首页

> 学术期刊知识库

首页 学术期刊知识库 问题

燃料电池论文参考文献推荐

发布时间:

燃料电池论文参考文献推荐

[4]顾瑞兰. 促进我国新能源汽车产业发展的财税政策研究[D].财政部财政科学研究所,2013.[5]王慧. 促进我国新能源汽车产业发展的财税政策研究[D].江西财经大学,2010.[6]. 新能源汽车补贴之思[J]. 经营者(汽车商业评论),2014,10:190-195.[7]杨毅沉. 新能源汽车推广三大障碍:成本、技术、地方保护[J]. 决策探索(下半月),2014,11:29-30.[8]乔亮国,李占元. 促进新能源汽车产业发展的税收政策研究[J]. 商业会计,2015,07:86-87.[9]丁芸,张天华. 促进新能源汽车产业发展的财税政策效应研究[J]. 税务研究,2014,09:16-20.[10]孙英浩. 日本新能源汽车产业扶持政策的经验及启示[J]. 经济视角(上旬刊),2015,03:76-78.[11]陈晨,李霞,莫桓. 聚焦各国燃料电池产业政策发展[J]. 电器工业,2015,06:71-73.[12]陈柳钦. 美国新能源汽车发展政策走向[J]. 时代汽车,2011,09:30-34.[13]陈柳钦. 美日欧新能源汽车产业发展的政策支持[J]. 汽车工程师,2010,10:22-25+48.[14]张政,赵飞. 中美新能源汽车发展战略比较研究——基于目标导向差异的研究视角[J]. 科学学研究,2014,04:531-535.[15]. 国外新能源汽车财税政策研究及启示[J]. 电器工业,2014,10:54-55.

新能源汽车作为采用非常规燃料为动力来源的一种综合性汽车在能源和环保的压力下,新能源汽车无疑将成为未来汽车的发展方向

作者: Raymond George Klaus Hassmann【摘要】燃料电池具有非同寻常的性能: 电效率可达60%以上,而且可以在带着部分负荷运行的情况下进行维修,除了有低比率碳氧化物排放外几乎没有任何有害的排放物。文章介绍按温度划分的4种主要燃料电池(PEMFC、PAFC、MCFC和SOFC)的性能,重点介绍高温固体氧化物燃料电池(SOFC)的应用及其发展前景。 With demonstration projects fuel cells are Well uder way toward penetrating the power market,covering a wide range of application.This paper introduces the main four types of fuel cells which are PEMFC,PAFC,MCFC and SOFC.Then it puts the emphasis on SOFC and its application market. 燃料电池是通过由电解液分隔开的2个电极中间的燃料(如天然气、甲醇或纯净氢气)的化学反应直接产生出电能。与汽轮发电机生产的电能相比,燃料电池具有非同寻常的特性:它的电效率可达60%以上,可以在带部分负荷运行的情况下进行维修,而且除了排放低比率碳氧化物外,几乎没有任何其他的有害排放物。1 燃料电池的分类 目前研制的燃料电池技术在运行温度上有不同的类型,从比室温略高直到高达1000℃的范围。大多数工业集团公司的注意力集中在以下4种主要类型上:(1)运行温度在60-80℃之间的聚合物电解液隔膜型燃料电池(PEMFC);(2)运行温度在160-220℃之间的磷酸类燃料电池(PAFC);(3)运行温度在620-660℃之间的熔融碳酸盐类燃料电池(MCFC);(4)运行温度在880-1000℃之间的固体氧化物燃料电池(SOFC)。 可以将这些类型的燃料电池划分为低温型(100℃及以下)、中温型(约200℃左右)及高温型(600-l000℃)燃料电池。 表1简要地列出了各种类型燃料电池的性能。中温型和高温型燃料电池适于用在静止式装置上,而低温型燃料电池对于静止装置和移动式装置都适用。 实用装置的功率容量差别也很大,可以给笔记本电脑及移动电话供电(数以W计),也可以给居民住宅(数kW)或是分散的电热设备和动力设备(数百KW到数MW)供电。 最适于用来驱动汽车的是低温型燃料电池。 根据使用期限成本进行的经济性比较结果表明,就发电成本而言,SOFC型燃料电池要PEM型低30%。这个结果是根据SOFC型燃料电池的电效率比PEM型的高,这2种燃料电池最终都可以达到l000美元/KW的投资成本这一假设条件而推导出来的。 2 高温燃科电池 高温型燃料电池具有许多适于在静止式装置上使用的特性。但是在高温型燃料电池产生出电能之前需要较长的加热过程,因而这种技术不能应用于要求在短时间内频繁起动的各种实用装置。此外,高温型燃料电池还具有以下特点: (1)不需要使用贵金属来催化电化学反应。一般情况下使用陶瓷材料。 (2)对CO完全没有限制。CO参加到电化学反应过程并像H2一样被氧化。 (3)对燃料表现出高度灵活性。可以给这类燃料电池发电设备供应天然气,天然气在设备内部被转换成H2和CO。这意味着无需任何外部燃料,从而大大简化了发电设备的平衡问题。 (4)高温可以将燃气轮机连接到该系统上,在这种情况下,燃料电池发电设备是在300kPa压力下运行,并在不考虑燃气轮机输出的情况下将燃料电池的功率密度提高约20%,因此使总的电效率提高10%,可成倍地降低使用期限成本。 (5)较高的运行温度也为排热提供了更多的灵活性。在电效率达60%或更高水平的联合循环系统中可限制废热排放,而在单循环下则会排放出更多的热量。 MCFC和SOFC是这类高温型燃料电池的2种技术。它们使用的材料不同。MCFC是在一只陶瓷容器中放入液态的金属碳酸盐作为电解液,如果没有采取防止电极老化的措施,燃料电他的使用寿命会受到影响。 在MCFC中电化学反应是由CO3离子引发的。MCFC采用的是颊型电池,和SOFC型的管形设计方案相比,这种颊型电他的功率密度要稍微高一些。这在成本上要比SOFC型装置优越。但在另一方面,由于SOFC所用的陶瓷材料非常稳定,可以用在950-1000℃范围内,所以SOFC装置在抗老化性能上更具优越性。到目前为止,所有的长期电池试验和正在运行的试验性机组都表明SOFC型装置的使用寿命可以达到70 000-80 000h,是MCFC型的2倍。 MCFC和SOFC 2种技术在进行100-250kW功率范围的单循环现场试验中,成本都有大幅度的下降。目前在MCFC开发上占有主导地位的是美国的Fuel Cell Energy公司及其在德国的授权单位MTU,日本的Ishikawajima-Harima重工(IHI)和三菱公司等。而Siemens Westinghouse在SOFC开发上处于领先水平。3 中温型燃料电池 目前磷酸类燃料电池(PAFC)是具有最先进技术的燃料电池。80年代,IFC(国际燃料电池公司)决定对其前期商业化生产线进行投资,制造和销售200kW的PAFC装置,并将其投入市场。东芝公司在80年代末就已经努力使PAFC技术进入商用市场。从此,PAFC技术就一直在静止燃料电池的市场中占据着显赫的位置。迄今为止,全球已经安装了150多套PAFC燃料电池装置。 研究表明,这种燃料电池未能实现市场商业化的原因大致有以下几方面: (1)电效率最高为40%,超过维修期限后会降到35%甚至更低水平。通常情况下设备的使用期限不超过20 000运行h。 (2)有些试验性的设备(如东芝公司管理的1套11MW设备未能达到顶期的性能水平。 (3)美国和日本政府大幅度削缩用于PAFC技术研究和开发的投资。 (4)从迄今积累的经验及在改善设计参数和降低产品成本方面的潜力来看,让PAFC技术成功地跻身于当今的市场中的可能性是极低的。4 SOFC在配电市场方面的潜力 Siemens Westinghouse公司根据对市场的分析,决定采取必要的措施加快SOFC技术进入市场的步伐。预计在2003-2004年提供第l批产品,进入商业性生产前的试验阶段,装置容量从目前的2MW扩大到15MW。 北美和欧洲被认为是SOFC燃料电池技术最有希望的市场。Hagler Bailly公司和西门子公司对功率范围为250 kW-l MW的市场进行了调查,结果表明到2005年SOFC燃料电池的市场容量为每年10000MW。北美和欧洲几乎各占50%。考虑到北美洲用户的结构和他们的需求,在北美洲各类小型发电机组的总容量在2010年可能达到每年约1000MW,其中600MW可能是燃料电池发电装置。在各种类型的燃料电池中,SOFC的市场份额约占40%,到2010年在北美洲SOFC的全年销售额将达到亿美元。 在竞争日益激烈的配电市场中的另一个获胜者是微型燃气轮机,主要是作为备用电源或辅助电源。由于SOFC和微型燃气轮机的特性适于不同的应用场所,SOFC效率高但投资成本也高,而微型燃气轮机成本低但效率也低,因而这2种技术不会产生市场上竞争。而往复式发动机会逐渐失去其在市场中的份额。 欧洲电网要比北美洲电网强大得多,欧洲电网强化了集中的大型发电厂的作用。因此在北美洲经常出现的分散式电热设备和动力装置的供电质量和供电可靠性问题在欧洲是不突出的。但另一方面,在欧洲对能量储存更为敏感。 此外,一些国家政府将颁布新的规程和法律及新的能源价格,预计欧洲各国之间市场份额会有重大差异。在有些情况下这个过程会给SOFC用于配电装置起到一定的促进作用。此外,欧洲的自由化近程落后于北美洲。因此,市场预测结果会有很大程度的不确定性。5 SOFC技术应用的扩展 使用天然气作为燃料的SOFC是车载式装置,其扩展应用可有以下几种形式:(1)家庭应用:新一代燃料电池将是扁平管型的,其功率密度是目前所用圆柱型燃料电池技术的2倍,因而将制造出5kW的燃料电池装置。这种设计方案是可行的,在配电市场中可以替代圆柱型燃料电池。(2)l0MW以上的系统装置:很显然,只要SOFC技术占有了功率范围在250-10MW的市场,那么下一步最必然的是要争取占有l0MW以上更大规模发电设备的市场。通过把更多SOFC链接起来便能实现这个目标,也满足了高效率低成本的要求。20MW级规模燃料电池的电效率已经接近甚至超过70%。(3)用液态燃料运行:使用天然气作为燃料将SOFC的应用局限在靠近天然气供气网的区域内,从而使这项新技术的应用受到限制。因此存在着让SOFC使用液态燃料的迫切要求。因此,应与大型石油公司合作进行该课题的研究开发,选择一种适宜的液体燃料并设计出最适于使用这种新燃料的SOFC发电装置,以便为边远的用户服务。 (4)C02的分离:Shell公司和 Siemens Westinghouse公司正在共同研制一种能将CO2从完全反应后的燃料中分离的SOFC设飞方案。例如,当把其装在用于回收油的平台上时,可以把CO2用泵压到地下储层中,这不但可省去CO2的排放税,还可提高原油的产出量。 (5)综合性应用:CO2分离装置可能是点火的火花装置,它使得SOFC在一种封闭且可再生的能量循环中成为关键性部件。经过-段时间,SOFC能产生出热量和电力,例如用于大型暖房的设施中,SOFC装置产生的C02可用来加快植物的生长。而任何一种农作物收获后的剩余有机物都可以转化为气体供给SOFC作燃料。

【摘要】固体氧化物燃料电池是一种可以直接将燃料的化学能转化为电能的电化学装置,固体氧化物电解池是固体氧化物燃料电池的逆过程,能够高温电解水/二氧化碳制氢气/一氧化碳。可逆电池将二者的功能合二为一。本论文主要进行了可逆电池的氧电极的复合改性研究。采用LSM(()δ),LSCF(δ)和SSC(δ))氧电极材料。采用丝网印刷工艺制备的LSM和LSCF氧电极材料用于高温电解池和可逆电池,长期运行后,LSM与电解质YSZ(氧化钇稳定的氧化锆)发生剥离,YSZ与GDC(δ)阻挡层剥离,导致电池性能衰减。浸渍工艺制备纳米LSM-YSZ,LSCF-YSZ和SSC-YSZ氧电极用于可逆电池,提高了氧电极的性能和催化活性。可逆循环测试或长期稳定性测试后,纳米离子发生团聚导致电池性能衰减。对SSC氧电极的研究发现氧电极SSC与YSZ分层,以及长期电解后氢电极Ni的团聚也是导致电池性能衰减的主要原因之一。最后,将纳米LSCF-YSZ氧电极用于H2O/CO2共电解,研究了共电解的影响因素和反应过程。综上,通过本论文研究为开发高活性和高稳定的氧电极材料奠定了基础。【作者】范慧;【导师】韩敏芳;PrabhakarSingh;【作者基本信息】中国矿业大学(北京),应用化学,2014,博士【关键词】固体氧化物燃料电池;电解池;氧电极;稳定性;【参考文献】[1]刘嘉.一个小型搜索引擎的设计与实现[J].河南科技学院学报(自然科学版),2014,06:46-50.[2]石华.制造业股权结构与企业非效率投资的关系研究[D].天津财经大学,会计学,2012,硕士.[3]朱贝贝.基于遗传算法的网格任务调度研究[D].山东大学,计算机软件与理论,2012,硕士.[4]万宇.2000—2013年我国部分高校硕博学位论文中残疾人体育研究述评[J].体育学刊,2014,04:66-70.[5]陈宁静.ACh诱导的脐带血管收缩效应及其机制研究[D].苏州大学,胚胎生理与围产基础医学,2014,硕士.[6]布伦.复方鳖甲软肝方对自发性高血压大鼠左室重构影响的实验研究[D].第四军医大学,内科学,2004,硕士.[7]封磊.20世纪三四十年代边政研究的学术转型[D].兰州大学,中国近现代史,2013,硕士.[8]贺浩.虚拟财产的刑法保护[D].山东大学,法律(专业学位),2013,硕士.[9]万德贵.分立半导体元器件焊点缺陷的研究[D].电子科技大学,集成电路工程(专业学位),2012,硕士.[10]高雷.预售商品房按揭法律问题研究[D].郑州大学,法律,2013,硕士.[11]侯志军,耿加加,窦亚飞,朱誉雅.中美高校年度报告比较分析及启示[J].现代教育管理,2014,05:119-124.[12]方贻洲.论当代中国威权政治的基础[D].山东大学,政治学理论,2013,硕士.[13]邵永星.基于热释电红外传感器的停车场智能灯控系统设计[D].河北科技大学,计算机应用技术,2013,硕士.[14]于世华.常微分方程法在结构影响线求解中的应用[D].吉林大学,桥梁与隧道工程,2014,硕士.[15]张文芳.医药流通企业信息系统的分析与设计[D].山东大学,软件工程(专业学位),2012,硕士.[16]杜国勇.移动Ad Hoc网络分簇算法的研究[D].安徽大学,计算机应用技术,2013,硕士.[17]白光,李文兴.铁路对少数民族地区经济的带动作用——以广西、青藏等铁路为例[J].广西民族研究,2014,01:139-145.[18]苏锦松.USP22和SIRT1蛋白在肾透明细胞癌中的表达及其作用[D].复旦大学,外科学,2013,博士.[19]唐爱莲.On Strategies of Raising Vocabulary Teaching Efficiency[D].安徽大学,英语语言文学,2003,硕士.[20]余雷.脉冲电磁场治疗骨质疏松的初步研究[D].第四军医大学,生物医学工程,2004,硕士.[21]李惠.老年糖尿病患者感染危险因素分析[D].吉林大学,护理学,2013,硕士.[22]黄大伟.电磁搅拌作用下轴承钢凝固组织形态演变的研究[D].东北大学,钢铁冶金,2011,硕士.[23]刘江波.企业新员工职业生涯规划研究[D].山东财经大学,企业管理,2012,硕士.[24]杨璐晟.国有企业核心竞争力培育策略研究[D].吉林大学,企业管理,2004,硕士.[25]单艺,马微,刘晓玲,王象欣,夏行昊,于力涛,魏雪冬,姜毓君.婴幼儿配方乳粉中微量碘测定方法的比较[J].食品工业科技.[26]温广辉.短时接触亲社会电子游戏对小学儿童亲社会行为的影响[D].浙江理工大学,应用心理学,2014,硕士.[27]华天海.基于DEA的水泥企业技术创新能力评价研究[D].安徽工程大学,管理科学与工程,2012,硕士.[28]王莉.论城市夜景照明的景观特性[D].南京艺术学院,2004,硕士.[29]伊朝接.基于新兴信息技术的智慧施工进度管理研究[D].哈尔滨工业大学,管理科学与工程,2014,硕士.[30]刘畅.新事业单位财务规则下医院财务审计研究[D].河北大学,会计学,2014,硕士.[31]赵金才.坐标测量系统零件信息提取与位姿自动识别的研究[D].天津大学,2005.[32]李晓辉.TiO_2/WO_3/石墨烯复合光催化剂的结构和性能研究[D].青岛科技大学,2014.[33]强彩虹.适应滨海新区发展的高职院校专业建设[D].天津大学,工业工程,2013,硕士.[34]曾伟川.β-氨基酸酯的合成研究[D].华侨大学,生物学,2013,硕士.[35]马广栓.当年养成商品草鱼新技术[J].农村.农业.农民.2003(04)[36]李超玲.筒形件强力旋压过程的有限元数值模拟[D].西北工业大学,材料加工工程,2004,硕士.[37]邓松波.基于机器视觉的飞机蒙皮孔几何参数检测技术研究[D].哈尔滨工业大学,机械电子工程,2013,硕士.[38]郑开辉.含微电网的配电网自适应保护研究[D].北京交通大学,2012.[39]翟旭升,王海涛,谢寿生,苗卓广,吴勇.基于自适应遗传算法的多项式模型结构与参数的一体化辨识[J].控制与决策,2011,05:761-767.[40]李辉,彭海琳,刘忠范.拓扑绝缘体二维纳米结构与器件[J].物理化学学报,2012,10:2423-2435.[41]刘炳义.论中油集团技术创新战略[D].西南石油学院,2002.[42]韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995,01:85-88.[43]张亚中,赵裕辉,鲁新便,刘哲生,叶建伟,宋伯虎.频谱分解技术在塔里木盆地北部TH地区碳酸盐岩缝洞型储层预测中的应用[J].石油地球物理勘探,2006,S1:16-20+24+142-143.[44]田永良.大型工程机械销售活动项目化管理应用研究[D].山东大学,项目管理(专业学位),2012,硕士.[45]张继允.文艺复兴时期尼德兰绘画风格对我的工笔画创作的影响[D].首都师范大学,美术学,2013,硕士.[46]缪纲.面向视频后处理芯片的FPGA原型流程的研究和实现[D].浙江大学,通讯与信息系统,2004,硕士.[47]邵吉光,冯国臣,付盛.极值与切线的运动学原理[J].高等数学研究,2014,03:4-7.[48]黄捍东,赵迪,任敦占,王玉梅.基于贝叶斯理论的薄层反演方法[J].石油地球物理勘探,2011,06:919-924+1012+832-833.[49]高天珍.小学高年级语文阅读分层教学实验研究[D].华中师范大学,教育管理,2014,硕士.[50]张筱玮.论国际信用评级机构的治理及问责机制[D].安徽大学,国际法学,2013,硕士.

磷酸燃料电池论文参考文献

燃料电池的演化及发展探析摘要:对燃料电池的工作原理进行了详细的分析;对其演化过程进行了简述;对其最新技术进行了详细的研究;对国内燃料电池技术的发展提供了参考意见。关键词:燃料电池;碱性燃料电池;磷酸型燃料电池;熔融碳酸型燃料电池;固体氧化物燃料电池;直接醇类燃料电池;固体高分子膜燃料电池随着工业化过程的进一步加强,大气中二氧化碳的排放量和污染程度加剧,导致了温室效应越来越明显,因此环保问题引起了各国政府的重视。为此,绿色能源技术引起了各国的普遍关注,并且正在逐步成为一种趋势。经过了各方的互相协作和努力,燃料电池技术正日趋成熟。作为一项重要技术,从本质上讲,它是一种电化学的发电装置,等温地按电化学方式,直接将化学能转化为电能而不必经过热机过程,不受卡诺循环限制,因而能量转化效率高,且无噪音,无污染,因此正在成为理想的替代能源。1 燃料电池的演化过程1.1 燃料电池的演化过程燃料电池是一种新型的无污染、高效率汽车、游艇动力和发电设备,在本质上是一种能量转化装置。1839年,格罗夫发表了第一篇有关燃料电池研究的报告。1889年,蒙德和朗格尔采用了浸有电解质的多孔非传导材料为电池隔膜,一铂黑为电催化剂,以钻孔的铂或金片为电流收集器组装出燃料电池。但此后的一段时间里,奥斯卡尔德等人在探索燃料电池发电过程的实验都因为反映速度太慢而使实验没有成功。与此同时,热机研究却取得了突破性进展并成功运用而迅速发展。因此燃料电池技术在数十年内没能取得大的进展。直到1923年,由施密特提出了多孔气体扩散电极的概念,在此基础上,培根提出了双孔结构电池概念,并成功开发出中温度培根型碱性燃料电池。以此为基础,经过一系列发展,这项燃料电池技术得到了突飞猛进的发展。在20世纪60年代由普拉特一惠特尼公司研制出的燃料电池系统,并成功应用于宇航飞行,使得燃料电池进入了应用阶段。1.2 燃料电池的基本工作原理燃料电池是一种能量转化装置,它就是按电化学原理,即原电池工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应。从本质上说是水电解的一个“逆”装置。电解水过程中,通过外加电源将水电解,产生氢和氧;而在燃料电池中,则是氢和氧通过电化学反应生成水,并释放出电能。因此,燃料电池的基本结构与电解水装置是相类似的,它主要由4部分组成,即阳极、阴极、电解质和外部电路。其阳极为氢电极,阴极为氧电极。通常,阳极和阴极上都含有一定量的催化剂,目的是用来加速电极上发生的电化学反应。两极之间是电解质,电解质可分为碱性型、磷酸型、固体氧化物型、熔融碳酸盐型和质子交换膜型等类型。燃料电池的工作原理如下(以磷酸型或质子交换膜型为例):(1)氢气通过管道或导气板到达阳极;(2)在阳极催化剂的作用下,1个氢分子解离为2个氢离子,即质子,并释放出2个电子;(3)在电池的另一端,氧气(或空气)通过管道或导气板到达阴极,同时,氢离子穿过电解质到达阴极,电子通过外电路也到达阴极;(4)在阴极催化剂的作用下,氧与氢离子和电子发生反应生成水;与此同时,电子在外电路的连接下形成电流,通过适当连接可以向负载输出电能。1.3 燃料电池的特点由上所述可知,燃料电池在本质上是电化学转化装置,它能够通过电化学过程直接将化学能转化为电能和热能,因而具有如下优点:1)干净清洁。利于环保,可减少二氧化碳的排放;无噪音,并自给供水;2)高效。由于其转化过程没有经过热机过程,因此效率高。3)适用性。由于污染小,无噪音,可靠,可使用于终端用户,因而可减少各种损失,并节省设备投资。4)可调制性。由于它是组合的结构,因而可以调节,以满足需求。5)燃料多样性。由于燃料可以是氢气、天然气、煤气、沼气的功能碳氢化合物燃料。基于以上特点。燃料电池成为绿色能源技术发展的重点。成为本世纪最有发展前途的技术之一。2 国内外燃料电池的最新进展2.1 碱性燃料电池(AFC)AFC技术是第一代燃料电池技术,已经在20世纪60年代就成功地应用于航天飞行领域。它是最早开发的燃料电池技术。目前德国一家公司开发的AFC在潜艇动力实验上获得了成功。国内对AFC的研究工作是从20世纪60年代开始的,主要是集中在中科院的下属研究机构。武汉大学和中科院长春应化所在上世纪60年代中期即开始对AFC进行基础研究。上世纪70年代,由于航天工业的需求,天津电源研究所研制出lkW AFX2系统。与此同时,A型号(即以纯氢、纯氧为燃料和氧化剂)、B型号(即以N2H4分解气、空气氧为燃料和氧化剂)燃料电池系统也在中科院大连化物所研制成功。此外,其它的研究机构也都展开了对AFC的研究。2.2 磷酸型燃料电池(PAFC)PAFC也是第一代燃料电池技术,也是目前最为成熟的应用技术。已经进入了商业化应用和批量生产。目前美国、日本、欧洲各国已有100多台200KW 发电机组投入使用或在安装中,最长的已经运行了37000小时。因此已经证实了PAFC是高度可靠的电源。只是由于其成本太高,目前只能作为区域性电站来现场供电、供热。国内对PAFC的研究工作相对较少。尽管如此,在对PAFC的研究过程中仍进行了卓有成效的工作,取得了不俗成绩。如国内学者魏子栋等人在对氧化还原发应的电催化剂研究过程中发现了Fe、Co对Pt的锚定效应。2.3 熔融碳酸型燃料电池(MCF℃)MCFC是属于第二代燃料电池技术。目前对MCF℃ 的研究国家有美国、日本和西欧,主要是应用于设备发电,目前还处于试验阶段。美国对MCFC的研究单位有国际燃料电池公司和能源研究公司及M—C动力公司。而日本对MCFC的主要是NEIX)公司、电力公司、煤气公司和机电设备厂商组成的MCFC研究开发组。大坂工业技术研究所从1991年开始10kW的MCFC单电池的长期运行试验,到1995年l1月止,累计运行了4万小时,确证了MCFC实用化的可能。德国MTU宣布在MCFC技术方面取得了突破。由该公司开发出来的世界上最大的280kW 的单电池还在运行。国内对MCFC的研究是中科院大连化物所从1993年开始的。现在正处于组合电池的研究阶段。而经过多年的艰苦努力与创新突破,上海交通大学科研人员率先在国内成功进行了1~1.5l 的熔融碳酸型燃料电池(M ℃)发电实验,取得了在国外一些国家至少需要6年甚至10年左右时间才能获得的成果。参加项目评审的专家认为,它整体水平达到了当前国内领先水平、国际20世纪90年代初同类技术的先进水平。2.4 质子交换膜型燃料电池系统(PEMF℃)PEMFC是属于第三代燃料电池技术。20世纪60年代,美国就已将PEMFC应用于宇航飞行,但由于技术问题,使得在其发展过程中受到了影响。直到20世纪80年代,加拿大Ballad公司才展开对PEMFC的研究工作。并取得了突破性进展。目前开发出来的电池组合功率达到了1000W/L、700W/kg的指标,因此这一技术引起了各国的广泛关注。目前Ballad公司在这一技术领域处于领先地位。国内对PEMFC的研究是从20世纪70年代天津电源研究所展开一聚苯乙烯蟥酸膜为电解质的PEM—FC基础研究。但进展缓慢。而国外在这一领域发展较快。因此在90年代开展了PEMFC的跟踪研究。目前,在PEM 方面,国内技术在多个方面取得了突破,北京富原新技术开发总公司已出现了50W、75W、150W、5KW 等样机。而上海神力科技有限公司已研制出5KW,10KW 的大功率型质子交换墨燃料电池系统,这大大缩小了与世界先进水平的距离。

引 言燃料电池发电是将燃料的化学能直接转换为电能的过程,其发电效率不受卡诺循环的限制,发电效率可达到50%一70%,被誉为二十一世纪重要的发电新技术之一。目前,国际上磷酸型燃料电池已进入商业化,其它几种燃料电池预计在2005年一2010年200KW一将全面进入商业此。对于这种蓬勃发展的发电新技术,国家电力公司应该采取怎样态度?要不要发展?怎样发展?这些问题亟待解决。一 燃料电池发电的技术特点和应用形式技术特点燃料电池发电是在一定条件下使燃料(主要是H2)和氧化剂(空气中的02)发电化学反应,将化学能直接转换为电能和热能的过程。与常规电池的不同:只要有燃料和氧化剂供给,就会有持续不断的电力输出。与常规的火力发电不同,它不受卡诺循环的限制,能量转换效率高。与常规发电相比燃料电池具有以下优点:(1)理论发电效率高,发展潜力大。燃料电池本体的发电效率可达到50一60%,组成的联合循环发电系统在(10—50)MW规模即可达到70%以上的发电效率。(2)污染物和温室气体排放量少。与传统的火电机组相比,C02排出量可减少40%一60%。Nox(<2ppm)和SOx(<1ppm)排放量很少。(3)小型高效,可提高供电可靠性。燃料电池的发电效率受负荷和容量的影响较小。(4)低噪音。在距发电设备3英尺(1.044米)处噪音小于60dB(A)。(5)电力质量高。电流谐波和电压谐波均满足IEEE519标准。(6)变负荷率高。变负荷率可达到(8%一lO%)/min,负荷变化的范围大(20一120)。(7)燃料电池可使用的燃料有氢气、甲醇、煤气、沼气、天然气、轻油、柴油等。(8)模块化结构,扩容和增容容易,建厂时间短。(9)占地面积小,占地面积小于lm2/KW。(10)自动化程度高,可实现无人操作。总之,燃料电池是一种高效、洁净的发电方式,既适合于作分布式电源,又可在将来组成大容量中心发电站,是2l世纪重要的发电方式。制约燃料电池走向大规模商业化的主要因素是:高价格和寿命问题。燃料电池的应用形式(1)现场热电联供,常用的容量为200KW一1MW。(2)分布式电源,容量比现场用燃料电池大,约(2—20)MW。(3)基本负荷的发电站(中心发电站),容量为(100—300MW)。(4)燃料电池还可用于100W—100KW多种可移动电源、便携式电源、航空电源、应急电源和计算机电源等。二 为什么要在我国电力系统发展燃料电池发电技术采用燃料电池发电是提高化石燃料发电效率的重要途径之一以高温燃料电池组成的联合循环发电系统,可使发电效率达到60—75(LHV),这一目标将在2005年左右实现。预计到2010年,发电效率可超过72%。煤气化燃料电池联合循环(IGFC)的发电效率可达到62%以上。以燃料电池组成的热电联产机组的总热效率可达到85%以上。燃料电池本体的发电效率基本不随容量的变化而变化,这使得燃料电池既可用作小容量分散电源,又可用于集中发电应用范围广泛。燃料电池发电可有效地降低火力发电的污染物和温室气体排放量燃料电池发电中几乎没有燃烧过程,NOx排放量很小,一般可达到(O.139一0.236)kg/MW?h以下,远低于天然气联合循环的NOx排放量(1kg/MW?h一3kg/MW.h)。由于燃料进入燃料电池之前必须经过严格的净化处理,碳氢化合物也必须重整成氢气和CO,因此,尾气中S02、碳氢化合物和固态粒子等污染物排量也污染物的含量非常低。与常规燃煤发电机组相比,C02的排放量可减少40%一60.在目前CO2分离和隔绝技术尚不成熟的状况下,通过提高能源转换效率减少CO2排放是必然的选择。采用燃料电池发电可提高供电的灵活性和可靠性燃料电池具有高效率、低污染、低噪声、模块化结构、体积小、可靠性高等突出特点,是理想的分布式电源。与目前一些可做为分布式电源的内燃机相比,燃料电池的发电效率更高、污染更低。在250KW—lOMW的功率范围内,具有与目前数百兆瓦中心电站相当甚至更高的发电效率。作为备用电源的柴油发电机由于污染和噪声大不宜在未来的城市中应用。低温燃料电池不仅发电效率高,而且启动快、变负荷能力强,是很好的备用电源。现代社会对供电的可靠性和环境的兼容性要求越来越高,高效、低污染的分布式电源系统日益受到重视。近年来美国、加拿大、台湾相继发生因自然灾害或人为因素造成的大面积停电,许多重要用户长期不能恢复供电,给社会和经济造成了巨大的损失。北约轰炸南联盟,使电力系统严重受损。这些由不可抗力引起的电网破坏无不使人引发出一个重要的思考:提高我国电力系统供电的可靠性和供电质量,虽然主要依靠电网的改造和技 术革新,但如果在电网中有许多分布式电源在运转,供电的可靠性将会大大提高。 对于象军事基地、指挥中心、医院、数据处理和通讯中心、商业大楼、娱乐中心、政府要害部门、制药和化学材料工业、精密制造工业等部门,对电力供应的可靠性和质量要求很高。目前采用的备用电源效率低、污染严重、电压波动大。而采用燃料电池作为分布式电源向这些部门提供电力,会使供电的可靠性和电力质量大大提高。他们将是燃料电池发电技术的第一批用户。对于边远地区,负荷小且分散,若建设完善的电网,不仅投资大,线损大,且电网末端地区电力质量不稳定。对于这些区域若辅助燃料电池发电的分布式电源,更能有效地解决这些地区的电力供应问题。燃料电池的重量比功率和体积比功率均比常规的小型发电装置大,因此,它也是理想的移动电源,适合于各种建设工地、野外作业和临时急用。发展燃料电池发电技术是提高国家能源和电力安全的战略需要美国已将燃料电池发电列为国家安全关键技术之一。美、日之所以能在燃料电池技术方面处于世界领先地位,与国家从战略高度予以组织、资助和推动密不可分。在目前复杂的国际环境下,高技术的垄断日趋严重,掌握清洁高效发电的高新技术对未来国家的能源和电力安全具有重要的战略意义,而燃料电池发电技术,正是这种高效清洁的高新发电技术之一。燃料电池突出的优点,以及发达国家竟相投入巨资研究开发的行动,足以说明燃料电池发电技术在21世纪会起到越来越重要的作用。发展燃料电池发电技术是国电公司“加强技术创新,发展高科技,形成高新技术产业”的需要燃料电池发电技术是电力工业中的高新技术,己受到普遍重视。美国燃料电池发电技术的研究开发主要由美国能源部组织实施,其中一个重要的目的就是形成新的高技术产业,为美国的经济注入新的活力。日本的东京电力公司、关西电力公司及其它公用事业单位是日本燃料电池开发及商业化的主要承担者和推动者,其目的也是为电力公司注入新的经济增长点以获得巨大的经济效益和社会效益。国家电力公司处在完成“两型”、“两化”、“进入世界500强”的历史时刻,恰逢党中央国务院号召全国各行业“加强技术创新,发展高科技,实现产业化”的有利时机,在国家电力公司内不失时机地进行燃料电池发电技术的研究开发是非常必要的。采取引进、消化、吸收和再创新的技术路线,以高起点,在尽可能短的时间内初步形成自主产权的燃料电池发电关键技术,不仅可以使我国在燃料电池发电技术领域与国外的差距大大缩小,而且,对国家电力公司进行发电系统的结构调整、技术创新、形成高新技术产业、实现跨越式发、提高国际竞争能力都具有非常重要的意义。燃料电池发电技术在我国有广阔的发展前景未来二十年,随着我国“西气东送”,全国天然气管网的不断完善及液化天然气(LNG)的广泛应用,燃用天然气的燃料电池发电将会有很大市场。煤层气也是燃料电池的理想燃料。我国丰富的煤层气资源也将是燃料电池发电的巨大潜在能源之一。燃料电池可与常规燃气一蒸汽联合循环结合,形成更高效率的发电方式。与煤气化联合循环(IGCC)结合,形成数百兆瓦级的大型、高效、低污染的中心发电站,比IGCC效率更高,污染更小。燃料电池可与水电、风电和太阳能发电等结合,在高出力时,利用电解水制氢,低出力时用燃料电池发电,达到既储能,又高效发电的目的。采取气化或厌氧处理的方法将生物质变为燃料气,通过燃料电池发电,提高能源转换效率,并降低污染物排放量。对一些经济欠发达但有丰富的沼气资源的地区,利用燃料电池发电技术有可能更有有效地解决这些地区的电力供应问题。与国外有较大的差距在燃料电池发电技术方面,我国与国际先进水平有较大的差距。在MCFC和SOFC技术方面,国外已分别示范成功了2MW和100KW的燃料电池发电机组,而我国在这方面才刚刚起步,2000年才可望研制出2KW左右的试验装置。在PAFC和PEFC技术方面,国内与国外的差距更大。倘若我们现在不开始研究开发燃料电池发电技术,等到燃料电池完全成熟后再引进,不但会受制于人,还将付出更大的经济代价,更谈不上尽快形成燃料电池发电的产业化。若不能形成燃料电池的产业化并在电力系统广泛应用,那么,也谈不上提高发电效率和降低污染物的排放。只有从现在开始,在国外的基础上,高起点研究,经过10—20年的努力,有可能在国电公司形成燃料电池的产业和广泛的商业应用。在我国电力系统发展燃料电池发电技术是市场经济条件下的迫切要求分散式电源作为大电网的有效补充己得到许多国家的重视,而电源提供者的多元化更是一种趋势。我国电网的容量大、技术水平和可靠性还较低、抵御各种灾害的能力较差,在这种情况下,小型高效的燃料电池分布式电源随着技术的商业化市场潜力巨大。倘若电力系统不及时进行研究开发,在未来几年内,有可能被国外企业和国内其它其它行业或民营企业占领燃料电池分散电源市场。在市场经济条件下,国电公司既是用户,又是开发者。对于燃料电池这样重要的发电高新技术,应不失时机地着手研究开发,联合国内一些基础研究单位,争取纳入国家的攻关计划,获得国家支持,在尽可能短的时间内,形成燃料电池发电技术研究开发的优势,开发燃料电池发电关键技术和成套技术,形成国电公司的高新技术产业,既可优化调整电力结构,又能满足市场的不同需求。三 国外燃料电池发展计划及商业化的预测美国燃料电池发电技术研究开发状况美国燃料电池发电技术的研究开发计划1997年,美国总统克林顿颁发了"改善气候行动计划”,燃料电池被确定为一项关键技术,联邦政府为此制定了一项“美国联邦燃料电池发展计划”,目的是通过燃料电池的商业化来减少温室气体排放量。在这项计划中,对每一个燃料电池的新用户资助l000/KW的优惠。结果,仅在1998年,就有42台200kwPAFC发电机组投入运行。美国政府鼓励在一些对环境敏感的地区建立燃料电池发电站。此外,政府已促使美国所有的军事基地安装200KW燃料电池发电机组。通过这些措施,加速燃料电池的商业化,并提高国家能源的安全性。美国政府投入巨资研究开发燃料电池发电技术的另一个目的,就是要保持美国在这一领域的领先地位。随着商业化过程不断深入,将逐步形成新的高技术产业,为美国的经济注入新的活力,提供更多的就业机会。美国DOE的燃料电池发展计划如下:PAFC己商业化,不再投入资金进行研究开发。PAFC目前的发电效率为40%一45(LHV),热电联产的热效率为80%(LHV)。已完成250KW和2MWMCFC的现场示范,预计2002年进行20MW的示范;2003年左右,使250KW和MW级MCFC达到商业化;2010年,燃用天然气的250KW一20MWMCFC分散电源达到商业化,100MW以上MCFC的中心电站也进入商业化;2020年,100MW以上燃煤MCFC中心发电站进入商业化。MCFC技术目标是运行温度为650℃,发电效率达到60%(LHV),组成联合循环的发电效率为70(LHV),热电联产的热效率达到85(LHV)以上。目前,己完成25kw和100kwSOFC现场试验,正在进行SOFC的商业化设计。预计2002年左右,进行MW级SOFC示范;2003年左右,100kw一1MWSOFC进行商业化:2010年,250kw一20MW燃用天然气的SOFC以分布式电源形式进入商业化,100MW以上燃用天然气的SOFC以中心电站形式进入商业化;2020年,100W及以上容量的燃煤S0FC以中心电站的形式进入商业化。SOFC技术目标是:运行温度为1000℃,发电效率达到62%(LHV),组成联合循环的发电效率达到72%(LHV),热电联产的热效率达到85(LHV)以上,燃煤时发电效率可达到65%(LHV),这一目标预计2010完成。美国是最早研究开发PEFC的国家,但在大容量化和商业应用方面已落后于加拿大。目前美国生产的质子交换膜仍居世界领先水平。美国在PEFC的开发方面是面向家庭用分散式电源,实现热电联供。PlugPower公司与GE合作,计划2001年使10kwPEFC进入商业化,价格达到S750—1000/kw,大批量生产后,使PEFC的价格达到$350/kw。市场预测美国能源部(DOE)对美国潜在的燃料电池市场的预测认为:在2005年一2010年,美国年需求燃料电池发电容量约2335MW一4075MW。现在美国的燃料电池年生产能力为60MW,商业化的价格为$2000一$3000/kw,若年生产能力达到100MW/a,商业化的价格则可达到$l000—$1500/Kw。若能达到(2000—4000)MW/a的生产能力,燃料电池的原材料费仅$200一$300/kw。那么燃料电池的价格则有可能达到$900—$l100/kw,此时可完全与常规的发电方式竞争。日本燃料电池发电技术的发展进程及应用前景预测发展进程日本在PAFC研究方面,走的是一条引进合作、消化吸收、再提高的路线。1972年东京煤气公司从美国引进两台PAFC燃料电池发电机组,大阪煤气公司也在1973年引进两台PAFC机组。日本政府于1981年设立了以开发节能技术为宗旨的“月光计划”,燃料电池发电是其中一项重要内容。此后,日本国内的电力公司、煤气公司和一些大型的制造厂纷纷投入燃料电池的研究开发,并与美国IFC合作,使日本的PAFC得到更大的发展。目前,日本的PAFC技术已赶上了美国,商业化程度超过了美国。5MW(富士电机制造)和11MW(东芝与IFC合制)均在日本投运,日本公司制造的PAFC机组已运行了近100多台。日本有关MCFC的研究是从1981年开始的,通过自主开发并与美国合作。1987年10kwMCFC开发成功,1993年100kw加压型MCFC开发成功,1997年开发出1MW先导型MCFC发电厂,并投入运行。MCFC已被列为日本“新阳光计划”的一个重点,目标是2000年一2010年,实现燃用天然气的10MW一50MW分布式MCFC发电机组的商业化,并进行100MW以上燃用天然气的MCFC联合循环发电机组的示范,2010年后,实现煤气化MCFC联合循环发电,并逐步替代常规火电厂。日本的SOFC技术也是从1981年的“月光计划”开始研究的,立足于自主开发。1989年一1991年,开发出l00W一400WSOFC电池堆,1992年一1997年开发出l0kw平板型SOFC。SOFC的研究进展也远远落后于NEDO原来的计划。“新阳光计划”中预计2000年一2010年,使SOFC达到MW级,并形成联合循环发电。日本的PEFC也被列入“新阳光计划”,目前开发的容量为(1—2)kw。政府采取的措施日本政府在“月光计划”和“新阳光计划”中,先后资助了3台200kw、2台lMW和l台5MW的PAFC;1台100kw和1台1MW的MCFC示范电站研究开发、建设及运行。在通产省和NEDO的统一组织和管理下,使公用事业单位(电力公司和煤气公司)和开发商及研究单位紧密结合,实现燃料电池研究开发和商业示范应用一体化。日本电力公司和煤气公司,过去十年来安装了约80多台燃料电池机组,装机容量达到,燃料电池及电厂的费用主要由业主承担,但是制造商和政府也各承担一部分。这种政府和企业联合研究开发的方式促进了日本燃料电池的发展。使用燃料电池发电享有许多优惠政策:燃料电池的相关设备,在未超过一定规模时,其工程计划仅须申报即可动工。对500kw以下的常压燃料电池生产与使用的审批手续大大简化。在医院、旅馆、办公大楼等安装的燃料电池发电机组,政府提供的经费资助。新建的燃料电池发电设备享有10的免税额,并获有30%的加速折旧。对装设于电力公司或自备发电用的燃料电池项目,日本开发银行将提供投资额40%的低息贷款。市场预测1990年,日本通产省发表了“长期电源供需展望”报告,预计日本国内的燃料电池发电容量到2000年约2250MW;2010年约10720MW,电力系统用5500MW,其中约有2400MW是MCFC和SOFC高温型燃料电池;2010年煤气化MCFC和SOFC达到实用化;发电效率达到50%一60%。由于燃料电池发电技术仍有许多技术上的难题没有突破,进展速度低于预期值,因此日本目前已将原目标做了修正,预计2000年燃料电池装机容量将达到200MW,其中分布式电源l12MW,工业用热电联产型为88MW;2010年将达到2200MW,其中分布式电源型为735MW,工业用热电联产型为1465MW。其它国家和地区的发展进程目前,欧洲的燃料电池发电技术远远落后于美国和日本。80欧洲又重新开始研究燃料电池发电技术。它们采用向美国、日本购买电池组,自行组装发电厂的方式来发展PAFC发电技术。1990年成立了一个“欧洲燃料电池集团(EFCG)”。意大利已完成了一座1MW的PAFC示范工程,由IFC供应,BOP由欧洲制造。意大利、西班牙与美国IPC合作,于1993年在米兰建了一座l00kwMCFC电厂,1996年投运。德国正在开发250kwMCFC。德国西门子公司于1998年收购了美国西屋公司的管形SOFC技术后,现在拥有世界上最先进的平板型和管形SOFC技术。 加拿大在PEFC方面居世界领先地位,在继续开发交通用PEFC的同时,目前也将PEFC应用于固定电站,已建成250kwPEFC示范电站,目标是在近几年内使250kw级PEPC商业化。澳大利亚在1993年一1997年,共投资3000万美元,研究开发平板型SOFC,目前正在开发(20一25)kwSOFC电池堆。韩国电力公司于1993年从日本购进一座200kwPAFC进行示范运行。国外发展燃料电池发电技术的经验总结回顾国外燃料电地发展的道路,有许多值得我们吸取和借鉴的经验。美国在燃料电池发电技术的研究开发方面始终处于世界领先地位。除了雄厚的财力之外,还有三方面重要的原因:一是政府将燃料电池发电技术视为提高火力发电效率、减少污染物和温室气体排放的重要措施,列入政府的“改变气侯技术战略”中,并大力投入资金和力量研究开发;二是燃料电池技术提高到“国家能源安全并大力投入资金和力量研究开发;三是将燃料电池技术提高到“国家能源安全关键技术”的战略高度,DOD和DOE均投入资金研究开发;四是对燃料电池的应用前景充满信心,希望能形成新的高技术产业,给美国的经济注入新的活力,政府和企业共同投入资金研究开发,力图保持领先地位。日本走的是一条通过与美国合作、引进技术并消化吸收实现产业化的路线,并在PAFC的商业化方面己超过了美国,在MCFC的研究开发方面也接近美国。成功的重要经验也是政府对燃料电池给予高度重视,先后列入了“月光计划”和“新阳光计划”,大力投入研究开发。另一条经验是研究机构、企业和用户联合,组成从研究、开发到商业应用一体化集团,既承担研究开发的风险,也享受成功的优惠。加拿大Ballard公司在PEFC方面成功的经验告诉我们:只要坚定不移地进行研究开发,一个小公司也能在10—20年内成为举世瞩目的燃料电池技术拥有者。 燃料电池起源于欧洲,但是,现在欧洲的燃料电池技术已远远落后于美国和日本。主要原因是政府和企业对燃料电池发电技术重视不够。目前,欧洲已经意识到这一点,成立了—个燃料电池发电技术集团,引进美国、日本的技术,并进行研究开发。四 各种燃料电池发电技术综合比较 AFC:与其它燃料电池相比,AFC功率密度和比功率较高,性能可靠。但它要以纯氢做燃料,纯氧做氧化剂,必须使用Pt、Au、Ag等贵金属做催化剂,价格昂贵。电解质的腐蚀严重,寿命较短,这些特点决定了AFC仅限于航天或军事应用,不适合于民用。 PAFC:以磷酸做为电解质,可容许燃料气和空气中C02的存在。这使得PAFC成为最早在地面上应用或民用的燃料电池。与AFC相比它可以在180℃一210℃运行,燃料气和空气的处理系统大大简化,加压运行时,可组成热电联产。但是,PAFC的发电效率目前仅能达到40%一45%(LHV),它需要贵金属铂做电催化剂;燃料必须外重整:而且,燃料气中C0的浓度必须小于1%(175℃)一2(200℃),否则会使催化剂中毒;酸性电解液的腐蚀作用,使PAFC的寿命难以超过40000小时。PAFC目前的技术已成熟,产品也进入商业化,做为特殊用户的分散式电源、现场可移动电源和备用电源,PAFC还有市场,但用作大容量集中发电站比较困难。 MCFC:在650℃一700℃运行,可采用镍做电催化剂,而不必使用贵重金属:燃料可实现内重整,使发电效率提高,系统简化;CO可直接用作燃料;余热的温度较高,可组成燃气/蒸汽联合循环,使发电容量和发电效率进一步提高。与SOFC相比,MCFC的优点是:操作温度较低,可使用价格较低的金属材料,电极、隔膜、双极板的制造工艺简单,密封和组装的技术难度相对较小,大容量化容易,造价较低。缺点是:必须配置C02循环系统;要求燃料气中H2S和CO小于;熔融碳酸盐具有腐蚀性,而且易挥发;与SOFC相比,寿命较短;组成联合循环发电的效率比SOFC低。与低温燃料电池相比,MCFC的缺点是启动时间较长,不适合作备用电源。MCFC己接近商业化,示范电站的规模已达到2MW。从MCFC的技术特点和发展趋势看,MCFC是将来民用发电(分散电源和中心电站)的理想选择之一。 SOFC:电解质是固体,可以被做成管形、板形或整体形。与液体电解质的燃料电池(AFC、PAFC和MCFC)相比,SOFC避免了电解质蒸发和电池材料的腐蚀问题,电池的寿命较长(已达到70000小时)。CO可做为燃料,使燃料电池以煤气为燃料成为可能。SOFC的运行温度在1000℃左右,燃料可以在电池内进行重整。由于运行温度很高,要解决金属与陶瓷材料之间的密封也很困难。与低温燃料电池相比,SOFC的启动时间较长,不适合作应急电源。与MCFC相比,SOFC组成联合循环的效率更高,寿命更长(可大于40000小时);但SOFC面临技术难度较大,价格可能比MCFC高。示范业绩证明SOFC是未来化石燃料发电技术的理想选择之一,既可用作中小容量的分布式电源(500kw一50MW),也可用作大容量的中心电站(>l00MW)。尤其是加压型SOFC与微型燃气轮结合组成联合循环发电的示范,将使SOFC的优越性进一步得到体现。 PEFC:PEPC的运行温度较低(约80℃),它的启动时间很短,在几分钟内可达到满负荷。与PAFC相比,电流密度和比功率都较高,发电效率也较高(45%一50(LHV)),对CO的容许值较高(<10ppm)。PEFC的余热温度较低,热利用率较低。与PAFC和MCFC等液体电解质燃料电池相比,它具有寿命长,运行可靠的特点。PEFC是理想的可移动电源,是电动汽车、潜艇、航天器等移动工具电源的理想选择之一。目前,在移动电源、特殊用户的分布式电源和家庭用电源方面有一定的市场,不适合做大容量中心电站。结 论选择适合于我国电力系统发展的燃料电池发电技术,应综合考虑以下几点:较高的发电效率;环保性能好;既能作为高效、清洁的分布电源,又具有形成大容量的联合循环中心发电站的发展潜力;既能以天然气为燃料,又具有以煤为燃料的可能性;技术的先进性及商业化进程;运行的可靠性和寿命;降低造价的潜力;国内的基础。综合考虑以上几点,对适合于我国电力系统发展的燃料电池发电技术,提出以下几点选择意见:(1)优先发展高温燃料电池发电技术。即选择MCFC和SOFC为我国电力系统燃料电池发电技术的主要发展方向,这两种燃料电池既能以天然气为燃料作为高效清洁的分布电源,又具有形成大容量的联合循环中心发电站(以天然气或煤为燃料)的发展潜力。(2)MCFC和SOFC各有特点,都存在许多问题,尚未商业化。若考虑技术难度和成熟程度以及商业化的进程,对于MCFC,应走引进、消化吸收、研究创新,实现国产化的技术路线,并尽快投入商业应用:对于SOFC,应立足于自主开发,走创新和跨越式发展的技术发展路线。(3)随着氢能技术的发展,PEFC在移动电源、分散电源、应急电源、家庭电源等方面具有一定优势和的市场潜力,国家电力公司应密切跟踪研究。(4)AFC不适合于民用发电。PAFC技术目前已趋于成熟,与MCFC、SOFC和PEFC比较,已相对落后。因此,AFC和PAFC不应做为国家电力公司研究开发的方向。参考文献[1] 许世森,朱宝田等,在我国电力系统发展的燃料电池发电的技术路线和实施方案研究,国家电力公司热工研究院,1999.12

碱性燃料电池(AFC)是最早开发的燃料电池技术,在20世纪60年代就成功的应用于航天飞行领域。磷酸型燃料电池(PAFC)也是第一代燃料电池技术,是目前最为成熟的应用技术,已经进入了商业化应用和批量生产。由于其成本太高,目前只能作为区域性电站来现场供电、供热。熔融碳酸型燃料电池(MCFC)是第二代燃料电池技术,主要应用于设备发电。固体氧化物燃料电池(SOFC)以其全固态结构、更高的能量效率和对煤气、天然气、混合气体等多种燃料气体广泛适应性等突出特点,发展最快,应用广泛,成为第三代燃料电池。(福建亚南集团为清洁能源解决方案供应商,致力于氢能燃料电池产业化的企业。亚小南为您解答4000-080-999)目前正在开发的商用燃料电池还有质子交换膜燃料电池(PEMFC)。它具有较高的能量效率和能量密度,体积重量小,冷启动时间短,运行安全可靠。另外,由于使用的电解质膜为固态,可避免电解质腐蚀。燃料电池技术的研究与开发已取得了重大进展,技术逐渐成熟,并在一定程度上实现了商业化。作为21世纪的高科技产品,燃料电池已应用于汽车工业、能源发电、船舶工业、航空航天、家用电源等行业,受到各国政府的重视。 [3] 我国燃料电池研究始于20世纪50年代末,70年代国内的燃料电池研究出现了第一次高峰,主要是国家投资的航天用AFC,如氨/空气燃料电池、肼/空气燃料电池、乙二醇/空气燃料电池等.80年代我国燃料电池研究处于低潮,90年代以来,随着国外燃料电池技术取得了重大进展,在国内又形成了新一轮的燃料电池研究热潮.1996年召开的第59次香山科学会议上专门讨论了“燃料电池的研究现状与未来发展”,鉴于PAFC在国外技术已成熟并进入商品开发阶段,我国重点研究开发PEMFC、MCFC和SOFC.中国科学院将燃料电池技术列为“九五”院重大和特别支持项目,国家科委也相继将燃料电池技术包括DAFC列入“九五”、“十五”攻关、“ 863”、“973”等重大计划之中.燃料电池的开发是一较大的系统工程,“官、产、研”结合是国际上燃料电池研究开发的一个显著特点,也是必由之路.目前,我国政府高度重视,研究单位众多,具有多年的人才储备和科研积累,产业部门的兴趣不断增加,需求迫切,这些都为我国燃料电池的快速发展带来了无限的生机. [7] 另一方面,我国是一个产煤和燃煤大国,煤的总消耗量约占世界的25%左右,造成煤燃料的极大浪费和严重的环境污染.随着国民经济的快速发展和人民生活水平的不断提高,我国汽车的拥有量(包括私人汽车)迅猛增长,致使燃油的汽车越来越成为重要的污染源.所以开发燃料电池这种洁净能源技术就显得极其重要,这也是高效、合理使用资源和保护环境的一个重要途径。

科学家研发展动力燃料电池:替代铂进行催化韩国高丽大学的一个科学家组概述了一个用人尿内的碳原子制造廉价电力的计划。这些研究人员称,他们会用天然存在于人尿中的碳取代燃料电池内昂贵的铂。燃料电池是一项通过氢氧反应把化学能变成电能的很有发展前途的技术。 根据这项技术,把氢气送到燃料电池一侧、带有负电荷的阳极上,同时氧被送到燃料电池另一侧、带有正电荷的阴极上。在阳极上,一种通常是铂的催化剂把氢原子的电子分离出来,留下带正电荷的氢离子和自由电子。阳极和阴极之间的一张膜只允许氢离子通过。这意味着电子只有沿着外电路移动,继而产生电流。 科学家希望燃料电池将来有机会得到广泛应用,为汽车和住宅提供电力。问题是燃料电池内的催化剂过于昂贵,而且它的高成本现已抑制这项技术的商业发展。但通过用具有相似特性的碳代替铂,韩国研究人员认为他们可能大幅降低燃料电池的成本。 生物质燃料低温电池 2014年2月9日,美国科学家开发出一种直接以生物质为原料的低温燃料电池。这种燃料电池只需借助太阳能或废热就能将稻草、锯末、藻类甚至有机肥料转化为电能,能量密度比基于纤维素的微生物燃料电池高出近100倍。这种技术,在室温下就能对生物质进行处理,对原材料的要求极低,几乎适用于所有生物质,如淀粉、纤维素、木质素,甚至柳枝稷、锯末、藻类以及禽类加工的废料都能被用来发电。如果缺乏上述原料,水溶性生物质或悬浮在液体中的有机材料也没有问题。该设备既可以在偏远地区以家庭为单位小规模使用,也可以在生物质原料丰富的城市大规模使用。实验显示,这种燃料电池的运行时间长达20小时,这表明POM催化剂能够再利用而无需进一步的处理。研究人员报告称,这种燃料电池的最大能量密度可达每平方厘米毫瓦,比基于纤维素的微生物燃料电池高出近100倍,接近目前效能最高的微生物燃料电池。邓玉林认为,在对处理过程进行优化后应该还有5倍到10倍的提升空间,未来这种生物质燃料电池的性能甚至有望媲美甲醇燃料电池。 直接甲酸燃料电池科研人员通过向普通的碳黑中掺杂磷化镍(Ni2P)获得了一种简单廉价的复合载体,然后将钯负载在该复合载体上得到直接甲酸燃料电池用阳极电催化剂。据介绍,该类催化剂在酸性环境中的活性、寿命、抗中毒能力及长效工作稳定性方面均优于商业催化剂和其他已经报道的催化剂。其中,利用该体系中的Pd-Ni2P/C作为DFAFC催化剂时其功率密度高达550mW/cm2,较商业性能提高倍,是目前所见文献报道的DFAFC的最高性能,相关研究成果发表于日前的《德国应用化学》上。

氢燃料电池国外论文参考文献

新能源汽车专业毕业论文参考文献

列出论文参考文献的目的是让读者了解论文研究命题的来龙去脉,便于查找,同时也是尊重前人劳动,对自己的工作有准确的定位。因此这里既有技术问题,也有科学道德问题。如下是我为大家收集的新能源汽车专业毕业论文参考文献,欢迎阅读!

[1]徐枭,王巧凤,周荣,新能源汽车发展主要障碍及其解决方案[J],上海汽车,2009,(5):7—10

[2]杨婕,消费者对电动汽车购买意愿实证研究—基于政府产业政策理论[J],特区经济,2012,(2):302—304

[3]李光,影响我国电动汽车产业发展的关键因素研究[J],武汉理工大学学报,2011,(6):14—18

[4]霍风利,我国发展电动汽车产业的'可行性及对策研究[D],中国海洋大学硕士学位论文,2010:23—27

[5]田萍,新能源汽车是新的经济增长点[J],资源与人居环境,2009,(9):74—76

[6]方海洲,胡研,促进新能源汽车快速发展的税收优惠政策影响分析[J],汽车科技,2009,(3):7—10

[7]国家863电动汽车重大科技专项办公室,全球氢能研发及相关政策调查报告[R],2004

[8]德勤全球制造组,电动车现状与消费者期望之比较[J],全球视角,2011,(1)

[9]曾耀明,史忠良,中外新能源汽车产业政策对比分析[J],企业经济,2011,(2):107—109

[10]李东卫,我国新能源汽车产业的挑战及对策[J],广东经济,2011,(2)

[11]迈克尔·波特,竞争优势[M],北京:华夏出版社,1997:280—317

[12]李大元,低碳经济背景下我国新能源汽车产业发展的对策研究[J],经济纵横,2011

[13]罗少文,我国新能源汽车产业发展战略研究[D],复旦大学硕士学位论文,2008

[14]杨海霞,新能源汽车技术路线落定,中国投资[J],2012,(11)

[15]张海波,我国新能源汽车产业技术路线图研究[D],武汉理工大学硕士学位论文,2012

[16]刘浩华,程杨,中国新能源汽车需求风险关键因素研究[J],科技管理研究,2014,(19)

[17]章荣武,“钻石模型”及其应用:中国船舶工业产业竞争优势分析[D],厦门大学硕士学位,2006

[18]赵亮,BYD公司新能源汽车发展战略研究[D],山东大学硕士学位论文,2013

[19]张坤,安徽汽车产业国际竞争力分析[D],安徽大学硕士学位论文,2011

[20]赵斌,比亚迪新能源汽车消费的影响因素分析[D],中南大学硕士学位论文,2010

[21]顾瑞兰,促进我国新能源汽车产业发展的财税政策研究[D],财政部财政科学研究所博士学位论文,2013

[22]王慧,促进我国新能源汽车产业发展的财税政策研究[D],江西财经大学硕士学位论文,2010

[23]温岳中,基于产业生命周期理论的新能源汽车产业支持政策研究[D],北京交通大学硕士学位论文,2012

[24]方玲,基于成本—效益分析视角的我国新能源汽车产业发展策略研究[D],中南大学商学院硕士学位论文,2013

[25]文凯,借鉴国际经验发展我国新能源汽车产业研究[D],东北财经大学硕士学位论文,2010

[26]陈柳钦,美日欧新能源汽车产业发展的政策支持[J],汽车工程师,2010,(10):22—25

[27]孙浩然,日本新能源汽车产业发展分析[D],吉林大学硕士学位论文,2011

[28]金永花,日本新能源汽车市场推广策略对我国的借鉴[J],东北亚论坛,2012,(3):105—112

[29]高飞,我国电动汽车研发战略联盟模式选择研究[D],河北师范大学硕士学位论文,2012

[30]韩怀玉,我国新能源汽车产业发展的国际比较研究[D],陕西师范大学硕士学位论文,2012

作者: Raymond George Klaus Hassmann【摘要】燃料电池具有非同寻常的性能: 电效率可达60%以上,而且可以在带着部分负荷运行的情况下进行维修,除了有低比率碳氧化物排放外几乎没有任何有害的排放物。文章介绍按温度划分的4种主要燃料电池(PEMFC、PAFC、MCFC和SOFC)的性能,重点介绍高温固体氧化物燃料电池(SOFC)的应用及其发展前景。 With demonstration projects fuel cells are Well uder way toward penetrating the power market,covering a wide range of application.This paper introduces the main four types of fuel cells which are PEMFC,PAFC,MCFC and SOFC.Then it puts the emphasis on SOFC and its application market. 燃料电池是通过由电解液分隔开的2个电极中间的燃料(如天然气、甲醇或纯净氢气)的化学反应直接产生出电能。与汽轮发电机生产的电能相比,燃料电池具有非同寻常的特性:它的电效率可达60%以上,可以在带部分负荷运行的情况下进行维修,而且除了排放低比率碳氧化物外,几乎没有任何其他的有害排放物。1 燃料电池的分类 目前研制的燃料电池技术在运行温度上有不同的类型,从比室温略高直到高达1000℃的范围。大多数工业集团公司的注意力集中在以下4种主要类型上:(1)运行温度在60-80℃之间的聚合物电解液隔膜型燃料电池(PEMFC);(2)运行温度在160-220℃之间的磷酸类燃料电池(PAFC);(3)运行温度在620-660℃之间的熔融碳酸盐类燃料电池(MCFC);(4)运行温度在880-1000℃之间的固体氧化物燃料电池(SOFC)。 可以将这些类型的燃料电池划分为低温型(100℃及以下)、中温型(约200℃左右)及高温型(600-l000℃)燃料电池。 表1简要地列出了各种类型燃料电池的性能。中温型和高温型燃料电池适于用在静止式装置上,而低温型燃料电池对于静止装置和移动式装置都适用。 实用装置的功率容量差别也很大,可以给笔记本电脑及移动电话供电(数以W计),也可以给居民住宅(数kW)或是分散的电热设备和动力设备(数百KW到数MW)供电。 最适于用来驱动汽车的是低温型燃料电池。 根据使用期限成本进行的经济性比较结果表明,就发电成本而言,SOFC型燃料电池要PEM型低30%。这个结果是根据SOFC型燃料电池的电效率比PEM型的高,这2种燃料电池最终都可以达到l000美元/KW的投资成本这一假设条件而推导出来的。 2 高温燃科电池 高温型燃料电池具有许多适于在静止式装置上使用的特性。但是在高温型燃料电池产生出电能之前需要较长的加热过程,因而这种技术不能应用于要求在短时间内频繁起动的各种实用装置。此外,高温型燃料电池还具有以下特点: (1)不需要使用贵金属来催化电化学反应。一般情况下使用陶瓷材料。 (2)对CO完全没有限制。CO参加到电化学反应过程并像H2一样被氧化。 (3)对燃料表现出高度灵活性。可以给这类燃料电池发电设备供应天然气,天然气在设备内部被转换成H2和CO。这意味着无需任何外部燃料,从而大大简化了发电设备的平衡问题。 (4)高温可以将燃气轮机连接到该系统上,在这种情况下,燃料电池发电设备是在300kPa压力下运行,并在不考虑燃气轮机输出的情况下将燃料电池的功率密度提高约20%,因此使总的电效率提高10%,可成倍地降低使用期限成本。 (5)较高的运行温度也为排热提供了更多的灵活性。在电效率达60%或更高水平的联合循环系统中可限制废热排放,而在单循环下则会排放出更多的热量。 MCFC和SOFC是这类高温型燃料电池的2种技术。它们使用的材料不同。MCFC是在一只陶瓷容器中放入液态的金属碳酸盐作为电解液,如果没有采取防止电极老化的措施,燃料电他的使用寿命会受到影响。 在MCFC中电化学反应是由CO3离子引发的。MCFC采用的是颊型电池,和SOFC型的管形设计方案相比,这种颊型电他的功率密度要稍微高一些。这在成本上要比SOFC型装置优越。但在另一方面,由于SOFC所用的陶瓷材料非常稳定,可以用在950-1000℃范围内,所以SOFC装置在抗老化性能上更具优越性。到目前为止,所有的长期电池试验和正在运行的试验性机组都表明SOFC型装置的使用寿命可以达到70 000-80 000h,是MCFC型的2倍。 MCFC和SOFC 2种技术在进行100-250kW功率范围的单循环现场试验中,成本都有大幅度的下降。目前在MCFC开发上占有主导地位的是美国的Fuel Cell Energy公司及其在德国的授权单位MTU,日本的Ishikawajima-Harima重工(IHI)和三菱公司等。而Siemens Westinghouse在SOFC开发上处于领先水平。3 中温型燃料电池 目前磷酸类燃料电池(PAFC)是具有最先进技术的燃料电池。80年代,IFC(国际燃料电池公司)决定对其前期商业化生产线进行投资,制造和销售200kW的PAFC装置,并将其投入市场。东芝公司在80年代末就已经努力使PAFC技术进入商用市场。从此,PAFC技术就一直在静止燃料电池的市场中占据着显赫的位置。迄今为止,全球已经安装了150多套PAFC燃料电池装置。 研究表明,这种燃料电池未能实现市场商业化的原因大致有以下几方面: (1)电效率最高为40%,超过维修期限后会降到35%甚至更低水平。通常情况下设备的使用期限不超过20 000运行h。 (2)有些试验性的设备(如东芝公司管理的1套11MW设备未能达到顶期的性能水平。 (3)美国和日本政府大幅度削缩用于PAFC技术研究和开发的投资。 (4)从迄今积累的经验及在改善设计参数和降低产品成本方面的潜力来看,让PAFC技术成功地跻身于当今的市场中的可能性是极低的。4 SOFC在配电市场方面的潜力 Siemens Westinghouse公司根据对市场的分析,决定采取必要的措施加快SOFC技术进入市场的步伐。预计在2003-2004年提供第l批产品,进入商业性生产前的试验阶段,装置容量从目前的2MW扩大到15MW。 北美和欧洲被认为是SOFC燃料电池技术最有希望的市场。Hagler Bailly公司和西门子公司对功率范围为250 kW-l MW的市场进行了调查,结果表明到2005年SOFC燃料电池的市场容量为每年10000MW。北美和欧洲几乎各占50%。考虑到北美洲用户的结构和他们的需求,在北美洲各类小型发电机组的总容量在2010年可能达到每年约1000MW,其中600MW可能是燃料电池发电装置。在各种类型的燃料电池中,SOFC的市场份额约占40%,到2010年在北美洲SOFC的全年销售额将达到亿美元。 在竞争日益激烈的配电市场中的另一个获胜者是微型燃气轮机,主要是作为备用电源或辅助电源。由于SOFC和微型燃气轮机的特性适于不同的应用场所,SOFC效率高但投资成本也高,而微型燃气轮机成本低但效率也低,因而这2种技术不会产生市场上竞争。而往复式发动机会逐渐失去其在市场中的份额。 欧洲电网要比北美洲电网强大得多,欧洲电网强化了集中的大型发电厂的作用。因此在北美洲经常出现的分散式电热设备和动力装置的供电质量和供电可靠性问题在欧洲是不突出的。但另一方面,在欧洲对能量储存更为敏感。 此外,一些国家政府将颁布新的规程和法律及新的能源价格,预计欧洲各国之间市场份额会有重大差异。在有些情况下这个过程会给SOFC用于配电装置起到一定的促进作用。此外,欧洲的自由化近程落后于北美洲。因此,市场预测结果会有很大程度的不确定性。5 SOFC技术应用的扩展 使用天然气作为燃料的SOFC是车载式装置,其扩展应用可有以下几种形式:(1)家庭应用:新一代燃料电池将是扁平管型的,其功率密度是目前所用圆柱型燃料电池技术的2倍,因而将制造出5kW的燃料电池装置。这种设计方案是可行的,在配电市场中可以替代圆柱型燃料电池。(2)l0MW以上的系统装置:很显然,只要SOFC技术占有了功率范围在250-10MW的市场,那么下一步最必然的是要争取占有l0MW以上更大规模发电设备的市场。通过把更多SOFC链接起来便能实现这个目标,也满足了高效率低成本的要求。20MW级规模燃料电池的电效率已经接近甚至超过70%。(3)用液态燃料运行:使用天然气作为燃料将SOFC的应用局限在靠近天然气供气网的区域内,从而使这项新技术的应用受到限制。因此存在着让SOFC使用液态燃料的迫切要求。因此,应与大型石油公司合作进行该课题的研究开发,选择一种适宜的液体燃料并设计出最适于使用这种新燃料的SOFC发电装置,以便为边远的用户服务。 (4)C02的分离:Shell公司和 Siemens Westinghouse公司正在共同研制一种能将CO2从完全反应后的燃料中分离的SOFC设飞方案。例如,当把其装在用于回收油的平台上时,可以把CO2用泵压到地下储层中,这不但可省去CO2的排放税,还可提高原油的产出量。 (5)综合性应用:CO2分离装置可能是点火的火花装置,它使得SOFC在一种封闭且可再生的能量循环中成为关键性部件。经过-段时间,SOFC能产生出热量和电力,例如用于大型暖房的设施中,SOFC装置产生的C02可用来加快植物的生长。而任何一种农作物收获后的剩余有机物都可以转化为气体供给SOFC作燃料。

【摘要】固体氧化物燃料电池是一种可以直接将燃料的化学能转化为电能的电化学装置,固体氧化物电解池是固体氧化物燃料电池的逆过程,能够高温电解水/二氧化碳制氢气/一氧化碳。可逆电池将二者的功能合二为一。本论文主要进行了可逆电池的氧电极的复合改性研究。采用LSM(()δ),LSCF(δ)和SSC(δ))氧电极材料。采用丝网印刷工艺制备的LSM和LSCF氧电极材料用于高温电解池和可逆电池,长期运行后,LSM与电解质YSZ(氧化钇稳定的氧化锆)发生剥离,YSZ与GDC(δ)阻挡层剥离,导致电池性能衰减。浸渍工艺制备纳米LSM-YSZ,LSCF-YSZ和SSC-YSZ氧电极用于可逆电池,提高了氧电极的性能和催化活性。可逆循环测试或长期稳定性测试后,纳米离子发生团聚导致电池性能衰减。对SSC氧电极的研究发现氧电极SSC与YSZ分层,以及长期电解后氢电极Ni的团聚也是导致电池性能衰减的主要原因之一。最后,将纳米LSCF-YSZ氧电极用于H2O/CO2共电解,研究了共电解的影响因素和反应过程。综上,通过本论文研究为开发高活性和高稳定的氧电极材料奠定了基础。【作者】范慧;【导师】韩敏芳;PrabhakarSingh;【作者基本信息】中国矿业大学(北京),应用化学,2014,博士【关键词】固体氧化物燃料电池;电解池;氧电极;稳定性;【参考文献】[1]刘嘉.一个小型搜索引擎的设计与实现[J].河南科技学院学报(自然科学版),2014,06:46-50.[2]石华.制造业股权结构与企业非效率投资的关系研究[D].天津财经大学,会计学,2012,硕士.[3]朱贝贝.基于遗传算法的网格任务调度研究[D].山东大学,计算机软件与理论,2012,硕士.[4]万宇.2000—2013年我国部分高校硕博学位论文中残疾人体育研究述评[J].体育学刊,2014,04:66-70.[5]陈宁静.ACh诱导的脐带血管收缩效应及其机制研究[D].苏州大学,胚胎生理与围产基础医学,2014,硕士.[6]布伦.复方鳖甲软肝方对自发性高血压大鼠左室重构影响的实验研究[D].第四军医大学,内科学,2004,硕士.[7]封磊.20世纪三四十年代边政研究的学术转型[D].兰州大学,中国近现代史,2013,硕士.[8]贺浩.虚拟财产的刑法保护[D].山东大学,法律(专业学位),2013,硕士.[9]万德贵.分立半导体元器件焊点缺陷的研究[D].电子科技大学,集成电路工程(专业学位),2012,硕士.[10]高雷.预售商品房按揭法律问题研究[D].郑州大学,法律,2013,硕士.[11]侯志军,耿加加,窦亚飞,朱誉雅.中美高校年度报告比较分析及启示[J].现代教育管理,2014,05:119-124.[12]方贻洲.论当代中国威权政治的基础[D].山东大学,政治学理论,2013,硕士.[13]邵永星.基于热释电红外传感器的停车场智能灯控系统设计[D].河北科技大学,计算机应用技术,2013,硕士.[14]于世华.常微分方程法在结构影响线求解中的应用[D].吉林大学,桥梁与隧道工程,2014,硕士.[15]张文芳.医药流通企业信息系统的分析与设计[D].山东大学,软件工程(专业学位),2012,硕士.[16]杜国勇.移动Ad Hoc网络分簇算法的研究[D].安徽大学,计算机应用技术,2013,硕士.[17]白光,李文兴.铁路对少数民族地区经济的带动作用——以广西、青藏等铁路为例[J].广西民族研究,2014,01:139-145.[18]苏锦松.USP22和SIRT1蛋白在肾透明细胞癌中的表达及其作用[D].复旦大学,外科学,2013,博士.[19]唐爱莲.On Strategies of Raising Vocabulary Teaching Efficiency[D].安徽大学,英语语言文学,2003,硕士.[20]余雷.脉冲电磁场治疗骨质疏松的初步研究[D].第四军医大学,生物医学工程,2004,硕士.[21]李惠.老年糖尿病患者感染危险因素分析[D].吉林大学,护理学,2013,硕士.[22]黄大伟.电磁搅拌作用下轴承钢凝固组织形态演变的研究[D].东北大学,钢铁冶金,2011,硕士.[23]刘江波.企业新员工职业生涯规划研究[D].山东财经大学,企业管理,2012,硕士.[24]杨璐晟.国有企业核心竞争力培育策略研究[D].吉林大学,企业管理,2004,硕士.[25]单艺,马微,刘晓玲,王象欣,夏行昊,于力涛,魏雪冬,姜毓君.婴幼儿配方乳粉中微量碘测定方法的比较[J].食品工业科技.[26]温广辉.短时接触亲社会电子游戏对小学儿童亲社会行为的影响[D].浙江理工大学,应用心理学,2014,硕士.[27]华天海.基于DEA的水泥企业技术创新能力评价研究[D].安徽工程大学,管理科学与工程,2012,硕士.[28]王莉.论城市夜景照明的景观特性[D].南京艺术学院,2004,硕士.[29]伊朝接.基于新兴信息技术的智慧施工进度管理研究[D].哈尔滨工业大学,管理科学与工程,2014,硕士.[30]刘畅.新事业单位财务规则下医院财务审计研究[D].河北大学,会计学,2014,硕士.[31]赵金才.坐标测量系统零件信息提取与位姿自动识别的研究[D].天津大学,2005.[32]李晓辉.TiO_2/WO_3/石墨烯复合光催化剂的结构和性能研究[D].青岛科技大学,2014.[33]强彩虹.适应滨海新区发展的高职院校专业建设[D].天津大学,工业工程,2013,硕士.[34]曾伟川.β-氨基酸酯的合成研究[D].华侨大学,生物学,2013,硕士.[35]马广栓.当年养成商品草鱼新技术[J].农村.农业.农民.2003(04)[36]李超玲.筒形件强力旋压过程的有限元数值模拟[D].西北工业大学,材料加工工程,2004,硕士.[37]邓松波.基于机器视觉的飞机蒙皮孔几何参数检测技术研究[D].哈尔滨工业大学,机械电子工程,2013,硕士.[38]郑开辉.含微电网的配电网自适应保护研究[D].北京交通大学,2012.[39]翟旭升,王海涛,谢寿生,苗卓广,吴勇.基于自适应遗传算法的多项式模型结构与参数的一体化辨识[J].控制与决策,2011,05:761-767.[40]李辉,彭海琳,刘忠范.拓扑绝缘体二维纳米结构与器件[J].物理化学学报,2012,10:2423-2435.[41]刘炳义.论中油集团技术创新战略[D].西南石油学院,2002.[42]韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995,01:85-88.[43]张亚中,赵裕辉,鲁新便,刘哲生,叶建伟,宋伯虎.频谱分解技术在塔里木盆地北部TH地区碳酸盐岩缝洞型储层预测中的应用[J].石油地球物理勘探,2006,S1:16-20+24+142-143.[44]田永良.大型工程机械销售活动项目化管理应用研究[D].山东大学,项目管理(专业学位),2012,硕士.[45]张继允.文艺复兴时期尼德兰绘画风格对我的工笔画创作的影响[D].首都师范大学,美术学,2013,硕士.[46]缪纲.面向视频后处理芯片的FPGA原型流程的研究和实现[D].浙江大学,通讯与信息系统,2004,硕士.[47]邵吉光,冯国臣,付盛.极值与切线的运动学原理[J].高等数学研究,2014,03:4-7.[48]黄捍东,赵迪,任敦占,王玉梅.基于贝叶斯理论的薄层反演方法[J].石油地球物理勘探,2011,06:919-924+1012+832-833.[49]高天珍.小学高年级语文阅读分层教学实验研究[D].华中师范大学,教育管理,2014,硕士.[50]张筱玮.论国际信用评级机构的治理及问责机制[D].安徽大学,国际法学,2013,硕士.

燃料电池论文题目

新能源汽车是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力操控和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。主要区别于现在我们常见的汽油和柴油为燃料的内燃机汽车。新能源汽车包括纯电动汽车、增程式电动汽车、混合动力汽车、燃料电池电动汽车、氢动力汽车、其他新能源汽车等。下面介绍几个市场主流的新能源汽车类型:1、新能源包括混合动力汽车:采用燃油和电作为驱动原料的混合动力。目前各大品牌基本都有此类车型,比如:奔驰S400、宝马5系等,这些混动车辆都会标有Hybrid字样。2、纯电动汽车:此款车完全脱离了燃油,完全靠电作为驱动原料的混合动力。3、燃料电池汽车:这款车也是电池车,是一种氢氧混合燃料电池,您可以快速将电池燃料灌满,无需充电等待。4、氢能源动力汽车:此款车也完全脱离了燃油,利用氢能源替代了燃料。5、太阳能汽车:这款车大家比较容易理解,通过太阳能电池板,转化成电能来驱动车辆。还有其他新能源汽车,如:双燃料汽车、天然气汽车等

有招编辑部这边做过类似的文章通过的哦,小编全程 免费 提供专业写作思路和构建框架, 在线构题辅导,这样能更准确的解决同学的问题哦,望采纳哦,,麻烦同学了。

高转换效率太阳能电池仿真设计【摘要】: 随着各国对环境保护的力度加大,再生清洁能源的市场需求巨大,发展太阳能利用技术前景广阔。太阳能利用领域众多,目前主要通过太阳能电池片把太阳能转换为电能加以利用。太阳能电池是利用太阳辐射能切实可行的方法之一,目前能够获得较高的光电转换效率,成本也得到了一定程度的降低,由最初仅应用在航天科技等军工领域扩展到民用方面,以满足日常应用需求。但也应该看到,由于太阳能利用技术目前还不是十分的完善,太阳能的转换利用效率相对常规能源较低,因此,有效提高作为太阳能利用载体的太阳能电池的光电转换效率成为了一个日益迫切的问题。 本文对太阳能电池的开发与利用进行了简要的阐述,分析了太阳能电池发电的优点和前景,就提高太阳能电池转换效率的方法进行了探讨,提出了论文的研究目标,分析了其实现方法。对寄生电阻、扩散长度和表面复合速率等影响太阳能电池转换效率的主要因素进行了深入分析。 介绍了太阳能电池仿真软件AMPS和PC-ID,选取PC-ID软件并对其特性和参数设置做了简要介绍,分析了利用该软件进行太阳能电池效率分析的具体方法。针对各因素对太阳能电池转换效率的影响,在掌握PC-ID使用方法的基础上,就太阳能电池转换效率的影响因素进行了具体的仿真分析,验证了各因素对太阳能电池转换效率的影响规律。通过仿真优化设计,得出了较高转换效率的多晶硅薄膜太阳能电池仿真参数,该方案实现了填充因子、光电转换效率的太阳能电池仿真设计,完成了填充因子、15%光电转换效率的预期目标。 根据仿真所得电池参数,设计了一款SSP衬底多晶硅薄膜太阳能电池,探讨了工艺过程和条件。该电池工艺首先使用区熔再结晶的方法制备较好结晶质量和表面平整度的SSP衬底,然后通过光刻穿透衬底表面SiO2层(磷扩散层)后使用PECVD工艺烧结铝浆穿透该层,形成背电场,再使用快速热化学气相沉积工艺进行多晶硅薄膜的沉积,采用低成本的酸腐蚀法工艺进行电池表面制绒处理并采用等离子气相沉积法制备SiNx材质减反膜。最后分层蒸镀、烧结制备电极,去边处理后完成电池片的制备。通过工艺条件的控制得到与设计结构相符的电池片。【关键词】:多晶硅太阳能电池 PC-1D 转换效率 影响因素 仿真 摘要目录第1章 绪论 太阳能概述 太阳能电池的优点 太阳能电池应用前景 太阳能电池材料 太阳能电池研究现状及其效率的提高 太阳能电池电学模型 太阳能电池工作原理 太阳能电池主要技术参数 光照下太阳能电池等效电路 研究目标 本文结构和特点第2章 多晶硅太阳能电池效率影响因素 寄生电阻 扩散长度 表面复合速率 表面复合成因 表面复合的影响 本章小结第3章 太阳能电池仿真分析方法 太阳能电池仿真软件简介 仿真软件的选取 太阳能电池的PC-1D参数界面 使用PC-1D优化太阳能电池设计 器件参数设置思路 输入激励设置 仿真数据处理过程本章小结第4章 PC-1D仿真分析 影响因素的仿真分析 寄生电阻的影响 扩散长度的影响 复合速率的影响 仿真结论 本章小结第5章 多晶硅薄膜电池设计 薄膜电池参数 多晶硅薄膜电池制备 SSP衬底的制备 PN结的制备及制绒减反处理 背电极的蒸镀和烧结 正电极蒸镀及Forming Gas烧结 本章小结48-49第6章 全文总结 本文主要工作 结论及展望致谢参考文献自己扩展……

题目是一篇论文的“眼睛”,是读者关注的首个要点,特别是对于土木工程专业论文而已,题目的好坏会直接影响到导师的评审结果,那么 土木工程本科论文题目如何拟定比较好呢? 本文精选了230个优秀选题,供该专业的毕业生参考。 土木工程本科论文题目一: 1、基于现代理念下的土木工程施工管理策略 2、土木工程施工管理中存在的问题分析 3、土木工程施工中的质量控制分析 4、土木工程结构设计中对抗震问题的分析 5、土木工程管理施工过程中质量控制措施研究 6、土木工程施工管理中存在的问题及对策分析 7、项目管理在土木工程建筑施工中的应用分析 8、土木工程项目施工进度管理和施工质量管理 9、土木工程施工中节能环保技术探析 10、土木工程的现场施工技术管理应用探讨 11、土木工程施工中边坡支护技术的应用分析 12、土木工程项目施工进度管理和施工质量管理探析 13、土木工程建筑施工过程中项目管理的应用研究 14、边坡支护技术在土木工程中的应用 15、土木工程施工技术中存在的问题与创新探讨 16、论土木工程建筑施工过程中项目管理的应用 17、土木工程项目的施工进度与质量管理策略探讨 18、土木工程施工技术和现场施工管理 19、试论土木工程施工管理问题及对策 20、项目管理在土木工程建筑施工中的有效应用 21、浅谈土木工程施工技术的创新及发展 22、土木工程项目管理中成本控制的研究 23、土木工程全过程质量管理研究 24、浅议土木工程项目施工进度管理和施工质量管理 25、土木工程项目施工进度管理和施工质量管理 26、土木工程施工项目管理的实践与规划分析 27、大型土木工程施工中项目管理的重要性与改革措施 28、土木工程结构设计中存在的问题及对策 29、土木工程项目施工进度管理和施工质量管理 30、加强土木工程施工项目质量管理的对策 31、土木工程项目的施工进度与质量管理策略论述 32、浅谈土木工程中的绿色施工和可持续发展 33、土木工程项目成本管理方法分析 34、提高土木工程施工项目管理的有效措施 35、土木工程施工项目的质量管理简述 36、提升土木工程施工项目质量管理的对策分析 37、土木工程施工管理问题与对策分析 38、土木工程项目施工做好安全管理的有效措施 39、土木工程项目施工进度管理和施工质量管理 40、浅析土木工程施工中节能绿色环保技术 41、土木工程施工中的安全问题创新性研究 42、提高土木工程项目管理的有效措施研究 43、注浆技术在建筑土木工程中的应用和施工工艺初探 44、浅谈项目管理在土木工程建筑施工中的应用 45、土木工程施工安全管理创新实践研究 46、关于土木工程施工中钢结构技术的探讨 47、土木工程项目施工进度管理和施工质量管理探究 48、新形势下土木工程专业中外合作办学教学模式探究 49、论土木工程施工中混凝土施工技术 50、浅析建筑土木工程项目成本控制方案 51、土木工程项目现场管理中BIM技术的实践应用分析 52、关于土木工程施工项目的质量管理 53、土木工程监理程序及控制要点分析 54、土木工程项目的施工进度与质量管理策略探讨 55、土木工程管理与工程造价的有效控制措施分析 56、土木工程施工质量控制分析 57、土木工程施工项目质量管理研究 58、土木工程项目施工进度管理和施工质量管理 59、绿色建筑材料在土木工程施工中的应用 60、土木工程施工技术要点与现场控制策略 61、土木工程施工质量控制研究 62、论如何加强土木工程施工过程质量控制 63、高支模施工技术在土木工程施工中的应用分析 64、浅谈土木工程管理施工过程质量控制策略 65、土木工程施工管理问题与对策分析 66、土木工程施工管理要点的分析 67、论如何加强土木工程施工过程质量控制 68、绿色建筑材料在土木工程施工中的应用 69、土木工程建筑中混凝土结构的施工技术研究 70、土木工程建筑中混凝土结构的施工技术要点探究 71、绿色建筑材料在土木工程施工中的应用研究 72、土木工程建筑施工技术及创新的探究 73、土木工程施工中的测量施工分析 74、土木工程管理与工程造价控制的有效措施探讨 75、对土木工程现场管理的问题探究和应对措施 76、高层建筑施工土木工程问题初探贺建彪 77、关于土木工程施工技术的创新及发展分析 78、提高土木工程施工过程质量监管的有效措施 79、土木工程施工中节能环保技术 80、土木工程建筑中深基坑施工技术分析 土木工程本科论文题目二: 81、浅谈土木工程建筑中混凝土结构的施工技术要点 82、土木工程施工质量控制与安全管理的相关分析 83、土木工程中钻孔灌注桩施工技术的应用分析 84、项目管理在土木工程建筑施工中的应用探析 85、土木工程施工技术的创新及发展 86、关于土木工程施工质量控制与安全管理的探讨 87、土木工程施工技术中存在的问题与创新 88、土木工程中钻孔灌注桩施工技术的应用分析 89、浅析绿色建筑材料在土木工程施工中的应用 90、土木工程建筑施工过程中项目管理的应用 91、土木工程建筑中混凝土结构的施工技术探讨 92、土木工程建设施工过程中的质量控制探究 93、土木工程结构的设计及施工技术要点阐释 94、土木工程结构设计中安全性与经济性分析 95、土木工程结构设计与施工技术的关系探讨 96、试析土木工程结构设计中的安全性与经济性 97、浅谈土木工程结构设计与施工技术的关系 98、土木工程结构中的抗震问题分析 99、浅谈土木工程结构设计与施工技术两者之间的关系 100、浅谈土木工程结构设计与施工技术的关系 101、探究土木工程结构设计中的抗震问题 102、谈土木工程结构设计中的抗震设计要点 103、浅谈土木工程结构设计中的安全性与经济性 104、土木工程结构设计中的抗震问题探究 105、土木工程结构设计中的安全性与经济性 106、土木工程结构设计存在的问题及对策 107、建筑与土木工程抗震分析浅谈 108、土木工程结构设计中安全性与经济性分析 109、土木工程施工项目质量管理的对策探究 110、土木工程施工管理中存在的问题及对策分析 111、土木工程项目施工进度管理和施工质量管理探析 112、加强土木工程施工项目质量管理的对策探究 113、提升土木工程施工项目质量管理水平的策略 114、基于如何加强土木工程施工项目质量管理的对策研究 115、土木工程项目的施工进度与质量管理策略论述 116、土木工程施工项目中质量管理的问题及应对措施 117、土木工程施工项目的质量管理简述 118、提升土木工程施工项目质量管理的对策分析 119、浅析如何加强土木工程施工项目质量管理 120、提升土木工程施工项目质量管理水平的策略 121、土木工程施工中的质量控制分析 122、土木工程项目施工进度管理和施工质量管理探究 123、浅谈土木工程项目的施工进度管理和质量管理 124、无人机在土木工程应用中的研究现状与展望 125、关于土木工程施工项目的质量管理 126、土木工程施工中混凝土施工技术研究 127、土木工程项目中混凝土结构施工技术研究 128、对土木工程监理管理中的一些体会与思考 129、解读土木工程结构设计与施工技术的关系 130、加强土木工程施工项目质量管理的对策-- : 131、浅谈BIM技术在土木工程中的应用-- 132、土木工程建筑施工技术的创新研究- 133、对土木工程施工项目管理的探讨- 134、基于项目实践的土木工程项目成本管理探讨-- 135、土木工程施工管理中存在的问题及对策 136、标准化土木工程项目施工风险管理的问题与对策- 137、对现代土木工程施工质量控制的研究 138、解析土木工程管理施工过程质量控制措施 139、试析土木工程项目中的钢结构施工技术 140、土木工程施工管理问题及对策解析 141、土木工程施工技术中存在的问题与创新- 142、浅谈土木工程施工管理-- 143、论土木工程施工的质量控制-- 144、土木工程发展状况与趋势 145、关于土木工程项目施工管理的研究-- 146、土木工程项目施工进度管理和施工质量管理 147、土木工程施工技术中存在的问题与创新 148、浅谈土木工程管理的重要性及发展趋势 149、加强土木工程施工项目质量管理的对策 150、土木工程项目的施工进度与质量管理策略探讨-- 151、土木工程施工项目质量管理分析 152、土木工程结构设计中的安全性与经济性-- 153、探究土木工程结构设计中的抗震问题 154、浅议土木工程结构可靠性的研究进展 155、浅谈土木工程结构设计中的安全性与经济性 156、论如何加强土木工程施工过程质量控制 157、土木工程建筑施工技术及创新探究 158、《铁道车辆毕业论文题目》 159、燃料电池铁道车辆的开发 160、铁道车辆液压减振器油液热平衡研究 土木工程本科论文题目三: 161、空气弹簧附加气室对车体振动行为的影响研究 162、基于非线性因素的铁道车辆运动稳定性研究进展 163、铁道车辆节能技术研究及展望 164、铁道车辆吸能式防爬器垂向屈曲研究 165、混合动力列车的应用前景展望 166、常规铁道车辆的节能技术 167、用阻燃性镁合金实现铁道车辆轻量化 168、东日本铁路公司ATACS的最新动向 169、铁道车辆车钩缓冲系统常见故障与检修 170、最新研发的转向架技术 171、使用压力传感器的转向架构架损伤的检测 172、基于测力轮对的铁道车辆运行安全性验证 173、铁道车辆整车铆接质量分析诊断系统的研究 174、车轮扁疤对铁道车辆齿轮箱动态特性影响 175、铁道车辆用轴承及其技术动向 176、基于SIMPACK的铁道车辆曲线通过能力研究 177、铁道车辆空气弹簧系统常见故障分析方 178、铁道车辆系统垂向非线性动力学的定量分析 179、基于HyperMesh与ANSYS的镐窝回填车车架有限元分析 180、铁道车辆车体焊接结构疲劳强度分析方法与可视化研究 181、铁道车辆主电路和牵引系统最新研究趋势 182、电阻点焊质量稳定性研究 183、转向架技术的研究开发 184、铁道车辆车轮的锻造及热处理技术 185、铁道车辆用牵引电动机的最新技术动向 186、铁道车辆上压电橡胶的应用 187、在设计阶段提高车辆乘坐舒适度的振动分析模型的构建 188、转向架中心距对机后一位单编组运行车辆轴重转移的影响 189、火车车轴加工工序图CAD系统开发与应用 190、基于数理统计的铁道车辆车轮轮缘厚度旋修值研究 191、试论磁粉探伤技术在铁道车辆零部件检修中的应用 192、车辆通过曲线时提高乘坐舒适度的方法研究 193、基于Pro/E二次开发的铁道车辆轴箱弹簧参数化设计 194、三菱公司的铁道车辆用空气压缩机技术与产品 195、基于传感器的铁道车辆转向架维修技术 196、铁道车辆动力学模型设计及优化分析 197、磁粉探伤技术在铁道车辆零部件检修中的运用 198、欧标铁道车辆车轴用钢EAN的研制与开发 199、基于模态连续追踪的铁道车辆车体低频横向晃动现象研究 200、吊挂方式对铁道车辆设备模态和传递特性的影响 201、铁道车辆用转K型承载鞍鞍面加工 202、蛇行运动对铁道车辆平稳性的影响探究 203、铁道车辆规范驱动三维布管技术研究 204、奥氏体形变对铁道车辆用高耐候钢组织及性能的影响 205、混合动力铁道车辆的发展趋势及最新研究 206、欧洲货车转向架低噪声技术研究 207、空气弹簧在击穿状态下的车辆运行仿真建模 208、铁道车辆车轴轴箱用油封的技术动向 209、提高铁道车辆内饰件的质量及生产率——摩擦搅拌点焊面向内饰件的应用 210、铁道车辆的维修保养与修理焊接技术 211、运用全方位声源探测系统评价车内噪声特性 212、铁道车辆车钩缓冲系统常见故障与检修 213、镁合金材料在铁道车辆上的应用探究 214、铁道车辆滚动振动试验台动态曲线模拟方法 215、铁道车辆用SFH-C型电子防滑器主机研制 216、铁路特色高职院校供给侧改革探析 217、铁道车辆用高强高耐候钢焊接连续冷却转变规律 218、日本铁道振动的控制和振动特性的利用 219、利用对中式气动作动器改善铁道车辆的横向乘坐舒适度 220、铁道车辆的拖车车体结构设计和强度分析 221、对某型车橡胶金属件生命周期的研究 222、UIC和我国铁道车辆卫生设备标准对比研究 223、铁道车辆承载摩擦副摩擦系数测试方法研究 224、浅析铁道车辆制动技术的发展及研究现状 225、铁道车辆的焊接技术现状与前景 226、铁道车辆地板布起泡原因分析及解决措施探讨 227、基于UM的磁流变阻尼器模糊控制 228、旅客舒适度与车辆设计问题探讨 229、铁道车辆单元制动缸用耐低温橡胶皮碗的研制 230、铁道车辆用钩缓装置三维建模与虚拟装配

汽车燃料电池论文答辩

有很多问题,首先这样的电池续航能力比较差,在研发制造的过程中,成本价格比较高,所以售卖价格比较高;要提高续航能力,还应该保证电池的容量,降低成本价格。

求一篇驾驶技师答辩论文,关于专业岗位涉及的管理训练和技术等方面?影响机车运行油耗的因素很多,其中驾驶员的责任心和驾驶技术水平对油耗有较直接的影响。据测定,驾驶技术娴熟的比驾驶技术一般的驾驶员平均节约燃油8%~10%。因此,驾驶节油的关键是看驾驶员能否根据机车的运行条件采用相应的驾驶操作,使人、机配合得当,保持机车的最佳运行状态。汽车节油技术开始与日本,原因是由于它是一个资源小国,必须注重节能。在这方面日本的技术上也走在了前列。节油技术的研究在世界上普遍引起重视的应该是资本主义世界第二次经济危机后,由于产油国组织欧佩克联手提高油价,西方资本主义国家由于能源链上的断裂,造成了大规模的经济危机。另外,也由于对石油这种不可再生能源认识的加深,人们开始越发注意对汽车节油技术的研究……影响汽车经济性的主要有四大方面的因素:1、汽车本身的质量。2、汽车车身的风阻系数。3、汽车发动机的技术水平。4、用车者的驾驶习惯与驾驶技术。汽车车身质量研究也是未来汽车设计的一个发展方向,即车身轻量化的研究。这方面的研究主要涉及材料科学和机械结构分析尤其是车体有限元方面。目前汽车车身轻量化研究还尚未进入大规模应用阶段,不过进展方面还是一日千里。汽车的风阻系数方面的研究是伴随着汽车极速的不断提高而逐渐被人们重视起来的。德国的保时捷汽车公司拥有目前世界上汽车行业最后的空气动力学实验室。 这方面的研究重点在于尽量降低汽车行驶过程中的空气阻力。汽车发动机技术时至今日,已经发展到了一个非常成熟的阶段,尤其是日本的汽车公司在这方面保持领先,尤其是发动机的经济性方面的研究。目前车用发动机,尤其是乘用车,多用汽油机。但是,由于压缩比方面的问题,汽油机的燃烧效率远不如柴油机,由于节能方面的巨大压力,柴油机在乘用车上的应用也将是以后节油技术研究的一个重要内容和趋势。由于石油的不可再生性,目前汽车制造商在动力总成方面的研究已经超越了以油为能源的范畴,比如混合动力汽车,燃料电池汽车等相关技术都已经接近商用水平。另外,天然气汽车、酒精汽车也已经越来越多地出现在人们的视野中。以上都是汽车制造商在节油方面的工作,对于车友而言,良好的驾驶习惯对节油也影响很大。如起步是大脚油门,之后来个紧急制动,电喷车的空挡滑行等……随着油价的持续上涨,汽车的油耗越来越被人们关注,究竟怎样开车才更省油?1、新车磨合 专家提醒新车在最初的3000公里行驶里程之内一定要磨合。新车磨合要注意时速控制在每小时80公里以内;尽量减少急加速、急减速。2、合理保养汽车——定期保养 要知道车况良好的汽车可省油15%到20%。对于空气滤清器、汽油滤清器、机油滤清器:每行驶5000公里以上配件都需要更换,因为空滤堵塞会引起气量减少,导致汽油燃烧不充分,降低燃油效率,而汽油滤清器的阻塞也会使发动机工作异常;对于机油:加机油需要适量,注意机油标尺所标示的刻度。机油太多将曲轴淹没,增大阻力;机油太少则无法起到润滑和封闭作用,甚至会影响发动机效率;对于轮胎状态:胎压偏低会造成油耗增加。根据美国能源部调查,如果每辆车的轮胎气压比标准气压少了1磅/平方英寸,美国每天就要多消耗1500万公升的汽油;要定期检查轮胎的磨损是否均匀。如发现轮胎偏磨,或方向盘不居中等异常情况,需尽快到专业修理厂咨询修理;另外切忌装饰过度,如扰流板、防雨罩等,会破坏原车设计的丰足,提高油耗;后备箱中不要放很多不常用的东西,增加无谓负载也会增加油耗,统计显示每增加1千克的负载会增加1%油耗;有的驾驶员为了节油,采取高速关闭空调而打开车窗通风的办法,这是不可取的,当车速高于85公里每小时的时候,开窗后的风阻消耗比空调系统消耗的燃油更多,它会让您的燃油经济指数下降10%。3、培养良好的驾驶习惯 根据不同路况选择合理的驾驶状态:减少紧急加减速和紧急转弯。行车时不仅要看前一辆车,要同时看到前两三辆车的情况,以提前采取措施,减少急刹车;不要猛加油,一次猛加和缓加到同样的速度,油耗相差可达12毫升;匀速行驶,在可能的情况下,保持最经济工况:发动机转速2000到3000转、车速60到90公里每小时。换挡时机:选择最佳时机换挡(发动机转速处于2000到3000转);杜绝低挡高速,低挡高速行驶往往使油耗超过正常值的45%;手排车用户应杜绝高挡起步。减少怠速状态:适度热车是个好习惯,建议让车慢速行驶一段距离来完成,长时间的原地热车将增加油耗;长时间怠速和怠速状态下运行空调尤其消耗燃油。4、如何正确测量实际油耗 正确的油耗测量方法是:将油箱加满,并记录首次里程数;再度将油箱加满,记录第二次加油数和第二次里程数;将两次里程数相减,除第二次加油数,得出百公里油耗;依照这一方法多次实验,求出平均值。节约燃油是一个很大的话题,往往牵涉的因素也很多。因此车辆如何节约燃油最好不要局限在某一点或某一方面。从以上分析可以让我们了解到车辆的节油主要和“人”有直接关系。驾驶员对驾驶操作技术和车辆运用方法的关注和学习才是节油的真谛!天下没有秘笈可言,只有对车辆的熟知和了解加上正确的使用,才可能真正进入车辆节油的境界!

新能源汽车发展的问题就是,没有得到普及,充电问题比较难解决,没有更多的充电桩,充电桩的数量非常稀少。想要解决这样的问题,那么就要和各个城市相互协调,建造更多的充电桩。

混合动力汽车技术现状与发展前景分析 摘要:社会对环境和节能的重视有力地促进了混合动力车辆的发展。本 文分析了国内外混合动力汽车的研究现状,介绍了混合动力汽车的主要结 构形式与工作特点,指出了混合动汽车目前需要解决的主要问题和采用的 关键技术,并对其发展前景进行了预测。 关键词:混合动力汽车内燃机电动机控制 0引言 随着全球汽车工业的迅猛发展,石油资源供应的日趋紧张,世 界各国积极寻求代用燃料或者减少燃油的消耗量,大力开发新型节 能环保汽车。在太阳能、电能等替代能源真正进入实用阶段之前,混 合动力汽车因其低油耗、低排放的优势越来越受到人们的关注。 1国内外HEV技术发展现状 国外HEV的发展概况21世纪后,各国加快了HEV的概 念产品化的进程,相继推出了不同形式的HEV产品。丰田的Prius, 本田的Insight,通用的Precept,福特的Prodigy,戴姆勒克莱斯勒的 ESx3,日产的Tino等都是具有代表性的车型,其中Prius和Insight 己是成熟的产品,截止2008年12月,丰田Prius全球销量已经超过 了100万辆。 我国HEV的研发现状我国也非常重视混合动力电动汽车 的研究与开发,有关工作开始于上个世纪90年代。在“十五”期间, 科技部组织北京理工大学、清华大学、东风汽车公司等国内多家企 业、高校和科研机构进行联合攻关,确定了以燃料电池汽车(FCEV)、 混合动力电动汽车(HEV)纯电动汽车(BEV)车型为“三纵”,多能源动 力总成控制系统、驱动电机及其控制系统、动力蓄电池及其管理系 统三种共性技术为“三横”的“三纵三横”的研发布局;之后,节能与 新能源汽车的研发又被列入“十一五”863计划重大项目。 2混合动力系统的构成及工作特点 混合动力驱动系统联合使用两种动力装置,一种是传统的内燃 发动机,另一种是电动机。整个系统由发动机、电动机、动力分配装 置、发电机、蓄电池和电流逆变器等部分构成。 通常,混合动力系统的动力传递方式有三种:串联式、并联式和 混联式。各自的结构形式和特点如下。 串联式混合动力系统如图1所示,在串联混合动力驱动 (SHEV)系统中,所有发动机机械能都转换为电能以驱动电动机。这 种系统使发动机在效率最高的转速范围内工作,因此能最大限度地 改善燃油经济性和减少排放。 并联式混合动力系统并联式(PHEV)结构有内燃机和电动 机两套驱动系统(见图2)。发动机与电动机并联,两者都可以驱动车 轮,电动机还可以作为发电机给电池充电,不再需要额外的发电机 在车辆行驶时,系统以发动机为主要动力源,在车辆起步或加速时则 使电动机工作,作为辅助驱动力。当发动机效率低的低负荷工况时 则电动机功能转变为发电机功能,向蓄电池充电。其次,在车辆制动 或下坡减速行驶时,则通过制动能量回收系统进行制动能量回收。 混联式混合动力系统混联式混合动力驱动系统(PSHEV) 是串联式与并联式的综合,其结构如图3所示。混联式驱动系统的 控制策略是:在汽车低速行驶时,驱动系统主要以串联方式工作;当 汽车高速稳定行驶时,则以并联工作方式为主。 3混合动力汽车需要解决的问题和关键技术 目前,混合动力汽车所需要解决的问题包括以下几个方面:其 一,进行动力分配装置和能量管理系统的研究。其二,开发具备高比 能量和高比功率经济实用的电池。其三,混合动力系统结构复杂,制 造成本高,维修比较困难,售价相对较高。其四,建立更先进的驱动 系统数学模型(包括静态和动态的),进行计算机仿真分析。 具体来讲要进行下面几项关键技术的研究: 混合动力单元技术在混合动力汽车上,热力发动机又被称 为混合动力单元。为提高燃料经济性,对混合动力单元必然提出更 多的要求,例如要求混合动力单元能够快速起动和关闭等。目前对 混合动力单元的研究主要集中于:一是燃烧系统的优化;二是尾气处 理技术,主要研究高效的尾气催化系统;三是代用燃料的研究。 控制策略技术HEV产品开发中最关键的环节是根据不同 的混合动力驱动系统制定和优化其控制策略,国外通过系统建模仿 真对此进行了大量的匹配理论研究。控制系统的开发首先是根据采 集到的速度和负荷等数据,计算出对应的要求输出功率:计算出以最 高效率为基点的分配到内燃机与电动机上的功率值,即实现内燃机 与电动机的最优功率分配比;然后,根据功率分配比,求出驱动电动 机的功率值和其它有关数据,给出内燃机的控制参数和电动机的控 制参数。同时,驱动执行器完成这两个层次的工作控制。在执行器设 计中,功率分配装置的设计及其与变速器的一体化设计是关键的部 件设计工作。因为它要根据控制器的指令,正确地进行内燃机功率 向驱动车辆功率和驱动发电机功率的分解。 能量存储技术在电动汽车上,蓄电池的开发和充放电特性 的研究是关键。现在,镍氢电池和锂离子电池己可达到混合动力汽 车的使用要求,但仍有价格高或寿命不长等缺陷。从发展看,能量储 存装置的研究应该包括以下几个方面:一是研究电池内部的连接、检 测、监控。二是电池设计和制造方面的改进,降低制造成本,改善电 池的性能和提高寿命。适用于混合动力汽车的电池需要有较高的比 功率,要达到的目标是,功率与能量比值大于20W/wh;使用寿命达 到10年;至少循环使用12万次。三是电池的热能管理及剩余电量管理。此外,电池的剩余电量直接影响混合动力汽车的经济性和排 放,因此需要有效的测试方法和控制装置。 4发展前景分析 从目前的发展来看,以计算机技术和自动控制技术,各种智能控 制系统包括自适应控制技术、模糊控制技术(Fuzzy)、专家控制系统 (Expert System)、神经网络控制系统(Neural Networks)等在混合 动力汽车上的逐渐应用,将进一步促进混合动力汽车的发展。与传统 型汽车相比,混合动力汽车充分吸取了电力/热力系统中最大的优 势,在节能和排放上胜出一筹;与纯电动汽车相比,HEV的电压和功 率等级与电动车类似,但蓄电池容量大大减小,因而其造价成本低于 电动汽车。 当前HEV所面临的主要技术问题还很多。尽管从长远来看只是 一种过渡车型,但HEV在近20-30年内会很有发展前景,这一点是 毫无疑问的。汽车行业专家预言,不久的将来,新生产的汽车中HEV 将占40%以上。我国的汽车工业应顺应科技发展趋势,抓住HEV这 块市场,在国外产品涌入之前,集中科研力量攻关,迅速开发出自己 的产品。 参考文献: [1]张金柱.混合动力汽车结构、原理与维修[M].北京:化学工业出版社. 2008. [2]过学迅,张杰山,胡朝峰.日美混合动力汽车发展的比较研究[J].上海 汽车:7-10.

相关百科

热门百科

首页
发表服务