比如(不知道你要什么难度的啊)草坪喷水器的喷射角度和拜访方式对水资源利用率的影响。其实我是大一的,这个题目我们同学选修课做过,但是考虑的因素比较多,高中做可以把模型简化一点。数学建模有很多啊……
在网上找的,希望对你有帮助 :))
可以探究有关旅游,人口的问题啊!
我学校最近就搞了一次高一数学的论文竞速赛(也是生活中的数学),这里有几个获奖题材你可以参考(1)数学概率与股市的涨幅(这个得了第一名)(2)三角函数对生活中几何研究的帮助(第二)(3)数学VS台风(第三)我也写了一篇,不过没有获奖,千万记住:如果你的标题是《XXX论》的话,肯定打靶了,因为我的就是这个,我老师也说了,他们批改的时候,一看到这种题目,就不会有什么好印象如果有帮助就采纳吧O(∩_∩)O~
数学建模论文范文一篇,带例题,结构格式要求有摘要、关键词、问题背景、建模过程、模型解释、小结、参考文献点一下就可以进去了,希望你早日完成论文。祝你顺利资料什么的都有,论文相关的。加油!
数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。 强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。
无忧在线有很多数学建模论文,你去搜一下就行
如何撰写数学建模论文兼谈数学建模竞赛答卷要求当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文.撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的.事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题.首先要明确撰写论文的目的.数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中.当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的.其次,要注意论文的条理性.下面就论文的各部门应当注意的地方具体地来作一些分析.(一)问题提出和假设的合理性在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉.列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题.历届数学建模竞赛的试题可以看作是情景说明的范例.对情景的说明,不可能也不必要提供问题的每个细节.由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣.所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系.这部分内容就应该在论文的“问题的假设”部分中体现.由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:(1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解.(2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考.(3)假设应验证其合理性.假设的合理性可以从分析问题过程中得出,例如从问题的性质出发作出合乎常识的假设;或者由观察所给数据的图象,得到变量的函数形式;也可以参考其他资料由类推得到.对于后者应指出参考文献的相关内容.(二)模型的建立在作出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件.论文中用到的各种数学符号,必须在第一次出现时加以说明.总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据.(三)模型的计算与分析把实际问题归结为一定的数学问题后,就要求解或进行分析.在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出).还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果.基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论.有些模型(例如非线性微分方程)需要作稳定性或其他定性分析.这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论.在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来.结论使用时要注意的问题,可以用助记的形式列出.定理和命题必须写清结论成立的条件.(三)模型的讨论对所作的数学模型,可以作多方面的讨论.例如可以就不同的情景,探索模型将如何变化.或可以根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化.还可以用不同的数值方法进行计算,并比较所得的结果.有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化.通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围.除正文外,论文和竞赛答卷都要求写出摘要.我们不要忽视摘要的写作.因为它会给读者和评卷人第一印象.摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意.语言是构成论文的基本元素.数学建模论文的语言与其他科学论文的语言一样,要求达意、干练.不要把一句句子写得太长,使人不甚卒读.语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句.在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态.最后,论文的书写和附图也都很重要.附图中的图形应有明确的说明,字迹力求端正.有条件的,最好能把文章用计算机打印出来.如何写好数学建模竞赛答卷一、写好数模答卷的重要性1.评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据.2.答卷是竞赛活动的成绩结晶的书面形式.3.写好答卷的训练,是科技写作的一种基本训练.二、答卷的基本内容,需要重视的问题1评阅原则:假设的合理性,建模的创造性,结果的合理性,表述的清晰程度.2答卷的文章结构0.摘要1.问题的叙述,问题的分析,背景的分析等,略2.模型的假设,符号说明(表)3.模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)4.模型的求解▲计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;▲引用或建立必要的数学命题和定理;▲求解方案及流程5.结果表示、分析与检验,误差分析,模型检验……6.模型评价,特点,优缺点,改进方法,推广…….7.参考文献8.附录计算框图详细图表……3要重视的问题0.摘要.包括:a.模型的数学归类(在数学上属于什么类型)b.建模的思想(思路)c.算法思想(求解思路)d.建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验…….)e.主要结果(数值结果,结论)(回答题目所问的全部“问题”)▲表述:准确、简明、条理清晰、合乎语法、字体工整漂亮;打印最好,但要求符合文章格式.务必认真校对.1.问题重述.略2.模型假设跟据全国组委会确定的评阅原则,基本假设的合理性很重要.(1)根据题目中条件作出假设(2)根据题目中要求作出假设关键性假设不能缺;假设要切合题意3.模型的建立(1)基本模型:1)首先要有数学模型:数学公式、方案等2)基本模型,要求完整,正确,简明(2)简化模型1)要明确说明:简化思想,依据2)简化后模型,尽可能完整给出(3)模型要实用,有效,以解决问题有效为原则.数学建模面临的、要解决的是实际问题,不追求数学上:高(级)、深(刻)、难(度大).能用初等方法解决的、就不用高级方法;能用简单方法解决的,就不用复杂方法;能用被人看懂、理解的方法,就不用只能少数人看懂、理解的方法.(4)鼓励创新,但要切实,不要离题搞标新立异,数模创新可出现在▲建模中,模型本身,简化的好方法、好策略等,▲模型求解中▲结果表示、分析、检验,模型检验▲推广部分(5)在问题分析推导过程中,需要注意的问题:分析:中肯、确切术语:专业、内行原理、依据:正确、明确,表述:简明,关键步骤要列出切忌:外行话,专业术语不明确,表述混乱,冗长.4.模型求解(1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密.(2)需要说明计算方法或算法的原理、思想、依据、步骤.若采用现有软件,说明采用此软件的理由,软件名称(3)计算过程,中间结果可要可不要的,不要列出.(4)设法算出合理的数值结果.5.结果分析、检验;模型检验及模型修正;结果表示(1)最终数值结果的正确性或合理性是第一位的;(2)对数值结果或模拟结果进行必要的检验.结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进;(3)题目中要求回答的问题,数值结果,结论,须一一列出;(4)列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;(5)结果表示:要集中,一目了然,直观,便于比较分析▲数值结果表示:精心设计表格;可能的话,用图形图表形式▲求解方案,用图示更好(6)必要时对问题解答,作定性或规律性的讨论.最后结论要明确.6.模型评价优点突出,缺点不回避.改变原题要求,重新建模可在此做.推广或改进方向时,不要玩弄新数学术语.7.参考文献8.附录详细的结果,详细的数据表格,可在此列出.但不要错,错的宁可不列.主要结果数据,应在正文中列出,不怕重复.检查答卷的主要三点,把三关:模型的正确性、合理性、创新性;结果的正确性、合理性;文字表述清晰,分析精辟,摘要精彩.三、对分工执笔的同学的要求四、关于写答卷前的思考和工作规划答卷需要回答哪几个问题――建模需要解决哪几个问题;问题以怎样的方式回答――结果以怎样的形式表示;每个问题要列出哪些关键数据――建模要计算哪些关键数据;每个量,列出一组还是多组数――要计算一组还是多组数……五、答卷要求的原理准确――科学性实用――实际问题要求.建模理念:1.应用意识:要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题.2.数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决.3.创新意识:建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新
数学建模论文范文--利用数学建模解数学应用题数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。 2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。 学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程: 现实原型问题 数学模型 数学抽象 简化原则 演算推理 现实原型问题的解 数学模型的解 反映性原则 返回解释 列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。 3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。 高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。 例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。 时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145 分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。 通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。 四、培养学生的其他能力,完善数学建模思想。 由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想: (1)理解实际问题的能力; (2)洞察能力,即关于抓住系统要点的能力; (3)抽象分析问题的能力; (4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力; (5)运用数学知识的能力; (6)通过实际加以检验的能力。 只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。 例2:解方程组 x+y+z=1 (1) x2+y2+z2=1/3 (2) x3+y3+z3=1/9 (3) 分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。 方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根 t3-t2+1/3t-1/27=0 (4) 函数模型: 由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3) 平面解析模型 方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。 总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
高中数学建模的主要过程及教学案例论文
在个人成长的多个环节中,许多人都写过论文吧,论文是学术界进行成果交流的工具。你知道论文怎样写才规范吗?以下是我为大家收集的高中数学建模的主要过程及教学案例论文,欢迎大家借鉴与参考,希望对大家有所帮助。
摘要: 高中新课程标准中提出了数学建模核心素养,数学建模素养的培养是高中数学教学中的重要内容,提高数学建模素养是影响学生综合数学素养的重要因素。数学建模共有四个步骤,通过对每一个步骤最核心内容的阐述,将有利于开展数学建模教学活动。
关键词: 数学建模;高中数学;数学教学;数学素养;
最新颁布的《普通高中数学课程标准》(2017年版)(以下简称《课标》(2017年版))中明确了中学阶段数学学科核心素养,包括数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析[1]。史宁中教授也曾多次表示数学学科核心素养可以更简单地概括为抽象、推理、模型。此次新课标的公布进一步强调了数学建模的重要性,突出了建模在数学教学中的重要地位。事实上,在2003年公布的《普通高中数学课程标准(实验)》中就开始强调数学建模的重要性。强调在整个高中课程内容中渗透数学建模思想,并至少在高中阶段安排一次建模活动。
在最初这对数学一线数学教育工作者来说是一个不小的挑战,特别是在重视推理、运算能力,强调解题为主,以面对高考为最根本出发点的高中数学教学中,教师们将数学建模融入课堂教学确实具有一定的难度。但是,随着不断的变化和认识,数学建模已经不再是陌生的事物。由于数学建模可以简化数学问题,更容易地分析数学数据解决数学问题。近年来,数学建模教学在我国中学教学中得到了广泛的应用。许多从事数学教学的积极参与到数学建模教学领域的研究中,寻找答案来解决数学教学中存在的问题。不过,随着社会的变化,人们对数学和人才培养质量也不断提出新的要求。加之新的教育理念、教育方法、教育技术快速地涌进一线教学,数学建模的教学也处在不断地变化甚至是挑战之中。
一、数学建模的主要过程
按照《课标》(2017年版)的要求,数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的素养。主要过程包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、建立模型,确定参数、计算求解,检验结果、改进模型,最终解决实际问题。通过这些描述可以看出数学建模的`过程实际上是一个完整的数学问题解决过程,在这个过程中学生要对问题有深入的分析,不但能够发现问题还有能够找到解决问题的办法,更为重要的是在进行一定操作运算之后能够对模型有所改进,验证结果。通过高中数学课程的学习,学生能够有意识地用数学语言表达现实世界,发现问题并提出问题,理解数学与现实的关系。学会用数学模型解决实际问题,积累实践经验。认识数学模型在科学、社会和工程技术中的作用,提高实践能力,增强创新意识和科学精神[2,3]。
数学最为基本的核心素养是抽象、推理、模型,但是这三者之间并不是相互独立,互不联系的过程。我们在解决一个实际问题的过程中,往往是三个素养同时发挥作用,或者多次交互发生,这一点从数学建模的四个过程就可以看出。
第一步,发现问题,提出问题。发现问题、提出问题一直以来是数学教育关注的重点内容。在20世纪我国的数学教育更加侧重学生三大能力的培养,在学生问题解决表现方面没有给予足够的重视。在21世纪初期,随着新课改的推行,问题解决能力逐渐受到大家的认可和重视。在课堂教学或者课程标准制定中都考虑了学生在这些方面的能力。我国学生历来比较擅长解决问题,并且往往是封闭性问题。蔡金法教授对中美学生在开放性问题的对比研究中清晰地展示了这种差异,而在问题提出等方面我国学生仍然还需提高,需要引导学生能够主动思考,主动发现问题,提出问题。作为数学建模的第一个过程,这里面的发现问题和提出问题是在一定的情境下,对所涉及的现实场景或者某个具体数学情境下的深入思考,所提出的问题可以是经过数学抽象后的数学问题,也可以是一个现实问题。这个过程最重要的是提出一个问题,而且是一个具有一定价值的问题,有了这个问题或者一系列问题才能够为后续的建模活动打开局面。
第二步,分析问题,建立模型。对问题的分析并不局限于数学,还需要调整其他学科或生活经验,往往还需要查阅资料。这一过程主要是对前面提出问题的再加工,在这一过程中一定要将问题进一步数学化,或者说完全转化为数学问题,虽然可能仍然带有不同的现实背景,但问题的内部结构关系一定是数学的。这种再加工的过程就是应用已经学习过的数学定理、概念、性质等知识把问题模型化。经过上述两个步骤完成了数学抽象的过程,从现实世界进入了数学世界,用数学的规律和方法分析问题。
第三步,确定参数,计算求解。这一过程就是解决问题的过程,在这个过程中参数的确定最为关键。参数的确定需要基于高质量的数据,而数据收集往往是数学建模活动的重要组成部分。数据的来源可以多样化,在一些封闭性问题中要利用所给数据。而在一些开放性问题中,数据的获得可以通过网络、教科书、其他资料等。用数据来确定假设模型中的参数,通过计算为了解决数学问题,这个过程体现了数学建模和数据分析、数学运算、逻辑推理等素养直接相关[4]。
第四步,检验结果,改进模型。这是最后的过程,在这个过程中要给出最后的结果。有些时候在第三个步骤就能够得出问题的结果,或者作出结论的判断。但是由于面对一个较为复杂的问题时,问题所涉及的方面较多,在模型中会涉及到很多参数,且在计算过程中所应用的数据来源也相对单一、有限,不能完全符合现实情况,会导致结果出现偏差。因此,在这个过程中研究者需要根据所解决问题的实际情况进行调整,做到最佳符合。
二、数学建模教学案例
例:市化工厂生产香皂,现接到生产180g装的香皂的订单。目前化工厂有两种规格的产品,分别是60g装每块元,150g装每块元。那么180g装的香皂出厂价格为多少?
第一步将香皂的体积与其表面积的函数关系看作一种相对规则形状的对应关系。在简化的情况下,明确问题中的变量和参数。这里可以设定香皂的出厂价格(y);香皂的成本(y1);香皂的包装成本(y2);香皂的质量(w);香皂的质量为w时包装的表面积(Sw)。
第二步抽象出数学模型:
(1)香皂的出厂价格y由香皂的生产成本y1和包装成本y2确定;
(2)当香皂质量为w时,其表面积为
(3)香皂的生产成本与香皂质量成正比,设比例系数为k1,即y1=k1w;
(4)香皂的包装成本与香皂表面积成正比,设比例系数为k2,即y2=kS2sw。
在上述讨论出的变量之间关系的基础上以及香皂质量为w时其各项成本与相关因素之间的关系,得出关于香皂出厂价格的函数
目标是在条件60g装的香皂出厂价为每块元和150g装的香皂出厂价为每块元下求出180g装的香皂的出厂价格。
第三步是模型求解。由题中已知条件60g装的香皂出厂价为每块元,150g装的香皂出厂价为每块元。将其代入上述所求出厂价格的函数中得到
二者联立得由此解得k1≈×10-3,将k1代入中,解得k2k3≈×10-2。
因此,香皂的出厂价格和香皂质量的表达式为
那么当w=180时,对应的函数值即180g装的该厂家生产的香皂的出厂价约为元。
接下来还可以对该问题做一步的讨论,如果考虑单位质量内香皂所对应的出厂价格(记为y3),可以得到如下函数关系式:
根据该函数的单调性也可以清楚地说明生活中常见的大包装的商品售出的价格更低的现象。
第四步,分析模型结果。根据日常生活经验,结合在超市等地购物可以知道同类型商品往往购买体积、质量较大的会更划算,也就是单位体积或者质量价格较低。这在酸奶、饮料中表现十分明显。不过也要考虑随着体积增大给包装带来的成本增加问题。事实上随着体积的变化还会带来商品摆放位置的变化,甚至影响商品的销售成本。可见这是一系列问题,实际的建模问题比我们计算的还要复杂得多。但是从这个问题中学生能够体会到数学建模的重要性,体会到数学对于解决问题的重要价值。
参考文献
[1]中华人民共和国教育部.普通高中数学课程标准(2017年版)[M].北京:人民教育出版社,2018.
[2]黄群慧.高中数学建模教学的实践探索[J].江西教育,2020(6):20-21.
[3]吴静怡.数学建模思想在高中数学课堂教学中的应用研究[J].数学教学通讯,2020(6):45-46
[4]章建跃,张艳娇,金克勤.数学建模活动的课程理解、教材设计与教学实施[J].中学数学教学参考,2020(5):13-19.
数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。
数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用
一、高等数学教学的现状
(一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二) 教学 方法 传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体 措施
(一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献
[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.
[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.
[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.
数学建模论文范文二:数学建模教学中数学素养和创新意识的培养
前言
创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.
因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].
在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.
而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.
近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].
所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.
因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].
因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.
1掌握数学语言独有的特点和表达形式
准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.
用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.
现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.
2借助数学建模教学使学生学会使用数学语言构建数学模型
根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.
而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.
对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.
3借助数学实验教学,展示高度抽象
的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.
因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.
配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.
选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.
教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.
教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.
数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.
4突出学生的主体作用,循序渐进培养学生学习、实践到创新
实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.
在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.
再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.
同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.
通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.
5具体的教学策略和途径
数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:
1)注重背景的阐述
让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.
2)注重模型建立与求解过程中的数学语言的使用
在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.
3)注重经典算法的数学软件的实现和改进
由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.
参考文献:
[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.
[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。
[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.
[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.
[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.
[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.
[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.
九年义务教育《数学课程标准》中指出:数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。数学教学要让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。 近几年,不仅每年高考都出了应用题,中考也加强了应用题的考察,这些应用题以数学建模为中心,以考察学生应用数学的能力,但学生在应用题中的得分率远底于其他题,原因之一就是学生缺乏数学建模能力和应用数学意识。因此中学数学教师应加强数学建模的教学,提高学生数学建模能力,培养学生应用数学意识和创新意识,本文结合教学实践,谈谈初中数学建模教学的一些学习体会。 ⒈数学建模是建立数学模型的过程的缩略表示,可用下面的框图来说明这一过程: 实际问题 抽象、简化,明确变量和参数 根据某种“定律”或“规律”建立变量和参数间的一个明确的数学关系 解析地或近似地求解该数学问题 解释、验证 投入使用 通不过 通过 审题 建立数学模型,首先要认真审题。实际问题的题目一般都比较长,涉及的名词、概念较多,因此要耐心细致地读题,深刻分解实际问题的背景,明确建模的目的;弄清问题中的主要已知事项,尽量掌握建模对象的各种信息;挖掘实际问题的内在规律,明确所求结论和对所求结论的限制条件。 简化 根据实际问题的特征和建模的目的,对问题进行必要简化。抓住主要因素,抛弃次要因素,根据数量关系,联系数学知识和方法,用精确的语言作出假设。 抽象 将已知条件与所求问题联系起来,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子、图形或表格等形式表达出来,从而建立数学模型。按上述方法建立起来的数学模型,是不是符合实际,理论上、方法上是否达到了优化,在对模型求解、分析以后通常还要用实际现象、数据等检验模型的合理性。 ⒉具体的建模分析方法 ① 关系分析法:通过寻找关键量之间的数量关系的方法来建立问题的数学模型方法。 ② 列表分析法:通过列表的方式探索问题的数学模型的方法。 ③ 图象分析法:通过对图象中的数量关系分析来建立问题的数学模型的方法。 ⒊掌握常见数学应用题的基本数学模型 在初中阶段,通常建立如下一些数学模型来解应用问题: ① 建立几何图形模型 ② 建立方程或不等式模型 ③ 建立三角函数模型 ④ 建立函数模型 案例 例1 王小姐参加了某晚会,晚会中共有40人,若每两人均握手一次,问参加者共握手多少次? 例2 设计合适的包装方式。 ⑴现有4盒磁带,有几种包装方式?哪种方式更省包装纸? ⑵若有8盒磁带,哪种方式更省包装纸? 例3 已知 、 、 均为非负实数,求证: 前两个问题比较明显的须建立几何图形模型来加以分析,第三个问题若用不等式变形来解决则非常困难,但建立几何图形模型解决则轻而易举, 如下图。 例4 甲、乙两厂分别承印八年级数学教材20万册和25万册,供应A、B两地使用,A、B两地的学生数分别为17万和28万,已知甲厂往A、B两地的运费分别为200元/万册和180元/万册;乙厂往A、B两地运费分别为220元/万册和210元/万册。(1)设总运费为w元,甲厂运往A地x万册,试写出w与x的函数关系式;(2)如何安排调动计划,能使总运费最少? 例5 我们已经学会了一些测量方法,现在请你观察一下学校中较高的物体,如教学楼、旗杆、大树等等,如何测量它们的高度呢? 本题显然要建立三角函数模型来分析解决 例6 爸爸准备为小明买一双新的运动鞋,但要小明自己算出穿几“码”的鞋。小明回家量了一下妈妈36码的鞋子长23厘米,爸爸41码的鞋子长厘米。那么自己穿的厘米长的鞋是几码呢? 本题较合理的数学模型是一次函数。 例7 1997年11月8日电视正在播放十分壮观的长江三峡工程大江截流的实况。截流从8:55开始,当时龙口的水面宽40米,水深60米。11:50时,播音员报告宽为米。到13:00时,播音员又报告水面宽为31米。这时,电视机旁的小明说,现在可以估算下午几点合龙,从8:55到11:50,进展的速度每小时减少米,从11:50到13:00,每小时宽度减少米,小明认为回填速度是越来越快的,近似地每小时速度加快1米。从下午1点起,大约要5个多小时,即到下午6点多才能合龙。但到了下午3点28分,电视里传来了振奋人心的消息:大江截流成功!小明后来想明白了,他估算的方法不好,现在请你根据上面的数据,设计一种较合理的估算方法(建立一种较合理的数学模型)进行计算,使你的计算结果更切合实际。 建模合理性分析:本题建模合理性有以下两个评价点 ⑴回填速度以每小时多少立方米填料计。这样,能否建立合理的回填速度计算模型便成为第一个评价要点。 ⑵注意到回填速度是逐渐加快的:水流截面越大,水越深,回填时填料被冲走的就越多,相应的进展速度就越慢。反之就越快。在模型中对回填速度越来越快这一点如何作出较合理的假设,这是第二个评价要点。 ⒋数学建模教学活动设计的体会 ①鼓励学生积极主动地参与,把教学过程更自觉地变成学生活动的过程。 教师不应只是“讲演者”、“总是正确的指导者”而应不时扮演下列角色:模特——他不仅演示正确的开始,也表现失误的开端和“拨乱反正”的思维技能。参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。 ②注意结合学生的实际水平,分层次逐步地推进。 数学建模对教师、对学生都有一个逐步的学习和适应的过程。教师在设计数学建模活动时,特别应考虑学生的实际能力和水平,起始点要低,形式应有利于更多的学生能参与。在开始的教学中,在讲解知识的同时有意识地介绍知识的应用背景。在应用的重点环节结合比较多的训练,如实际语言和数学语言,列方程和不等式解应用题等。逐步扩展到让学生用已有的数学知识解释一些实际结果,描述一些实际现象,模仿地解决一些比较确定的应用问题,到独立地解决教师提供的数学应用问题和建模问题,最后发展成能独立地发现、提出一些实际问题,并能用数学建模的方法解决它。 ③重视知识产生和发展过程教学。 由于知识产生和发展过程本身就蕴含着丰富的数学建模思想,因此老师既要重视实际问题背景的分析、参数的简化、假设的约定,还要重视分析数学模型建立的原理、过程,数学知识、方法的转化、应用,不能仅仅讲授数学建模结果,忽略数学建模的建立过程。 ④注意数学应用与数学建模的“活动性”。 数学应用与数学建模的目的并不是仅仅为了给学生扩充大量的数学课外知识,也不是仅仅为了解决一些具体问题,而是要培养学生的应用意识、数学能力和数学素质。因此我们不应该沿用老师讲题、学生模仿练习的套路,而应该重过程、重参与,更多地表现活动的特性。
1.1650年世界人口为5亿,当时的年增长率为,用指数增长模型计算什么时候世界人口达到10亿(实际上1850年前已超过10亿)。1970年世界人口为36亿,年增长率为,用指数增长模型预测什么时候世界人口会翻一番(这个结果可信吗)。你对同样的模型的出的两个结果有何看法?2.假定人口的增长服从这样的规律:时刻t的人口为x(t),t到 时间内人口的增长量与 成正比(其中 为最大人口容量)。试建立模型并求解。作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较。3.设一容积为V(单位:m3)的大湖受到某种物质的污染,污染物均匀地分布在湖中。若从某时刻起污染源被切断,设湖水更新的速率是r(单位:m3/d)。试见率求污染物浓度下降至原来的5%需要多长时间的数学模型。美国密西根湖的容积为4871 ,湖水流量为 。求污染中止后,污染物浓度下降到原来的5%所需要的时间。4.一个渔场中的鱼资源若不进行捕捞则按自限规律增长,若在渔场中有固定的船队进行连续作业,单位时间的产量与渔场中鱼的数量成正比,比例系数为k。试建立描述该渔场鱼的数量的数学模型,并讨论如何控制k,使渔场的鱼资源保持稳定。5.医生给病人开处方的时候必须注明两点:服药的剂量和服药的时间间隔。超剂量的药品会对身体产生不良的后果,甚至死亡,而剂量不足,则不能达到治病的目的。已知患者服药后,随着时间推移,药品在体内逐渐被吸收,发生生化反应,也就是体内药品的浓度逐渐减低。药品浓度减低的速度与体内当时药品的浓度成正比。当服药量为 ,服药间隔为 时,试分析体内药品浓度随时间的变化规律。6.一个慢跑者在平面上沿着他喜欢的路径跑步,突然一只狗攻击他,这只狗以恒定速率跑向慢跑者,狗的跑动方向始终指向慢跑者,计算并画出狗跑动的轨迹。7.经济学家和社会学家一只直很关心新产品的推销速度问题。试建立一个数学模型来描述它,并由此分析出一些有用的结果以指导生产。8.目前跳远的世界纪录是于1991年有迈克尔?鲍威尔跳出的,这是运动员们几十年不懈努力的结果。一般来说,每次的纪录都比上一个纪录略有进步,而在1968年的墨西哥奥运会上,鲍比?比蒙却跳出了超出前纪录()的惊人成绩(),足足多出,于是人们不禁怀疑是否有外在因素帮助比蒙创造了纪录,1968年奥运会时在海波2600m的墨西哥城举行的,很自然人民就想到这种外在因素是该地的高海拔,认为稀薄的空气对运动员的阻力很小,建立模型来讨论这种解释是否合理。9.在化工生产中常常需要知道丙烷在各种温度 和压力 下的导热系数 。下面是实验得到的一组数据。 68 68 87 87 106 106 140 140 ( ) 试求T= 和P= 下的. 下表给出了某一海域以码为单位的直角坐标Oxy上一点(x,y)(水面一点)以英尺为单位的水深为z,水深数据是在低潮时测得的,船的吃水深度为5英尺。问在矩形区域(75,200) (-50,150)里那些地方船要避免进入。低潮时测得的水深数据x 129 140 88 195 77 81 162 162 23 147 -81 3 84 4 8 6 8 6 8 8 9 9 8 8 9 4 911.用给定的多项式,如 ,产生一组数据 ,再在 上添加随机干扰 (可用rand产生(0,1)均匀分布随机数,或用randn产生N(0,1)分布随机数),然后用 和添加随机干扰的 作3次多项式拟合,与原系数比较,如果2或4次多项式拟合,结果如何?12.用电压V=10伏的电池给电容器充电,电容器上 时刻的电压为 ,其中 是电容器的初始电压, 是充电常数。试由下面一组 , 数据确定 和 。 1 2 3 4 5 7 9 (伏) . 弹簧在力 的作用下伸长 ,一定范围内服从胡克定律: 与 成正比,即 。现在得到下面一组 、 数据,并在 坐标下作图,可以看到 当 达到一定数据值后,就不服从这个定律了。试由数据确定 ,并给出不服从胡克定律时的近似公式。 1 2 4 7 9 12 13 15 17
题目随便找都行,主要是证明的观点,你比如说三点确定一个平面,六个人中要么至少有三个人相互认识要么至少有三个人相互之间不认识之类的啊,一般数学建模的竞赛都是源于生活,然后根据理论来证明,每一步都要有确定的理论依据,不要空想就好了
1、小学低年级数学游戏教学方法的案例研究。
2、以学习为中心的小学数学教学过程研究。
3、激发小学生数学学习兴趣的实践研究。
4、农村小学与初中数学教学衔接问题的研究。
5、小学低年级学生数学学习兴趣的培养。
6、游戏化教学在小学数学教学中的应用与研究。
7、激发兴趣对小学生数学探究能力影响的研究。
8、小学数学教学中信息技术应用策略研究。
9、《几何画板》在小学平面图形上的教学应用研究。
注意。
1、选题能决定论文的阅读价值。导师在某一方面的知识面是很广的,研究也是有深度的,所以如果对新的有价值的选题肯定特别有兴趣。
2、选题能够规划文章的方向、角度和规模,弥补知识储备的不足。对于所搜集的资料进行整理,加固积累,加深理解,对于分散的思想进行选择、鉴别和几种,最后对文章进行整体轮廓的勾勒。
3、合适的选题可以保证写作的顺利进行,提高研究能力。选题是论文实践的第一步,需要积极思考,适当的选题能够使论文写作过程进行得比较顺利。
4、考虑写作过程。在确定选题的时候虽然有些新颖的观点固然可以吸引到是的眼球,但是有的学生提出的新观点水平太高,可是学生的知识储备不够,语言表达得也不精练、准确、专业,结果弄巧成拙。也有的学生提出的观点自己在论证时就感觉到不是很可信。
数学建模论文1阅读人数:3681人页数:6页马勇19740603论文关键词:数学建模 数学应用意识 数学建模教学论文摘要:高中数学人教A版数学Ⅲ学生要学习算法初步、统计、概率。算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活 的许多方面,算法思想已经成为现代人应具备的一种数学素养,统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供 依据。概率是研究随机现象的科学它为人们认识客观世界提供了重要 的思维模式和解决问题的方法,同时为统计学的发展提供了理论基础。为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。高中数学人教A版数学Ⅲ学生要学习算法初步、统计、概率。算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活 的许多方面,算法思想已经成为现代人应具备的一种数学素养,统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供 依据。概率是研究随机现象的科学它为人们认识客观世界提供了重要 的思维模式和解决问题的方法,同时为统计学的发展提供了理论基础。数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自进入21世纪的知识经济时代以来,数学科学的地位发生了巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理论与方法的不断扩充使得数学已成为当代高科技的一个重要组成部分,数学已成为一种能够普遍实施的技术。培养学生应用数学的意识和能力也成为数学教学的一个重要方面。目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。“我国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。”我国普通高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学建模通过"从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必要时修改模型使之更切合实际"这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建模活动,将有效地培养学生的能力,提高学生的综合素质。数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性"; "数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表重磅推荐:百度阅读APP,免费看书神器!1/6达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。