首页

> 学术期刊知识库

首页 学术期刊知识库 问题

大学生建模论文题目

发布时间:

大学生建模论文题目

完全相同的题目,论文仅供参考!^_^祝你好运!

你可以从这个网站上下载往年试题这是我下载的一部分,你可以暂时参考一下。全国大学生数学建模竞赛论文格式规范l本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。(全国评奖时,每个组别一、二等奖的总名额按每道题参赛队数的比例分配;但全国一等奖名额的一半将平均分配给本组别的每道题,另一半按每道题参赛队比例分配。)l论文用白色A4纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订。l论文第一页为承诺书,具体内容和格式见本规范第二页。l论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。l论文题目、摘要和关键词写在论文第三页上,从第四页开始是论文正文,不要目录。l论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。l论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。l论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距。打印文字内容时,应尽量避免彩色打印(必要的彩色图形、图表除外)。l提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。l论文应该思路清晰,表达简洁(正文尽量控制在20页以内,附录页数不限)。l在论文纸质版附录中,应给出参赛者实际使用的软件名称、命令和编写的全部计算机源程序(若有的话)。同时,所有源程序文件必须放入论文电子版中备查。论文及程序电子版压缩在一个文件中,一般不要超过20MB,且应与纸质版同时提交。l引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号]作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号]作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号]作者,资源标题,网址,访问时间(年月日)。l在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。l本规范的解释权属于全国大学生数学建模竞赛组委会。[注]赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。全国大学生数学建模竞赛组委会2012年8月26日修订

数学建模论文写作 一、写好数模答卷的重要性 1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。 2. 答卷是竞赛活动的成绩结晶的书面形式。 3. 写好答卷的训练,是科技写作的一种基本训练。 二、答卷的基本内容,需要重视的问题 1.评阅原则 假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。 2.答卷的文章结构 题目(写出较确切的题目;同时要有新意、醒目) 摘要(200-300字,包括模型的主要特点、建模方法和主要结论) 关键词(求解问题、使用的方法中的重要术语) 1)问题重述。 2)问题分析。 3)模型假设。 4)符号说明。 5)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。 6)模型求解(计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。) 7)进一步讨论(结果表示、分析与检验,误差分析,模型检验) 8)模型评价(特点,优缺点,改进方法,推广。) 9)参考文献。 10)附录(计算程序,框图;各种求解演算过程,计算中间结果;各种图形,表格。) 3. 要重视的问题 1)摘要。 包括: a. 模型的数学归类(在数学上属于什么类型); b. 建模的思想(思路); c. 算法思想(求解思路); d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……); e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。 ▲ 注意表述:准确、简明、条理清晰、合乎语法、要求符合文章格式。务必认真校对。 2)问题重述。 3)问题分析。 因素之间的关系、因素与环境之间的关系、因素自身的变化规律、确定研究的方法或模型的类型。 5)模型假设。 根据全国组委会确定的评阅原则,基本假设的合理性很重要。 a. 根据题目中条件作出假设 b. 根据题目中要求作出假设 关键性假设不能缺;假设要切合题意。 6) 模型的建立。 a. 基本模型: ⅰ)首先要有数学模型:数学公式、方案等; ⅱ)基本模型,要求完整,正确,简明; b. 简化模型: ⅰ)要明确说明简化思想,依据等; ⅱ)简化后模型,尽可能完整给出; c. 模型要实用,有效,以解决问题有效为原则。 数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。 ⅰ)能用初等方法解决的、就不用高级方法; ⅱ)能用简单方法解决的,就不用复杂方法; ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。 d.鼓励创新,但要切实,不要离题搞标新立异。数模创新可出现在: ▲ 建模中,模型本身,简化的好方法、好策略等; ▲ 模型求解中; ▲ 结果表示、分析、检验,模型检验; ▲ 推广部分。 e.在问题分析推导过程中,需要注意的问题: ⅰ)分析:中肯、确切; ⅱ)术语:专业、内行; ⅲ)原理、依据:正确、明确; ⅳ)表述:简明,关键步骤要列出; ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。 7)模型求解。 a. 需要建立数学命题时: 命题叙述要符合数学命题的表述规范,尽可能论证严密。 b. 需要说明计算方法或算法的原理、思想、依据、步骤。 若采用现有软件,说明采用此软件的理由,软件名称。 c. 计算过程,中间结果可要可不要的,不要列出。 d. 设法算出合理的数值结果。 8) 结果分析、检验;模型检验及模型修正;结果表示。 a. 最终数值结果的正确性或合理性是第一位的; b. 对数值结果或模拟结果进行必要的检验; 结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进。 c. 题目中要求回答的问题,数值结果,结论,须一一列出; d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据; e. 结果表示:要集中,一目了然,直观,便于比较分析。 ▲ 数值结果表示:精心设计表格;可能的话,用图形图表形式。 ▲ 求解方案,用图示更好。 9)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。 10)模型评价 优点突出,缺点不回避。 改变原题要求,重新建模可在此做。 推广或改进方向时,不要玩弄新数学术语。 11)参考文献 12)附录 详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。检查答卷的主要三点,把三关: a. 模型的正确性、合理性、创新性 b. 结果的正确性、合理性 c. 文字表述清晰,分析精辟,摘要精彩 三、关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题; 问题以怎样的方式回答――结果以怎样的形式表示; 每个问题要列出哪些关键数据――建模要计算哪些关键数据; 每个量,列出一组还是多组数――要计算一组还是多组数。 四、答卷要求的原理 1. 准确――科学性; 2. 条理――逻辑性; 3. 简洁――数学美; 4. 创新――研究、应用目标之一,人才培养需要; 5. 实用――建模、实际问题要求。 五、建模理念 1. 应用意识 要解决实际问题,结果、结论要符合实际; 模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。 2. 数学建模 用数学方法解决问题,要有数学模型; 问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。 3. 创新意识 建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

高二数学建模论文题目学生

1.1650年世界人口为5亿,当时的年增长率为,用指数增长模型计算什么时候世界人口达到10亿(实际上1850年前已超过10亿)。1970年世界人口为36亿,年增长率为,用指数增长模型预测什么时候世界人口会翻一番(这个结果可信吗)。你对同样的模型的出的两个结果有何看法?2.假定人口的增长服从这样的规律:时刻t的人口为x(t),t到 时间内人口的增长量与 成正比(其中 为最大人口容量)。试建立模型并求解。作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较。3.设一容积为V(单位:m3)的大湖受到某种物质的污染,污染物均匀地分布在湖中。若从某时刻起污染源被切断,设湖水更新的速率是r(单位:m3/d)。试见率求污染物浓度下降至原来的5%需要多长时间的数学模型。美国密西根湖的容积为4871 ,湖水流量为 。求污染中止后,污染物浓度下降到原来的5%所需要的时间。4.一个渔场中的鱼资源若不进行捕捞则按自限规律增长,若在渔场中有固定的船队进行连续作业,单位时间的产量与渔场中鱼的数量成正比,比例系数为k。试建立描述该渔场鱼的数量的数学模型,并讨论如何控制k,使渔场的鱼资源保持稳定。5.医生给病人开处方的时候必须注明两点:服药的剂量和服药的时间间隔。超剂量的药品会对身体产生不良的后果,甚至死亡,而剂量不足,则不能达到治病的目的。已知患者服药后,随着时间推移,药品在体内逐渐被吸收,发生生化反应,也就是体内药品的浓度逐渐减低。药品浓度减低的速度与体内当时药品的浓度成正比。当服药量为 ,服药间隔为 时,试分析体内药品浓度随时间的变化规律。6.一个慢跑者在平面上沿着他喜欢的路径跑步,突然一只狗攻击他,这只狗以恒定速率跑向慢跑者,狗的跑动方向始终指向慢跑者,计算并画出狗跑动的轨迹。7.经济学家和社会学家一只直很关心新产品的推销速度问题。试建立一个数学模型来描述它,并由此分析出一些有用的结果以指导生产。8.目前跳远的世界纪录是于1991年有迈克尔?鲍威尔跳出的,这是运动员们几十年不懈努力的结果。一般来说,每次的纪录都比上一个纪录略有进步,而在1968年的墨西哥奥运会上,鲍比?比蒙却跳出了超出前纪录()的惊人成绩(),足足多出,于是人们不禁怀疑是否有外在因素帮助比蒙创造了纪录,1968年奥运会时在海波2600m的墨西哥城举行的,很自然人民就想到这种外在因素是该地的高海拔,认为稀薄的空气对运动员的阻力很小,建立模型来讨论这种解释是否合理。9.在化工生产中常常需要知道丙烷在各种温度 和压力 下的导热系数 。下面是实验得到的一组数据。 68 68 87 87 106 106 140 140 ( ) 试求T= 和P= 下的. 下表给出了某一海域以码为单位的直角坐标Oxy上一点(x,y)(水面一点)以英尺为单位的水深为z,水深数据是在低潮时测得的,船的吃水深度为5英尺。问在矩形区域(75,200) (-50,150)里那些地方船要避免进入。低潮时测得的水深数据x 129 140 88 195 77 81 162 162 23 147 -81 3 84 4 8 6 8 6 8 8 9 9 8 8 9 4 911.用给定的多项式,如 ,产生一组数据 ,再在 上添加随机干扰 (可用rand产生(0,1)均匀分布随机数,或用randn产生N(0,1)分布随机数),然后用 和添加随机干扰的 作3次多项式拟合,与原系数比较,如果2或4次多项式拟合,结果如何?12.用电压V=10伏的电池给电容器充电,电容器上 时刻的电压为 ,其中 是电容器的初始电压, 是充电常数。试由下面一组 , 数据确定 和 。 1 2 3 4 5 7 9 (伏) . 弹簧在力 的作用下伸长 ,一定范围内服从胡克定律: 与 成正比,即 。现在得到下面一组 、 数据,并在 坐标下作图,可以看到 当 达到一定数据值后,就不服从这个定律了。试由数据确定 ,并给出不服从胡克定律时的近似公式。 1 2 4 7 9 12 13 15 17

题目随便找都行,主要是证明的观点,你比如说三点确定一个平面,六个人中要么至少有三个人相互认识要么至少有三个人相互之间不认识之类的啊,一般数学建模的竞赛都是源于生活,然后根据理论来证明,每一步都要有确定的理论依据,不要空想就好了

1、小学低年级数学游戏教学方法的案例研究。

2、以学习为中心的小学数学教学过程研究。

3、激发小学生数学学习兴趣的实践研究。

4、农村小学与初中数学教学衔接问题的研究。

5、小学低年级学生数学学习兴趣的培养。

6、游戏化教学在小学数学教学中的应用与研究。

7、激发兴趣对小学生数学探究能力影响的研究。

8、小学数学教学中信息技术应用策略研究。

9、《几何画板》在小学平面图形上的教学应用研究。

注意。

1、选题能决定论文的阅读价值。导师在某一方面的知识面是很广的,研究也是有深度的,所以如果对新的有价值的选题肯定特别有兴趣。

2、选题能够规划文章的方向、角度和规模,弥补知识储备的不足。对于所搜集的资料进行整理,加固积累,加深理解,对于分散的思想进行选择、鉴别和几种,最后对文章进行整体轮廓的勾勒。

3、合适的选题可以保证写作的顺利进行,提高研究能力。选题是论文实践的第一步,需要积极思考,适当的选题能够使论文写作过程进行得比较顺利。

4、考虑写作过程。在确定选题的时候虽然有些新颖的观点固然可以吸引到是的眼球,但是有的学生提出的新观点水平太高,可是学生的知识储备不够,语言表达得也不精练、准确、专业,结果弄巧成拙。也有的学生提出的观点自己在论证时就感觉到不是很可信。

初中学生数学建模论文题目

初中数学建模论文题材及范文已发送

摘要:席位分配是日常生活中经常遇到的问题,对于企业、公司、、学校政府部门都能解决实际的问题。席位可以是代表大会、股东会议、公司企业员工大会、等的具体座位。假设说,有一个学校要召集开一个代表会议,席位只有20个,三个系总共200人,分别是甲系100,乙系60,丙系40.如果你是会议的策划人,你要合理的分配会议厅的20个座位,既要保证每个系部都有人参加,最关键的就是要对个公平都公平,保证三个系部对你所安排的位置没有异议。那么这个问题就要靠数学建模的方法来解决。关键词: Q值法 公平席位问题的重述:三个系部学生共200名,(甲系100.乙系60,丙系40)代表会议共20席,按比例分配三个系分别为10、6、4席。老情况变为下列情况怎样分配才是最公平的,现因学生转系三系人数为.(1) 问20席该如何分配。(2) 若增加21席又如何分配。问题的分析:一、通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。目前沿用的惯例分配方法为按比例分配方法,即: 某单位席位分配数 = 某单位总人数比例′总席位 如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这样最初学生人数及学生代表席位为 系名 甲 乙 丙 总数 学生数 100 60 40 200 学生人数比例 100/200 60/200 40/200 席位分配 10 6 4 20学生转系情况,各系学生人数及学生代表席位变为 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 20 按惯例席位分配 10 6 4 20(1)20席应该甲系10席、乙系6席,丙系4席这样分配二、学院决定再增加一个代表席位,总代表席位变为21个。重新按惯例分配席位,有 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 21 按惯例席位分配 11 7 3 21这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。要怎样才能公平呢,这时就要用数学建模要解决。模型的建立:假设由两个单位公平分配席位的情况,设 单位 人数 席位数 每席代表人数单位A p1 n1 单位B p2 n2 要公平,应该有 = , 但这一般不成立。注意到等式不成立时有 若 > ,则说明单位A 吃亏(即对单位A不公平 ) 若 < ,则说明单位B 吃亏 (即对单位B不公平 )因此可以考虑用算式 来作为衡量分配不公平程度,不过此公式有不足之处(绝对数的特点),如:某两个单位的人数和席位为 n1 =n2 =10 , p1 =120, p2=100, 算得 p=2另两个单位的人数和席位为 n1 =n2 =10 , p1 =1020,p2=1000, 算得 p=2虽然在两种情况下都有p=2,但显然第二种情况比第一种公平。下面采用相对标准,对公式给予改进,定义席位分配的相对不公平标准公式:若 则称 为对A的相对不公平值, 记为 若 则称 为对B的相对不公平值 ,记为 由定义有对某方的不公平值越小,某方在席位分配中越有利,因此可以用使不公平值尽量小的分配方案来减少分配中的不公平。确定分配方案: 使用不公平值的大小来确定分配方案,不妨设 > ,即对单位A不公平,再分配一个席位时,关于 , 的关系可能有 1. > ,说明此一席给A后,对A还不公平;2. < ,说明此一席给A后,对B还不公平,不公平值为 3. > ,说明此一席给B后,对A不公平,不公平值为 4. < ,不可能 上面的分配方法在第1和第3种情况可以确定新席位的分配,但在第2种情况时不好确定新席位的分配。用不公平值的公式来决定席位的分配,对于新的席位分配,若有 则增加的一席应给A ,反之应给B。对不等式 rB(n1+1,n2)

取数学建模论文题目取法如下:

首先看论文首页的三要素:

1.标题:基于xx模型的xx问题研究

2.摘要:针对每一个问题分别阐述问题、方法、结果

3.关键词

其次看论文题目基本要求:

简短精练、高度概括、准确得体、恰如其分;既要准确表达论文内容,恰当反映所研究的范围和深度;又要尽可能概括、精练,力求题目的字数较少。

最后论文题目的字数一般不要超过20个字;当希望题目字数少与恰当反映论文内容发生冲突,可多用几个字表达准确。

基于旅行商规划模型(方法)的碎纸片拼接复原问题(问题)研究

基于利润最大化的奥运商业网点分布微观经济模型

基于力学分析的系泊系统设计

奥运场馆中临时商业网点设计中的数学模型化方法

CT 系统参数标定及反投影重建成像

拓展

参加数学建模比赛的意义

有利于培关学生综合解决问题的能力因为数学建模最后提交的成果是交一篇完整5论文,于大多数学生决说,款是第一次,已可么想高学生如何的数学知识用到实呀生活中的能力,提高学生合理利用网络道淘资料物能力,超是高学生的新意识和团队协作能力等,很名参委学生事后感收到团以合作能力对于建模比赛很重要,这对街后参加工作也会有很好的帮助。

2有利干促迸高职数学课程的改革

大多数学校的高职数学课还是采用软师在上面讲,学生在下面听的方法,殊不和对于高职生历言,他们不但听不懂,而目也不愿意听,这就促进教师要改进教学方法,最好的方法是在机房里上课,吉师把重要的理论思想教给学生之后,具体的计算方法可以让学生利用软件在电脑上操作,这样既提高了学生的学习兴趣,也提高了学生运用软件的能力。

数学建模大赛题目与论文

论文首页的三要素:1.标题:基于xx模型的xx问题研究2.摘要:针对每一个问题分别阐述问题、方法、结果3.关键词:…、…、建模论文题目形式一般采用以下两种:Ø 基于xx模型/方法(主要的、特色的)Ø 赛题所给题目/研究的问题

取数学建模论文题目取法如下:

首先看论文首页的三要素:

1.标题:基于xx模型的xx问题研究

2.摘要:针对每一个问题分别阐述问题、方法、结果

3.关键词

其次看论文题目基本要求:

简短精练、高度概括、准确得体、恰如其分;既要准确表达论文内容,恰当反映所研究的范围和深度;又要尽可能概括、精练,力求题目的字数较少。

最后论文题目的字数一般不要超过20个字;当希望题目字数少与恰当反映论文内容发生冲突,可多用几个字表达准确。

基于旅行商规划模型(方法)的碎纸片拼接复原问题(问题)研究

基于利润最大化的奥运商业网点分布微观经济模型

基于力学分析的系泊系统设计

奥运场馆中临时商业网点设计中的数学模型化方法

CT 系统参数标定及反投影重建成像

拓展

参加数学建模比赛的意义

有利于培关学生综合解决问题的能力因为数学建模最后提交的成果是交一篇完整5论文,于大多数学生决说,款是第一次,已可么想高学生如何的数学知识用到实呀生活中的能力,提高学生合理利用网络道淘资料物能力,超是高学生的新意识和团队协作能力等,很名参委学生事后感收到团以合作能力对于建模比赛很重要,这对街后参加工作也会有很好的帮助。

2有利干促迸高职数学课程的改革

大多数学校的高职数学课还是采用软师在上面讲,学生在下面听的方法,殊不和对于高职生历言,他们不但听不懂,而目也不愿意听,这就促进教师要改进教学方法,最好的方法是在机房里上课,吉师把重要的理论思想教给学生之后,具体的计算方法可以让学生利用软件在电脑上操作,这样既提高了学生的学习兴趣,也提高了学生运用软件的能力。

数学建模竞赛是数学知识的真正实践。中国大学生数学建模竞赛开展二十余年来,经过萌芽、缓慢发展已逐渐成熟起来,受到了教育部门、教师、学生的普遍重视。下文是我为大家蒐集整理的关于的内容,欢迎大家阅读参考!

浅析数学建模竞赛在高职数学教学中的重要性

摘 要:数学建模竞赛作为高职数学教学中一项重要的竞赛活动,其作为高校课外科技活动中规模最大的活动,在正常有效地开展下不仅促进了高校学生更好地掌握好计算机与数学知识综合运用的能力,而且也为高职学校的数学教学提供了更加科学性、创新性的教学内容和方法。

关键词:数学建模;高职数学;重要性

在高职数学教学过程中有效地运用数学建模竞赛是推进现代化数学教学发展的一项重要内容,其对于学校教学理念的转变、加强数学教学内容方法的改革、构建专业化数学教师团队的发展以及深化学生科技活动的创新具有重要意义。

一、推进高职数学教学理念的转变

随着社会化分工的精细化以及高职学校自身的发展,现在的高等职业技术学校不同于一般的高中教学,其教学任务重在培养面向生产、建设、管理、服务等一线的高技能型的人才,教学的核心在于提高学生的实际处理问题的能力以及创新能力。其中在高职学校数学教学过程中,其最终的目标就是要培养学生对于数学的具体实践意识、动手能力以及具有开创性的活动能力,在新时期对于高职数学专业的学生提出新理念和要求的情况下,在数学教学过程中引进“数学建模竞赛”这一活动,完全突破了传统的重理论教学的数学教学模式,取而代之的是以数学的实际应用能力为核心的数学教学理念。具体来说,数学建模竞赛在教学活动中的有效解决能够让这些学生充分认识到将知识学以致用的目的,与此同时,通过对数学建模竞赛问题的解决可以有效地激发学生对于以后就业、创业的信心和提高这些学生处理问题的逻辑思维能力。可以说,在运用了数学建模竞赛课堂的数学教学中,那些高职学生的数学思维能力会有一定程度的提高,其对于高职学生学习数学应该掌握的应用知识以及具体的学习思路都会有很大程度的改变,在通过参加数学建模竞赛的过程中逐渐地转变自身对于数学学习的理念,进一步提高学生对于数学学习的具体应用能力。

二、加强高职数学教学内容、方法的改革

数学建模竞赛的发展使其更加具有生活性,通常情况下,数学建模竞赛中的内容都是来自于现实中的工程技术以及在管理科学实践过程出现的具体问题,随着数学建模体系和规模的发展,现在的这些竞赛中所涉及的试题质量更加真实、范围幅度也更广泛。从高职数学本身的属性来说,对于基本数学知识的掌握是最基础的,只有这样才能为后期专业课程以及实际问题的解决提供良好的支援。而数学建模竞赛的内容正好是来自于各个不同的学科,只是通过相关的处理之后转化为了数学问题,那么这些高职学生在处理这些建模竞赛中的具体问题时,无外乎通过三种情况对数学进行建模:根据具体资料变化趋势对其进行整合;把在导数应用中所求得的极大值或者极小值作为最优化方法;通过使用一阶微分方程建立简化的数学模型。不难发现,这些对数学进行建模的内容和方法也是在今后的数学实践处理过程中,需要经常用到的知识,但是在原来高职学校数学教学的过程中,通过数学建模竞赛就已经把这些知识贯穿到其教学活动中,其不仅能提高高职数学教学内容的质量,而且也为这些学生学习和应用具体的数学知识提供了更好的方法,可以有效地促进高职数学教育事业的发展。

三、构建专业化数学教师团队的发展

从目前数学建模竞赛中所包含的题目来看,有很多赛题都是来自于实践生活中的科研活动,这种选题的方式,一方面提高了数学建模竞赛的真实性和有效性,另一方面也在一定程度上为高职数学教学的教师带来了挑战,在这种情况下,这些教师不仅必须不断地更新自身的知识库,还要对数学建模的方式以及相关软体的应用进行学习和应用,才能对高职学生数学知识的学习进行指导。具体来说,融入了数学建模竞赛的数学教学模式,其数学教师在教学的实践过程中由原来的知识讲解转变为了教学具体活动的引导者,他们在进行具体课程的教学之前,必须对其教学任务和教学内容录制成为“微课”或者“慕课”的形式,从而为学生学习数学建模的知识提供更多更好的机会,但这也使得这些教师必须对这些内容进行专业化的理解和体会,从而转化为更易让学生学懂的各种学习内容和具体的学习形式。与此同时,在进行数学教学的课程上,这些教师还要为学生解决数学建模竞赛中遇到的问题进行答疑,构建一种具有研讨氛围的课堂模式;在课后,相关的数学教师也要为学生布置或者引导学生解决一些专案任务,形成课前、课中、课后一体化的引导体系,在这其中通过有效数学建模竞赛这一载体,为专业化的数学教师队伍的培养提供了有效的平台。

四、促进学生科技活动创新性的进行

一般情况下,对于数学建模竞赛中那些来自于实践生活中、工业以及其他行业中的具体问题,都要求高职学生在限定的时间内提出具体解决的方案和途径,时间通常情况下是三天,因为时间比较短,很多时候学生想到的很多其他的想法并不能统一付诸实践,所以,可以把数学建模竞赛作为数学教学课后继续学习研究的课题,这对于高职学生进行创新性活动具有重要的推动作用。从近几年高职学校参加数学建模竞赛人数的变化来看,其数量逐年获得了增加,而且其获得的成绩也有了一定的提高,这些参加过数学建模竞赛的高职学生一般都已经具备了不同程度的科研意识和创新意识,在此基础上,在高职学校通过开展高职科技创新专案活动,可以更进一步地探索和挖掘这些高职学生的创新才能,与此同时,通过拓展数学建模其他相关活动的进行,如,构建第二课堂、开展数学建模讲座、组织数学建模培训班以及构建数学建模的具体方式等活动,都可以推动数学建模竞赛在高职数学教学中的应用价值,进一步促进这些高职学校学生对创新性科技活动的积极性和创新成果。

总之,在高职数学教学过程中,引入数学建模竞赛是顺应现代高职学校数学教学发展的需要,通过对数学建模竞赛进行有效的运用,不仅可以提高学生学习数学知识的各种能力,而且对于高职数学教学的改革以及专业化教师队伍的建设都有很重要的意义。

参考文献:

[1]周玮.基于数学建模竞赛促进高职数学教学改革[J].现代教育,201203.

[2]叶其孝.把数学建模、数学实验的思想和方法融入高等数学课的教学中去[J].工程数学学报,200308.

>>>下页带来更多的

大学生建模论文格式

1. 标题、摘要部分题目——写出较确切的题目(不能只写A题、B题)。摘要——200-300字,包括模型的主要特点、建模方法和主要结果。内容较多时最好有个目录。2. 中心部分1)问题提出,问题分析。2)模型建立:① 补充假设条件,明确概念,引进参数;② 模型形式(可有多个形式的模型);③ 模型求解;④ 模型性质;3)计算方法设计和计算机实现。4)结果分析与检验。5)讨论——模型的优缺点,改进方向,推广新思想。6)参考文献——也有特定格式。3. 附录部分计算程序,框图。各种求解演算过程,计算中间结果。各种图形、表格。(论文有其严格的格式,这里只是一点挂一漏万的表述,详细的内容留有下期,敬请观看)

在全国考试的时候,格式是与论文一起发出来的……有可能有些时候会有变动,这个得根据全国的要求来弄,等你九月份考试的时候就会知道了

数学建模论文格式模板以及要求

导语:伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,成为人们生活中非常重要的一门学科。下面是我分享的数学建模论文格式模板及要求,欢迎阅读!

(一)论文形式:科学论文

科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。

注意:它不是感想,也不是调查报告。

(二)论文选题:新颖,有意义,力所能及。

要求:

有背景.

应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。

有价值

有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。

有基础

对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。

有特色

思路创新,有别于传统研究的新思路;

方法创新,针对具体问题的特点,对传统方法的改进和创新;

结果创新,要有新的,更深层次的结果。

问题可行

适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。

(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确

要求:

数据真实可靠,不是编的数学题目;

数据分析合理,采用分析方法得当。

(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。

要求:

抽象化简适中,太强,太弱都不好;

抽象出的数学问题,参数选择源于实际,变量意义明确;

数学推理严格,计算准确无误,得出结论;

将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;

问题和方法的进一步推广和展望。

(五)(数学理论问题)问题的研究现状和研究意义:了解透彻

要求:

对问题了解足够清楚,其中指导教师的作用不容忽视;

问题解答推理严禁,计算无误;

突出研究的特色和价值。

(六)论文格式:符合规范,内容齐全,排版美观

1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。

要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。

2. 摘要:全文主要内容的简短陈述。

要求:

1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;

2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6字以内的文章摘要一般不超过3字;

3)不要举例,不要讲过程,不用图表,不做自我评价。

3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。

要求:数量不要多,以3-5各为宜,不要过于生僻。

(七). 正文

1)前言:

问题的背景:问题的来源;

提出问题:需要研究的内容及其意义;

文献综述:国内外有关研究现状的回顾和存在的问题;

概括介绍论文的内容,问题的结论和所使用的方法。

2)主体:

(数学应用问题)数学模型的组建、分析、检验和应用等。

(数学理论问题)推理论证,得出结论等。

3)讨论:

解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。

要求:

1)背景介绍清楚,问题提出自然;

2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;

3)突出所研究问题的难点和意义。

5. 参考文献:

是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。

要求:

1)文献目录必须规范标注;

2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。

(七)数学建模论文模板

1. 论文标题

摘要

摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。

一般说来,摘要应包含以下五个方面的内容:

①研究的主要问题;

②建立的什么模型;

③用的什么求解方法;

④主要结果(简单、主要的);

⑤自我评价和推广。

摘要中不要有关键字和数学表达式。

数学建模竞赛章程规定,对竞赛论文的评价应以:

①假设的合理性

②建模的创造性

③结果的正确性

④文字表述的清晰性 为主要标准。

所以论文中应努力反映出这些特点。

注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

一、 问题的重述

数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。

此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。

这部分的内容是将原问题进行整理,将已知和问题明确化即可。

注意:在写这部分的内容时,绝对不可照抄原题!

应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。

二、 模型假设

作假设时需要注意的问题:

①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!

②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!

③与题目无关的假设,就不必在此写出了。

三、 变量说明

为了使读者能更充分的理解你所做的工作,

对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意:

①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。

②要与数学中的习惯相符,不要使用程序中变量的写法

比如:一般表示圆周率;cba,, 一般表示常量、已知量;zyx,, 一般表示变量、未知量

再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)

四、模型的建立与求解

这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有:

①一定要有分析,而且分析应在所建立模型的前面;

②一定要有明确的模型,不要让别人在你的文章 中去找你的模型;

③关系式一定要明确;思路要清晰,易读易懂。

④建模与求解一定要截然分开;

⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的.写出其步骤;

⑥结果必须放在这一部分的结果中,不能放在附录里。

⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果!

⑧程序不能代替求解过程和结果!

⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中!

⑩每个问题和问题之间以及5个小点之间都必须空一行。

问题一:

1.建模思路:

①对问题的详尽分析;

②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味

③完成内容阐述所必需的公式推导、图表等

2.模型建立:

建立模型并对模型作出必要的解释

对于你所建立的模型,最好能对其中的每个式子都给出文字解释。

3.求解方法:

给出你的求解思路,最好能想写算法一样,写出你的算法。

4.求解结果:

你的求解结果必须精心设计(最好使用表格的形式),使人一目了然。

结果必须要全,对于你求解的一些必须的中间结果,也必须在这里反映出来。

5.模型的分析与检验

在计算出相应的结果之后,你必须对你的结果做出相应的解释。 因为你的结果往往是数学的结果,一般人无法理解。 你必须归纳出你的结论和建议。 这里主要应包括:

①这个结果说明了什么问题?

②是否达到了建模目的?

③模型的适用范围怎样?

④模型的稳定性与可靠性如何?

问题二:

问题三:

问题四:

问题五:

五、模型的评价与推广

这一部分应包括:

①你的模型完成了什么工作?达到了什么目的?得出了什么规律?

②你的建模方法是否有创造性?为今后的工作提供了什么思路?结果有什么理论或实际用途?

③模型中有何不足之处?有何改进建议?

④模型中有何遗留未解决的问题?以及解决这些问题可能的关键点和方向。

这一部分一定要有!

六、参考文献

引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中

书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

七、附录

不便于编入正文的资料都收集在这里。 应包括:

①某一问题的详细证明或求解过程; ②流程图;

③计算机源程序及结果;

④较繁杂的图表或计算结果(一般结果只要不超过A4一页,尽量都放在正文中)。

免责声明:本站文章信息来源于网络转载是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。不保证信息的合理性、准确性和完整性,且不对因信息的不合理、不准确或遗漏导致的任何损失或损害承担责任。本网站所有信息仅供参考,不做交易和服务的根据,如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任,并保证最终解释权。

附件一:平顶山学院第三届大学生数学建模竞赛报名表组 别 □甲组 □乙组 队长 队员 队员姓 名 专 业 学 号 手机号码 QQ 电子邮箱 备 注 附件二:平顶山学院第三届大学生数学建模竞赛论文格式规范 1.论文(答卷)用白色A4纸,上下左右各留出厘米的页边距。 2. 论文第1页为编号专用页,用于评委团评阅前后对论文进行编号,具体内容和格式见本规范第2页。3.论文第2页为承诺书,具体内容和格式见本规范第3页,(一定要注明是甲组还是乙组,数学建模组委会将分组评阅)。 4.论文题目和摘要写在论文第3页上,从第4页开始是论文正文。 5.论文第一页为承诺书,论文第二页为编号专用页,用于评委团评阅前后对论文进行编号。论文题目和摘要写在论文第三页上,论文1-3页按组委会统一要求编排,具体内容见下文,从第四页开始是论文正文。论文从正文开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号,注意,论文一律要求从上面装订。 6.论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 7.论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其他汉字一律采用小四号黑色宋体字。 8.提请大家注意:摘要在整篇论文评阅中占有重要权重,请认真书写摘要(以200-400字为宜,篇幅不超过一页)。评委团评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。9.引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍必须指出页码。参考文献按正文中的引用次序列出:书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年份。参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年份。参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。 10.本规范的解释权属于平顶山学院教务处。装 订 线第三届平顶山学院数学建模竞赛暨全国大学生数学建模竞赛选拔赛题目X 组 X 题密封号 2010年5月21日剪 切 线密封号 2010年5月21日 XXX 院 (系) 队员1 队员2 队员3姓名 XXX XXX XXX年级专业 XXX XXX XXX所选组别 X 组论文题目 XXXXXXXXX小 组 承 诺 我们仔细阅读了平顶山学院数学建模大赛规则.我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。年 月 日论 文 承 诺 书

相关百科

热门百科

首页
发表服务