数学公式是使用“公式编辑器”进行编辑,步骤如下:
1、首先打开毕业论文文档,光标点击在需要输入数学公式的位置,点击文档菜单栏的“插入”;
2、点击插入后,在插入菜单下找到“公式”,并点击;
3、点击“公式”后,系统会自动弹出“公式编辑器”窗口,用户可在该界面进行公式编辑;
4、利用公式编辑器中提供的各种运算符号,辅助键盘进行公式编辑;
5、编辑完成后,点击“公式编辑器”右上角的关闭健,即完成本次编辑,如果需要修改,点击文档中公式,可直接进入“公式编辑器”进行修改。
一、公式显示不完全问题
1.用鼠标直接调整公式大小。在Word文档中,可以直接单击要修改的数学公式,当光标变成“双箭头”时,通过鼠标拖动,把要修改的数学公式调节到合适的大小。但是,这种方法只适合于只含有极少量数学公式的文档,否则操作比较麻烦,并且拖动的精确度也不高
2。设置页面格式。在Word文档状态下中,调出“文件→页面设置”下拉菜单,在“文档网格”项中,勾选“无网格”项(如图1所示)。 这样也可以解决行距不同的问题。这可以说是一种解决方法,但是文章总体上的排版就错了,比如每页的行数不等了,对应的行距好像缩小了
3。设置段落格式。在Word文档中,把光标放到需要调整的段落,然后调出“格式→段落”对话框,在行距中选择“固定值”,不管默认的12磅,把你在此段落的行距直接敲进去,比如设置成16磅(与单倍行距相近),但也可以直接设置成行(与16磅相近,且这是个关键,直接敲行比较方便,如图2所示)。这可以说是一种解决方法,但是还是有它的缺点,如果公式大小如果不一致就不好用了,比如有分式时,分式就被部分掩盖了,用单倍行距就不均匀了。
4。 除了上面所提供三种方案,经过反复实践,发现了另外一种有效的解决办法。操作步骤如下:在公式编辑器中,选择“尺寸→定义”将对话框中“完全”所对应的值改为“9 单位pt(磅)(如图3所示)”,这样便可以解决在文字编写的Word文档中某一行使用公式编辑器输入公式后,发现行距明显变大的问题了。
数学公式可以用公式编辑器插入,这个较容易。word2003版的话,点击插入对象,然后找找一个叫mathtype的就可以了。
office2007及以后的版本都是公式编辑器的……安装新版本office吧
你可以选择直接看文档,遇见一个问题解决一个,这样效率很高!自己做个笔记,这样就不用看那么厚的书了!
一般由7部分组成,依次为:(1)封面,(2)中文摘要和关键词,(3)英文摘要和关键词,(4)目录,(5)正文,(6)参考文献,(7)发表论文和参加科研情况说明。各部分具体要求如下:(1)封面(采用学校统一规定的封面)(2)中文摘要和关键词中文摘要应将学位论文的内容要点简短明了地表达出来,约300~500字左右(限一页),字体为宋体小四号。内容应包括工作目的、研究方法、成果和结论。要突出本论文的创新点,语言力求精炼。为了便于文献检索,应在本页下方另起一行注明论文的关键词(3-5个)。(3)英文摘要和关键词 内容应与中文摘要相同。字体为Times New Roman小四号。(4)目录 标题应简明扼要并标明页号。(5)正文 毕业论文一般要求不少于8000字,内容一般包括:国内外研究现状、理论分析与讨论、研究成果、结论及展望。(6)参考文献只列出作者直接阅读过、在正文中被引用过的文献资料。参考文献一律放在论文结束后,不得放在各章之后。(7)发表论文和参加科研情况说明指在学期间发表论文和参加科研情况。
公式编辑器当然可以。方法1:利用WORD自带的公式编辑器(打开方法:菜单栏“插入”---“对象”---‘新建’的‘对象类型’中 选择“Microsoft 公式 ”)。打开Microsoft 公式 后就可以利用里面的工具输入相应的公式表达式了。使用方法:默认输入公式后会占用较大行间距,使得文档排版不怎么美观,你可以像调整word图片一样,设置其版式为“浮于文字上方”(方法:选中----右击----设置对象格式”----“版式”选用“浮于文字上方”),然后就可以随便放置其位置了。如果对于大小要调整,则选中选中》然后拖动公式对角控点就可以调整期大小了。方法2:下载一个Mathtype插件并安装,然后WORD里的工具栏会多出一个Mathtype工具,利用该工具输入公式。
用MATHTYPE编辑的数学公式,知网查重结果:
编辑出来的公式是图片格式显示不出来,所以检测不到的。
祝查重顺利!
高中所有数学公式整理
圆的公式
1、圆体积=4/3Π(r^3)
2、面积=Π(r^2)
3、周长=2Πr
4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】
5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】
二.椭圆公式
1、椭圆周长公式:l=2πb+4(a-b)
2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.
3、椭圆面积公式:s=πab
4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。
三.两角和公式
1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
四.倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
五.半角公式
1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)
2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)
3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))
4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))
六.和差化积
1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)
2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)
3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb
5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb
七.等差数列
1、等差数列的通项公式为:an=a1+(n-1)d (1)
2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项.,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.
3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)*项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1
八.等比数列
1、等比数列的通项公式是:An=A1*q^(n-1)
2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)
3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N*,则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.
九.抛物线
1、抛物线:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。
2、顶点式y=a(x+h)*+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。
3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。
4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2pxx^2=2pyx^2=-2py。
太多了,你要归类而记 三角函数:两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+…+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 •万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 1²+2²+3²+4²+…+n²=n(n+1)(2n+1)/6 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理 公式分类 公式表达式 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h。。。。。。。。
三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a,-b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/aX1·X2=c/a 注:韦达定理判别式
b2-4a=0 注:方程有相等的两实根
b2-4ac>0 注:方程有一个实根
b2-4ac<0 注:方程有共轭复数
三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n·22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41·2+2·3+3·4+4·5+5·6+6·7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2px x2=2pyx2=-2py直棱柱侧面积S=c·h斜棱柱侧面积S=c'·h正棱锥侧面积S=1/2c·h'正
棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi·r2圆柱侧面积S=c·h=2pi·h圆锥侧面积S=1/2·c·l=pi·r·l弧长公式l=a·ra是圆心角的弧度数r>0扇形面积公式s=1/2·l·r锥体体积公式V=1/3·S·H圆锥体体积公式V=1/3·pi·r2h斜棱柱体积V=S'L 注:其中S'是直截面面积,L是侧棱长柱体体积公式;V=s·h
圆柱体V=pi·r2h正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径余弦定理b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标圆的一般方程x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0抛物线标准方程y^2=2pxy^2=-2px x^2=2pyx^2=-2py直棱柱侧面积S=c·h斜棱柱侧面积S=c'·h正棱锥侧面积S=1/2c·h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi·r2圆柱侧面积S=c·h=2pi·h圆锥侧面积S=1/2·c·l=pi·r·l
弧长公式l=a·ra是圆心角的弧度数r>0扇形面积公式s=1/2·l·r锥体体积公式V=1/3·S·H斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s·h圆柱体V=pi·r2h倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B))2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/22+4+6+8+10+12+14+…+(2n)=n(n+1)51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41·2+2·3+3·4+4·5+5·6+6·7+…+n(n+1)=n(n+1)(n+2)/3常用导数公式1、y=c(c为常数)y'=02、y=x^ny'=nx^(n-1)3、y=a^xy'=a^xlna4、y=e^xy'=e^x5、y=logaxy'=logae/x6、y=lnxy'=1/x7、y=sinxy'=cosx8、y=cosxy'=-sinx9、y=tanxy'=1/cos^2x10、y=cotxy'=-1/sin^2x11、y=arcsinxy'=1/√1-x^212、y=arccosxy'=-1/√1-x^213、y=arctanxy'=1/1+x^214、y=arccotxy'=-1/1+x^2
必修1有对数函数的换滴公式,必修2就是求面积,体积公式,必修3是古典概型和几何概型面积计算公式,必修4就是正余弦的诱导公式,和差化积和积化和差公式,必修5就是等差数列和等比数列的通项公式,求和公式,选修2-3就是排列组合公式
公式编辑器当然可以。方法1:利用WORD自带的公式编辑器(打开方法:菜单栏“插入”---“对象”---‘新建’的‘对象类型’中 选择“Microsoft 公式 ”)。打开Microsoft 公式 后就可以利用里面的工具输入相应的公式表达式了。使用方法:默认输入公式后会占用较大行间距,使得文档排版不怎么美观,你可以像调整word图片一样,设置其版式为“浮于文字上方”(方法:选中----右击----设置对象格式”----“版式”选用“浮于文字上方”),然后就可以随便放置其位置了。如果对于大小要调整,则选中选中》然后拖动公式对角控点就可以调整期大小了。方法2:下载一个Mathtype插件并安装,然后WORD里的工具栏会多出一个Mathtype工具,利用该工具输入公式。
所有的公式都是用world公式器打出来的,而那样打出来的是图片插入进去的,这样是根本没法检测重复率的,因为图片没法查重,所以没必要担心。 第一步:初稿一般重复率会比较高(除非你是自己一字一句写的大神),可以采用万方、papertest去检测
数学公式是使用“公式编辑器”进行编辑,步骤如下:
1、首先打开毕业论文文档,光标点击在需要输入数学公式的位置,点击文档菜单栏的“插入”;
2、点击插入后,在插入菜单下找到“公式”,并点击;
3、点击“公式”后,系统会自动弹出“公式编辑器”窗口,用户可在该界面进行公式编辑;
4、利用公式编辑器中提供的各种运算符号,辅助键盘进行公式编辑;
5、编辑完成后,点击“公式编辑器”右上角的关闭健,即完成本次编辑,如果需要修改,点击文档中公式,可直接进入“公式编辑器”进行修改。
尽量减少公式的使用
论文在论述的过程中,最好是以文字形式来进行论述。而且毕业论文公式查重的情况现在越来越严格,而且有些论文系统也进行了升级。之所以出现这种情况,也是因为现在论文检测系统比较多,所以查重严格度也有所提高。所以尤其是理科中很多常用公式,如果出现在论文中,对于查重率就会有所影响。建议尽可能少使用,或者在没有必要的情况下,不要出现公式为好。
注意事项:
1、论文题目选定后,基本上不能有太大变动,但可以进行细节上的修改。
2、系统在识别重复和引用内容时,会结合上下文内容,对道道一定语义级别的内容进行判定,并不是单纯根据一两个词、字或者单独的句子进行判断,完整内容的重合情况,是由系统根据算法综合得出的,对文献内容的原样抄袭、稍作改写、语句顺序稍作调整等,都能自动检测和识别,并能快速定位和动态标注显示。
3、在保持原文语意的前提下,尽可能大幅度修改重复的文字部分,确保语句通顺、流畅。
4、论文是修改出来的,重复率修改也是一样,发现重复率高并不可怕,一定要树立敢打必胜的信心,数据摆在那里,既然这个事实不可逆转,就要通过努力修改,确保重复率检测能在合理范围内。
第一部分:题头
题头含标题标题要求直接、具体、醒目、简明扼要(25字以内),3号宋体加粗,居中编排。
第二部分:提要
提要部分含摘要、关键词等,分别以【摘要】、【关键词】(小4号楷体加粗)开头,内文用5号楷体,各空2个字格编排。
摘要是论文内容的高度概要,是不加注释和评论的简短陈述,其内容应说明论文的主要研究内容、研究方法、研究结论等。
关键词3-5个,应能反映全文的主题、主要内容、主要思想、主要观点等,关键词之间以分号隔开,关键词结束不用标点符号。
第三部分:正文
正文是论文的核心内容,含引言与本论。
引言,要简要说明论文话题的缘起、价值与意义、研究方法等,直接引入本论。本论是主体部分,内容须观点明确、论据充分、论证严密、逻辑清晰、层次分明、语言流畅、结构严谨。
正文应按照内容层次分节,编号,要层次分明,用5号宋体。
各种标题要求如下:
一级标题:以阿拉伯数字排序标号,数字后用英文句号,一级标题标号与标题采用小3号黑体,单独一行,居左顶格编排。
二级标题:用阿拉伯数字在一级标号后增第二层标号顺序标注,两层标号之间用英文句号。第二层标号后不使用任何符号 。二级标题标号与标题采用4号黑体,单独一行,居左顶格编排。
三级标题:用阿拉伯数字在二级标号后增第三层标号顺序标注,各层标号之间用英文句号分割,第三层标号后不使用任何符号,标题标号与标题采用小4号黑体,单独一行,居左顶格编排。
各级标题字数均以不超过1行为限,标题结束处不使用任何标点符号。
定义:定义在各一级标题下顺序标号,比如:第1节第二个定义为定义。
教学案例示例:各种举例在各一级标题下按顺序统一标号,比如:第2节第3个例子应标注为例。定义、定理、引理、推论、注记、示例等均空2格编排,各字头(推论、引理等)为小4号黑体,其后空一字格,其内容采用5号楷体。
教学案例示例:各种举例在各一级标题下按顺序统一标号,比如:第2节第3个例子应标注为例,定义、定理、引理、推论、注记、示例等均空2格编排,各字头(推论、引理等)为小4号黑体,其后空一字格,其内容采用5号楷体。
公式:独立的数学公式要居中排列,在各一级标题下在最右边按顺序标号,并用括弧括住,比如:第2节第5个公式标注为()。多行公式的各行应当按照第一行的第一个等号对齐,各行的开头应该是等号或其它运算符号。
第四部分:参考文献
参考文献是指论文在研究和写作中参考或引证的主要文献资料,以【参考文献】作为标题(小4号楷体加粗,单独一行居左顶格编排),文献等用5号楷体,列于论文的末尾。所列参考文献的要求是:
1, 所列参考文献应是正式出版物,以便读者考证。
2, 所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
3,参考文献标注方式按《GB7714-87文后参考文献著录规则》进行.
数学系本科毕业论文格式规范
一、论文中句号全部用“.”,奇数页码在右下角,偶数页码在左下角。
二、打印:表格单面打印,论文部分正反面打印。
三、页边距:上下边距35mm,左右边距32mm,文字部分为倍行距,有数学公式的内容为单倍行距。
四、正文层次格式按学校文件执行。
(1)论文的正文层次格式:
第1章 xxxx(三号黑体,段前24磅,段后18磅,单倍
行距,序号与题名间空1个汉字字符,居中)
xxxx(四号宋体加黑,段前24磅,段后6磅,左对齐,
不接排)
xxxx(小四号黑体,段前
12磅,段后6磅,左对齐,
不接排)
a. xxxx(小四号黑体)xxx(空
1个汉字字符,接排,小四号
宋体)
(1) xxxx(小四号黑体)xxx(空
1个汉字字符,接排,小四
号宋体)
1)xxxx(小四号黑体)xxx(空
1个汉字字符,接排,小四
号宋体)
(2)图表要求:图、表内容使用5号宋体。
图:图序一律采用阿拉伯数字分章编写,例如,第2章第3个图的图序为“图”,图题应简明,图序与图题间空1个汉字字符,居中排于图的下方。
表:表序一律采用阿拉伯数字分章编写,例如,第2章第3个表的表序为“表”,表序与表题间空1个汉字字符,居中排于表的上方。
五、基本格式与装订顺序 1、封皮
2、开题报告 3、任务书 4、中期检查表 5、答辩许可证 6、质量考核表 7、毕业论文封皮
8、(单独占一页)
中文题目(二号宋体加黑)(从此项开始双面打印)
中文摘要(摘要顶左边):
摘要(小四号宋体加黑,摘要的内容用小四号宋体,字数约
200-300字)
关键词(小四号宋体加黑,关键词的内容用小四号宋体),关键词3—5个(关键词之间用一个汉字空格隔开,最后一个关键词不加标点)。
9、(单独占一页)
英文题目(二号Times New Roman字体加黑)
Abstract(小四号Times New Roman字体加黑,内容用小四号Times New Roman字体)
Keywords (小四号Times New Roman字体加黑,内容用小四号Times New Roman字体),关键词3—5个(关键词之间用两个英文空格隔开,最后一个关键词不加标点)。
10、目录(小四号宋体加黑):章节不超过3级,标清页码,自动生成。 参考格式
目 录
引 言„„„„„„„„„„„„„„„„„„„„„„„„1 第1章„„„„„„„„„„„„„„„„„„„„„„„„„2 „„„„„„„„„„„„„„„„„„„„„„„„„3 第2章„„„„„„„„„„„„„„„„„„„„„„„„„4 „„„„„„„„„„„„„„„„„„„„„„„„10 总 结„„„„„„„„„„„„„„„„„„„„„„„„„20 致 谢„„„„„„„„„„„„„„„„„„„„„„„„„22 参考文献„„„„„„„„„„„„„„„„„„„„„„„23 附 录„„„„„„„„„„„„„„„„„„„„„„„„„24
11、正文(字数在8000字以上)
12、参考文献 文章:作者,题目,期刊,年份,页面。 书:作者,书名,出版时间。 示范格式
参考文献(左对齐,小四号宋体加黑,具体的'文献为小四号宋体,篇
数在 10篇以上)
(1)期刊
[序号]主要负责者(两位以上作者中间用逗号分开).文献名[J].期刊名称(外文刊名可缩写,缩写后的首位字母应大写),出版年,卷号(期
8
号):起止页码.
[1]赖炎连,高自友,贺国平.非线性最优化的广义梯度投影法[J]. 中国科学(A),1992,(9):916-924.
[2] O. L. Mangasarian, Linear and nonlinear separation of patterns by linear programming [J]. Operation Research, 1965, 13: 444-452.
(2)专著、论文集,学位论文、报告
[序号]主要负责者(两位以上作者中间用逗号分开).文献题名[文献表示类型].出版地:出版者,出版年.起止页码.
[3]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997. [4]张筑生.微分动力系统的不变集[D].北京:北京大学数学系数学研 究所,1983.
第部:题题含标题标题要求直接、具体、醒目、简明扼要(25字内)3号宋体加粗居编排第二部:提要提要部含摘要、关键词等别【摘要】、【关键词】(4号楷体加粗)内文用5号楷体各空2字格编排摘要论文内容高度概要加注释评论简短陈述具独立性自含性其内容应说明论文主要研究内容、研究、研究结论等论文文摘要般3-5行宜关键词3-5应能反映全文主题、主要内容、主要思想、主要观点等关键词间号隔关键词结束用标点符号第三部:文文论文核内容含引言与本论引言或称引要简要说明论文题缘起、价值与意义、研究等直接引入本论本论主体部内容须观点明确、论据充、论证严密、逻辑清晰、层明、语言流畅、结构严谨文应按照内容层节编号要层明用5号宋体各种标题要求:1.级标题:阿拉伯数字排序标号数字用英文句号.:1.…级标题标号与标题采用3号黑体单独行居左顶格编排2.二级标题:用阿拉伯数字级标号增第二层标号顺序标注两层标号间用英文句号.割第二层标号使用任何符号:…二级标题标号与标题采用4号黑体单独行居左顶格编排3.三级标题:用阿拉伯数字二级标号增第三层标号顺序标注各层标号间用英文句号.割第三层标号使用任何符号:…三级标题标号与标题采用4号黑体单独行居左顶格编排各级标题字数均超1行限标题结束处使用任何标点符号4.定义:定义各级标题顺序标号比第1节第二定义定义.结论与说明:定理、引理、推论、注记等结论与说明各级标题按顺序统标号比第2节第3述定理、引理、推论或注记引理则标注引理推论则标注推论.教案例示例:各种举例各级标题按顺序统标号比第2节第3例应标注例定义、定理、引理、推论、注记、示例等均空2格编排各字(推论、引理等)4号黑体其空字格其内容采用5号楷体7.公式:独立数公式要居排列各级标题右边按顺序标号并用括弧括住比第2节第5公式标注()行公式各行应按照第行第等号齐各行应该等号或其运算符号第四部:参考文献参考文献指论文研究写作参考或引证主要文献资料【参考文献】作标题(4号楷体加粗单独行居左顶格编排)文献等用5号楷体列于论文末尾所列参考文献要求:(1)所列参考文献应式版物便读者考证(2)所列举参考文献要标明序号、著作或文章标题、作者、版物信息参考文献标注式按《GB7714-87文参考文献著录规则》进行文献期刊、著作书写格式别:[1]作者(甲乙).篇名.杂志[J]卷(期):起始页().[2]作者(甲乙).书名[M].点:版社.