首页

> 学术期刊知识库

首页 学术期刊知识库 问题

关于欧拉的数学论文的参考文献

发布时间:

关于欧拉的数学论文的参考文献

数学家欧拉的故事:

18世纪中叶,欧拉和其他数学家在解决物理问题过程中,创立了微分方程这门学科。值得提出的是,偏微分方程的纯数学研究的第一篇论文是欧拉写的《方程的积分法研究》 。欧拉还研究了函数用三角级数表示的方法和解微分方程的级数法等等。

欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达式。1766年他出版了《关于曲面上曲线的研究》,建立了曲面理论。这篇著作是欧拉对微分几何最重要的贡献,是微分几何发展史上的一个里程碑。欧拉在分析学上的贡献不胜枚举。

如他引入了Γ函数和B函数,证明了椭圆积分的加法定理,最早引入了二重积分等等。数论作为数学中一个独立分支的基础是由欧拉的一系列成果所奠定的。他还解决了著名的组合问题:柯尼斯堡七桥问题。在数学的许多分支中都常常见到以他的名字命名的重要常数、公式和定理。

欧拉是18世纪数学界的中心人物。他是继牛顿(Newton)之后最重要的数学家之一。在他的数学研究成果中,首推第一的是分析学。欧拉把由伯努利家族继承下来的莱布尼茨学派的分析学内容进行整理,为19世纪数学的发展打下了基础。

他还把微积分法在形式上进一步发展到复数范围,并对偏微分方程,椭圆函数论,变分法的创立和发展留下先驱的业绩。在《欧拉全集》中,有17卷属于分析学领域。他被同时代的人誉为“分析的化身”。

欧拉将数学分析方法用于力学,在力学各个领域中都有突出贡献;他是刚体动力学和流体力学的奠基者,弹性系统销定性理论的开创人。

在1736年出版的两卷集《力学或运动科学的分析解说》中,他考虑了自由质点和受约束质点的运动微分方程及其解。欧拉在书中把力学解释为“运动的科学”,不包括“平衡的科学”即静力学。

参考资料来源:百度百科-莱昂哈德·欧拉

1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作。1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面。1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一。1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷。书中包括微分方程论和一些特殊的函数。

中英文对照太难了英文的维基百科Leonhard Euler Leonhard Euler (pronounced Oiler; IPA [ˈɔʏlɐ]) (April 15, 1707 – September 18 [. September 7] 1783) was a pioneering Swiss mathematician and physicist, who spent most of his life in Russia and Germany. He published more papers than any other mathematician in history.[1]Euler made important discoveries in fields as diverse as calculus and topology. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, optics, and is considered to be the preeminent mathematician of the 18th century and one of the greatest of all time. He is also one of the most prolific; his collected works fill 60–80 quarto volumes.[3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is a master for us all".[4]Euler was featured on the sixth series of the Swiss 10-franc banknote[5] and on numerous Swiss, German, and Russian postage stamps. The asteroid 2002 Euler was named in his honor. He is also commemorated by the Lutheran Church on their Calendar of Saints on May [hide]1 Biography Childhood St. Petersburg Berlin Eyesight deterioration Last stage of life 2 Contributions to mathematics Mathematical notation Analysis Number theory Graph theory Applied mathematics Physics and astronomy Logic 3 Philosophy and religious beliefs 4 Selected bibliography 5 See also 6 Notes 7 Further reading 8 External links [edit] Biography[edit] Childhood Swiss 10 Franc banknote honoring Euler, the most successful Swiss mathematician in was born in Basel to Paul Euler, a pastor of the Reformed Church, and Marguerite Brucker, a pastor's daughter. He had two younger sisters named Anna Maria and Maria Magdalena. Soon after the birth of Leonhard, the Eulers moved from Basel to the town of Riehen, where Euler spent most of his childhood. Paul Euler was a family friend of the Bernoullis, and Johann Bernoulli, who was then regarded as Europe's foremost mathematician, would eventually be an important influence on the young Leonhard. His early formal education started in Basel, where he was sent to live with his maternal grandmother. At the age of thirteen he matriculated at the University of Basel, and in 1723, received a masters of philosophy degree with a dissertation that compared the philosophies of Descartes and Newton. At this time, he was receiving Saturday afternoon lessons from Johann Bernoulli, who quickly discovered his new pupil's incredible talent for mathematics.[6]Euler was at this point studying theology, Greek, and Hebrew at his father's urging, in order to become a pastor. Johann Bernoulli intervened, and convinced Paul Euler that Leonhard was destined to become a great mathematician. In 1726, Euler completed his . dissertation on the propagation of sound with the title De Sono[7] and in 1727, he entered the Paris Academy Prize Problem competition, where the problem that year was to find the best way to place the masts on a ship. He won second place, losing only to Pierre Bouguer—a man now known as "the father of naval architecture". Euler, however, would eventually win the coveted annual prize twelve times in his career.[8][edit] St. PetersburgAround this time Johann Bernoulli's two sons, Daniel and Nicolas, were working at the Imperial Russian Academy of Sciences in St Petersburg. In July 1726, Nicolas died of appendicitis after spending a year in Russia, and when Daniel assumed his brother's position in the mathematics/physics division, he recommended that the post in physiology that he had vacated be filled by his friend Euler. In November 1726 Euler eagerly accepted the offer, but delayed making the trip to St Petersburg. In the interim he unsuccessfully applied for a physics professorship at the University of Basel.[9]1957 stamp of the former Soviet Union commemorating the 250th birthday of Euler. The text says: 250 years from the birth of the great mathematician and academician, Leonhard arrived in the Russian capital on May 17, 1727. He was promoted from his junior post in the medical department of the academy to a position in the mathematics department. He lodged with Daniel Bernoulli with whom he often worked in close collaboration. Euler mastered Russian and settled into life in St Petersburg. He also took on an additional job as a medic in the Russian Navy.[10]The Academy at St. Petersburg, established by Peter the Great, was intended to improve education in Russia and to close the scientific gap with Western Europe. As a result, it was made especially attractive to foreign scholars like Euler: the academy possessed ample financial resources and a comprehensive library drawn from the private libraries of Peter himself and of the nobility. Very few students were enrolled in the academy so as to lessen the faculty's teaching burden, and the academy emphasized research and offered to its faculty both the time and the freedom to pursue scientific questions.[8]However, the Academy's benefactress, Catherine I, who had attempted to continue the progressive policies of her late husband, died the day of Euler's arrival. The Russian nobility then gained power upon the ascension of the twelve-year-old Peter II. The nobility were suspicious of the academy's foreign scientists, and thus cut funding and caused numerous other difficulties for Euler and his improved slightly upon the death of Peter II, and Euler swiftly rose through the ranks in the academy and was made professor of physics in 1731. Two years later, Daniel Bernoulli, who was fed up with the censorship and hostility he faced at St. Petersburg, left for Basel. Euler succeeded him as the head of the mathematics department.[11]On January 7, 1734, he married Katharina Gsell, daughter of a painter from the Academy Gymnasium. The young couple bought a house by the Neva River, and had thirteen children, of whom only five survived childhood.[12][edit] Berlin Stamp of the former German Democratic Republic honoring Euler on the 200th anniversary of his death. In the middle, it is showing his polyhedral about continuing turmoil in Russia, Euler debated whether to stay in St. Petersburg or not. Frederick the Great of Prussia offered him a post at the Berlin Academy, which he accepted. He left St. Petersburg on June 19, 1741 and lived twenty-five years in Berlin, where he wrote over 380 articles. In Berlin, he published the two works which he would be most renowned for: the Introductio in analysin infinitorum, a text on functions published in 1748 and the Institutiones calculi differentialis, a work on differential calculus.[13]In addition, Euler was asked to tutor the Princess of Anhalt-Dessau, Frederick's niece. He wrote over 200 letters to her, which were later compiled into a best-selling volume, titled the Letters of Euler on different Subjects in Natural Philosophy Addressed to a German Princess. This work contained Euler's exposition on various subjects pertaining to physics and mathematics, as well as offering valuable insight on Euler's personality and religious beliefs. This book ended up being more widely read than any of his mathematical works, and was published all across Europe and in the United States. The popularity of the Letters testifies to Euler's ability to communicate scientific matters effectively to a lay audience, a rare ability for a dedicated research scientist.[13]Despite Euler's immense contribution to the Academy's prestige, he was eventually forced to leave Berlin. This was caused in part by a personality conflict with Frederick. Frederick came to regard him as unsophisticated especially in comparison to the circle of philosophers the German king brought to the Academy. Voltaire was among those in Frederick's employ, and the Frenchman enjoyed a favored position in the king's social circle. Euler, a simple religious man and a hard worker, was very conventional in his beliefs and tastes. He was in many ways the direct opposite of Voltaire. Euler had very limited training in rhetoric and tended to debate matters that he knew little about, making him a frequent target of Voltaire's wit.[13] Frederick also expressed disappointment with Euler's practical engineering abilities:I wanted to have a water jet in my garden: Euler calculated the force of the wheels necessary to raise the water to a reservoir, from where it should fall back through channels, finally spurting out in Sanssouci. My mill was carried out geometrically and could not raise a mouthful of water closer than fifty paces to the reservoir. Vanity of vanities! Vanity of geometry![14][edit] Eyesight deterioration A 1753 portrait by Emanuel Handmann. This portrayal suggests problems of the right eyelid and that Euler is perhaps suffering from strabismus. The left eye appears healthy, as it was a later cataract that destroyed it.[15]Euler's eyesight worsened throughout his mathematical career. Three years after suffering a near-fatal fever in 1735 he became nearly blind in his right eye, but Euler rather blamed his condition on the painstaking work on cartography he performed for the St. Petersburg Academy. Euler's sight in that eye worsened throughout his stay in Germany, so much so that Frederick referred to him as "Cyclops". Euler later suffered a cataract in his good left eye, rendering him almost totally blind a few weeks after its discovery. Even so, his condition appeared to have little effect on his productivity, as he compensated for it with his mental calculation skills and photographic memory. For example, Euler could repeat the Aeneid of Virgil from beginning to end without hesitation, and for every page in the edition he could indicate which line was the first and which the last.[3][edit] Last stage of life Euler's grave at the Alexander Nevsky situation in Russia had improved greatly since the ascension of Catherine the Great, and in 1766 Euler accepted an invitation to return to the St. Petersburg Academy and spent the rest of his life in Russia. His second stay in the country was marred by tragedy. A 1771 fire in St. Petersburg cost him his home and almost his life. In 1773, he lost his wife of 40 years. Euler would remarry three years September 18, 1783, Euler passed away in St. Petersburg after suffering a brain hemorrhage and was buried in the Alexander Nevsky Laura. His eulogy was written for the French Academy by the French mathematician and philosopher Marquis de Condorcet, and an account of his life, with a list of his works, by Nikolaus von Fuss, Euler's son-in-law and the secretary of the Imperial Academy of St. Petersburg. Condorcet commented,"...il cessa de calculer et de vivre," (he ceased to calculate and to live).[16] [edit] Contributions to mathematicsEuler worked in almost all areas of mathematics: geometry, calculus, trigonometry, algebra, and number theory, not to mention continuum physics, lunar theory and other areas of physics. His importance in the history of mathematics cannot be overstated: if printed, his works, many of which are of fundamental interest, would occupy between 60 and 80 quarto volumes[3] and Euler's name is associated with an impressive number of topics. The 20th century Hungarian mathematician Paul Erdős is perhaps the only other mathematician who could be considered to be as prolific.[edit] Mathematical notationEuler introduced and popularized several notational conventions through his numerous and widely circulated textbooks. Most notably, he introduced the concept of a function[2] and was the first to write f(x) to denote the function f applied to the argument x. He also introduced the modern notation for the trigonometric functions, the letter e for the base of the natural logarithm (now also known as Euler's number), the Greek letter ∑ for summations and the letter i to denote the imaginary unit.[17] The use of the Greek letter π to denote the ratio of a circle's circumference to its diameter was also popularized by Euler, although it did not originate with him.[18] Euler also contributed to the development of the the history of complex numbers system (the notation system of defining negative roots with a + bi).[19][edit] AnalysisThe development of calculus was at the forefront of 18th century mathematical research, and the Bernoullis—family friends of Euler—were responsible for much of the early progress in the field. Thanks to their influence, studying calculus naturally became the major focus of Euler's work. While some of Euler's proofs may not have been acceptable under modern standards of rigour,[20] his ideas led to many great is well known in analysis for his frequent use and development of power series: that is, the expression of functions as sums of infinitely many terms, such asNotably, Euler discovered the power series expansions for e and the inverse tangent function. His daring (and, by modern standards, technically incorrect) use of power series enabled him to solve the famous Basel problem in 1735:[20]A geometric interpretation of Euler's formulaEuler introduced the use of the exponential function and logarithms in analytic proofs. He discovered ways to express various logarithmic functions in terms of power series, and successfully defined logarithms for negative and complex numbers, thus greatly expanding the scope where logarithms could be applied in mathematics.[17] He also defined the exponential function for complex numbers and discovered its relation to the trigonometric functions. For any real number φ, Euler's formula states that the complex exponential function satisfiesA special case of the above formula is known as Euler's identity,called "the most remarkable formula in mathematics" by Richard Feynman, for its single uses of the notions of addition, multiplication, exponentiation, and equality, and the single uses of the important constants 0, 1, e, i, and π.[21]In addition, Euler elaborated the theory of higher transcendental functions by introducing the gamma function and introduced a new method for solving quartic equations. He also found a way to calculate integrals with complex limits, foreshadowing the development of modern complex analysis, and invented the calculus of variations including its most well-known result, the Euler-Lagrange also pioneered the use of analytic methods to solve number theory problems. In doing so, he united two disparate branches of mathematics and introduced a new field of study, analytic number theory. In breaking ground for this new field, Euler created the theory of hypergeometric series, q-series, hyperbolic trigonometric functions and the analytic theory of continued fractions. For example, he proved the infinitude of primes using the divergence of the harmonic series, and used analytic methods to gain some understanding of the way prime numbers are distributed. Euler's work in this area led to the development of the prime number theorem.[22][edit] Number theoryEuler's great interest in number theory can be traced to the influence of his friend in the St. Petersburg Academy, Christian Goldbach. A lot of his early work on number theory was based on the works of Pierre de Fermat. Euler developed some of Fermat's ideas while disproving some of his more outlandish focus of Euler's work was to link the nature of prime distribution with ideas in analysis. He proved that the sum of the reciprocals of the primes diverges. In doing so, he discovered the connection between Riemann zeta function and prime numbers, known as the Euler product formula for the Riemann zeta proved Newton's identities, Fermat's little theorem, Fermat's theorem on sums of two squares, and made distinct contributions to Lagrange's four-square theorem. He also invented the totient function φ(n) which assigns to a positive integer n the number of positive integers less than n and coprime to n. Using properties of this function he was able to generalize Fermat's little theorem to what would become known as Euler's theorem. He further contributed significantly to the understanding of perfect numbers, which had fascinated mathematicians since Euclid. Euler made progress toward the prime number theorem and conjectured the law of quadratic reciprocity. The two concepts are regarded as the fundamental theorems of number theory, and his ideas paved the way for Carl Friedrich Gauss.[23][edit] Graph theorySee also: Seven Bridges of Königsberg Map of Königsberg in Euler's time showing the actual layout of the seven bridges, highlighting the river Pregel and the 1736, Euler solved a problem known as the Seven Bridges of Königsberg.[24] The city of Königsberg, Prussia (now Kaliningrad, Russia) is set on the Pregel River, and included two large islands which were connected to each other and the mainland by seven bridges. The question is whether it is possible to walk with a route that crosses each bridge exactly once, and return to the starting point. It is not; and therefore not an Eulerian circuit. This solution is considered to be the first theorem of graph theory and planar graph theory.[24] Euler also introduced the notion now known as the Euler characteristic of a space and a formula relating the number of edges, vertices, and faces of a convex polyhedron with this constant. The study and generalization of this formula, specifically by Cauchy[25] and L'Huillier,[26] is at the origin of topology.[edit] Applied mathematicsSome of Euler's greatest successes were in using analytic methods to solve real world problems, describing numerous applications of Bernoulli's numbers, Fourier series, Venn diagrams, Euler numbers, e and π constants, continued fractions and integrals. He integrated Leibniz's differential calculus with Newton's method of fluxions, and developed tools that made it easier to apply calculus to physical problems. He made great strides in improving the numerical approximation of integrals, inventing what are now known as the Euler approximations. The most notable of these approximations are Euler's method and the Euler-Maclaurin formula. He also facilitated the use of differential equations, in particular introducing the Euler-Mascheroni constant:One of Euler's more unusual interests was the application of mathematical ideas in music. In 1739 he wrote the Tentamen novae theoriae musicae, hoping to eventually integrate musical theory as part of mathematics. This part of his work, however, did not receive wide attention and was once described as too mathematical for musicians and too musical for mathematicians.[27][edit] Physics and astronomyEuler helped develop the Euler-Bernoulli beam equation, which became a cornerstone of engineering. Aside from successfully applying his analytic tools to problems in classical mechanics, Euler also applied these techniques to celestial problems. His work in astronomy was recognized by a number of Paris Academy Prizes over the course of his career. His accomplishments include determining with great accuracy the orbits of comets and other celestial bodies, understanding the nature of comets, and calculating the parallax of the sun. His calculations also contributed to the development of accurate longitude tables.[28]In addition, Euler made important contributions in optics. He disagreed with Newton's corpuscular theory of light in the Opticks, which was th

看多点书就OK了

关于欧阳修论文的参考文献

五代史伶官传序 《醉翁亭记》、《秋声赋》、《祭石曼卿文》、《卖油翁》

欧阳修(1007-1072),字永叔,号醉翁,晚年号六一居士。庐陵(今江西吉安)人。北宋文学家、史学家,且在政治上负有盛名,唐宋八大家之一。幼时而孤,有贤母荻杆画地育教。宋仁宗天圣八年(1030年)中进士,初任西京留守推官,与尹洙、梅尧臣交游,以诗唱和。后入朝任馆阁校勘,范仲淹因事遭贬,他指责谏官高若讷,被贬为夷陵县令,转乾德县令,又复任馆阁校勘,进集贤校理、知谏院,任龙图阁直学士、河北都转运使,因事降知滁州,又知扬州、颍州、开封府,后以翰林学士知贡举,拜枢密副使、参知事先事、刑部尚书、兵部尚书等,以太子少师退归,赠太子太师,谥号文忠。欧阳修是北宋诗文革新运动的领袖,继承并发展了韩愈的古文理论,主张文以明道,反对“弃百事不关于心”(《答吴充秀才书》),主张文以致用,反对“舍近取远”(《与张秀才第二书》),强调文道结合,二者并重,提介平易自然之文,反对浮艳华靡的文风。其散文《朋党论》、《与高司谏书》、《新五代史·令官传序》等政论、史论,或针砭时弊,或以古鉴今,其《醉翁亭记》、《秋声赋》等抒情散文,或寄情山水,或以景抒怀,平易流畅、委婉曲折。苏洵《上欧阳内翰书》评其文为“纡余委备,往复百折,而条达疏畅,无所间断。”其诗主要有《食糟民》、《南獠》、《生杳子·无夕》、《画眉鸟》、《戏答元珍》等,意境别颖,清丽秀美,耐人寻味。叶梦得《石林诗话》有评:“欧阳文忠公诗,始矫昆体,专以气格为主,故言多平易疏畅。”其词多写男女感情

醉翁亭记 北宋 欧阳修

选自—《欧阳文忠公文集》

环滁(chú)皆山也。其西南诸峰,林壑(hè)尤美。望之蔚然而深秀者,琅琊(láng yá)也。山行六七里,渐闻水声潺(chán)潺而泻出于两峰之间者,酿泉也。峰回路转,有亭翼然临于泉上者,醉翁亭也。作亭者谁?山之僧智仙也。名之者谁?太守自谓也。太守与客来饮于此,饮少辄(zhé)醉,而年又最高,故自号曰醉翁也。醉翁之意不在酒,在乎山水之间也。山水之乐,得之心而寓之酒也。

若夫(fú)日出而林霏开,云归而岩穴(xué)暝(míng),晦(huì)明变化者,山间之朝(zhāo)暮也。野芳发而幽香,佳木秀而繁阴,风霜高洁,水落而石出者,山间之四时也。朝而往,暮而归,四时之景不同,而乐亦无穷也。

至于负者歌于途,行者休于树,前者呼,后者应,伛(yǔ)偻(lǚ)提携,往来而不绝者,滁人游也。临溪而渔,溪深而鱼肥。酿泉为酒,泉香而酒洌(liè);山肴野蔌(sù),杂然而前陈者,太守宴也。宴酣(hān)之乐,非丝非竹,射者中,弈者胜,觥(gōng)筹交错,起坐而喧哗者,众宾欢也。苍颜白发,颓然乎其间者,太守醉也。

已而夕阳在山,人影散乱,太守归而宾客从也。树林阴翳(yì),鸣声上下,游人去而禽鸟乐也。然而禽鸟知山林之乐,而不知人之乐;人知从太守游而乐,而不知太守之乐其乐也。醉能同其乐,醒能述以文者,太守也。太守谓谁?庐陵欧阳修也。

[编辑本段]译文

粟润湘篆书《醉翁亭记》环绕滁州城的都是山,城西南方的各个山峰,树林和山谷特别秀丽,远远望去,那草木繁茂又幽深又秀丽的地方,是琅琊山。沿山路行走六七里,渐渐听到潺潺的水声,从两峰之间飞泻而出的,是酿泉。山势回环,路也跟着拐弯,有一座四角翘起,像鸟张开翅膀一样的亭子高踞在泉水边上,这就是醉翁亭。建造亭子的是谁?是山里的和尚智仙。给它命名的是谁?是太守用自己的别号来命名的,太守同宾客来到这里饮酒,喝少量的酒就醉了,而年纪又最大,所以给自己取个别号叫“醉翁”。醉翁的情趣不在酒上,而在秀丽的山水之间。欣赏山水的乐趣,领会在心里,寄托在酒上。

要说太阳出来,树林里的雾气散了,烟云聚拢来,山谷显得得昏暗,朝则自暗而明,暮则自明而暗,或暗或明,变幻不定之时,就是山间的清晨和傍晚。春天野花开放,散发出一股清幽的香味,夏天好的树木枝繁叶茂,形成一片浓郁的绿阴,秋天天高气爽,冬天水位低落,石头显露出来,这是山中的春夏秋冬四季的景色。早晨进山,傍晚回来,四季的景物不同,人们的乐趣也是无穷无尽的。

至于背东西的人在路上歌唱,行人在树下休息,前面的人呼唤,后面的人答应,老老少少,来来往往,络绎不绝,这是滁州人在旅游。来到溪边钓鱼,溪水深,鱼儿肥;用酿泉的泉水酿酒,泉水香,酒甘醇;山中的野味野菜各种各样在面前摆着,这是太守举行酒宴。宴饮酣畅的乐趣,不在于音乐,投壶的射中了目标,下棋的下赢了,酒杯和酒筹交互错杂,或起或坐,这是宾客们尽情地欢乐。一个脸色苍老,满头白发,醉醺醺地坐在众人中间的是喝醉了的太守。

不久夕阳落到山顶,人影疏疏落落,太守下山回家,宾客跟在后面,树林枝叶茂密成荫,鸟雀到处鸣叫,这是游人离去鸟雀就欢乐了,但是鸟儿只知道山林的乐趣,却不懂得人的乐趣,游人只知道跟着太守一同游玩为快乐,却不知道太守因他们的快乐而快乐。喝醉了能同大家一起欢乐,酒醒后又能用文章来记述这件乐事的人,是太守。太守是谁?是庐陵的欧阳修。

新课标高中语文必修(1-5)规定背诵篇目总集

总目录:

新课标高中人教版必修(1)

1、《沁园春•长沙》2、《雨巷》3、《再别康桥》4、《烛之武退秦师》

5、《荆轲刺秦王》(第8段)6、《记念刘和珍君》(第2、4节)

新课标高中人教版必修(2)

1、《诗经•氓》*2、《离骚》(节选)

3、诗三首(《涉江采芙蓉》《短歌行》《归园田居》(其一))

4、《兰亭集序》5、《赤壁赋》6、《游褒禅山记》(第2、3段)

*7、《荷塘月色》(第4、5、6段)*8、《孔雀东南飞》(开头到“千万不复全”)

新课标高中人教版必修(3)

1、《蜀道难》2、《秋兴八首》(其一)3、《咏怀古迹》(其三)4、《登高》

*5、《琵琶行》(并序)6、《寡人之于国也》7、《劝学》8、《过秦论》(第3、4、5段)

*9、《锦瑟》*10、《马嵬》(其二)*11、《师说》

新课标高中人教版必修(4)

1、《念奴娇•赤壁怀古》2、《定风波•莫听穿林打叶声》3、《水龙吟•登建康赏心亭》

4、《永遇乐•京口北固亭怀古》5、《醉花阴•薄雾浓云愁永昼》6、《声声慢•寻寻觅觅》

7、《廉颇蔺相如列传》(后5段)

*8、《长亭送别•碧云天》*9、《望海潮•东南形胜》*10、《雨霖铃•寒蝉凄切》

新课标高中人教版必修(5)

1、《归去来兮辞》(并序)2、《滕王阁序》(第2、3段)3、《陈情表》

*4、《逍遥游》(诵读)

苏教版高中文言文(必修一——必修五)全录

必修一

(一)劝学(荀子)

(二)师说(韩愈)

(三)赤壁赋(苏轼)

(四)始得西山宴游记(柳宗元)

必修二

(五)六国论(苏洵)

(六)阿房宫赋(杜牧)

必修三

(七)指南录后序(文天祥)

(八)五人墓碑记(张溥)

(九)烛之武退秦师 《左传》

(十)谏太宗十思疏(魏徵)

(十一)廉颇蔺相如列传(司马迁)

(十二)鸿门宴(司马迁)

(十三)秋水(庄子)

(十四)非攻(墨子)

必修四

(十五)季氏将伐颛臾《论语》

(十六)寡人之于国也《孟子》

(十七)滕王阁序并诗(王勃)

(十八)秋声赋(欧阳修)

(十九)陈情表(李密)

(二十)项脊轩志(归有光)

(二十一)报任安书(司马迁)

(二十二)渔父《楚辞》

(二十三)逍遥游(庄子)

(二十四)兰亭集序(王羲之)

原文:

顷岁孙莘老识欧阳文忠公,尝乘间以文字问之,云:“无它术,唯勤读书而多为之,自工。世人患作文字少,又懒读书,每一篇出,即求过人,如此少有至者。疵病不必待人指擿,多作自能见之。”此公以其尝试者告人,故尤有味。 (东坡志林卷一 记六一语)

注释:

(1)顷岁:昔年。按,“顷岁”有两义,一为“近年”,一为“昔年”;文中既称欧阳修的谥号,则此时他已去世,“顷岁”应指昔年。(2)欧阳文忠公:宋代文学家欧阳修,字永叔,号醉翁,又号六一居士,“文忠”是他的谥号。(3)孙莘老:孙觉,字莘老。(4)乘间:乘机。(5)工:精妙,好。(6)患:毛病,弊病。(7)至:达到。(8)指摘:挑出毛病、错误,加以批评。

译文:

昔年孙莘老结识了欧阳修,曾经乘机问他怎样才能写好文章(直译:拿写文章的事向他请教)。欧阳修说:“没有其他办法,只有勤奋读书多动笔,自然就会写得好。世人的弊病在于:文章写得太少,又懒于读书,而每写出一篇,就想超过别人,这样很少有能达到目的的。文章缺点不需要别人指出,只要写多了,自己就能发现。”欧阳修先生把他自己摸索的经验告诉别人,所以特别耐人寻味。

说明:

欧阳修论述了作文的诀窍:一是勤奋读书,二是多动笔,此外别无他法。

欧阳修在文学创作上的成就,以散文为最高。

苏轼评其文时说:“论大道似韩愈,论本似陆贽,纪事似司马迁,诗赋似李白”。 但欧阳修虽素慕韩文的深厚雄博,汪洋恣肆,但并不亦步亦趋。

欧阳修一生写了500余篇散文,各体兼备,有政论文、史论文、记事文、抒情文和笔记文等。他的散文大都内容充实,气势旺盛,深入浅出,精炼流畅,叙事说理,娓娓动听,抒情写景,引人入胜,寓奇于平,一新文坛面目。

他的许多政论作品,如《本论》、《原弊》、《上高司谏书》、《朋党论》、《新五代史•伶官传序》等,恪守自己“明道”、“致用”的主张,紧密联系当时政治斗争,指摘时弊,思想尖锐,语言明快,表现了一种匡时救世的怀抱。他还写了不少抒情、叙事散文,也大都情景交融,摇曳多姿。

他的《释秘演诗集序》、《祭石曼卿文》、《苏氏文集序》等文,悼念亡友,追怀往事,情深意挚,极为动人;他的《丰乐亭记》、《醉翁亭记》诸作,徐徐写来,委婉曲折,言辞优美,风格清新。总之,不论是讽世刺政,还是悼亡忆旧,乃至登临游览之作,无不充分体现出他那种从容宽厚、真率自然的艺术个性。

欧阳修还开了宋代笔记文创作的先声。他的笔记文,有《归田录》、《笔说》、《试笔》等。

文章不拘一格,写得生动活泼,富有情趣,并常能描摹细节,刻画人物。其中,《归田录》记述了朝廷遗事、职官制度、社会风习和士大夫的趣事轶闻,介绍自己的写作经验,都很有价值。

欧阳修在诗歌创作方面也卓有成就。 他的诗在艺术上主要受韩愈影响。

《凌溪大石》、《石篆》、《紫石屏歌》等作品,模仿韩愈想象奇特的诗风;其它一部分诗作沉郁顿挫,笔墨淋漓,将叙事、议论、抒情结为一体,风格接近杜甫,如《重读〈徂徕集〉》、《送杜岐公致仕》;另一部分作品雄奇变幻,气势豪放,却近于李白,如《庐山高赠同年刘中允归南康》。但多数作品,主要学习韩愈“以文为诗”,即议论化、散文化的特点。

虽然他以自然流畅的诗歌语言,避免了韩愈的险怪艰涩之弊,但仍有一些诗说理过多,缺乏生动的形象。有的古体诗因此显得诗味不浓,但部分近体诗却比兴兼用,情景相生,意味隽永。

在内容上,他的诗有一部分反映人民的疾苦,揭露社会的黑暗,具有一定的社会意义。例如,在《答杨子静祈雨长句》中,描写了“军国赋敛急星火”,“然而民室常虚空”的社会现实;在 《食糟民》中,揭露了官吏“日饮官酒诚可乐”,而百姓“釜无糜粥度冬春”的不合理现象。

不过,他写这些诗的目的是很明白的:“因吟君赠广其说,为我持之告采诗”,为的是规劝统治阶级修明政治,维护封建秩序。他还在诗中议论时事,抨击腐败政治,如《奉答子华学士安抚江南见寄之作》。

其他如《明妃曲和王介甫作》、《再和明妃曲》,表现了诗人对妇女命运的同情,对昏庸误国的统治者的谴责。更多的是写景抒情作品,或清新秀丽,或平淡有味,多抒发诗人的生活感受。

如《黄溪夜泊》中的“万树苍烟三峡暗,满川明月一猿哀”,《春日西湖寄谢法曹歌》中的“雪消门外千山绿,花发江边二月晴”, 《画眉鸟》“百啭千声随意移,山花红紫树高低;始知锁向金笼听,不及林间自在啼”等。总的来看,他的诗歌风格还是多样的。

欧阳修不仅善于作诗,且时有新见,其最后一部作品《诗话》(由于诗话从专名演变为一种文体,后人为区别称《六一诗话》),是为中国文学史上第一部诗话。后人郭绍虞说:“诗话之称,固始于欧阳修,即诗话之体,亦可谓创自欧阳氏矣”(《宋诗话考》)。

欧阳修的诗话,改变了以前的论诗或重在吕评、或重要格例、或重在作法、或重在本事的做法,而是兼收并蓄,细加抽绎,以随便亲切的闲谈逸事的方式评叙诗歌,成为一种论诗的新形式。他在评论诗的时候,虽然不废雕琢,但主张归于自然。

在《梅圣俞诗集序》中,他提出诗“穷者而后工”的论点,发展了杜甫、白居易的诗歌理论,为宋诗的发展指明了方向,对当时和后世的诗歌创作产生了很大的影响。欧阳修还在宋初的词坛上占了一席重要的位置。

他创作了很多词,内容大都与“花间”相近,主要内容仍是恋情相思、离情别绪、酣饮醉歌、惜春赏花之类,并善于以清新疏淡的笔触写景。《采桑子》十三首,描绘颍州西湖的自然之美,写得恬静、澄澈,富有情韵,宛如一幅幅淡雅的山水画。

另一些词的“杏花红处青山缺,山畔行人山下歇”(《玉楼春》),“堤上游人逐画船,拍堤春水四垂天。绿杨楼外出秋千”(《浣溪沙》),“平山栏槛倚晴空,山色有无中”(《朝中措》)等,也都是写景的佳句。

由于作者对事物体察入微,看似随意写出,却是无限传神,没有炉火纯青的工夫,是不能达到这种艺术境界的。而他偏重抒情的词,写得婉曲缠绵,情深语近,例如《踏莎行》中上下阕的最后两句“离愁渐远渐无穷,迢迢不断如春水”,“平芜尽处是春山,行人更在春山外”,通过春水春山,从思妇眼中写征人,情意深远,含蓄蕴藉,给人以新颖别致的感觉,感情亦非常深挚。

他还有一些词,虽然颓唐叹老、牢骚不平,却直抒胸臆,表现出襟怀豪逸和乐观的一面。还有一些艳词,虽。

人教版七年级上册文言文翻译全集第一单元 5、童趣(沈复) 第二单元 10、《论语》十则 第三单元 15、古代诗歌五首 观沧海(曹操) 次北固山下(王湾) 钱塘湖春行(白居易) 西江月(辛弃疾) 天净沙·秋思(马致远)第四单元 20、*山市(蒲松龄) 第五单元 25、《世说新语》两则 咏雪 陈太丘与友期第六单元 30、*寓言四则智子疑邻塞翁失马人教版七年级下册文言文翻译全集第一单元 5、伤仲永(王安石) 第二单元 10、木兰诗 第三单元 15、*孙权劝学《资治通鉴》 第四单元 20、口技(林嗣环) 第五单元 25、短文两篇 夸父逐日 《山海经》 两小儿辩日 《列子》 第六单元 30、*狼(蒲松龄) 人教版八年级上册文言文翻译全集第五单元 21、桃花源记(陶渊明) 22、短文两篇 陋室铭(刘禹锡) 爱莲说(周敦颐) 23、核舟记(魏学洢) 24、大道之行也(《礼记》) 25、杜甫诗三首 望岳 春望 石壕吏 第六单元 26、三峡(郦道元) 27、短文两篇 答谢中书书(陶弘景)记承天寺夜游(苏轼) 28、观潮(周密) 29、湖心亭看雪(张岱) 30、诗四首 归园田居(陶渊明) 使至塞上(王维) 渡荆门送别(李白) 登黄鹤楼人教版八年级下册文言文翻译全集第五单元 21、与朱元思书(吴均) 22、五柳先生传(陶渊明) 23、马说(韩愈) 24、送东阳马生序(节选)(宋濂) 25、诗词曲五首 酬乐天扬州初逢席上见赠(刘禹锡) 赤壁(杜牧) 过零丁洋(文天祥) 水调歌头(明月几时有)(苏轼) 山坡羊·潼关怀古(张养浩) 第六单元 26、小石潭记(柳宗元) 27、岳阳楼记(范仲淹) 28、醉翁亭记(欧阳修) 29、满井游记(袁宏道) 30、诗五首 饮酒(其五)(陶渊明) 行路难(其一)(李白) 茅屋为秋风所破歌(杜甫) 白雪歌送武判官归京(岑参) 己亥杂诗(龚自珍) 人教版九年级上册文言文翻译全集第六单元 21、陈涉世家(司马迁) 22、唐雎不辱使命(刘向) 23、隆中对(陈寿) 24、出师表(诸葛亮) 25、词五首 望江南(温庭筠) 江城子·密州出猎(苏轼) 渔家傲(范仲淹) 破阵子·为陈同甫赋壮词以寄之(辛弃疾) 武陵春(李清照) 人教版九年级下册文言文翻译全集第五单元 17、公输 《墨子》 18、《孟子》两章得道多助,失道寡助生于忧患,死于安乐 19、鱼我所欲也 《孟子》 20、《庄子》故事两则 惠子相梁庄子与惠子游于濠梁 第六单元 21、曹刿论战 《左传》 22、邹忌讽齐王纳谏 《战国策》 23、愚公移山 《列子》 24、《诗经》两首 关睢蒹葭。

臣听说关于“朋党”的说法是自古就有的,只希望吾君能辨识他们是君子还是小人罢了。大体说来,君子与君子,是以理想目标相同结成朋党;小人与小人,以暂时利益一致结成朋党。这是很自然的道理呵。 然而臣又认为小人没有朋党,只有君子才有。这是什么缘故呢?(因为)小人所喜的是利禄,所贪的是货财。当他们利益一致的时候,暂时互相勾结而为朋党,这种朋党是虚伪的。等到他们见利而各自争先,或者到了无利可图而交情日益疏远的时候,却反而互相残害,即使对其兄弟亲戚也顾不得。所以臣认为小人无朋党,他们暂时为朋党,是虚伪的。君子就不是这样。他们所依据的是道义,所奉行的是忠信,所爱惜的是名誉和节操。用它们来修养品德,则彼此目标相同又能够互相取长补短;用它们来效力国家,则能够和衷共济,始终如一,这就是君子的朋党。所以做君王的,只应该废退小人虚伪的朋党,而任用君子真正的朋党,只有这样,才能天下大治。

关于的数学的论文参考文献

这是一个学生的毕业论文后的参考文献[1] 裴礼文.数学分析中的典型问题与方法究(第二版)[M].北京:高等教育出版社,2006[2] 陈纪修等.数学分析第二版[M].北京:高等教育出版社,[3] 翟连林,姚正安.数学分析方法论[M].北京:北京农业大学出版社,1992[4] 龚冬保.高等数学典型题解法、技巧、注释[M].西安:西安交通大学出版社,2000[5] 郭乔.如何作辅助函数解题[J].高等数学研究, (5),48- 49[6] Patrick M.Fitzpatrick.AdvancedCalculus: A Course in Mathematical Analysis [M].北京:中国工业出版社,2003[7] 林远华.浅谈辅助函数在数学分析中的作用[J].河池师范高等专科学校学报,[8] 肖平.辅助函数的构造方法探寻.西昌师范高等专科学校学报[J],供参考。

小学数学论文参考文献汇总

在日常学习和工作中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是描述学术研究成果进行学术交流的一种工具。那要怎么写好论文呢?下面是我精心整理的小学数学论文参考文献,仅供参考,大家一起来看看吧。

参考文献一

[1]王吉庆.信息素养论[M].上海:上海教育出版社.1998.

[2]张静波等主编.信息素养能力与教育[M].北京:科学出版社,2007.

[3]中华人民共和国教育部.义务教育品德与社会课程标准(2011)[M].北京:北京师范大学出版社,2012.

[4]中华人民共和国教育部.义务教育音乐课程标准(2011)[M].北京:北京师范大学出版社,2012.

[5]中华人民共和国教育部.义务教育英语课程标准(2011)[M].北京:北京师范大学出版社,2012.

[6]中华人民共和国教育部.义务教育体育与健康课程标准(2011)[M].北京:北京师范大学出版社,2012.

[7]义务教育数学课程标准研制组.数学教师教学用书(五年级上册)[M].北京:北京师范大学出版社,2007:3.

[8](英)苏·考利.教会学生思考[M].北京:教育科学出版社,2010.

[9]尹少淳,段鹏.新版课程标准解析与教学指导[M].北京:北京师范大学出版社,2012:15.

[10]陈铁梅.美术教育的`真谛[M]?江苏:江苏教育出版社,2011:3-4

[11]刘淼.作文心理学[M].高等教育出版社,2001.

[12]中华人民共和国教育部制定.义务教育数学课程标准(2011)[M].北京:北京师范大学出版社,2012.

[13]中华人民共和国教育部.义务教育英语课程标准(2011)[M].北京:北京师范大学出版社,2012.

[14]义务教育数学课程标准研制组.数学教师教学用书(五年级上册)[M].北京:北京师范大学出版社,2007:3.

参考文献二

[1]叶澜,白益民.教师角色与教师发展新探[M].北京:教育科学出版社,

[2]毛杰,杨明春着.成长的阶梯:贫困山区教师专业发展的研究与实践[M].四川:四川大学出版社

[3]叶澜.教师角色与教师发展新探[M]北京:教育科学出版社,2001

[4]陈永明.教师教育研究[M]广东:广东高等教育出版社,2003

[5]余文森,刘冬岩.有效教学的基本策略[M],福建教育出版社.2013

[6]陶行知:中国教育改造[J],北京,东方出版社,1996

[7]黄婧.当代教师人格浅析[J].剑南文学:经典阅读.2012(8):313

[8]叶澜.让课堂焕发出生命活力一论中小学教学改革的深化[J].教育研究.1997(7) :3-7

[9]肖秀萍.国外教师专业发展研究评述[J].中国教育期刊,2002,(5) :57-60

[10]陈向明.质的研究方法与社会科学研究[M].北京:教育科学出版社,

[11]俞英.特级教师专业发展路径,一个本土的案例[D].万方数据:华东师范大学,2007

参考文献那么多,也要看你是写哪一方面的。

离散数学报告欧拉图

我可以帮你弄好

阶为6,最大度为4,含有3边环,是欧拉图

存在欧拉路的充要条件是有2个奇点,但欧拉图中,是有欧拉回路,没有奇点。

无向连通图G是欧拉图,当且仅当G不含奇数度结点(G的所有结点度数为偶数);

无向连通图G含有欧拉通路,当且仅当G有零个或两个奇数度的结点;

有向连通图D是欧拉图,当且仅当D中每个结点的入度=出度

有向连通图D含有欧拉通路,当且仅当D中除两个结点外,其余每个结点的入度=出度,且此两点满足deg-(u)-deg+(v)=±1。(起始点s的入读=出度+1,结束点t的出度=入度+1 或两个点的入读=出度)

扩展资料:

假设有一张图有向图G',在不论方向的情况下它与G同构。并且G'包含了G的所有有向边。那么如果存在一个图G'使得G'存在欧拉回路,那么G就存在欧拉回路。

其思路就将混合图转换成有向图判断。实现的时候,我们使用网络流的模型。现任意构造一个G'。用Ii表示第i个点的入度,Oi表示第i个点的出度。如果存在一个点k,|Ok-Ik|mod 2=1,那么G不存在欧拉回路。

接下来则对于所有Ii>Oi的点从源点连到i一条容量为(Ii-Oi)/2的边,对于所有Ii

参考资料来源:百度百科-欧拉回路

无向图是欧拉图的充要条件是每个顶点度数为偶数,你数邻接矩阵每一行1的个数,如果各行均是偶数,就是欧拉图

关于数学电影的数学论文参考文献

点我用户名,空间博文有介绍详细各种论文检测系统软件介绍见我空间各种有效论文修改秘籍 111

参考1邓小荣.高中数学的体验教学法〔J〕.广西师范学院学报,2003(8)2黄红.浅谈高中数学概念的教学方法〔J〕.广西右江民族师专学报,2003(6)3胡中双.浅谈高中数学教学中创造性思维能力的培养〔J〕.湖南教育学院学报,2001(7)4竺仕芳.激发兴趣,走出误区———综合高中数学教学探索〔J〕.宁波教育学院学报,2003(4)5杨培谊,于鸿.高中数学解题方法与技巧〔M〕.北京:北京学院出版社,19931、《计算机教育应用与教育革新——’97全球华人计算机教育应用大会论文集》李克东何克抗主编北京师范大学出版社19972、《教育中的计算机》全国中小学计算机教育研究中心(北京部)19983、林建详编:《CAI的理论与实践——迎接21世纪的挑战》全国CBE学会第六次学术会议论文集1993北京北京大学出版社。[1]参见。此书是一本从巴门尼德到怀特海的著作选集,按形而上学中的问题分类。[2]参见。此书正文的第一句话是:“要讨论形而上学,唯一正派的、当然也是聪明的方式就是从亚里士多德开始。”[3]《形而上学》,982b14-28。[4]引自《古希腊悲剧经典》,罗念生译,北京:作家出版社,1998年,49页。[5]亚里士多德:《形而上学》,985b-986a,昊寿彭译,北京:商务印书馆,1981年,12-13页。[6]参见若-弗·马泰伊:《毕达哥拉斯和毕达哥拉斯学派》,管震湖译,北京:商务印书馆,1997年,90页以下;《古希腊哲学》,苗力田主编,中国人民大学出版社,1989年,78页;汪子嵩等:《希腊哲学史》第1卷,人民出版社,1997年,290页以下。[7]《古希腊哲学》,78页。[8]《毕达哥拉斯和毕达哥拉斯学派》,115页以下。[9]同上书,125页。译文稍有改动。[10]《希腊哲学史》第1卷,290页。[11]亚里士多德:《论天》,引自〈希腊哲学史〉第1卷,283页。[12]《毕达哥拉斯与毕达哥拉斯学派》,107页以下。[13]巴门尼德的话可以简略地表述为:“是是,它不能不是”,因为“存在”与“是”在古希腊和大多数西方语言中从根子上是一个词,如英文之“being”与“be”。相关性:毕业论文,免费毕业论文,大学毕业论文,毕业论文模板够不够我在给你找

参考文献是毕业论文中的一个重要构成部分,它的引用是对论文进行引文统计和分析的重要信息来源。下文是我为大家搜集整理的关于数学论文参考文献的内容,欢迎大家阅读参考!数学论文参考文献(一) [1]李秉德,李定仁,《教学论》,人民教育出版社,1991。 [2]吴文侃,《比较教学论》,人民教育出版社,1999 [3]罗增儒,李文铭,《数学教学论》,陕西师范大学出版社,2003。 [4]张奠宙,李士 ,《数学教育学导论》高等教育出版社,2003。 [5]罗小伟,《中学数学教学论》,广西民族出版社,2000。 [6]徐斌艳,《数学教育展望》,华东师范大学出版社,2001。 [7]唐瑞芬,朱成杰,《数学教学理论选讲》,华东师范大学出版社,2001。 [8]李玉琪,《中学数学教学与实践研究》,高等教育出版社,2001。 [9]中华人民共和国教育部制订,《全日制义务教育数学课程标准(实验稿)》,北京:北京师范大出版社,2001. [10] 高中数学课程标准研制组编,《普通高中数学课程标准》,北京:北京师范大出版社,2003. [11]教育部基础教育司,数学课程标准研制组编,《全日制义务教育数学课程标准解读(实验稿)》,北京:北京师范大出版社,2002. [12]教育部基础教育司组织编写,《走进新课程——与课程实施者对话》,北京:北京师范大出版社,2002. [13]新课程实施过程中培训问题研究课题组编,《新课程与学生发展》,北京:北京师范大出版社,2001. 数学论文参考文献(二) [1]新课程实施过程中培训问题研究课题组编,《新课程理念与创新》,北京:北京师范大出版社,2001. [2][苏]AA斯托利亚尔,《数学教育学》,北京:人民教育出版社,1985年。 [3][苏]斯涅普坎,《数学教学心理学》,时勘译,重庆:重庆出版社,1987年。 [4]张奠宙,《数学教育研究导引》,南京:江苏教育出版社,1998年。 [5]丁尔升,《中学数学教材教法总论》,北京:高等教育出版社,1990年。 [6]马忠林,等,《数学教育史简编》,南宁:广西教育出版社,1991年。 [7]魏群,等,《中国中学数学教学课程教材演变史料》,北京:人民教育出版 社,1996年。 [8]张奠宙,等,《数学教育学》,南昌:江西教育出版社,1991年。 [9]严士健,《面向21世纪的中国数学教育》,南京:江苏教育出版社,1994年。 [10]傅海伦,《数学教育发展概论》,北京:科学出版社,2001年。 [11]李求来,等,《中学数学教学论》,长沙:湖南师范大学出版社,1992年。 [12]章士藻,《中学数学教育学》,南京:江苏教育出版社,1996年。 [13]十三院校协编组,《中学数学教材教法》,北京:高等教育出版社,1988年。 [14][美]美国国家研究委员会,方企勤等译,《人人关心数学教育的未来》,北 京:世界图书出版公司,1993年。 [15]潘菽,《教育心理学》,北京:人民教育出版社,1980年。 数学论文参考文献(三) [1]孙艳蕊,张祥德.利用极小割计算随机流网络可靠度的一种算法[J],系统工程学报,2010,25(2),284-288. [2]孔繁甲,王光兴.基于容斥原理与不交和公式的一个计算网络可靠性方法,电子学报,1998,26(11),117-119. [3]王芳,侯朝侦.一种计算随机流网络可靠性的新算法[J],通信学报,2004,25(1),70-77. [4][J],Networks,1987,17(2):227-240. [5]],(1):46-49. [6][J],(4):325-334. [7](3):389-395. [8]. [9]封国林,鸿兴,魏凤英.区域气候自忆预测模式的计算方案及其结果m.应ni气象学报,1999,10:470. [10]达朝究.一个可能提高GRAPES模式业务预报能力的方案[D].兰州:兰州人学,2011 [11]符综斌,干强.气候突变的定义和检测方法[j].大气科学,1992,16(4):482-492. [12]顾震潮.天数值预报屮过去资料的使用问题[J].气象学报,1958,29:176. [13]顾震潮.作为初但问题的天气形势数值预报由地而天气历史演变作预报的等值性[J].气象学报,1958,29:93. [14]黄建平,H纪范.海气锅合系统相似韵现象的研究[J].中NI科学(B),1989,9:1001. [15]黄建平,王绍武.相似-动力模式的季节预报试验[J].国科学(B)1991,21:216. 猜你喜欢: 1. 统计学论文参考文献 2. 关于数学文化的论文免费参考 3. 关于数学文化的论文优秀范文 4. 13年到15年参考文献论文格式 5. 浅谈大学数学论文范文

数学教学论文参考文献

教学论文就是“讨论”和“研究”有关教学问题的文章,属于议论文,具有议论文的一般特点。下面是我收集整理的数学教学论文参考文献范文,希望对您有所帮助!

参考文献一

[1]杜威着,许崇清译:《哲学的改造》[M],商务印书馆.1958 年,P46

[2]阮忠英.初中几何教学策略浅谈[J].理科爱好者,2009(2)

[3]胡蓉.利用信息技术优化几何教学[J].信息技术与应用,2008(4).

[4]吕月霞.杜威的“从做中学”之我见[J] .教育新论,

[5]陈琦,刘儒德.当代教育心理学[M].北京师范大学出版社,2007,P185

[6]袁振国.当代教育学[M].教育科学出版社,2004,P184

[7]尚晓青.DGS 技术与初中几何教学整合研究[D].重庆:西南大学博士学位论文,2008.

[8]周军.教学策略[M].北京:教育科学出版社,2007,P11

[9]中华人民共和国教育部.义务教育数学课程标准 [S].北京:北京师范大学出版社,2011

[10]左晓明等.基于 GeoGebra 的数学教学全过程优化研究[J],2010,P101

[11]杨庆余.小学数学课程与教学[M].北京:高等教育出版社.2004,P102

[12]李伯黍,燕国材.教育心理学[M].上海:华东师范大学出版社.

参考文献二

[1]王汉澜.教育评价学 [M].开封:河南大学出版社,1995.

[2]吴钢.现代教育评价基础[M].上海:学林出版社,2004.

[3] 黎世法.异步教育学[M].北京:当代中国出版社,1994.

[4]虞应连.采用复合评分法 注重个体内差异评价[J].中小学管理,2001(1).

[5](美) Carol Ann Tomlinson,刘颂译.多元能力课堂中的差异教学[M].北京:中国轻工业出版社, 2003.

[6]茹建文.关于构建小学数学发展性评价体系的'思考[J].现代教育科学,2005(2).

[7]曾继耘.差异发展教学研究[M].北京:首都师范大学出版社,2006.

[8]顾泠沅等.寻找中间地带--国际数学教育改革的大趋势[M].上海:上海教育出版社, 2003.

[9]马艳云.评价应注意学生的心理需求[J].人民教育,2005(17).

[10]陈小菊.给自己一个支点超越自己-“个体内差异评价策略”探微[J].福建教育,2005(7).

[11](美)Diane Heacox ,杨希洁译.差异教学-帮助每个学生获得成功[M]. 北京:中国轻工业出版社,2004.

[12]陈泳超.差异评价“ 实施因材施教”[J].福建教育,2001(7、8).

[13]安艳.差异性学生评价研究--以济南市三所初中为例[D],济南.山东师范大学,2007.

[14]王俭.教育评价发展历史的哲学考察[J].教师教育研究,2008(3).

相关百科

热门百科

首页
发表服务