69.
[42] Davidovits and geopolymeric Then Angl,1989(35):429~441.
[43] Miao J Y,Dennis W H,Chang C C,et carbon spheres of high purity prepared on kaolin by and Related Materials,2003,12:1368~1372.
[44]王银叶.天然矿高岭土制备莫来石复合纳米晶微观结构表征.硅酸盐学报,2000,28(2):68~71.
[45] Karch J,Birringer R,Gleiter at low ,1987,33(6148):556~559.
[46]吕凤柱,张宝砚,王文斌,窦臻.PA1010/高岭土杂化材料的制备和探讨.高分子材料科学与工程,2002,18(2):187~191.
[47]古映莹,廖仁春,吴幼纯,等.高岭石-MBT复合材料的制备及其对Pb2+的吸附性能.贵州化工,2001,26(3):23~25.
[48]魏月琳,吴季怀.高岭土-丙烯酰胺系超吸水性复合材料表征.华侨大学学报(自然科学版),2002,23(4):412~416.
[49]王新.聚合填充法制备 UHMWPE/Kaolin复合材料的结构与性能.北京:中国科学院化学研究所博士论文,2001.
[50]朱秀林,顾梅,赵峰.高岭土-聚丙烯酸钠高吸水性复合树脂的合成及性能研究.高分子材料科学与工程,1994,(5):46~49.
[51]熊传溪,刘起虹,董丽杰,王雁冰.HDPE/高岭土复合材料的制备与性能.武汉理工大学学报,2002,24(1):1~3.
[52]陈汉周,刘钦甫,侯丽华,赵庆章.高岭土/PET纳米复合材料的制备与表征.非金属矿,2008,31(3):42~44.
[53]蔡会武,江照洋,王瑾璐,等.丙烯酸/淀粉/高岭土复合高吸水树脂的制备及性能研究.化工新型材料,2008,36(4):47~49.
[54]刘钦甫,杨晓杰,张鹏飞.中国煤系高岭岩(土)资源成矿机理与开发利用.矿物学报,2002,22(4):359~364.
[55]陆军.煤矸石发电是扩大煤矸石综合利用的有效途径.中国煤炭,2001,27(7):36~37.
[56]张术根,王万军,谭建农.湖南煤矸石资源环境评价与开发利用研究.长沙:中南大学出版社,2003.
[57]刘春荣,宋宏伟,董斌.煤矸石用于路基填筑的探讨.中国矿业大学学报(自然科学版),2001,30(3):294~297.
[58]刘俊尧,裴春平,刘晓惠,张淑娟.煤矸石做道路基层材料的应用分析.云南交通科技,2000,16(3):23~26.
[59]施龙青,韩进,尹增德,陆鸿.煤矸石改良土壤的应用研究.中国煤炭,1998(5):37~39.
[60]王刚.利用煤矸石生产肥料.煤炭加工与综合利用,1996,(6):10~11.
年轻的材料——高分子材料 在世界范围内, 高分子材料的制品属於最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 将是 21 世纪最活跃的材料支柱.高分子材料在我们身边随处可见。在我们的认识中,高分子材料是以高分子化合物为基础的材料。高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料。今天,我想就高分子材料为主线,研究一下各种高分子材料所具有的特性和优缺点。 从我们以前学过的化学知识中可以知道,高分子材料其实是有机化合物, 有机化合物是碳元素的化合物.除碳原子外, 其他元素主要是氢、氧、氮等.碳原子与碳原子之间, 碳原子与其他元素的原子之间, 能形成稳定的结构.碳原子是四价, 每个一价的价键可以和一个氢原子键连接, 所以可形成为数众多的、具有不同结构的有机化合物.有机化合物的总数已接近千万种, 远远超过其他元素的化合物的总和, 而且新的有机化合物还不断地被合成出来.这样, 由於不同的特殊结构的形成, 使有机化合物具有很独特的功能.高分子中可以把某些有机物结构(又称为功能团)替换, 以改变高分子的特性.高分子具有巨大的分子量, 达到至少1 万以上, 或几百万至千万以上, 所以, 人们将其称为高分子、大分子或高聚物.高分子材料包括三大合成材料, 即塑料、合成纤维和合成橡胶(未加工之前称为树脂). 1.橡胶 橡胶是一类线型柔性高分子聚合物,橡胶是一种有弹性的碳氢化合物异戊二烯聚合,未经加工时以乳剂的形态存在。橡胶乳剂可以从一些植物的树液中取得,也可以是人造的。也是很普遍的高分子材料之一。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。橡胶属于完全无定型聚合物,它的玻璃化转变温度(T g)低, 分子量往往很大,大于几十万。由于橡胶的分子链可以交联,交联后的橡胶受外力作用发生变形时,具有迅速复原的能力,并具有良好的物理力学性能和化学稳定性。所以橡胶是橡胶工业的基本原料,广泛用于制造轮胎、胶管、胶带、电缆及其他各种橡胶制品。 橡胶按原料分为天然橡胶和合成橡胶。 从橡胶的结构来看的话我们不难发现从线性结构来分析未硫化橡胶的普遍结构。由于分子量很大,无外力作用下,呈细团状。当外力作用,撤除外力,细团的纠缠度发生变化,分子链发生反弹,产生强烈的复原倾向,这便是橡胶高弹性的由来。 用型橡胶的综合性能较好,应用广泛。主要有:①天然橡胶。从三叶橡胶树的乳胶制得,弹性好,强度高,综合性能好。②异戊橡胶。全名为顺-1,4-聚异戊二烯橡胶,由异戊二烯制得的高顺式合成橡胶,因其结构和性能与天然橡胶近似,故又称合成天然橡胶。③丁苯橡胶。简称SBR,其综合性能和化学稳定性好。④顺丁橡胶。与其他通用型橡胶比,硫化后的顺丁橡胶的耐寒性、耐磨性和弹性特别优异,动负荷下发热少,耐老化性能好,易与天然橡胶、氯丁橡胶、丁腈橡胶等并用。 随后我们介绍一下特种橡胶。特种型橡胶指具有某些特殊性能的橡胶。主要有:①氯丁橡胶。简称CR,由氯丁二烯聚合制得。具有良好的综合性能,耐油、耐燃、耐氧化和耐臭氧。但其密度较大,常温下易结晶变硬,贮存性不好,耐寒性差。②丁腈橡胶。简称NBR,由丁二烯和丙烯腈共聚制得。耐油、耐老化性能好 ,可在120℃的空气中或在150℃的油中长期使用。此外,还具有耐水性、气密性及优良的粘结性能。③硅橡胶。主链由硅氧原子交替组成,在硅原子上带有有机基团。耐高低温,耐臭氧,电绝缘性好。④氟橡胶。分子结构中含有氟原子的合成橡胶。通常以共聚物中含氟单元的氟原子数目来表示 ,如氟橡胶23,是偏二氟乙烯同三氟氯乙烯的共聚物。氟橡胶耐高温、耐油、耐化学腐蚀。⑤聚硫橡胶。由二卤代烷与碱金属或碱土金属的多硫化物缩聚而成。有优异的耐油和耐溶剂性,但强度不高,耐老化性、加工性不好,有臭味,多与丁腈橡胶并用。此外,还有聚氨酯橡胶、氯醇橡胶、丙烯酸酯橡胶等。 2.塑料 我们都知道生活中由于塑料的轻便和便宜,随处可以用到塑料。下面就介绍一下塑料的各种特性和用途。 塑料为合成的高分子化合物,可以自由改变形体样式。塑料是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等添加剂组成的,它的主要成分是合成树脂。 广义的塑料定义指具有塑性行为的材料,所谓塑性是指受外力作用时,发生形变,外力取消后,仍能保持受力时的状态。塑料的弹性模量介于橡胶和纤维之间,受力能发生一定形变。软塑料接近橡胶,硬塑料接近纤维。狭义的塑料定义是指以树脂(或在加工过程中用单体直接聚合)为主要成分,以增塑剂、填充剂、润滑剂、着色剂等添加剂为辅助成分,在加工过程中能流动成型的材料。 【塑料与其它材料比较有如下的特性】 〈1〉 耐化学侵蚀 〈2〉 具光泽,部份透明或半透明 〈3〉 大部分为良好绝缘体 〈4〉 重量轻且坚固 〈5〉 加工容易可大量生产,价格便宜 〈6〉 用途广泛、效用多、容易着色、部分耐高温 塑料也区分为泛用性塑料及工程塑料,主要是用途的广泛性来界定,如PE、PP价格便宜,可用在多种不同型态的机器上生产。工程塑料则价格较昂贵,但原料稳性及物理物性均好很多,一般而言,其同时具有刚性与韧性两种特性。 大部分塑料的抗腐蚀能力强,不与酸、碱反应。塑料制造成本低。耐用、防水、质轻容易被塑制成不同形状。是良好的绝缘体。塑料可以用于制备燃料油和燃料气,这样可以降低原油消耗。 而其也有很多不足之处,比如回收利用废弃塑料时,分类十分困难,而且经济上不合算。塑料容易燃烧,燃烧时产生有毒气体。塑料是由石油炼制的产品制成的,石油资源是有限的。 根据各种塑料不同的理化特性,可以把塑料分为热固性塑料和热塑料性塑料两种类型。 塑料的成型加工是指由合成树脂制造厂制造的聚合物制成最终塑料制品的过程。加工方法(通常称为塑料的一次加工)包括压塑(模压成型)、挤塑(挤出成型)、注塑(注射成型)、吹塑(中空成型)、压延等。 中国塑料工业经过长期的奋斗和面向全球的开放,已形成门类较齐全的工业体系,成为与钢材、水泥、木材并驾齐驱的基础材料产业,作为一种新型材料,其使用领域已远远超越上述三种材料进入21世纪以来,中国塑料工业取得了令世人瞩目的成就,实现了历史性的跨越。作为轻工行业支柱产业之一的塑料行业,近几年增长速度一直保持在10%以上,在保持较快发展速度的同时,经济效益也有新的提高。塑料制品行业规模以上企业产值总额在轻工19个主要行业中位居第三,实现产品销售率,高于轻工行业平均水平。从合成树脂、塑料机械和塑料制品生产来看,都显示了中国塑料工业强劲的发展势头。 塑料技术的发展日新月异,针对全新应用的新材料开发,针对已有材料市场的性能完善,以及针对特殊应用的性能提高可谓新材料开发与应用创新的几个重要方向。 1 新型高热传导率生物塑料, 这种生物塑料除导热性能好外,还具有质量轻、易成型、对环境污染小等优点,可用于生产轻薄型的电脑、手机等电子产品的外框。 2 可变色塑料薄膜,这种薄膜把天然光学效果和人造光学效果结合在一起,实际上是让物体精确改变颜色的一种新途径。 3 塑料血液,英国设菲尔德大学的研究人员开发出一种人造“塑料血”,外形就像浓稠的糨糊,只要将其溶于水后就可以给病人输血,可作为急救过程中的血液替代品。 4 新型防弹塑料,这种新型材料受到子弹冲击后,虽然暂时也会变形,但很快就会恢复原状并可继续使用。此外,这种新材料可以将子弹的冲击力平均分配,从而减少对人体的伤害。 5 可降低汽车噪音的塑料,该种材料主要应用于车身和轮舱衬垫,产生一个屏障层,能吸收汽车车厢内的声音并且减少噪音,减少幅度为25%~30%。 随着人类对于科技的不断探索和材料研究事业的不断发展,我相信,会有越来越多的新型的塑料产品问世,到时候,就可以更加好的造福人类了。 3.纤维 纤维(Fiber): 聚合物经一定的机械加工(牵引、拉伸、定型等)后形成细而柔软的细丝,形成纤维。纤维具有弹性模量大,受力时形变小,强度高等特点,有很高的结晶能力,分子量小,一般为几万。 纤维大体分天然纤维、人造纤维和合成纤维 天然纤维指自然界生长或形成的纤维,包括植物纤维 (天然纤维素纤维)、动物纤维 (天然蛋白质纤维)和矿物纤维。 人造纤维是利用自然界的天然高分子化合物——纤维素或蛋白质作原料(如木材、棉籽绒、稻草、甘蔗渣等纤维或牛奶、大豆、花生等蛋白质),经过一系列的化学处理与机械加工而制成类似棉花、羊毛、蚕丝一样能够用来纺织的纤维。如人造棉、人造丝等。 合成纤维的化学组成和天然纤维完全不同,是从一些本身并不含有纤维素或蛋白质的物质如石油、煤、天然气、石灰石或农副产品,加工提炼出来的有机物质,再用化学合成与机械加工的方法制成纤维。如涤纶、锦纶、腈纶、丙纶、氯纶等。 纤维是天然或人工合成的细丝状物质.在现代生活中,纤维的应用无处不在,而且其中蕴含的高科技还不少呢。导弹需要防高温,江堤需要防垮塌,水泥需要防开裂,血管和神经需要修补,这些都离不开纤维这个小身材的“神奇小子”。 穿得舒服, 御寒防晒,是我们对衣服的最初要求,如今这个要求已很容易达到。海藻碳纤维做成衣服后,穿着时能长期使人体分子摩擦产生热反应,促进身体血液循环,因此能蓄热保温,而防紫外线辐射的纤维制成衣服便可减少我们夏日撑伞的麻烦。 而纤维更大的作用早已不仅停留在日常穿着了,粘胶基碳纤维帮导弹穿上“防热衣”,可以耐几万度的高温;无机陶瓷纤维耐氧化性好,且化学稳定性高,还有耐腐蚀性和电绝缘性,航空航天、军工领域都用得着;聚酰亚胺纤维可以做高温防火保护服、赛车防燃服、装甲部队的防护服和飞行服;碳纳米管可用作电磁波吸收材料,用于制作隐形材料、电磁屏蔽材料、电磁波辐射污染防护材料和“暗室”(吸波)材料。 纤维在环保上也是好帮手。聚乳酸作为可完全生物降解性塑料,越来越受到人们重视。可将聚乳酸制成农用薄膜、纸代用品、纸张塑膜、包装薄膜、食品容器、生活垃圾袋、农药化肥缓释材料、化妆品的添加成分等。 纤维在医药方面的应用已非常广泛。甲壳素纤维做成医用纺织品,具有抑菌除臭、消炎止痒、保湿防燥、护理肌肤等功能,因此可以制成各种止血棉、绷带和纱布,废弃后还会自然降解,不污染环境;聚丙烯酰胺类水凝胶可能控制药物释放;聚乳酸或者脱乙酰甲壳素纤维制成的外科缝合线,在伤口愈合后自动降解并吸收,病人就不用再动手术拆线了。 在建筑领域,防渗防裂纤维可以增强混凝土的强度和防渗性能,纤维技术与混凝土技术相结合,可研制出能改善混凝土性能,提高土建工程质量的PP纤维,对于大坝、机场、高速公路等工程可起到防裂、抗渗、抗冲击和抗折性能,在国家大剧院、上海市公安局指挥中心屋顶停机坪、上海虹口足球场等大型工程中已露了一手。 随着生物科技的发展,一些纤维的特性可以派上用场。类似肌肉的纤维可制成“人工肌肉”、“人体器官”。聚丙烯酰胺具有生物相容性,一直是人体组织良好的替代材料,聚丙烯酰胺水凝胶能够有规律地收缩和溶胀,这些特性正可以模拟人体肌肉的运动。 胶原是人体中最多的蛋白质,人体心脏、眼球、血管、皮肤、软骨及骨路中都有它的存在,并为这些人体组织提供强度支撑。合成纳米纤维能在骨折处形成一种类似胶质的凝胶,引导骨骼矿质在胶原纤维周围生成一个类似于天然骨骼的结构排列,修补骨骼于无形之中。 蜘蛛丝一直是人类想要模仿制造的,天然蜘蛛丝的直径为4微米左右,而它的牵引强度相当于钢的5倍,还具有卓越的防水和伸缩功能。如果制造出一种具有天然蜘蛛丝特点的人造蜘蛛丝,将会具有广泛的用途。它不仅可以成为降落伞和汽车安全带的理想材料,而且可以用作易于被人体吸收的外科手术缝合线。 纤维的充填能有效地提高塑料的强度和刚度。纤维增强塑料属刚性结构材料。 纤维增强塑料主要有两个组分。基体是热固性塑料或热塑性塑料,用纤维材料充填。通常基体的强度较低,而纤维填料具有较高的刚性但呈脆性。两者复合得到的增强塑料中,纤维承受很大的载荷应力,基体树脂通过与纤维界面上的剪切应力,支撑了纤维传递了外载荷。 增强塑料以玻璃纤维使用占优势,其品种很多,无碱玻璃(E-glass)为常用普通纤维,碱金属氧化物含量很低,具有优良的化学稳定性和电绝缘性。高强度玻璃纤维(S-glass)含有镁铝硅酸盐等成分,具有比E-glass纤维高10%-50%的强度。由于化学成分和生产工艺的不同,还有高模量、中碱和高碱等各种玻璃纤维。碳纤维具有较大的刚性和优良的耐腐性,常用于增强热固性塑料。 目前,世界上有机高分子材料的研究正在不断地加强和深入.一方面,对重要的通用有机高分子材料继续进行改进和推广,使它们的性能不断提高,应用范围不断扩大.例如,塑料一般作为绝缘材料被广泛使用,但是近年来,为满足电子工业需求,又研制出具有优良导电性能的导电塑料.导电塑料已用于制造电池等,并可望在工业上获得更广泛的应用.另一方面,与人类自身密切相关、具有特殊功能的材料的研究也在不断加强,并且取得了一定的进展,如仿生高分子材料、高分子智能材料等.这类高分子材料在宇航、建筑、机器人、仿生和医药领域已显示出潜在的应用前景.总之,有机高分子材料的应用范围正在逐渐扩展,高分子材料必将对人们的生产和生活产生越来越大的影响. 参考文献:材料网,《新型有机高分子材料》,复合材料学报,药用功能的高分子材料,《橡胶参考资料》,《塑料加工应用》,《物理化学》,百度百科,《高性能纤维》 公务员一号网作为最全面、最专业的公务员考试网站,为广大考生朋友免费提供考试试题及公务员题库下载等相关讯息
并不需要订杂志,如果想要提高作文,那就多写,素材上面的反复用,练熟。
高中三年必读《青年文摘》《读者》因为有很多语文阅读和作文材料都是从这两本杂志上摘的。从高二起可以看《求学》,这本杂志有大学介绍和各科的知识点和例题讲解(分文科版和理科版)高三看《高考金刊》,注意收集一些专门为高考生出版的杂志特别版。
《中学语文教学参考》、《语文教学通讯》、《语文研究》 、《中学语文》、 《学语文》、 《语文建设》、 《语文教学与研究》、 《语文研究》、 《语文学习》、《语文学刊》、 《语文天地》、 《语文教学之友》 、 《中学语文教学》、《语文教学研究》等。哪一种最好?没有定论,有编辑说:适合自己的就是最好的。这些杂志有的偏向于理论,有的偏向于教学实践,更多的是两者结合。个人曾经阅读过《中学语文教学参考》、《语文教学通讯》 、《中学语文》、 《语文学习》、《学语文》这几种,感觉各有千秋,价格上也有差异。你如果要订阅可以到邮局查一下价格,要不到图书阅览室看看也可以。
新作文疯狂英语阅读版英语广场少男少女改版后好垃圾了