首页

> 学术期刊知识库

首页 学术期刊知识库 问题

毕业论文问卷的信度效度分析方法

发布时间:

毕业论文问卷的信度效度分析方法

可以使用在线分析SPSSAU,不需要下载,授权给SPSSAU即可进行在线分析。

轻松拖拽,点一下即生成结果。

以信度分析举例

1、拖拽分析项到右侧选框中,点击“开始信度分析”

2、生成结果及分析建议

一、问卷的信度。 信度即可靠性,是指采用同一方法对同一对象进行调查时,问卷调查结果的稳定性和一致性,即测量工具(问卷或量表)能否稳定地测量所测的事物或变量。具体评价方法有: 1、重复检验法。同样的问卷,对同一组访问对象在尽可能相同的情况下,在不同时间进行两次测量。两次测量相距一般在两到四周之内。用两次测量结果间的相关分析或差异的显著性检验方法,评价量表信度的高低。 2、交错法。用两个不同形式的等价问卷,对同一组受访者在不同的时间(通常间隔两到四周)进行测量。两次测量结果间的相关性被用来评价问卷的信度。 3、折半法。折半法是将上述两份问卷合成一份问卷(通常要求这两份问卷的问题数目相等),每一份作为一部分,然后考察这两个部分的测量结果之间的相关性。

楼上说的是因子分析中的球形检验吧,跟问卷的信度和效度检验不一样吧。问卷的信度检验,我记得是在“分析”下拉,有一个叫“标度”的,点进去后选“可靠性分析”才对,它对应的是有α系数。

1、在spss中导入问卷的相关数据,选择分析窗口,点击降维里面的因子分析选项。

2、下一步,将所有的变量都选为因子分析变量,没问题的话就选择确定。

3、这个时候,在勾选原始分析结果还有KMO和Bartlett的球形度检验这两项以后,就可以选择继续了。

4、这样一来,会得到相关的分析结果,即可实现spss检验问卷的信度和效度了。

毕业论文问卷效度分析方法

做满意度调查问卷的信度、效度分析可以用SPSS。问卷调查建议选择问卷星,问卷星通过制定详细周密的在线问卷,要求被调查者据此进行回答以收集资料,支持微信、邮件和短信等方式收集数据,数据回收后可以进行分类统计、交叉分析,并且可以导出到Word、Excel、SPSS等。提高问卷调查的信度在设计问卷的时候,需要对问题本身做到逻辑严密、易懂,确保不同的人看到它不会产生不一样的理解,导致结果偏差;提高效度必须做到核心的问题不漏,可有可无的问题不留,无关的问题不设,每一道题目,都是会对主要的研究目的分析有帮助的。想要了解更多关于调查问卷的问题,推荐咨询问卷星 问卷星调查系统支持多种题型,可以设置跳转、关联和引用逻辑。支持微信、邮件和短信等方式收集数据,数据回收后可以进行分类统计、交叉分析,并且可以导出到Word、Excel、SPSS等;同时拥有49种题型,应有尽有;同时单选、多选、矩阵、排序、量表、比重、表格、文件上传等多种题型,让你的调查问卷一目了然!

问卷调查法是教育研究中广泛采用的一种调查方法,为了保证问卷具有较高的可靠性和有效性,在形成正式问卷之前,应当对问卷进行试测,并对试测结果进行信度和效度分析,根据分析结果筛选问卷题项,调整问卷架构,从而提升问卷的信度和效度。说了这么多,我们先对一些调研小白解释一下,什么是信度和效度?信度:可靠性、一致性或稳定性。比如说,在对同一对象进行测量,多次测量结果都很接近,我们就认为这个结果是可信的,也就是信度高。如果每次测量的结果都有很大的差异,则说明信度较低。效度:正确性程度,效度越高表示测量结果越能显示出所要测量对象的真正特征。他们两的差别在于信度度量的是问卷测量结果是否一致的可靠程度,而不涉及结果是否正确的问题;效度则针对问卷测量的目的,重点考察测量结果的有效性。对于量表来说,效度是首要条件,而信度是效度的必要条件。也就是说有效的问卷必定是可信的问卷,但可信的问卷未必是有效的问卷。了解了定义后,我们来聊一聊检测调查问卷信效度的方法。信度分析(可靠性分析)1. 重测信度法用同样的问卷对同一被测间隔一定时间的重复测试,也可称作测试——再测方法,计算两次测试结果的相关系数。很显然这是稳定系数,即跨时间的一致性。重测信度法适用于事实性的问卷,也可用于不易受环境影响的态度、意见式问卷。由于重测信度需要对同一样本试测两次,而被测容易受到各种事件、活动的影响,所以间隔时间需要适当。较常用者为间隔二星期或一个月。2. 复本信度法 复本信度法是让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。复本信度属于等值系数。复本信度法要求两个复本除表述模式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。3. 折半信度法 折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。这种方法一般不适用于事实式问卷,常用于态度、意见式问卷的信度分析。进行折半信度分析时,如果量表中含有反意题项,应先将反意题项的得分作逆向处理,以确保各题项得分方向的一致性,然后将全部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数,最后求出整个量表的信度系数。4. α信度系数法 Cronbachα信度系数是目前最常用的信度系数,其公式为︰α=(n/n-1)*(1-(∑Si2)/ST2)其中,n为量表中题项的总数,Si2为第i题得分的题内方差,ST2为全部题项总得分的方差。从公式中可以看出,α系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。这种方法适用于态度、意见式问卷(量表)的信度分析。效度分析1. 单项与总和相关效度分析 也称为内容效度或逻辑效度,指的是测量的内容与测量目标之间是否适合,也可以说是指测量所选择的项目是否“看起来”符合测量的目的和要求。主要依据调查设计人员的主观判断。这种方法用于测量量表的内容效度。内容效度又称表面效度或逻辑效度,它是指所设计的题项能否代表所要测量的内容或主题。对内容效度常采用逻辑分析与统计分析相结合的方法进行评价。2. 准则效度分析 准则效度又称为效标效度或预测效度。准则效度分析是根据已经得到确定的某种理论,选择一种指标或测量工具作为准则,分析问卷题项与准则的联系,若二者相关显著,或者问卷题项对准则的不同取值、特性表现出显著差异,则为有效的题项。评价准则效度的方法是相关分析或差异显著性检验。在调查问卷的效度分析中,选择一个合适的准则往往十分困难,使这种方法的应用受到一定限制。3. 结构效度分析 结构效度是为了说明从量表所获得的结果与设计该量表时所假定的理论之间的符合程度。研究者在设计量表时,通常会事先假定一定的量表结构(n个维度),这种结构是否与测量的数据相符合(是否确定存在上述几个维度),需要进行验证。为了提升调查问卷的质量,进而提升整个研究的价值,问卷的信度和效度分析绝非赘疣蛇足,而是研究过程中必不可少的重要环节。

效度分析,简单来说就是问卷设计的有效性、准确程度。 当我们在为研究主题设计问卷时,都会希望问题实际测量到的是我们希望测量的,这样研究的数据才能准确的说明问题。 例如,我们想了解一个班级里学生的综合成绩情况,正式研究中如果仅测试数学一科,然后得出结论,这样的研究有效性可能很低,原因在于实际测量的方向与研究方向之间有很大偏差。 效度又可分为内容效度、结构效度和效标效度。 (1)内容效度,指问卷题项对相关概念测量的合理性情况,通常是以文字来说明问卷的有效性。如通过参考文献,或者权威来源说明问卷的权威性和有效性。还有就是通过对问卷前测并结合结果进行题项的修正等工作来充分说明问卷的有效性。 (内容效度并非统计软件进行的统计方法,对于问卷研究来讲,基本上均需要进行内容效度说明。) (2)结构效度,指测量题项与测量维度之间的对应关系。测量方法有两种,一种是探索性因子分析,另外一种是验证性因子分析。其中,探索性因子分析是当前使用最为广泛的结构效度测量方法。使用探索性因子分析进行效度验证时,应该以量表为准,对变量或者量表分别进行分析。(3)效标效度,如果以前有一份权威且标准的量表数据,现在依旧使用该量表进行研究,并且收集回来一份数据。以前权威标准数据作为标准,当前数据与前一份数据之间进行相关分析,如果说相关系数值较高,则说明效标效度良好。(1)背景 为测量消费者对某产品的购买意愿及影响因素(共5个分别为:因素产品, 促销, 渠道推广, 价格, 个性化服务),设计了一份问卷。共25题(均为量表题),其中Q1~Q15影响因素对应题项,Q16~Q19为购买意愿对应题项,现希望对量表效度情况进行分析,如果有不合理题项将其进行删除处理。(2)操作步骤 这里使用的是探索性因子分析以验证问卷效度水平 第一步:在左侧分析方法菜单栏找到【问卷研究】->【效度】 第二步:将变量Q1~Q15拖拽到右侧分析框内 第三步:设置输出因子个数,预期有5个维度,所以设置因子个数为5。如果没有确定预期维度,也可以选择让系统输出。点击“开始效度分析”(3)分析结果 第一步:首先分析KMO值: KMO值为,大于,意味着数据具有效度。同时,旋转后累积方差解释率为>50%,说明研究项的信息量可以有效的提取出来。第二步:分析题项与因子的对应关系;如果对应关系与研究心理预期基本一致,则说明效度良好。 可以看到所有题项的共同度均大于。除Q6与预期维度对应不符以外,其他题项均与预期对应关系一致,且题项的因子载荷系数绝对值均高于。因而删除Q6,再次分析。题项均已满足预期对应关系,说明效度良好,与专业情况完全相符。第三步:对分析进行总结。 使用探索性因子分析进行效度分析,15个量表题目共分为5个维度;删除掉Q6共一道题,最终余下14个题项,此14项与维度对应关系情况良好,与专业预期相符。从上表可知:KMO值为>,通过巴特球形检验,累积方差解释率值为,说明5个维度可以提取出大部分题项信息。因而综合说明研究数据具有良好的结构效度水平。   (1)效度分析只针对量表题,如为非量表题可用文字形式进行描述以测量问卷的有效性 (2)如果KMO值过低,可删除共同度较低项,再次分析 (3)效度分析时,很可能需要删除题目,以便于维度和题项对应关系符合预期,最关键的地方在于:维度和题项对应关系是否与专业预期符合;其余指标相应比较容易达标,最核心的是让维度和题项对应关系保持基本一致性 (4)无论如何效度分析均不达标,可考虑以单个维度分别进行分析,有几个维度就分析几次(同一维度的题目一起分析,仅需要删除掉因子载荷系数值低于的题项即可,不用考虑多个维度间的逻辑对应关系) (5)如果分析过程中删除某题项(即删除该题目及对应的数据),后续所有的分析都要按删除后的问卷作为标准进行分析更多分析方法的使用说明可到 SPSSAU官网 查看。

今天的我总结几个毕业论文问卷分析的几点建议,希望能帮到各位看官 PS:此处的问卷分析,仅代表具有量表的问卷分析。 因为成熟量表往往经历了现实的考验,其信度和效度达标的概率比较大。 而自己设计的量表,很容易出现信度和效度检验结果惨不忍睹的情况。 这样我们在处理信度分析,探索性因子分析,甚至验证性因子分析的时候,都能游刃有余。 另外如果题目是2个,因子分析KMO值是一定等于的,而一般我们最低也得吧 为了信度和效度能出一个比较好的结果,在文字描述部分,同维度的各个题目,尽量能给一些心理暗示,或者描述上尽量相近,这样能使得维度内的题目的相关性较好,从而信度和效度也不至于太差 一般达到就可以了,以上更好。最好是把每个维度的信度都求一下,然后总体再求一个。这个一般没什么难度,也很容易通过。如果你的数据信度不行,那就进行下项目分析,将高低分样本中不具有区分度的样本删掉。 只求量表的KMO值和巴特利球形检验值。这可能是效度检验的最低要求了。除非导师认同,最好不要仅用这两个值 大部分的同学都会用到的,也是比较不容易通过的一个分析。 遇到最多的问题莫过于,假设题目的维度归属,跟实际出的结果不一致。 碰到这种情况,一般进行如下处理: ①只有少数题目不匹配 要么直接删掉,要么暂时保留 ②绝大多数题目不匹配 从新设计量表,重新收集数据,重新来过吧 若非特殊情况,不建议使用。因为实际收集的问卷数据要想探索性因子分析+验证性因子分析,各个指标均达到理想值,那几乎是不可能的。 如果你看到某某人的论文中用了这样的检验方法,指标非常漂亮,我可以负责任的告诉你,其大概率是改过数据了。 特殊情况1:模型验证阶段,使用AMOS结构方程,导师要求效度检验阶段使用验证性因子分析。 特殊情况2:模型验证阶段,未使用AMOS结构方程,导师也要求效度检验使用验证性因子分析。(导师傻x) 这里特别提一点,显著性的p值代表的是两者是否相关,皮尔逊或者斯皮尔曼系数代表的是相关性程度。 显著性检验通过了,皮尔逊或者斯皮尔曼系数大小才有意义,绝对值越大相关性越大,正负代表正相关与负相关。 显著性通过了,但是系数偏小,那相关性也是显著的,只是两者是存在显著的弱相关性,而不是系数小就代表不相关。 可能是最简单的模型了,将自变量和因变量放进,直接跑就行了。 ①要不要放控制变量 这个随意。 如果放控制变量,尽量放一些层级类的变量,不要放多分类变量。 层级变量比如学历(初中,高中,大学,硕士) 多分类变量比如职业 层级变量的赋值尽量与其题项对应。 如果放了多分类的变量,尽量删掉,如果想保留最好做成虚拟变量 ②用标准系数还是标准化系数 标准化系数。 ③要不要做VIF共线性检验 若非导师要求,那就不做。 ④r方多大算好 这个指标没有非常严格的标准,而且跟导师的价值观有非常深刻的影响。 对于现实收集的数据而言,个人认为,一般大于就好了。 不过我遇到过大于,导师也认为可以接受的情况。 这是一个仁者见仁的问题 从科学的角度来看,应该与你研究的场景有密切的关系。 但是,中介效应模型要比调节效应模型容易出通过,而且解释起来也不那么绕口。 所以,如果不是想给自己挖坑,那就用中介效应模型吧。 快捷验证中介效应模型的方式(快速确定是否存在中介,非正式使用) 条件1,中介变量,自变量和因变量,相关性都显著 条件2,自变量和中介变量关于因变量的回归模型,中介变量的系数显著 如果满足上述两个条件,中介效应一定显著,如果条件2中的自变量也显著,那么就是部分中介效应,如果不显著就是完全中介效应。 另外极少数情况是用sobel来检验中介效应的 如果不是导师要求amos验证中介效应,尽量用spss回归的方式检验中介效应。 快捷验证条件效应模型的方式(快速确定是否有调节效应,非正式使用) 先将调节因子计算处理(标准化后的自变量和中介变量相乘即可) 自变量,调节变量和调节因子关于因变量的回归模型,调节因子的系数显著。 公众号:alone5400

毕业论文问卷信度和效度分析

益派调查网可以免费发布调查问卷,可以免费使用样本。调查问卷包含的题型多种多样,开放题、矩阵题什么的都能做,基本满足论文中设计的数据调查及分析。

信度可以把它理解为可靠度、一致性、稳定性。用于测量样本回答结果是否可靠,即样本有没有真实作答量表类题项。比如说,在对同一对象进行测量,多次测量结果都很接近,就会认为这个结果是可信的,真实的,也就是信度高。如果每次测量的结果都有很大的差异,则说明信度较低。衡量信度的方法有很多种,常用的信度系数包括:克隆巴赫α系数和折半系数,可在spssau中进行分析。效度分析,简单来说就是问卷设计的有效性、准确程度,用于测量题项设计是否合理。效度又可分为内容效度、结构效度和效标效度。内容效度,通常是以文字来说明问卷的有效性。如通过参考文献,或者权威来源说明问卷的权威性和有效性。还有就是通过对问卷前测并结合结果进行题项的修正等工作来充分说明问卷的有效性。结构效度,指测量题项与测量维度之间的对应关系。测量方法有两种,一种是探索性因子分析,另外一种是验证性因子分析。其中,探索性因子分析是当前使用最为广泛的结构效度测量方法,SPSSAU提供此两种分析方法。效标效度,如果以前有一份权威且标准的量表数据,现在依旧使用该量表进行研究,并且收集回来一份数据。以前权威标准数据作为标准,当前数据与前一份数据之间进行相关分析,如果说相关系数值较高,则说明效标效度良好。但在实际分析中,效标效度很少使用。

应该达到以上。信度和效度分析在问卷分析中大多都会用到的,即使是成熟的问卷,一般也是需要做的,在本科和研究生的论文中均适用。信度和效度相当于是对于问卷质量的一个前置条件,如果问卷的信度和效度比较好,证明问卷的数据可靠性比较高,问卷数据内部一致性比较高,所以可以用来做后续的建模分析。如果信度和效度不高,可能就需要重新设计问卷,发放问卷。信度是指测验结果的一致性、稳定性及可靠性。指的是采取同样的方法对同一对象重复进行测量时,其所得结果相一致的程度。

一般如果是含有量表的问卷都需要做信效度分析。非量表问卷可以使用文字形式进行描述,无论是什么类型的问卷,都应该在论文中进行表述以证明数据质量可信可靠。

如果是自编量表,一般需要进行预测试,就是在小范围发放问卷,进行信效度分析,对信效度较低的题项进行修改或删除,便于研究者对初测问卷进行一定调整以形成最终版本。当然,正式研究还是要做信效度分析。

信效度具体分析参考SPSSAU的帮助手册说明。

信度分析智能文字解读-SPSSAU

参考资料:信度分析-SPSSAU

毕业论文的问卷信效度

论文写作中,导师常常告诉我们,调研要有信效度检验,那么信度、效度是什么?怎么分析信效度呢? 信度是指测量的可信程度。 我们来看一个比较理想的状态。当我们用一个测量工具,对我们需要测量的对象测量了很多次后,得到的结果都是一样的。这时我们可以说这个测量工具是可以信赖的。 但是现实中,由于随机误差的影响,不可能达到这种状态。 那么我们怎么评估我们的测量工具是可以信赖的呢? 我们可以计算我们用自己的测量工具得到的结果与理想状态的差距。如果差距越小,那么我们的测量工具就越可靠。 这个差距就是信度。 信度有不同的指标,我们只要明白什么时候用什么指标来检验信度就可以了。剩下的计算,统计软件可以帮我们完成,我们只要选择我们需要的计算公式进行计算,就能得出我们想要的结果。 效度则是考察我们使用的测量工具是否能有效度量我们要测量的变量。  较为公认的说法是,效度分为三种:内容效度、校标效度和构念效度。 内容效度指问题的撰写是否能准确反映测量的初衷。 校标效度指测量工具与某个公认的标准的关系是否紧密。(研究目的是测量是否能较为准确地进行预测。) 构念效度指测量工具能测量出的结果和理论预测或理论结论之间的关系是否紧密相关。(研究目的是验证理论用于测量的有效性。)那么文献中经常看到的表面效度,聚合效度,区别效度呢? 表面效度:题项的表述是否明确、清晰、规范。(一般依据专家的意见来检验,具有主观性,不够牢靠。) 构念效度包含区分效度,聚合效度。当测量对象包含较为复杂的相互关系时,需要细化分析了。 区别效度:一个测量中,不同项目得到的测量结果能够得到区分。 聚合效度:测量一个特征的项目中,项目中不同题项应该指向同一相同特征。 那我们具体要怎么做呢? 和信度一样,我们只要了解在什么情况下用什么指标检验效度就好,剩下的计算软件会帮我们完成。在写文章时,我们只要依据自己的问卷或量表,选择合适的信度、效度检验指标,利用软件计算出结果,就可以验证问卷或量表设计是否可信、有效了。

毕业论文信效度分析要。效度(Validity)即有效性,它是指测量工具或手段能够准确测出所需测量的事物的程度。效度是指所测量到的结果反映所想要考察内容的程度,测量结果与要考察的内容越吻合,则效度越高;反之,则效度越低。效度分为三种类型:内容效度、准则效度和结构效度。

一般要大于说明问卷调查质量比较良好。效度的特征:1、效度具有相对性:任何测验的效度是对一定的目标来说的,或者说测验只有用于与测验目标一致的目的和场合才会有效。所以,在评价测验的效度时,必须考虑效度测验的目的与功能。2、效度具有连续性:测验效度通常用相关系数表示,它只有程度上的不同,而没有“全有”或“全无”的区别。效度是针对测验结果的。

毕业论文问卷信效度

益派调查网可以免费发布调查问卷,可以免费使用样本。调查问卷包含的题型多种多样,开放题、矩阵题什么的都能做,基本满足论文中设计的数据调查及分析。

论文信度效度怎么分析介绍如下:

要看做的内容是什么,如果你的问卷中的四个维度同质性很高,那么我们通常只报告整体的Cronbach's Alpha系数。比如一份语言测试(单一能力测验),那么就不需要报告每个部分的Cronbach's Alpha了。

但是如果不是,比如是人格测验,那么通常是要报告每个分测验和总的Cronbach's Alpha。不过你放心,一般这个信度指标和题目数量有关,也就是说题目越多,信度就越高。所以总体的指标一定不会低于单个分测验的。

另外,测验当然要做效度分析了。既然你的问卷结构已经确定,建议你做验证性因素分析,可以用结构方程模型做,具体工具推荐AMOS。

信效度分析:

统计学分析中经常会采用问卷调查的方法来获取分析数据,为了保证统计设计质量,往往需要检测调查问卷的质量,也就是通过问卷测量得到的,反映调查对象客观现象的统计数据的准确性。一个好的调查问卷设计不仅可以保证在多次重复使用下得到可靠的数据结果,即准确性。

信度效度检验在问卷调查的过程中是必须要做的。

信度效度检验在问卷调查的过程中是必须要做的,因为问卷调查往往只是整个项目的一个环节,在正确项目的目标下,一定会另有调查的可信度,有效分析来支持调查结果,这样我们的问卷调查才有可信度,结果也能趋于正确数据。

信度指测验结果的一致性、稳定性及可靠性,一般多以内部一致性来加以表示该测验信度的高低。信度系数愈高即表示该测验的结果愈一致、稳定与可靠。

系统误差对信度没什么影响,因为系统误差总是以相同的方式影响测量值的,因此不会造成不一致性。反之,随机误差可能导致不致性,从而降低信度。信度可以定义为随机误差R影响测量值的程度。如果R=0,就认为测量是完全可信的,信度最高。

一般如果是含有量表的问卷都需要做信效度分析。非量表问卷可以使用文字形式进行描述,无论是什么类型的问卷,都应该在论文中进行表述以证明数据质量可信可靠。

如果是自编量表,一般需要进行预测试,就是在小范围发放问卷,进行信效度分析,对信效度较低的题项进行修改或删除,便于研究者对初测问卷进行一定调整以形成最终版本。当然,正式研究还是要做信效度分析。

效度与信度是优良测量工具所必备的两项主要条件。效度与信度之间存在的关系,可以用一句话来概括:信度是效度的必要条件而非充分条件。

信度是效度的必要条件,就是说,一个指标要有效度就必须有信度,不可信就不可能正确。但是,信度不是效度的充分条件,即是说,有了信度,不一定有效度。

严格来说!不是所有问卷都适合做信效度分析,信效度分析主要针对【量表】类问卷,而如果只是调查一些客观现实(如年龄、性别、职业、车辆、工资等)以【显变量】为主的问卷,是不适合做信效度分析的!判断一些变量之间是否适合做信效度检验,应该关注这么几点:

(1)潜变量:直接无法观测到的变量,主要反映人的认知和主观意愿等。

(2)可测:可以被测量的变量,一般是有序或等距的变量,而不是像地点这样的分类变量。

(3)变量之间等距等尺度:例如均采用5点或7点评分法获得的测量数据。

相关百科

热门百科

首页
发表服务