数学论文 一、数学技能的含义及作用 技能是顺利完成某种任务的一种动作或心智活动方式。它是一种接近自动化的、复杂而较为完善的动作系统,是通过有目的、有计划的练习而形成的。数学技能是顺利完成某种数学任务的动作或心智活动方式。它通常表现为完成某一数学任务时所必需的一系列动作的协调和活动方式的自动化。这种协调的动作和自动化的活动方式是在已有数学知识经验基础上经过反复练习而形成的。如学习有关乘数是两位数的乘法计算技能,就是在掌握其运算法则的基础上通过多次的实际计算而形成的。数学技能与数学知识和数学能力既有密切的联系,又有本质上的区别。它们的区别主要表现为:技能是对动作和动作方式的概括,它反映的是动作本身和活动方式的熟练程度;知识是对经验的概括,它反映的是人们对事物和事物之间相互联系的规律性的认识;能力是对保证活动顺利完成的某些稳定的心理特征的概括,它所体现的是学习者在数学学习活动中反映出来的个体特征。三者之间的联系,可以比较清楚地从数学技能的作用中反映出来。 数学技能在数学学习中的作用可概括为以下几个方面: 第一,数学技能的形成有助于数学知识的理解和掌握; 第二,数学技能的形成可以进一步巩固数学知识; 第三,数学技能的形成有助于数学问题的解决; 第四,数学技能的形成可以促进数学能力的发展; 第五,数学技能的形成有助于激发学生的学习兴趣; 第六,调动他们的学习积极性。 二、数学技能的分类 小学生的数学技能,按照其本身的性质和特点,可以分为操作技能(又叫做动作技能)和心智技能(也叫做智力技能)两种类型。 l.数学操作技能。操作技能是指实现数学任务活动方式的动作主要是通过外部机体运动或操作去完成的技能。它是一种由各个局部动作按照一定的程序连贯而成的外部操作活动方式。如学生在利用测量工具测量角的度数、测量物体的长度,用作图工具画几何图形等活动中所形成的技能就是这种外部操作技能。操作技能具有有别于心智技能的一些比较明显的特点:一是外显性,即操作技能是一种外显的活动方式;二是客观性,是指操作技能活动的对象是物质性的客体或肌肉;王是非简约性,就动作的结构而言,操作技能的每个动作都必须实施,不能省略和合并,是一种展开性的活动程序。如用圆规画圆,确定半径、确定圆心、圆规一脚绕圆心旋转一周等步骤,既不能省略也不能合并,必须详尽地展开才能完成的任务。 2.数学心智技能。数学心智技能是指顺利完成数学任务的心智活动方式。它是一种借助于内部言语进行的认知活动,包括感知、记忆、思维和想象等心理成分,并且以思维为其主要活动成分。如小学生在口算、笔算、解方程和解答应用题等活动中形成的技能更多地是一些数学心智技能。数学心智技能同样是经过后天的学习和训练而形成的,它不同于人的本能。另外,数学心智技能是一种合乎法则的心智活动方式,“所谓合乎法则的活动方式是指活动的动作构成要素及其次序应体现活动本身的客观法则的要求,而不是任意的”。这些特性,反映了数学心智技能和数学操作技能的共性。数学心智技能作为一种以思维为主要活动成分的认知活动方式,它也有着区别于数学操作技能的个性特征,这些特征主要反映在以下三个方面。 第一,动作对象的观念性。数学心智技能的直接对象不是具有物质形式的客体本身,而是这种客体在人们头脑里的主观映象。如20以内退位减法的口算,其心智活动的直接对象是“想加法算减法”或其他计算方法的观念,而非某种物质化的客体。 第二,动作实施过程的内隐性。数学心智技能的动作是借助内部言语完成的,其动作的执行是在头脑内部进行的,主体的变化具有很强的内隐性,很难从外部直接观测到。如口算,我们能够直接了解到的是通过学生的外部语言所反映出来的计算结果,学生计算时的内部心智活动动作是无法看到的。 第三,动作结构的简缩性。数学心智技能的动作不像操作活动那样必须把每一个动作都完整地做出来,也不像外部言语那样对每一个动作都完整地说出来,它的活动过程是一种高度压缩和简化的自动化过程。因此,数学心智技能中的动作成分是可以合并、省略和简化的。如20以内进位加法的口算,学生熟练以后计算时根本没有去意识“看大数”、“想凑数”、“分小数”、“凑十”等动作,整个计算过程被压缩成一种脱口而出的简略性过程。 三、数学技能的形成过程 1.数学操作技能的形成过程。 数学操作技能作为一种外显的操作活动方式,它的形成大致要经过以下四个基本阶段。 (1)动作的定向阶段。这是操作技能形成的起始阶段,主要是学习者在头脑里建立起完成某项数学任务的操作活动的定向映象。包括明确学习目标,激起学习动机,了解与数学技能有关的知识,知道技能的操作程序和动作要领以及活动的最后结果等内容。概括起来讲,这一阶段主要是了解“做什么”和“怎样做”两方面的内容。如画角,这一阶段主要是了解需画一个多少度的角(即知道做什么)和画角的步骤(即怎么做),以此给画角的操作活动作出具体的定向。动作定向的作用是在头脑里初步建立起操作的自我调节机制;通过对“做什么”和“怎么做”的了解而明确实施数学活动的程序与步骤,从而保证在操作中更好地掌握其动作的活动方式。 (2)动作的分解阶段。这是操作技能进入实际学习的最初阶段,其作法是把某项数学技能的全套动作分解成若干个单项动作,在老师的示范下学生依次模仿练习,从而掌握局部动作的活动方式。如用圆规按照给定的半径画圆,在这一阶段就可把整个操作程序分解成三个局部动作:①把圆规的两脚张开,按照给定的半径定好两脚间的距离;②把有针尖的一脚固定在一点上,确定出圆心;③将有铅笔尖的一脚绕圆心旋转一周,画出圆。通过对这三个具有连续性的局部动作的依次练习,即可掌握画圆的要领。学生在这一阶段学习的方式主要是模仿,一方面根据老师的示范进行模仿;另一方面也可以根据有关操作规则的文字描述进行模仿,如根据几何作图规则对各个动作活动方式的表述进行模仿。模仿不一定都是被动的和机械的,“模仿可以是有意的和无意的;可以是再造性的,也可以是创造性的。”②模仿是数学操作技能形成的一个不可缺少的条件。 (3)动作的整合阶段。在这一阶段,把前面所掌握的各个局部动作按照一定的顺序连接起来,使其形成一个连贯而协调的操作程序,并固定下来。如画圆,在这一阶段就可将三个步骤综合起来形成一体化的操作系统。这时由于局部动作之间尚处在衔接阶段,所以动作还难以维持稳定性和精确性,动作系统中的某些环节在衔接时甚至还会出现停顿现象。不过,总的来讲这一阶段动作之间的相互干扰逐步得到排除,操作过程中的多余动作也明显减少,已形成完整而有序的动作系统。 (4)动作的熟练阶段。这是操作技能形成的最后阶段,在这一阶段通过练习而形成的数学活动方式能适应各种变化情况,其操作表现出高度完善化的特点。动作之间相互干扰和不协调的现象完全消除,动作具有高度的正确性和稳定性,并且不管在什么条件下全套动作都能流畅地完成。如这时的画圆,不需要意志控制就能顺利地完成全套动作,并且能充分保证其正确性。上述分析表明,数学操作技能的形成要经过“定向→分解→整合→熟练”的发展过程。在这一过程中每一个发展阶段都有自己的任务:定向阶段的主要任务是掌握操作的结构系统和每一个步骤操作的要领;分解阶段的主要任务是对活动的操作系列进行分解,并逐一模仿练习;整合阶段的主要任务是在动作之间建立联系,使活动协调一体化;熟练阶段的任务则主要是使整个操作过程高度完善化和自动化。 2.数学心智技能的形成过程。 关于数学心智技能形成过程的研究,人们比较普遍地采用了原苏联心理学家加里培林的研究成果。加里培林认为,心智活动是一个从外部的物质活动到内部心智活动的转化过程,既内化的过程。据此,在这里我们把小学生数学心智技能的形成过程概括为以下四个阶段。 (1)活动的认知阶段。这是数学心智活动的认知准备阶段,主要是让学生了解并记住与活动任务有关的知识,明确活动的过程和结果,在头脑里形成活动本身及其结果的表象。如学习除数是小数的除法计算技能,在这一步就是让学生回忆并记住除法商不变性质和除数是整数的小数除法法则等知识,在此基础上明确计算的程序和每一步计算的具体方法,以此在头脑里形成除数是小数除法计算过程的表象。认知阶段实际上也是一种心智活动的定向阶段,通过这一阶段,学习者可以建立起进行数学心智活动的初步自我调节机制,为后面顺利进行认知活动提供内部控制条件。这一阶段的主要任务是在头脑里确定心智技能的活动程序,并让这种程序的动作结构在头脑里得到清晰的反映。 (2)示范模仿阶段。这是数学心智活动方式进入具体执行过程的开始,这一阶段学生把在头脑里已初步建立起来的活动程序计划以外显的操作方式付诸执行。不过,这种执行通常是在老师指导示范下进行的,老师的示范通常是采用语言指导和操作提示相结合的方式进行的,即在言语指导的同时呈现活动过程中的某些步骤。如计算乘数是两位数的乘法时,一方面根据运算法则指导运算步骤;另一方面在表述运算规定的同时重点示范用乘数十位上的数去乘被乘数所得的部分积的对位,以此让学生在老师的帮助、指导下顺利地掌握两位数乘多位数计算的活动方式。在这一阶段,学生活动的执行水平还比较低,通常停留在物质活动和物质化活动的水平上。“所谓物质活动是指动作的客体是实际事物,所谓物质化活动是指活动不是借助于实际事物本身,而是以它的代替物如模拟的教具、学具,乃至图画、图解、言语等进行的”。③如解答复合应用题,在这一步学生通常就是借助线段图进行分析题中数量关系的智力活动的。 (3)有意识的言语阶段。这一阶段的智力活动离开了活动的物质和物质化的客体而逐步转向头脑内部,学生通过自己的言语指导而进行智力活动,通常表现为一边操作一边口中念念有词。如两位数加两位数的笔算,在这一步学生往往是一边计算,口中一边念:相同数位对位,从个位加起,个位满十向十位进1。很明显,这时的计算过程是伴随着对法则运算规定的复述进行的。在这一阶段,学生出声的外部言语活动还会逐步向不出声的外部言语活动过渡,如两位数加两位数的笔算,在本阶段的后期学生往往是通过默想法则规定的运算步骤进行计算的。这一活动水平的出现,标志着学生的活动已开始向智力活动水平转化。 (4)无意识的内部言语阶段。这是数学心智技能形成的最后的一个阶段,在这一阶段学生的智力活动过程有了高度的压缩和简化,整个活动过程达到了完全自动化的水平,无需去注意活动的操作规则就能比较流畅地完成其操作程序。如用简便方法计算45+99×99+54,在这一阶段学生无需去回忆加法交换律和结合律、乘法分配律等运算定律,就能直接先合并45和54两个加数,然后利用乘法分配律进行计算,即原式=(45+54)+99×99=99×(1+99)=99×100=9900,整个计算过程完全是一种流畅的自动化演算过程。在这一阶段,学生的活动完全是根据自己的内部言语进行思考的,并且总是用非常简缩的形式进行思考的,活动的中间过程往往简约得连自己也察觉不到了,整个活动过程基本上是一种自动化的过程。 四、数学技能的学习方法 1.数学操作技能的学习方法。学习数学操作技能的基本方法是模仿练习法和程序练习法。前者是指学生在学习中根据老师的示范动作或教材中的示意图进行模仿练习,以掌握操作的基本要领,在头脑里形成操作过程的动作表象的一种学习方法。用工具度量角的大小、测量物体的长短、几何图形的作图、几何图形面积和体积计算公式推导过程中的图形转化等技能一般都可以通过模仿练习法去掌握。如推导平行四边形面积计算公式时,把平行四边形转化成长方形的操作技能就可模仿(人教版)教材插图(如图所示)的操作过程去练习和掌握。小学生的学习更多的是模仿老师的示范动作,所以老师的示范对小学生数学动作技能的形成尤为重要。教师要充分运用示范与讲解相结合、整体示范与分步示范相结合等措施,让学生准确无误地掌握操作要领,形成正确的动作表象。所谓程序练习法,就是运用程序教学的原理将所要学习的数学动作技能按活动程序分解成若干局部的动作先逐一练习,最后将这些局部的动作综合成整体形成程序化的活动过程。如用量角器量角的度数、用三角板画垂线和平行线、画长方形等技能的学习都可以采用这种方法。用这种方法学习数学动作技能,分解动作时注意突出重点,重点解决那些难以掌握的局部动作,这样可以有效地提高学习效率。 2.数学心智技能的学习方法。学生的心智技能主要是通过范例学习法和尝试学习法去获得的。范例学习法是指学习时按照课本提供的范例,将数学技能的思维操作程序一步一步地展现出来,然后根据这种程序逐步掌握技能的心智活动方式。整数、小数、分数的四则计算,课本几乎都提供了计算的范例,学习时只需要根据范例有序地进行计算即可掌握计算方法。如被除数和除数末尾都有0的除法的简便算法,课本安排了如下范例,学习时只需要明确范例所反映的计算程序和方法,并按照这种程序和方法进行计算即可掌握被除数和除数末尾都有0的除法简便计算的技能。尝试学习法是指在学习中主要由学生自己去尝试探索问题解决的方法和途径,并在不断修正错误的过程中找出解决问题的操作程序,进而获得数学技能。这是一种探究式的发现学习法,总结运算规律和性质并运用它们进行简便计算、解答复合应用题、求某些比较复杂的组合图形的面积或体积等技能都可以运用这种学习方法去掌握。这种方法较多地运用于题目本身具有较强探究性的变式问题解决的学习,如用简便方法计算1001÷,由于学生在前面已经掌握除法商不变性质,练习时就可通过将除数和被除数部乘以8使除数变成100的途径去实现计算的简便。尝试学习法虽然有利于培养学生的探索精神和解决问题的能力,但耗时太多,学习时最好是将它和范例学习法结合起来,两种学习方法互为补充,这样数学技能的学习就会更加富有成效。
计算是小学数学中一项重要的基础知识,学生的计算能力强弱与否,直接关系到学习数学的兴趣。小学生计算能力的高低,主要表现在计算得是否正确、迅速和灵活,也就是平常所说的“又对,又快,又巧”。就提高学生的计算能力下面谈几点: 一、创境激趣,培养品质,让学生说“我能行” “兴趣是最好的老师。”我认为教师要创设一定的教学情境,让学生带着强烈的求知欲去探索新的知识,将干巴巴的计算教学变得生动有趣,树立学生的自信心,让学生乐于学、乐于做,让学生自己说:“我能行。” 在日常教学中,给学生讲解中外数学家的典型事例或与课堂教学内容有关的小故事,以激发其兴趣。如在教学简便运算前,我首先给学生讲解了数学家高斯创造性地解答“1+2+3+…+99+100”这100个自然数之和的故事,为学生创设良好的学习情境,激发其学习数学的兴趣,学生自然而然地产生了和数学家比比的念头。由此,学生审题比以往认真了,对题目的特点分析比以前仔细了,并能灵活利用有关定律、法则,找出解题规律,学生的学习兴趣也增强了。 根据小学生注意力不集中、不稳定,容易受到外界和某些内部因素影响的特点,教师在练习的时间和数量上要合理安排,采取“短时,少量,多次”的方法,避免疲劳、厌烦现象的产生,使学生的注意力能稳定的集中在练习对象上,从而保证计算的准确性。针对小学生只喜欢做简单的计算题,不喜欢做或做不对稍复杂的计算、简算等题目的弱点。在教学中,教师要善于发现小学生的思维障碍,克服影响学生正确计题多解”等培养学生良好的意志品质。 定期评比,定期表扬。既提高了学生的计算能力,又培养了学生的竞争和团队精算的心理因素。可以通过各种方法进行练习,如“趣题征解”,“巧算比赛”。二、全方位引导,合理训练,让学生说“我也行”(一).全方位引导 让学生充分地“说”,把操作和语言结合起来,改变过去计算教学就是学生“算”的做法。让学生充分地“说”说自己的思维过程,并给与适当的指导,教给学生良好的思维方法。同时重视师生演示操作的作用,并把操作与语言结合起来,加强学生的直观认识,有效的发展学生的思维。如在教授“20以内的进位加法”时,在学生充分“说”的同时,边动手,边思考,让学生体会“凑十”的过程。 (二).合理训练 1.口算天天练:每天利用5分钟加强学生的口算训练。单项的计算要根据学生掌握的情况重点练,对于学生难掌握之点、易错之处要突出练,练习的形式多种多样,如夺红旗、对抗赛、接力赛、口算游戏等。2.对比练习:在教学中将容易错的题目放在一起,让学生区分比较,通过有目的地练习,使学生纠正错误,以提高学生的辨析能力,并及时评价学生的作业,纠正错误。 3.改错练习:教师故意将学生作业中的典型错误板书出来让学生指出错误之处,说明产生错误的原因,并改正过来。教师要及时地发现学生作业中出现的问题,收集错题,定期上一节纠正错误课。让学生会诊,当“错题医生”,反复练习,以便对症下药。4.练习题的筛选要恰到好处:数学知识系统性很强,如果整数的加、减、乘、除法的计算方法没有学好,那么小数的加、减、乘、除法就很难学会。因此说,计算教学需要做到新旧结合,精讲巧练,持之以恒。5.新授之前扫障碍,抓住难点反复练。例如:在不连续进位的加法27+45中,当十位上的2与4相加得6时,还要加上7+5进位得来的1,所以2+4+1这类口算练习,必须放在讲授不连续进位加法之前加以训练。二年级学生初次接触整数乘法与除法时,因为它们用到的计算口诀相同,学生受到干扰往往会分辨不清出现“坐错位”的现象,要走出这一误区关键在于如何确定乘除法各部分的位置。因此要针对这个难点让学生反复练习。像根据三四十二这一句口诀:3×4=12 4×3=12 12÷3=4 12÷4=3四个算式。根据3×4=12说出12÷3=4 12÷4=3这两个除法算式。知识靠日积月累,练习需少食多餐。学生计算水平的提高不可能一簇而就,因此加强平时的训练是十分有必要的。为了提高学生的计算能力,可以安排“天天练”,即每天练3-5题的计算题,让学生做到天天有“点心”吃,又能做到“温故而知新”。练习形式多样化。为了让学生始终有新鲜感,计算练习的形式要多样,如通过游戏、竞赛、抢答、开火车、听算、限时口算、自编计算题、扑克牌、同桌对问或小组比赛等形式来调学生的胃口。还可以通过“趣题征解”、“巧算比赛”等形式。挖掘学生的潜力,培养良好的意志品质。举一反三,提高实效。每讲完一种新的计算方法,应先集中练习新学内容,再练习与本节内容有联系的题目,最后把新旧知识串起来练习。如:学习两位数乘法之后,出示练习题:15×15= 25×25= 35×35= 先请学生运用掌握的数学知识进行运算,然后思考:两个因数有什么特点?积的十位个位数字有什么特点?积的高位数字与因数的十位数字有什么关系?这样学生发现了规律,了解了数据的特征,很快掌握了快速计算方法,接着让学生比赛口算55×55= 65×65= 75×75= 85×85= 就会迎刃而解了。再如:教学混合运算时先练习100÷5×4,让学生思考它的运算顺序,接着改为60+100÷5×4,通过对比练习使学生了解他们的异同点,以便进一步掌握计算方法。练习题的设计要精心到位。练习的选题不是灵机一动,信手拈来,而是一项充满艺术性、创造性的行为。如:有关0、1试题的练习是首选。口算0÷256= 256÷1= 256÷256= 竖式计算时0的位置不同引发计算要点会相应变化,练习题设计就要到位:110×25= 250×50= 305×60 360÷90= 360÷9= 另外,练习题的设计要注意横向知识与纵向知识的对比,切忌遗漏知识点,要以点带面培养学生触类旁通的能力。三.讲清算理,为正确计算提供依据。我们知道,算理是运算正确的前提和依据。学生头脑中算理清楚,计算起来就有条不紊,可以采取多种方法使学生理清算理。1.领悟法。如:在低年级讲授进位加法时,可让学生在摆一摆,画一画,数一数的基础上体会凑十的过程,发现满十进一的现象,学生会对“十进制”这一自然数的进位方法有很好的认识。在计算中应用到满十进一的理论时才不会疑惑不解。我们把这种方法称为“领悟法”。2.对比明理法。如:三年级学习三位数乘两位数时,涉及到口算、估算、竖式计算,对于这一知识的教学,我改变计算题以做题为主的惯例,鼓励学生多动嘴说,说一说算理,说一说想的过程,目的在于使学生的思维高度活跃,做到知其然亦知其所以然。以125×11为例,口算的思维过程是:先算100×11=1100 20×11=220 5×11=55 最后算1100+220+55=1375;估算时要说明的是在此类型的估算中,只要将11估成10,然后计算125×10=1250,也就是125×11≈1250即可,关于这一类型的估算说明在教学参考书上有明确文字;竖式计算的思维则是先算125×1=125 125×10=1250 最后算125+1250=1375。通过比较,我们会发现:口算、估算、竖式计算的思维方法略有不同,学生通过说想法,说过程进行对比、区别,就会建立起清晰的表象。我们把这种方法称为“对比明理法。”3.知识转换法。如:五年级教学异分母分数加减法时,先让学生充分领会分母不同即分数单位不同,而分数单位不同,就不能直接相加减,懂得了这个道理之后,再引导学生运用通分的知识,化异分母分数为同分母分数,于是问题就转化为已学过的同分母分数相加减了。这种方法就是“知识转换法”。四、克服粗心,培养习惯,让学生说“我真的能行” 我从教学实践中总结出,缺乏认真的学习态度和良好的学习习惯,是数学计算容易出错误的主要原因。因此,必须要重视良好计算习惯的培养,使学生养成认真的学习态度。教师一定要从一点一滴做起,严格要求学生,对于学生作业中出现的由于马虎造成的错误,决不能姑息、迁就,决不能让学生产生“由于马虎做错的题,没事”的念头,要树立“会做的题一定不能错”的思想。(一).重视书写:要求学生认真按格式书写阿拉伯数字和运算符号,字迹要端正。这样能有效地避免“看错”毛病的发生。教师要率先垂范,对学生有明确要求,作业设计要精心,避免学生产生应付的心理。 (二).清晰审题:这是计算正确的首要条件。审题要审数字和符号,并观察它们之间有什么联系,还要审运算顺序,明确先算什么,后算什么,能简便就简便,做题前要做到心中有数。 (三).认真校对:要求学生凡是抄下来的都校对,学生做完题后,再次校对计算过程的准确性,做到不漏不错。 (四).仔细验算:验算是一种能力,也是一种习惯。我认为要把验算作为计算过程的重要环节来严格要求,计算完一道题后,或采取笔算验算。最少也要采取口算、估算来验算,教师对验算要有明确和有力的措施,消除学生计算后再去验算感到厌烦和抵触的情绪。 总之,培养学生计算能力是数学教学的一项重要任务。在教学时,要把握好每个环节,充分发挥学生为主体,教师为主导,练习为主线,发展智力、培养能力为目标的教学原则,以适应课程改革的需要。今天上了一节数学课,自认为上得很认真,课堂气氛也很活跃,可是从课后的询问中,发现还有个别同学还没有掌握好,特别是中等生掌握不够理想,那些平时一贯认为比较差的同学,学得倒很可以。这究竟是什么原因呢?我想来想去,冥思苦想都想不出是什么原因 ?解铃还须系铃人,还得向学生请教,我虚心的请教了3位学生,终于找到了原委。原来是我在关注学生这方面出了问题,在平时教学中,我往往是抓两头,促中间,关注的是好生和差生,特别那些学习上有困难的同学,只要举手,我都会让他们充分的发挥自己的见解,而那些中等生,我常常忽视他们,这样学生认为老师偏心,不关心他们,所以在课堂上中等生也就没有用心去投入。课堂是心灵碰撞的火花,那些中等生在课堂上,没有得到心灵火花的碰撞,自然也就掌握不好。这就要求我们教师在课堂上多一点公平,少一点偏爱;多一点关爱,少一点忽视;多一点赏识,少一点苛求;多一点表扬,少一点批评;多一点肯定,少一点否定;多一点信任,少一点怀疑;多一点虚心,少一点自满。尽量让每一位学生感到学习的甜头,感到成功的快乐,感到课堂的乐趣!
初中数学教学论文范文
在社会的各个领域,大家或多或少都会接触过论文吧,论文可以推广经验,交流认识。那么一般论文是怎么写的呢?以下是我帮大家整理的初中数学教学论文范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
论文摘要: 数学这门学科是一门比较重要的基础学科,较强的逻辑性和抽象性是数学知识的重要特点,因此对于数学的教学能够提高学生的综合能力和素质。初中数学的学习是学生学习比较重要的时期,因此这个时期对于数学的教学方法对学生的数学学习有着关键的作用,所以必须要重视这个阶段数学的教学方法。本文通过对初中数学教学存在的问题进行分析,从而提出了一系列改进初中数学教学的对策。
论文关键词: 初中数学;教学;问题;对策
一、学习数学的重要性
1.对于数学的学习可以满足人们的一种需要,例如日常生活、工作中的计数、计算以及推理。在我们的日常生活和工作中,对于事物的计数、数量之间各种运算以及比较,这些都是离不开数学的,需要数学知识和思想方法的支持。也许是因为在日常生活中所应用的数学知识都是比较简单的,所以感觉不到对它的应用。
2.对于数学的学习可以使人的思维品质和思维水平得到锻炼,比如人的计算能力、空间想象能力以及逻辑思维能力等。数学科学具有严谨、缜密的特点,所以在学习这门科学的时候除了能够掌握一定的知识外,自然也能锻炼严谨、缜密的思维。也就是说通过对数学的学习,可以让人在做事情的时候产生比较清晰的思路,运用比较科学的方法,从而能够根据已知和未知事物之间的某种联系将事物可能发展的趋势和结果进行一个大体的推断,所以说对于数学的学习可以使人的大脑和身体得到很好的锻炼。
3.数学已经深入到自然科学、社会科学的各个领域。数学掌握着这个信息化社会,把握住数学,能够在这个社会上具有一定的领导能力。由此可以看出,具有数学读写能力的人和不具有这种能力的人之间的差距越来越大,而且其程度也是非常惊人的。数学知识支持多产的、技术强大的精英阶层。曾经得到过诺贝尔奖的杨振宁说过:数学在他的科学生涯中起着不可忽视的作用,因此有些学者将信息时代也称之为数学时代,由此可以看出对于数学知识的学习可以帮助我们进入到其他学科的学习中。
4.通过对数学的学习,可以让我们体会到数学工作者身上的那种科学、严谨的科学态度和作风,从而激励自己提高自身的科学素养。纵眼望去,我们可以发现历史上无数的数学家都有着兢兢业业、刻苦勤奋、勇于创新的精神,通过学习他们的这种精神,让自己能够得到熏陶和震撼。
二、初中数学教学存在的问题
1.教师角度。
(1)教学情境的设置过于牵强,过度地重视教学中的趣味性,而忽视了数学的味道,甚至有些情境的设置离题目太远,根本就不切实际,显得非常生硬,而又刻意。对于一些知识来说,找不到合适的情境来解释也是很正常的,并不是说每个知识点都必须要设置一定的情境,有些问题可能就是来自数学本身,所以对于情境的设定一定要尊重学生的知识背景和认知结构。
(2)没有明确的教学目标,而且没有透彻的理解课标含义。
新课标提出了三位目标,分别是学科知识、数学技能以及情感态度价值观。但是很多教师对此的理解存在着误差;或者是理解了,但是执行起来却存在着偏差。只侧重于对基础知识和基本技能的教授,并以此为教学的主体,从而导致了课标的失衡,使数学的教学过于简单和过于程序化。也就是说,在教学中,只重视了训练,而忽视了培养。
(3)教学方法过于单调,没有灵活性。
很多教师对于数学的教学还停留在以往单一的方法上,所有的教学只是为了应付集体备课,并没有对其进行深层次地挖掘和研究,不能形成自己的教学风格,缺乏与学生的互动环节。另外,对于所有的学生都采取一样的教学方式,根本就没有任何的变动,缺乏必要的灵活性,很难做到对数学教学的因材施教。
(4)评价方式存在漏洞。
在调查中发现有一些教师在课堂上根本就无法展现一名教师的修养和内功,因为他们不能够对学生做出非常合理的课堂评价。这些教师一般存在的问题就是缺乏评价语言或者是评价比较肤浅、过度、琐碎,不存在一定的启发性和激励性,根本达不到课堂评价应有的效果。还有一些教师在评价的时候语言过激,让学生感觉到其语言上的讽刺性,从而伤害了学生的自尊心。课堂评价如果不能很好地促进学生的情感发展,引发灵感的碰撞;或者是不能够发挥其指导、激励的功能,那只能说明其已经失去了存在的意义。(5)在教学过程中,教师缺乏和学生的互动。在课堂上,一些教师对于数学的教授就是照本宣科,整个教授过程都是在以教师为主导,这样就出现了本末倒置的现象。因为在教学的过程中,学生是主体,教师所要做的就是引导学生进入到学习的氛围中,进行有效的活动,并不断地积累经验,将其归纳总结成数学问题。
2.学生角度。
(1)作业完成不到位。
对于初中生来说,他们自制力比较差,并没有明确的学习目标,在学习上往往缺乏一定的主动性。在初中阶段,对于数学的学习来说,作业完成的不认真或者是完不成作业一直是比较难解决的问题。由于作业是在家中完成,很多家长对学生学习的监督很少,再加上学生自身较差的自制力,这就导致了很多学生完不成作业,甚至出现了抄作业的现象。很多学生在做作业的时候,书写不认真、审题不认真、检查也不认真,在作业中稍微遇到点困难就会选择放弃。这样做的后果就是教师花费了过多的时间去处理作业,而造成了课堂教学的简单化,同时也妨碍了一些成绩好的同学的进步,从而形成了较差的教学效果。
(2)不喜欢学习数学,缺乏学习的兴趣。
由于数学学科复杂多变的特点,很多学生对于它的学习提不起任何的兴趣,所以在上课的时候经常会表现的非常冷漠,给人筋疲力尽的感觉,更有甚者直接以睡觉的方式进行默默的抗拒。
(3)缺乏正确的学习方法。
很多学生对于数学的学习根本就没有正确的方法,所能做的就是对一些公式进行死记硬背,不懂得去推理和计算,在他们的心里只要记住就可以了,殊不知数学是千变万化的,如果只是单纯的靠记忆,注定是学不会数学的。
(4)频繁的考试对学生数学学习的负影响。
现在很多学校都有着各种形式的考试,例如周考、月考等,这种频繁的考试不仅让学生精力上感觉到疲惫,更重要的是当学生成绩较差的时候,往往会挫伤其自尊心,影响他们学习数学的积极性,更严重的现象可能是学生出现厌学情绪,久而久之就放弃了对数学的学习。
三、改进初中数学教学的对策
1.让学生能够对数学采取乐意学习的态度。
数学是一门比较抽象的学科,所以对于这样一门难以理解的学科要想让学生拥有持久的学习积极性,就要采取有效的教学方式,从而让学生能够从“厌学”转变成“乐学”。小学数学的重点是培养学生的运算能力,虽然计算量大,但一般都是比较具体的数字,而初中数学则出现了用字母代替数字,从而提高了数学的抽象性。这表明初中数学又是学习数学的一个新的征程。那么要想让学生做到“乐学”,就需要教师采取新颖的教学方式,根据教学目标,创建符合条件的情境,从而使学生能够看到一些比较直观的案例。同时还需要兼并运用一些具有启发式的教学,增加教学的趣味性,从而使学生能够将注意力完全的放到教学中,展现出最积极的思维能力,诱导他们的学习动机,借此来增加学生学习的乐趣。在教导的过程中,教师要尽可能的符合教学内容的需求,创设出表面比较浅显,但是需要认真思考的一些问题,让每个学生都能够参与到教学活动中,使学生有自己的观察、分析、思考、判断的能力。将这种方式教授于学生让他们能够从中体会到学习数学的乐趣。
2.多对学生进行表扬。
每个人都渴望得到别人的赞赏,尤其是学生,更加希望得到教师的表扬,所以要用多表扬、少批评的手段来激励学生。如果教师不注意自己的教学方式,在课堂上对学生进行批评,结果只能是让学生产生逆反心理,从而做出一些放弃学习的行为。所以在课堂上,教师应该努力的创造一种比较和谐的教学氛围,做到对学生的理解和尊重,再加上适当的激励手段,这样就可以使各种程度上的学生都能够体会到成功的喜悦,进而得到精神上的满足。在课堂的提问中,要将各个学生群的水平都兼顾到,让每个水平的学生都有能够答对问题的机会,然后给予回答问题的每一个同学一定的鼓励和肯定,以温和、热情、多赞扬的方法对待自己的学生,一定要少批评、少指责、少否定,让每个学生都能够有所收获,都能获得成功,享受到成功的喜悦。对于考试来说,由于学生的层次不一样,教师可以针对每个层次的学生进行出题,这样可以让他们在考试中看到自己的进步,从而体会到成功的喜悦,促进学生进入一个学习的良性循环中。我相信这样的方式肯定能够增强学生学习的欲望,培养他们学习的兴趣,从而提高学习数学的积极性。
3.教师需要提高自身的业务能力。
需要教师能够对教材达到灵活运用的效果,这就要求教师要有较强的开发能力,深刻体会出新教材的意图,全面熟悉新旧教材的变动情况;需要教师具有创造性的指导能力,即能够对学生的各个方面进行综合科学的分析,并对学生的创造性给予一定的指导;需要教师具有体察教学行为的反思能力,即对自己教学活动和教学行为进行有意识地分析和总结,并从中认知到自己教学的不足。
学生的成长并不是在一堂课上实现的,这是一个循序渐进的过程。对于数学的学习可以满足人们的一种需要,可以使人的思维品质和思维水平得到锻炼,可以让我们体会到数学工作者身上的那种科学、严谨的科学态度和作风,从而激励自己提高自身的科学素养。数学已经深入到自然科学到社会科学的各个领域,所以在对数学的教学过程中,教师需要在提高自身业务能力的基础上,努力做到让学生能够对数学采取乐意学习的态度,并对学生进行不断地激励,让其能够成为数学王者。总之,身为教育工作者,要做到一切为了学生。
参考文献:
[1]白东明,金磊。浅谈初中生数学学习兴趣的.培养[J].才智,2012,(1):062.
[2]吴越明。初中数学教学存在的问题及对策[J].中学教学参考,2014,(27):41.
摘要:目前在中考升学率的压力下,初中数学课堂教学往往是“满堂灌”,课后的课业负担较重,严重影响了学生的全面发展和身心健康。根据20多年来亲身的教学经历,从五个方面就如何减轻学业负担,规范教学和管理,提高课堂45分钟的效率谈了心得体会。
关键词:初中数学;教学特点;教学效率
当前初中数学的课堂教学“满堂灌”、课后的课业负担重、教学质量偏低已成为教育界有关人士关注的焦点。传统的教学方式严重影响了学生学习数学的积极性,影响了学生的全面发展和身心健康。要使学生轻松地学习数学,教师应当采取措施,精心备课,注重教学方法,优化课堂教学。教学过程中以学生为主体,激发学生学习数学的兴趣,引导学生积极主动思考,使学生成为学习的主人,从而切实减轻学生过重的学业负担。
我们还应当认识到“减负”不单纯指减少课时、课本内容、作业量,它不仅是形式上的减少,更是一场关于全面提高教学质量,规范教学和管理的改革。
笔者在使用浙教版新教材的过程中,结合实际教学经验,从五方面就如何减轻学业负担,提高数学课堂效率总结体会如下。
一、初中数学教学的特点
义务教育阶段的数学课程具有基础性、普及性和发展性。所以在教学过程中对教师提出了较高的要求,教师在教学过程中应当尊重个体差异、面向全体学生,在基础知识与创新能力、传统与现代等各方面找到一个平衡点。
初中生正处青春期,自我表现欲突出,心理呈现出矛盾性和不稳定性。反映到数学课堂上,常出现注意力不集中、不愿意主动学习等现象。因此,营造良好的课堂氛围至关重要。这就要求教师努力优化课堂结构,激发学生学习的兴趣和主动性,全面提高教学质量。
二、具体措施
1.精心备好每一节课
减轻学业负担的重点就在于教师如何有效地利用课堂45分钟,提高教学质量。因此,教师在“减负”这场改革中起着举足轻重的作用。
课堂的45分钟教学时间应当合理地利用,任何人都不能浪费,所以教师必须下工夫、花气力去认真钻研《义务教育数学课程标准》,吃透教材,全面把握初中数学教学的重难点,找准每节课的关键,然后突出重点,分散难点,因材施教,合理安排好课堂进程的快慢以及课堂教学的时间。
教师备好课,不仅要备教材,把握每节课的重难点,还要备好学生,了解学生的基本情况,其中包括学生的认知能力、基础知识情况、接受能力等。只有这样,才能真正地做到因人施教,在课堂上有的放矢地把握学生。课堂知识有利于学生的接受和吸收,从而才可以减轻学生的学业负担,提高学习的质量。
2.激发学生学习的兴趣
兴趣是动力的先导,也是成功的关键。如果教师可以激发学生学习的兴趣,将枯燥的数学公式和定理以生动巧妙的方式向学生讲解,把轻松和乐趣带进数学课堂,课堂的效率也会大大提高。
在初中数学课堂的实际教学中,应当注意以下几点:
(1)可在讲课前设置问题,引起学生注意和思考,从而使学生产生学习的愿望和浓厚的兴趣。比如,教学“概率”时,教师可以设置“摸奖游戏”:箱子里有10个白球,10个红球,每个学生可以摸5次,连续摸到4个红球就算中奖。通过对中奖概率的分析,学生更加明白“摸奖”的小概率和现实意义,同时也被概率的现实作用深深地吸引住了。
(2)教师可以进行情境创设,联系生活实例,或者利用情感式教学,激发学生的兴趣。
(3)教师应当尊重学生的表现欲,适当设置问题进行课堂讨论,鼓励学生积极参与、有不同的想法,并引导学生得出正确的结论。比如,教学“三角形面积的计算”时,教师可以让学生动手将两个完全一样的三角形拼成学过的图形,学生参与的积极性很高,拼成了平行四边形、长方形、正方形,然后教师再引导学生思考拼成的图形与原来三角形的底、高、面积的关系,从而得出三角形面积的计算公式。
(4)教师可以利用多种教学方式和手段,采用多媒体辅助教学,为教学内容增添直观性和形象生动性。
总之,教师应当在充分了解学生的同时,构建和谐的师生关系,注重激发学生对数学的兴趣,诱发学生的探究欲望,最大限度地挖掘学生的潜能。
3.以学生为本,引导学生积极思考
传统的课堂上,课堂的内容、模式、形式都由教师决定,学生参与的积极性不高,课堂效率低。学生往往不会主动思考、不会分析、不能用所学的知识解决实际问题。这样极大程度地扼杀了学生学习数学的热情和兴趣。由于忽略了学生的主观能动性,没有启发学生积极主动思考,虽然学生在课堂上“听明白了”教师所传授的知识,却没有把课堂知识转化为自己的知识,遇到问题时还是一知半解。
素质教育的核心就是目前大力提倡的创新能力,而创新能力是以探究心理为基础的,所以学生探索精神的培养就至关重要。在教学过程中,教师不要直接给出数学公式或定理,而要引导学生积极思考,主动发现和总结出规律。再比如,遇到难题时,教师不要直接帮学生解出来,而要适当地引导学生,让学生以独立思考或小组合作的方式想出解决方法,并引导学生分析方法的可行性。
只有让学生积极地思考,才可以将课堂知识转化为学生自己的知识,从而做学习的主人。
4.尊重个体差异,面向全体学生
新课标倡导的目标是:“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。”这就要求教师了解和尊重学生的个体差异。教学时既要因材施教,又要面向全体学生。
在授课中,教师可以针对知识点设计不同难度的台阶,使不同层次的学生有同等的参与机会,使基础好的学生和学习有困难的学生都可以在原有基础上得到提高,并获得同样的成就感。例如,在“完全平方公式的因式分解”教学中,我设置了5个台阶:
①(x+3)2=x2+()x+()
②z2-10xz+25x2=()
③(x-y)2-8(x-y)+16=()
④x2y+6xy2+9y3=()
⑤若9x2+mx+16是一个完全平方式,则m=()
在教学过程中,要尽可能地使所有学生都能主动参与教学过程,鼓励学生用多样化的方法解决问题,提出各自解决问题的方法,积极与他人交流,吸取他人的经验,从而提高学生的思维水平。
5.重视知识的联系与整合,提高学生解决问题的能力
通过联想,可让学生将所学知识整合起来,做到举一反三,形成自己的能力。比如,九年级数学中反比例函数,教师可将其与前面学到的一次函数y=kx+b(k≠0)联系起来,讨论当k分别为正值和负值时两函数图像的关系,在学习新知识的同时,深化对旧知识的理解。
知识的整合不仅指的是课本知识间的相互整合,更重要的是课本知识与实际生活、其他学科的相整合。教学过程中所选的题材应尽量来源于实际生活,重视知识之间的联系,从而激发学生的兴趣,使学生可以应用所学知识解决实际问题。比如,教学“勾股定理”这一内容时,教师可以从其发现历史来讲解,并从生活中找出这一定理的运用。教师也可以将勾股定理与其他领域的内容联系起来,在解决其他相关问题时使用到勾股定理。这样通过知识的联系与整合,可以使一点一线的知识形成面,提高学生综合运用所学知识解决实际问题的能力。
总之,要使学生真正轻松地学习数学,教师应精心备课,把握好课堂45分钟,激发学生学习数学的兴趣和探索精神,使学生真正成为学习的主人,真正要让学生在课堂上“会学”而不仅仅是“学会”,从而切实减轻学生过重的学业负担。
运算能力是解决数学问题的一种必备能力,它与记忆能力、理解能力、推理能力、表达能力以及思维能力等诸多因素相互渗透、...
浅谈小学数学中学生数学思维能力的培养研究论文
在平平淡淡的日常中,大家都跟论文打过交道吧,通过论文写作可以培养我们的科学研究能力。那要怎么写好论文呢?下面是我收集整理的浅谈小学数学中学生数学思维能力的培养研究论文,仅供参考,大家一起来看看吧。
摘要:
小学时期学生的思维正处于重要的过渡阶段,对外界的认知能力日渐增强,思维模式也在逐步完善。加强学生数学思维能力的培养,有助于学生养成良好的学习习惯,为以后的学习打下稳固的根基。下文主要就如何培养小学数学中学生数学思维能力进行探讨,提出激发学生兴趣的方法,以达到提高数学思维能力的教学目标。
关键词:
小学教学;数学思维能力;培养
引言:
所谓的数学思维能力可以分成观察力、想象力和逻辑力,掌握这三种能力对学习其他学科而言就是打下了良好的基础,而且数学思维的逻辑性同样适用于生活中的方方面面。小学生的数学思维不仅受先天因素的影响,同时也会因外界环境的影响发生改变。要做好学生的数学思维培养工作,就要选择正确的培养方法。
一、数学思维能力
1.数学思维的含义
数学思维是指思考问题和解决问题的思维活动模式。数学思维有助于学生在面对数学问题时,将数字形象化,加深理解,从而形成一定的数学逻辑推理思维。而数学思维能力是指将数学逻辑思维和丰富的想象空间相结合的同时可以灵活运用,以达到在实际生活中,同样能对一切问题进行归纳与推理的目的。
2.数学思维的作用
在实际教学中,学生的学习能力良莠不齐。有的学生先天理解能力较强,能够较快接收新知识的同时还能做到学以致用;而有的学生理解能力就稍微逊色,理解问题较为困难,学习进度缓慢,因此很容易丧失对学习的兴趣。培养学生的数学思维能力就能很好的帮助学生解决这一学习烦恼,学生形成了数学思维模式后就能在自己的理解下掌握学习方法、加快学习进度,提高对问题的判断力的同时激发求知的上进心。
二、加强对小学数学中学生数学思维能力培养的具体方法
1.灵活运用教学方法
教师要先了解学生对于数学科目的学习心理,以此为基础,选择学生最能接受的教学方法。小学时期,学生对学习的兴趣最为浓厚,教师在教学过程中不能一味的只注重讲解书面知识,学生若是在被动的机械记忆模式下学习,就不会养成良好的数学思维模式,要学会用数形结合的方法生动讲解,通过借助形的某些属性来阐明数的精确性。例如:在学习图形体积计算时,老师不能只在黑板上画出立体图形标注长、宽、高,黑板是一个典型的二维物体,画出的立体图形趋于抽象化,对于小学生还未成型的思维模式而言,看不到的另外三个面就变的难以理解,因此,教师可举例说明,我们上课的教室本身就是一个标准的立体长方形,哪边是长宽高的位置就变得一目了然,这种把抽象化的概念转化成实物化的事物的教学方法,更易于学生对数学深入理解,在提高学习效果的同时也提高了学生学习的兴趣,从而培养学生的数学思维能力。
2.循序渐进的诱导
数学是一门逻辑性较强的科目,对于刚刚接触此科目的小学生来说养成逻辑性的思维非常重要。数学问题与答案之间有很强的关联性,要想解答问题就要先分析清楚问题中已知条件的因果关系,在此分析过程中,逻辑性的存在就显得十分重要,分清主次因果才能理解其中包含的数量关系。培养学生的`逻辑性是非常漫长的过程,教师无法直接教授逻辑能力,只能在教学中慢慢诱导。先为学生讲解最简单的知识,在学生能够灵活运用后再逐渐提高知识难度,不求快,要求稳;由此激发出学生对数学知识的渴求心理,提高了学生的学习兴趣后教师再加以梳理,循循善诱,故而,学生的数学逻辑思维能力也逐渐提升。
3.制定明确的新课标
制定好每堂课的新课标是一种极为科学的教学方案,教师要按照新课标的要求预先备好课,确保要讲解的知识内容在新课标范围之内,促使学生的数学思维培养程度与新课标中要求的教学模式一致,严禁出现一味追求进度却不注重质量的教学现象发生。在进行教学前,要了解学生的基本学习情况,做到“因材施教”,以防在讲解新知识的时候学生发生掉队,从而失去对学习的兴趣。
4.当堂设问锻炼思维
小学生是一个不可控的群体,由于其思维的不完善性,自控能力相对较差。有些学生在上课时间很容易被外界影响,也就发生了我们常说的“溜号”现象,等到学生的注意力转移回课堂时却发现讲解的内容发生断点,内容理解不上去;为减少此类问题的发生,当堂设问不失为是一个好方法。
小学生群体的自控性虽有欠缺,但其强烈的上进心却不容忽视。教师可在本堂新知识讲解完毕后,提出几个在新知识范围内的问题,当作课堂提问,回答正确的学生可以得到一些奖励,此方法不但能在活跃课堂气氛的同时吸引学生的注意力,还能加深学生对新知识的印象并提高学生自主思考问题的数学思维能力。
5.培养学生实践能力
学生实践能力的培养是数学思维能力培养的基础。值得注意的是,课后知识的巩固同样不可或缺,在学习过程中,难免会有部分学生出现学得快、忘得也快的问题。布置适量的课后习题会在学生接收新知识的同时加深对知识的印象,锻炼举一反三的能力,更深层次的分析数学问题与答案间的内在联系,掌握做题方法;在巩固过程中,学生会形成自己的学习思路,教师要在与学生沟通的过程中顺通学生的思路,加以正确的引导,逐步培养学生的数学思维能力。
三、结束语
综上所述,学生数学思维能力的培养不是一项短期工作,需要教育者们长时间的坚持耐心诱导。重视培养小学生的数学思维能力的同时也要与实际相结合,不能只注重表面知识,要在教授学生新知识的同时帮助学生梳通思路,启发学习;并根据学生自身先天因素差别,从多角度尝试用不同的教育方式进行培养。总而言之,帮助学生养成数学思维能力,不仅可以增强学生的求知欲、激发学习兴趣,也对日后学生的学习大有裨益、终身受用。
参考文献
[1]王耀忠.浅析小学数学课堂教学中学生思维能力培养的策略[J].新课程导学,2014(26):44-44.
[2]李振伟.浅析小学数学教学中学生逻辑思维的培养[J].数学学习与研究,2016(8):67-67.
计算教学是数学教学中的一个重要组成部分,计算能力是一项基本的数学能力。然而在实际教学中,学生的计算能力却让人担忧。经常听见不少数学教师埋怨:“学生的计算能力太差了,连小学简单的加减乘除都不过关;甚至有的学生连简单的有理数加减法都要依靠计算器进行计算。这样的基础今后的数学该怎样教呀!”也常常听到学生们议论:有些数学题明明知道怎么做,但结果总是一不小心就出错了。这些都说明学生在运算中还存在很多的问题。为此,我围绕《中学生运算能力的调查与分析研究》这个课题开展了一系列的调查研究工作。下面我结合个人的教学实践和研究,谈一下提高初中学生的计算能力的几点做法:一、认真调查研究分析原因,做到对症下药。通过研究发现学生运算能力不高主要存在以下两个原因:(一)学生学习的外部原因。主要表现在:1、计算器的广泛运用削弱了运算意识、运算能力。随着计算技术的不断发展进步,计算器的使用引入数学教学中,它使繁琐的运算变得更加快捷,而受到广大学生的青睐。然而在计算中部分学生过分依赖计算器,一味地使用计算器,于是他们只会简单、机械地把数据输入求解,没有去思考如何快捷、简洁地解决问题。从而忽视了对学生运算的灵活性、合理性和基本的计算技能的培养。于是经常在考试或者作业中发现学生计算只有结果而没有求解过程。但不论是平时的要求,还是考试,都要求解题过程完整规范,正是由于使用计算器缺少这方面的训练,造成了学生解题不规范,不完整,导致计算失分。2、学习方法和思维方式转变影响运算能力的提高。从小学过渡到初中,数学计算在思维方式上出现了两大飞跃,一是建立了有理数概念,引进负数;二是用“字母”为主的符号表示数。这跟小学单纯的数的计算有了很大不同,正是这种思维方式的转变使学生很难适应,出现初中数学一开始学习就有“吃力感”,失去了学好数学的信心,影响了学生的计算能力的提高和数学能力的发展。3、教师对计算教学缺乏培养学生计算水平的意识,一味地追求数学解题能力,向学生灌输解题技巧,而忽视了学生运算能力的提高。正是这种对数学题重思路,轻运算,导致学生运算能力越来越差。(二)学生学习的内部原因。主要表现在:1、数学学习方法的问题。不注重知识储备,不注重对数学思想方法的归纳、反思和总结。见到计算题总认为很简单,产生轻视心理,不思考不分析,还未弄清算理就盲目计算,致使漏洞百出,对计算结果对错的下意识判断还没生成。2、缺乏良好的计算习惯。许多学生由于懒惰,思想不集中,不打草稿,在计算时没有良好的运算和检验习惯而导致运算结果出错,使得数学计算能力不高。3、学习过程中的问题。学生在学习过程中往往认为计算太枯燥、不重要,常常出现(1)概念模糊不清,公式、性质记忆不准确,而运算失误。(2)数学语言不过关,阅读能力差,运算无从下手。(3)代数恒等变形常规方法不熟练。(4)对运算问题缺乏检验、反思、总结的意识。(5)审题不仔细表达能力差,书写不规范。(6)对数学计算学习丧失信心,从“不喜欢”到“害怕”到“恐惧”运算。二、提高学生运算能力的方法(一)了解学生情况,因材施教,做好查缺补漏要想提高学生的计算能力,决不是一朝一夕的事情,俗话说“万丈高楼平地起”。要提高学生的计算能力,必须从基本的计算抓起,也就是说,我们必须从小学开始,狠抓数学基础教学。在教学中,我发现不少学生的数学成绩差,究其原因,是计算能力差。在初一年级中100以内的加减乘除运算都弄不清楚的大有人在,这种计算能力和数学基础,怎么学好初中数学呢?恐怕这是令初中数学教师感到最头痛的事,怎么办呢?这就要求我们数学教师认真了解学生学习情况,做到因材施教,做好查缺补漏工作。怎样才能了解学生在计算方面都存在哪些问题呢?首先在教学中注意观察学生在计算中存在的问题,然后认真的汇总分类分析,才能有针对性地对他们进行辅导。例如:有些学生加减乘除四则混合运算的法则不清楚,导致计算错误,对他们就要从混合运算的法则补起;有的是乘法口决记忆不准确,导致乘除运算出错,让他们把乘法口决记牢;还有少数学生是对计算缺乏足够的耐心,注意力不集中,或是粗心大意出错,对这部份学生则要出一些易错题型来训练他们的耐心与注意力;有的学生偏科,即数学差而其它学科好,我们要帮助他们认识数学学习的重要性,并加以重点辅导,力争全面发展;有的学生对学习数学不感兴趣,教学中我们要设法增加数学课堂的趣味性,开展有趣味的数学活动,让学生参与教学,让他们感受到学习数学的乐趣,在活动中感受到成功感,逐步培养学生学习数学的兴趣。(二)培养运算信心,让学生面对计算敢于动手要引导学生从一些常规运算入手,不断提高运算的准确性和运算的速度。由简入难,循序渐进,培养学生积极的运算态度和不惧怕计算,敢于计算的意志品质,让每个学生相信“只要基础扎实,基本功熟练,就不怕运算”。树立战胜困难的信心,享受运算的乐趣。然而教学中发现很多学生,运算问题是一听就懂,一算就错,还有的同学是啥都会,就是半途而废或者是思路会,算不对。长此以往,老师对学生没了耐心,学生对计算失去了信心。其实解决这一问题并非难事,只要按照由简到难,遵循循序渐进的原则,加强对常规运算能力的培养,通过有重点的练习,让学生对常规运算方法,熟能生巧;鼓励学生在计算过程中,运算到最后一步,重视运算过程,面对计算敢于动手,做到开始计算有信心,计算过程有耐心,运算结果检验要细心。帮助学生从惧怕计算的阴影中走出来。(三)充分加强运算训练,提高计算技能学数学,不解题不行,只讲不练,讲多练少或者无重点无目的的重复练习都会影响到数学运算能力的提高。在安排计算训练时,要做到科学合理地有的放矢的安排练习内容,让学生掌握从特殊到一般的思想方法,通过让学生掌握基础的运算,按照由易到难的层次逐步来提高学生的计算能力。初中阶段的数学计算有有理数的运算、乘方、开方等计算,以及在此基础上的解方程、解不等式、乘法公式的应用、因式分解、二次根式的计算、分式的计算等运算。其实一些单纯的计算,学生一般不容易出错,出错大都是在综合运算中出现得较多。综合运算本身就是数学计算的一个难点,当各种运算方法综合运用时,知识间易发生混淆导致学生出错。这就要求教师在教学中把握训练的重难点,对各种学生可能遇到的情况有一个预计,并采取相应的措施。其次,要有针对性地培养学生笔算和口算、心算等基本的计算技能,循序渐进地提高学生的计算能力。不要因为学生会用计算器了就忽略了对学生基本技能的培养,尤其是在有理数的运算教学中,要加强运算技能的培养,避免学生依赖计算器计算。注重分层次,有目的、有重点的训练,切忌题海战术无重点的重复练习。只要学生掌握了计算方法,并加以练习,就会提高计算技能。(四)培养良好运算习惯,提高计算水平养成良好的计算习惯,是提高学生计算能力切实有效的办法。学生在计算中出现的错误,有一部分原因是与不良的学习习惯有关。在计算时我认为要培养学生养成以下良好的计算习惯:1、养成“一看、二想、三计算”的认真计算习惯。一看:即做题前,先完整地看题,看清每个数和每个运算符号,进行初步感知。二想:即在看清题目的基础上,弄清算式的特点与各运算之间的关系,根据具体情况选择合理的方法,确定运算步骤。三算:即在确定运算步骤和方法后,认真地进行计算。2、善于打草稿的习惯。很多学生在计算时不愿打草稿,这是一个普遍存在的现象。老师布置了作业,有的口算,有的在书上、桌子上或者其他地方写上一两个算式,算是打草稿了;有的干脆观望,等待别人的结果,这些都是不良的计算习惯。计算教学中应要求学生找出专门的草稿纸,认认真真地打好草稿,便于计算结束后查看中间计算过程和检验。3、认真检查的习惯。一道题初步计算完了,不能算计算完全结束了,学生在计算中,难免会出现这样或那样的错误,这就要求学生进行仔细的检查。比如,检查算法是否合理,数字看错了没有,运算顺序错了没有,数据运算符号是否抄错,负号是否漏抄等。有的还可以进行检验和验算,看结果是否正确,如分式方程要求通过验根来检查结果是否是原方程的解,应用题还要根据实际情况对结果进行取舍。教学实践表明,提高学生的运算能力是一项复杂的系统工程,是一项长期的任务,不可能一蹴而就。而中学数学学习阶段又是一个关键的时期,它的成败关系到学生将来的发展。所以在计算教学中,要做到不断思考,不断探索,不要单纯为了计算而计算,而要把它和目前新课标所倡导的生活实际、情感态度等结合起来,最后加上持之以恒的训练,学生的计算能力就会提高。
一个人的数学计算能力主要包含三个方面:1、计算结果的准确性;2、计算方法的技巧性;3、计算速度的快捷性。要想提高小学生数学计算能力,要从下面四个方面下功夫:一、让学生熟练掌握运算法规:在小学阶段,学生要学到三类数——整数(自然数)、小数和分数,这三类数都要进行四则运算——加、减、乘、除,每一类数的每一种运算都有自己特定的运算法则,熟练掌握各类;二、注意培养学生估算能力:新课程把培养学生的估算能力列入其中,充分反映出估算在数学计算和实际生活中的重要性,估算能力也是一个人计算能力中相当重要的一个方面,具备良好的估算能力,实践证明有四个好处:1、帮助我们预知计算结果;2、可以提高数学分析能力;3、可以解决实际生活问题;4、检查结果是否基本正确。三、切实加强学生口算训练:在课堂中,一般采取下列步骤进行口算训练:1、先让学生先口算出结果。2、再让学生说说自己的口算方法,对良好的口算方法及时给予肯定,有时对同一题目,还可问问学生有无别的口算方法。3、最后教师对口算方法给予解释和强调。四、善于采取简便算法:有些数学计算试题具有明显的形式和数字构造特征,这些特征正是我们施展简便算法的大好机会,通过一定数量的简算练习,不但提高了学生的观察能力和分析能力,逐步强化了学生数学计算的技巧和快捷性,而且还给学生带来了快乐的精神享受,这对激发学生学习数学兴趣大有裨益。
潮流计算开题报告
潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算。
选题的意义和目的
潮流计算是电力系统最简单却非常重要的分析计算,可以用来研究系统规划和运行中提出的各种问题。对规划中的电力系统,通过潮流计算可以检验所提出的电力系统规划方案能否满足各种运行方式的要求;对运行中的电力系统,通过潮流计算可以预知各种负荷变化和网络结构的改变会不会危及系统的安全,系统中所有母线的电压是否在允许的范围以内,系统中各种元件(线路、变压器等)是否会出现过负荷,以及可能出现过负荷时应事先采取哪些预防措施等。
可是传统的潮流计算程序缺乏图形用户界面,结果显示不直观,难于与其他分析功能集成,网络原始数据输入工作量大且易于出错。随着计算机技术的飞速发展,结合电力系统的特点及图形化潮流计算软件的开发设计思想和总体结构,而应用MATLAB软件可以很好的改善这方面的问题。该系统的主要特点是操作简单,图形界面直观,运行稳定.计算准确。计算中,算法做了一些改进,提高了计算速度,各个类型的有效封装又使程序具有很好的模块性.可维护性和可重用性。
课题研究现状(含文献综述)
电力系统潮流计算是研究电力系统稳态运行的一向基本运算,可以确定系统的电压分布和功率分布,以及网络中的功率分布和损耗。对规划中的电力系统,通过潮流计算可以检验所提出的电力系统规划方案能否满足各种运行方式的要求;对运行中的电力系统,通过潮流计算可以预知各种负荷变化和网络结构的改变会不会危及系统的安全,系统中所有母线的电压是否在允许的范围以内,系统中各种元件(线路、变压器等)是否会出现过负荷,以及可能出现过负荷时应事先采取哪些预防措施等。
潮流计算既是对电力系统规划设计和运行方式的合理性、可靠性和经济性进行定量分析的依据,又是电力系统静态和暂态稳定计算的基础。利用电子计算机进行潮流计算从20世纪50年代中期就已经开始,经历了以节点导纳为基础的高斯-赛德尔迭代法,求解非线性方程式的典型方法——牛顿拉夫逊法,以及其改进方法快速解耦PQ分解法。
近20多年来,潮流算法的研究仍然非常活跃,但是大多数研究都是围绕改进牛顿法和PQ分解法进行的。此外,随着人工智能理论的发展,遗传算法、人工神经网络、模糊算法也逐渐被引入潮流计算。但是,到目前为止这些模型和算法还不能取代牛顿法和PQ分解法的地位。对潮流计算的要求可以归纳为下面几点:(1)算法的可靠性或收敛性
(2)计算速度和内存占用量
(3)计算的方便性和灵活性。随着时代电力系统大系统、强非线性与多元件的.特点日益突出,其计算量与计算复杂程度急剧增加,旧的计算机软件在处理潮流计算时,其速度已经无法满足大电网模拟和实时控制的仿真要求。MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。
它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和分析数据、开发与实现算法、创建用户界面模型、连接其他编程语言的程序和应用程序。借助其语言、工具和内置数学函数,可以探求多种方法,比电子表格或传统编程语言(如 C/C++ 或 Java)更快地求取结果。MATLAB 应用广泛,其中包括信号处理和通信、图像和视频处理、控制系统、测试和测量、计算金融学及计算生物学等众多应用领域。在各行业和学术机构中,有一百多万工程师和科学家使用 MATLAB 这一技术计算语言。MATLAB是集数值计算、符号运算及图形处理等强大功能一体的科学计算语言。
MATLAB计算机软件功能强大,在编写程序时MATLAB语言允许用户以数学形式的语言编写程序,比BASIC语言和FORTRAN语言等更为接近书写的数学表达格式,而且其程序易调试。在计算要求相同的情况下,使用MATLAB编程,工作量将大幅度减少。利用MATLAB语言来进行电力系统潮流计算的方法,编程简便、运算效率高并符合人们的思维习惯,计算结果能满足工程计算需要,同时验证了方法的有效性,为解决大电网的潮流计算问题开辟了新思路。
课题内容及研究思路
对目前常用潮流计算方法进行分析如牛顿-拉夫逊法,先建立潮流计算的数学模型,主要包括导纳矩阵的原理及计算方法、潮流计算的基本方程、潮流系统的节点分类、潮流计算的约束条件这几方面。其次对牛顿-拉夫逊法的基本原理、求解过程、程序框图进行概述。最后通过MATLAB软件进行矩阵的生成、运算以及牛顿—拉夫逊法潮流计算程序。用牛顿-拉夫逊法把准备好的原始数据,建立仿真模型,分析仿真结果,完成设计说明书。
课题重点、难点
现代电力系统大系统、强非线性与多元件的特点日益突出,其计算量与计算复杂度急剧增加,而牛顿-拉夫逊法是求解非线性代数方程有效的迭代计算。牛顿-拉夫逊法需要进行大量的数值计算。自导纳和互导纳的确定方法、节点导纳矩阵的性质、非标准变比变压器等值电路以及电力系统节点分类等都比较容易弄混。MATLAB设计中,原始数据的填写格式是很关键的一个环节,它与程序使用的方便性和灵活性有着直接的关系。输入的数据量比较多,要细心,否则会大大增加工作量。
论文提纲
电力系统潮流计算概述
电力系统简介
潮流计算简介
潮流计算的意义及其发展
2、潮流计算的数学模型
导纳矩阵的原理及计算方法
自导纳和互导纳的确定方法
节点导纳矩阵的性质及意义
非标准变比变压器等值电路
潮流计算的基本方程
电力系统节点分类
潮流计算的约束条件
3、牛顿-拉夫逊法概述
牛顿-拉夫逊法基本原理
牛顿-拉夫逊法求解过程
牛顿-拉夫逊法程序框图
4、MatlAB建模仿真
简介
矩阵的生成
矩阵的运算
牛顿—拉夫逊法潮流计算程序
结果分析
总结
进度安排(包括时间划分和各阶段的主要内容)
序号 设计各阶段名称 日期(教学周)
⒈ 下达任务书,检索收集课题最新资料,调研分析 2014年11月7日—11月13日
⒉ 提供开题报告 2014年11月14日—11月22日
⒊ 修改开题报告相关外文翻译资料 2014年11月22日—12月28日
⒋ 根据开题报告,进行中期检查和撰写论文初稿 2015年1月1日—3月15日
⒌ 根据指导老师的意见修改论文,完成论文并上交 2015年3月15日—4月18日
⒍ 指导老师评定成绩,老师评阅论文 2015年4月18日—4月30日
⒎ 毕业答辩 2015年 4月30日—5月16日
参考文献
[1]陈衍.电力系统稳态分析(第三版). 北京:中国电力出版社,2007
[2]李光琦.电力系统暂态分析(第三版).北京:中国电力出版社,2007
[3]李维波.MATLAB在电气工程中的应用.北京:中国电力出版社,2007
[4]张志涌,杨祖樱.MATLAB教程(2008a).北京:北京航空航天大学出版社,2006
[5]陈跃.电气工程专业毕业设计指南电力系统分册.北京:中国水利水电出版社,2003
[6]刘天琪,邱晓燕《电力系统理论分析》(第二版)北京:科学出版社,2013
[7]张保会,尹项根《电力系统继电保护》(第二版)北京:中国电力出版社,2013
[8]赵广元《MATLAB与控制系统仿真实践》(第二版)北京:北京航空大学出版社,2012
[9]王守相,刘玉田《电力系统潮流计算研究现状》山东工业大学电力工程学院
[10]张宁,韩勇《基于MATLAB的电力系统的潮流计算》西北农林科技大学信息工程学院
[11]薛 巍,舒继武,王心丰,郑纬民《电力系统潮流并行算法的研究进展》清华大学电机工程与应用电子技术系,北京
[12]罗华飞《MATLAB GUI设计学习手记》(第3版)北京:北京航空航天大学出版社 2014
[13]徐劲松,宁可琳,杨永峰的《基于MATLAB的电力系统PQ分解法潮流计算研究》 2011
[14]百度百科《电力系统潮流计算》
[15]Nagrath I J,Kothari D R. Modern Power System Delhi:TataMcGraw-Hill Publishing
[16]. evaluation of Parallelization of Power Flow Algorithms. In: proceedings of the 40th Midwest Symposium on Circuit and Systems[D], Sacramento, California, . August 1997
[17] control system and optimization of modes of electric power systems,Moscow:Vysshaya Shkola,1983
[18] minimization methods for calculating steady states of electric power systems,Novosibirsk:Nauka,2001
发电厂厂用电设计220kV变电站电气设计防雷接地设计某钢铁企业自备电厂设计电网潮流计算与仿真电力系统继电保护基于单片机的电动机软启动器
主要是仿真计算功能,可以利用matlab搭建系统的模型,然后对系统的物理变量、控制器设计、运动模型等进行计算,matlab可以为工程人员在控制系统设计时节省大量的时间与人力物力,是一个非常实用的软件
潮流计算开题报告
潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算。
MatlAB的潮流计算建模与仿真开题报告
选题的意义和目的
潮流计算是电力系统最简单却非常重要的分析计算,可以用来研究系统规划和运行中提出的各种问题。对规划中的电力系统,通过潮流计算可以检验所提出的电力系统规划方案能否满足各种运行方式的要求;对运行中的电力系统,
通过潮流计算可以预知各种负荷变化和网络结构的改变会不会危及系统的安全,系统中所有母线的电压是否在允许的范围以内,系统中各种元件(线路、变压器等)是否会出现过负荷,以及可能出现过负荷时应事先采取哪些预防措施等。
可是传统的潮流计算程序缺乏图形用户界面,结果显示不直观,难于与其他分析功能集成,网络原始数据输入工作量大且易于出错。随着计算机技术的飞速发展,结合电力系统的特点及图形化潮流计算软件的开发设计思想和总体结构,
而应用MATLAB软件可以很好的改善这方面的问题。该系统的主要特点是操作简单,图形界面直观,运行稳定.计算准确。计算中,算法做了一些改进,提高了计算速度,各个类型的有效封装又使程序具有很好的模块性.可维护性和可重用性。
课题研究现状(含文献综述)
电力系统潮流计算是研究电力系统稳态运行的一向基本运算,可以确定系统的电压分布和功率分布,以及网络中的功率分布和损耗。对规划中的电力系统,通过潮流计算可以检验所提出的电力系统规划方案能否满足各种运行方式的要求;对运行中的电力系统,
通过潮流计算可以预知各种负荷变化和网络结构的改变会不会危及系统的安全,系统中所有母线的电压是否在允许的范围以内,系统中各种元件(线路、变压器等)是否会出现过负荷,以及可能出现过负荷时应事先采取哪些预防措施等。
潮流计算既是对电力系统规划设计和运行方式的合理性、可靠性和经济性进行定量分析的依据,又是电力系统静态和暂态稳定计算的基础。利用电子计算机进行潮流计算从20世纪50年代中期就已经开始,经历了以节点导纳为基础的高斯-赛德尔迭代法,
求解非线性方程式的典型方法——牛顿拉夫逊法,以及其改进方法快速解耦PQ分解法。
自己上百度找,不过最好自己写,这里有一参考: 摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。 2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。 3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组: 其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合: 其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,… 此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件: 其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。 4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复 杂目标的处理。 5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。 参考文献 〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69. 〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991. 〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18. 〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991. 〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143. 〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74. 〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339. 〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994. 〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术
大学计算机科学导论论文计算机科学与技术这一门科学深深的吸引着我们这些同学们,原先不管是国内还是国外都喜欢把这个系分为计算机软件理论、计算机系统、计算机技术与应用。后来又合到一起,变成了现在的计算机科学与技术。我一直认为计算机科学与技术这门专业,在本科阶段是不可能切分成计算机科学和计算机技术的,因为计算机科学需要相当多的实践,而实践需要技术;每一个人(包括非计算机专业),掌握简单的计算机技术都很容易(包括原先Major们自以为得意的程序设计),但计算机专业的优势是:我们掌握许多其他专业并不"深究"的东西,例如,算法,体系结构,等等。非计算机专业的人可以很容易地做一个芯片,写一段程序,但他们做不出计算机专业能够做出来的大型系统。今天我想专门谈一谈计算机科学,并将重点放在计算理论上。1)计算机语言随着20世纪40年代第一台存储程序式通用电子计算机的研制成功,进入20世纪50年代后,计算机的发展步入了实用化的阶段。然而,在最初的应用中,人们普遍感到使用机器指令编制程序不仅效率低下,而且十分别扭,也不利于交流和软件维护,复杂程序查找错误尤其困难,因此,软件开发急需一种高级的类似于自然语言那样的程序设计语言。1952年,第一个程序设计语言Short Code出现。两年后,Fortran问世。作为一种面向科学计算的高级程序设计语言,Fortran的最大功绩在于牢固地树立了高级语言的地位,并使之成为世界通用的程序设计语言。Algol60的诞生是计算机语言的研究成为一门科学的标志。该语言的文本中提出了一整套的新概念,如变量的类型说明和作用域规则、过程的递归性及参数传递机制等。而且,它是第一个用严格的语法规则——巴科斯范式(BNF)定义语言文法的高级语言。程序设计语言的研究与发展在产生了一批成功的高级语言之后,其进一步的发展开始受到程序设计思想、方法和技术的影响,也开始受到程序理论、软件工程、人工智能等许多方面特别是实用化方面的影响。在“软件危机”的争论日渐平息的同时,一些设计准则开始为大多数人所接受,并在后续出现的各种高级语言中得到体现。例如,用于支持结构化程序设计的PASCAL语言,适合于军队各方面应用的大型通用程序设计语言ADA,支持并发程序设计的MODULA-2,支持逻辑程序设计的PROLOG语言,支持人工智能程序设计的LISP语言,支持面积对象程序变换的SMALLTALK、C等。而且,伴随着这些语言的出现和发展,产生了一大批为解决语言的编译和应用中所出现的问题而发展的理论、方法和技术。有大量的学术论文可以证明,由高级语言的发展派生的各种思想、方法、理论和技术触及到了计算机科学的大多数学科方向,但内容上仍相对集中在语言、计算模型和软件开发方法学方面。(2)计算机模型与软件开发方法20世纪80年代是计算机网络、分布式处理和多媒体大发展的时期。在各种高级程序设计语言中增加并发机构以支持分布式程序设计,在语言中通过扩展绘图子程序以支持计算机图形学程序设计成为当时程序设计语言的一种时尚。之后,在模数/数模转换等接口技术和数据库技术的支持下,通过扩展高级语言的程序库又实现了多媒体程序设计的构想。进入20世纪90年代之后,并行计算机和分布式大规模异质计算机网络的发展又将并行程序设计语言、并行编译程序、并行操作系统、并行与分布式数据库系统等试行软件的开发的关键技术依然与高级语言和计算模型密切相关,如各种并行、并发程序设计语言,进程代数,PETRI网等,它们正是软件开发方法和技术的研究中支持不同阶段软件开发的程序设计语言和支持这些软件开发方法和技术的理论基础——计算模型。(3)计算机应用用计算机来代替人进行计算,就得首先研究计算方法和相应的计算机算法,进而编制计算机程序。由于早期计算机的应用主要集中在科学计算领域,因此,数值计算方法就成为最早的应用数学分支与计算机应用建立了联系。最初的时候,由于计算机的存储器容量很小,速度也不快,为了计算一些稍稍大一点的题目,人们常常要挖空心思研究怎样节省存储单元,怎样减少不需要的操作。为此,发展了像稀疏矩阵计算理论来进行方程组的求解;发展了杂凑函数来动态地存储、访问数据;发展了虚拟程序设计思想和程序覆盖技术在内存较小的计算机上运行较大的程序;在子程序和程序包的概念提出之后,许多人开始将数学中的一些通用计算公式和计算方法写成子程序,并进一步开发成程序包,通过简洁的调用命令向用户开放。子程序的提出是今日软件重用思想的开端。在计算机应用领域,科学计算是一个长久不衰的方向。该方向主要依赖于应用数学中的数值计算的发展,而数值计算的发展也受到来自计算机系统结构的影响。早期,科学计算主要在单机上进行,经历了从小规模数值分析到中大规模数值分析的阶段。随着并行计算机和分布式并行计算机的出现,并行数值计算开始成为科学计算的热点,处理的问题也从中大规模数值分析进入到中大规模复杂问题的计算。所谓中大规模复杂问题并不是由于数据的增大而使计算变得困难,使问题变得复杂,而主要是由于计算中考虑的因素太多,特别是一些因素具有不确定性而使计算变得困难,使问题变得复杂,其结果往往是在算法的研究中精度与复杂性的矛盾难于克服。几何是数学的一个分支,它实现了人类思维方式中的数形结合。在计算机发明之后,人们自然很容易联想到了用计算机来处理图形的问题,由此产生了计算机图形学。计算机图形学是使用计算机辅助产生图形并对图形进行处理的科学。并由此推动了计算机辅助设计(CAD)、计算机辅助教学(CAI)、计算机辅助信息处理、计算机辅助测试(CAT)等方向的发展。在各种实际应用系统的开发中,有一个重要的方向值得注意,即实时系统的开发。利用计算机证明数学定理被认为是人工智能的一个方向。人工智能的另一个方向是研究一种不依赖于任何领域的通用解题程序或通用解题系统,称为GPS。特别值得一提的是在专家系统的开发中发展了一批新的技术,如知识表示方法、不精确性推理技术等,积累了经验,加深了对人工智能的认识。20世纪70年代末期,一部分学者认识到了人工智能过去研究工作基础的薄弱,开始转而重视人工智能的逻辑基础研究,试图从总结和研究人类推理思维的一般规律出发去研究机器思维,并于1980年在《Artificial Intelligence》发表了一组非单调逻辑的研究论文。他们的工作立即得到一大批计算机科学家的响应,非单调逻辑的研究很快热火朝天地开展起来,人工智能的逻辑基础成为人工智能方向发展的主流。数据库技术、多媒体技术、图形学技术等的发展产生了两个新方向,即计算可视化技术与虚拟现实技术。随着计算机网络的发展,分布在全世界的各种计算机正在以惊人的速度相互连接起来。网络上每天都在进行着大量政治、经济、军事、外交、商贸、科学研究与艺术信息的交换与交流。网络上大量信息的频繁交换,虽然缩短了地域之间的距离,然而同时也使各种上网的信息资源处在一种很难设防的状态之中。于是,计算机信息安全受到各国政府的高度重视。除了下大力气研究对付计算机病毒的软硬件技术外,由于各种工作中保密的需要,计算机密码学的研究更多地受到各国政府的重视。实际上,在计算机科学中计算机模型和计算机理论与实现技术同样重要。但现在许多学生往往只注重某些计算机操作技术,而忽略了基础理论的学习,并因为自己是“操作高手”而沾沾自喜,这不仅限制了自己将研究工作不断推向深入,而且有可能使自己在学科发展中处于被动地位。例如,在20世纪50年代和20世纪60年代,我国随着计算机研制工作和软件开发工作的发展,陆续培养了在计算机制造和维护中对计算机某一方面设备十分精通的专家,他们能准确地弄清楚磁芯存储器、磁鼓、运算器、控制器,以及整机线路中哪一部分有问题并进行修理和故障排除,能够编制出使用最少存储单元而运算速度很快的程序,对机器代码相当熟悉。但是,当容量小的磁芯存储器、磁鼓、速度慢的运算器械、控制器很快被集成电路替代时,当程序设计和软件开发广泛使用高级语言、软件开发工具和新型软件开发方法后,这批技术精湛的专家,除少量具有坚实的数学基础、在工作中已有针对性地将研究工作转向其他方向的人之外,相当一部分专家伴随着新技术的出现,在替代原有技术的发展过程中而被淘汰。因此,在计算机科学中,计算比实现计算的技术更重要。只有打下坚实的理论基础,特别是数学基础,学习计算机科学技术才能事半功倍,只有建立在高起点理论基础之上的计算机科学技术,才有巨大的潜力和发展前景。计算机理论的一个核心问题我国计算机科学系里的传统是培养做学术研究,尤其是理论研究的人(方向不见得有多大的问题,但是做得不是那么尽如人意)。而计算机的理论研究,说到底了,如网络安全学,图形图像学,视频音频处理,哪个方向都与数学有着很大的关系,虽然也许是正统数学家眼里非主流的数学。这里我还想阐明我的一个观点:我们都知道,数学是从实际生活当中抽象出来的理论,人们之所以要将实际抽象成理论,目的就在于想用抽象出来的理论去更好的指导实践,有些数学研究工作者喜欢用一些现存的理论知识去推导若干条推论,殊不知其一:问题考虑不全很可能是个错误的推论,其二:他的推论在现实生活中找不到原型,不能指导实践。严格的说,我并不是一个理想主义者,政治课上学的理论联系实际一直是指导我学习科学文化知识的航标(至少我认为搞计算机科学与技术的应当本着这个方向)。我个人的浅见是:计算机系的学生,对数学的要求固然跟数学系不同,跟物理类差别则更大。通常非数学专业的所?高等数学",无非是把数学分析中较困难的理论部分删去,强调套用公式计算而已。而对计算机系来说,数学分析里用处最大的恰恰是被删去的理论部分。记上一堆曲面积分的公式,难道就能算懂了数学?那倒不如现用现查,何必费事记呢?再不然直接用Mathematica或是Matlab好了。退一万步。华罗庚在数学上的造诣不用我去多说,但是他这光辉的一生做得我认为对我们来说,最重要的几件事情:首先是它筹建了中国科学院计算技术研究所,这是我们国家计算机科学的摇篮。在有就是他把很多的高等数学理论都交给了做工业生产的技术人员,推动了中国工业的进步。第三件就是他一生写过很多书,但是对高校师生价值更大的就是他在病期间在病床上和他的爱徒王元写了《高等数学引论》(王元与其说是他的爱徒不如说是他的同事,是中科院数学所的老一辈研究员,对歌德巴赫猜想的贡献全世界仅次于陈景润)这书在我们的图书馆里居然找得到,说实话,当时那个书上已经长了虫子,别人走到那里都会闪开,但我却格外感兴趣,上下两册看了个遍,我的最大收获并不在于理论的阐述,而是在于他的理论完全的实例化,在生活中去找模型。这也是我为什么比较喜欢具体数学的原因,正如我在上文中提到的,理论脱离了实践就失去了它存在的意义。正因为理论是从实践当中抽象出来的,所以理论的研究才能够更好的指导实践,不用于指导实践的理论可以说是毫无价值的。正如上面所论述的,计算机系的学生学习高等数学:知其然更要知其所以然。你学习的目的应该是:将抽象的理论再应用于实践,不但要掌握题目的解题方法,更要掌握解题思想,对于定理的学习:不是简单的应用,而是掌握证明过程即掌握定理的由来,训练自己的推理能力。只有这样才达到了学习这门科学的目的,同时也缩小了我们与数学系的同学之间思维上的差距。关于计算机技术的学习我想是这样的:学校开设的任何一门科学都有其滞后性,不要总认为自己掌握的某门技术就已经是天下无敌手了,虽然现在Java,VB,C,C++用的都很多,怎能保证没有被淘汰的一天,我想.NET平台的诞生和X#语言的初见端倪完全可以说明问题。换言之,在我们掌握一门新技术的同时就又有更新的技术产生,身为当代的大学生应当有紧跟科学发展的素质。举个例子,就像有些同学总说,我做网页设计就喜欢直接写html,不愿意用什么Frontpage,Dreamweaver。能用语言写网页固然很好,但有高效的手段你为什么不使呢?仅仅是为了显示自己的水平高,unique? 我看真正水平高的是能够以最快的速度接受新事物的人。高级程序设计语言的发展日新月异,今后的程序设计就像人们在说话一样,我想大家从xml中应是有所体会了。难道我们真就写个什么都要用汇编,以显示自己的水平高,真是这样倒不如直接用机器语言写算了。反过来说,想要以最快的速度接受并利用新技术关键还是在于你对计算机科学地把握程度。总的来说,从教育角度来讲,国内高校的课程安排不是很合理,强调理论,又不愿意在理论上深入教育,无力接受新技术,想避开新技术又无法避得一干二净。我觉得关键问题就是国内的高校难于突破现状,条条框框限制着怎么求发展。我们虽然认识得到国外教育的优越性,但为什么迟迟不能采取行动?哪怕是去粗取精的取那么一点点。
以一个课题为例,研究方程的解法例如我曾经看到一个题目,要求做一个物件从一百米高处用飞机投入海中,问这个物体的运动方式要求物件最后静止的位置有一些重力体积,水中的阻力啊,最大可承受深度等等最后得到微分方程,利用matlab求解.这是上次我帮同学做的一个题目希望给你一点提示
随着教育科研意识的不断深化,很多教师希望把自己的研究成果,以论文形式公开发表. 根据笔者的切身经历,我认为初写数学论文的教师, 为了尽可能的少走弯路,应充分注意以下几点. 一、借鉴成果,博采众长 对他人的研究成果,进行吸收消化,为我所用,这是每一个科研工作者都在做、并且必须做的事情. 一个人的精力、能力、水平等毕竟是有限的,要弥补这个“先天性缺陷”,就一定要向他人学习借鉴. 就初中数学教师而言,我们所涉猎的范围自然应以初中数学的教育教学科研信息为主,但还应兼顾高中和小学的数学,以及计算机、物理、化学等相关学科的信息. 信息的表现形式多种多样,大致可以分为三类:(1)书面形式,比如各种书籍、报纸、刊物等;(2)口头形式,比如各种会议、听课、交流、咨询等;(3)电子形式,比如以网络、光盘、软盘等为载体的信息. 来源于不同形式的信息各有千秋,有的权威性高,有的时效性快,有的针对性强,有的信息量大. 这些信息的保存方式也各不相同,主要有四种:(1)制卡片,简要注明作者、题目、出处、摘要、编号、日期等项内容,主要用于一般性的信息;(2)做摘记,写在本上,编好序号目录,以便查找,所记内容比卡片更详尽,适用于比较重要的信息;(3)复印,对于特别重要并且篇幅较长的文章,可以全文复印,复印件应用同样大小的复印纸,对不同大小的原件缩放得一样大,便于装订、排序、编目;(4)存盘,这是针对电子信息形式的特殊性采用的一种保存方式,复制到微机硬盘或软盘上. 有条件的,还能使用录音、录像、刻录光盘等等方式. 自1996年以来,我手抄20多万字,复印存盘10多万字,这些宝贵的文献资料,为我的教育科研和论文写作,提供了强大的理论支持和实践指导. 二、完备素材,厚积薄发 论文只是教研结果的表现形式之一,有人提出“论文还自教研始”、“论文在研不在写”等观点,有一定的道理. 如果只看重论文发表这一结果,急功近利,做无病之呻吟,效果肯定不好. “厚积”是基础,没有来源于实践的经验教训、数据统计等等素材的积累,想要写出比较有价值的论文,几乎是不可能的. 这些素材源于何处?如何去发现这些素材呢?答案是那句古话“处处留心皆学问”. 具体说来,素材的来源主要有以下几方面:(1)课堂教学,它是教研工作的主阵地,也是素材最重要的来源,这不但是一个教学实践的过程,还是一个发现问题的过程,是一个向学生学习的过程;(2)课后反思,对每节课的成败得失都及时的总结下来,以便进一步研究;(3)作业记录,从学生作业中不但能发现具有共性的问题,提示我们教学教研的改革方向,而且学生中也会有许多新颖的解题思想,值得教师学习;(4)考试总结,测验考试是对学生知识的集中检验,即使在素质教育中,也不能把考试视为应试教育的“余孽”,“打入冷宫”,关键是如何改革考试制度和内容,适应素质教育;(5)解题分析,教师平时应坚持解答一定数量的数学题,解题是数学的核心任务之一,这样做可以活跃思维,并从中探索解题规律和命题趋势;(6)调查反馈,调查可以用谈心、问卷等多种形式进行,从中所反馈的信息是难得的写作素材;(7)成果质疑,学习他人但不要迷信他人,在阅读他人的论文时,有时也能发现其存在的不足甚至是错误之处,对此只要自己的理由充分就要敢于质疑;(8)探讨争论,在日常探讨问题的过程中,持有不同观点的人发生激烈争论是常有的事,从中往往加深了对问题的理解程度;(9)灵感顿悟,事实上很多自选课题的素材是平时工作、学习、生活甚至睡梦中突然想到的,但这种灵感是对问题深入思考的结果,如果没有自觉教研的精神,灵感就无从谈起. 几年来,我以“教学手记“形式,积累的素材已达200多份45万字,在此基础上进一步整理成文,已在国家级、省级报刊发表各类数学论文(或文章)100余篇17万字. 其中,有些论文的素材积累投入了很大力度,比如发表于《理科考试研究》(初中版)2001年第10期的《“动”了五年的压轴题》一文,是在对1997年~2001年五年间,河北省中考压轴题的命题规律进行研究的基础上,汇总整理而成的;发表于《校园学习·数学》2002年第1~2期的《方程(组)中考复习精要》一文,素材源于对2001年70余份中考试题的分析精选. 三、立足实践,提炼新意 初中数学教师都从事着一线教学工作,最清楚教学中的困惑和喜悦,最了解学生的想法和看法,最直接的进行着实践和改革,这些是专门从事教育科研工作的专家、学者和部门所难以具备的. 正因如此,一线教师的论文多数源于实践,具有强烈的实用性和鲜明的针对性,对于我们的这些优势应该有充分的认识,并不断保持和发展. 近期,我正负责河北省“创新教育”子课题“培养学生创造性思维能力”的研究工作,这一课题也是当前教育界的一个热门话题,我将自己的阶段性研究成果写成论文《培养学生创造性思维能力的常用方法》,参加了2000年8月在京举办的“全国初中数学教育第十届年会”论文评选,荣获二等奖. 再比如,教学中的一些“冷点”问题虽不常见,但一旦出现便会使学生无从插手,据此李凤君老师和我合作写成《怎样判断勾股数》一文,发表在《教育实践与研究》2000年第2期上. 论文的新意如何出?我认为有两点非常重要:一是在主题上,立意新颖,视角独特;二是在时间上,意识超前,创作及时. 就拿对中考试题的研究来说:河北省2000年中考于6月22日结束,我随即对当年的中考试题加以分析,从考查学生创造性思维能力的角度深入剖析,于7月份创作完成了《注重考查学生的创造性思维能力——2000年河北省中考数学试题评析》并寄给《中小学数学》(初中教师版),后来发表于该刊2001年第3期;一般每年的全国各地中考试题汇编资料最早在10月份面世,通过研究我发现,1998年的中考试题中不等式应用题异军突起,而且当年考生的得分率偏低,必将引起以后中考师生的注意,针对这一新动向,我于11月份写成《例谈中考不等式(组)应用题》一文,对此进行分类研究,并补充编拟新试题,指出命题趋势,该文发表于《河北教研》1999年第2期. 四、从小到大,循序渐进 写论文需要一个过程,循序渐进,不可能一蹴而就. 按照一般情况,提醒初写者先尝试以下两个步骤: 第一步,练习写学习辅导类的文章. 几年来,我在《学习报》、《少年智力开发报》、《初中生周报》等报纸上,发表学习辅导类文章数十篇. 这些虽然一般称不上“论文”,但是进行这样的写作,既可以当作练笔,又可以用于教学,还可以视为一次小小的课题研究. 学习辅导类的报刊面向广大学生,通常用稿量大,发表得快;其内容突出针对性,深入浅出,形式灵活;所需稿件短小精悍,通常有1000字左右;要求与教学同步,应该比教学进度提前3个月寄稿;写稿还应分析用稿动向,目前学习辅导类报刊多数存在高年级稿多、低年级稿少,综合知识稿多、单个知识稿少等等现象,初写者可以倾向于写“少”的方面的稿;稿件写完后要反复修改,确保无误,再抄写或打印寄出. 第二步,进行教学研究类论文的写作,侧重于解题方法研究等实践性强的,由浅入深,不要急于写理论性太强的论文. 可以先探讨解题技巧,再挖掘思想方法,后深究素质能力,进而分析命题原则,预测趋势走向等. 如果写有些理论性的文章,可以从教学实践中去寻找适应教育发展趋势的新课题,比如发表于《中小学数学》(初中教师版)2001年第9期的《谈计算器的教学》一文,就是在此方面的尝试. 需要指出的是,一篇论文的范围不求广,但求分析透彻,凝练精华;论文篇幅不求长,大家都知道的少说或不说,适可而止,相信读者的阅读水平,主要适于教师阅读的论文,长短不一,就我发表的论文而言,短的仅千余字,长的近7000字,一般在3000字左右;此类论文与学习辅导类的文章相比,格式要规范得多,但对与教学同步性的要求则比较宽松;为提高发稿率,应认真研读报刊风格,留心新增栏目、征稿启事,对发现的问题勇于质疑争鸣. 五、文外功夫,提高修养 文外功夫,主要指一个人的思想境界、个人修养、意志品格等方面的表现. 它具体体现在两个方面: 一方面是,讲究文德,不要过分看重名利、沽名钓誉. 必须信守承诺,尤其是应约写稿,一定要迅速及时,保质保量;如所约稿件较多,也可以多写几篇给编辑以选择的余地;为避免信件丢失,可用挂号信寄稿,有时还需用特快专递、传真、发E-mail等方式. 当前很多单位(甚至有的是个人)利用教师希望发表论文的迫切心理,征集各种名目的“自助论文”,对此应慎重对待,不能为了名利,就写一些没有价值的文字,花钱发表. 一稿多发一般是由一稿多投所致,如果在约定时间内未收到用稿通知、样报样刊或稿费,而再投他刊造成重复发表的尚有情可原;但有的把一篇稿同时寄往多家报刊,甚至明知已经发表录用又另投他刊,即使侥幸被重复发表,无论间隔时间长短,也很容易被读者识破,这样做既不尊重编辑,影响报刊质量,又坑害读者,降低个人声誉,结果适得其反. 更为严重的是剽窃抄袭他人论文,不但可耻,而且是一种违法行为. 另一方面是,坚持不懈,持之以恒. 我从1996年初开始着手于素材的积累,不断自觉的夯实基本功,历时一年多,直至1997年开始投稿,结果投寄的第3篇论文《代数式求值十法》就被发表于《理科考试研究》1997年第6期,喜悦之情溢于言表,细细回味,一年多的“寂寞”也是初次收获的重要因素,如果坚持不下来,也只能是半途而废了. 相对于更多的论文作者来说,我还算是幸运的,他们在谈到自己的写作经验时,提到投稿数十次、甚至近百次以后才有作品问世,其间的酸甜苦辣、经验体会是难以言传的,“失败是成功之母”、“功夫不负有心人”在他们身上得到了充分的体现. 以上所谈是我对初中数学论文写作的几点看法,希望能给刚刚开始写作的朋友带来一些帮助. 所涉及的内容较为肤浅,如要在论文写作的道路上不断提高,还需要借鉴更多人的成功之道,但无论如何,个人的实践创新才是最重要的因素之一.
数学思维能力的好坏直接关系到分析其他问题的能力,而课堂教学效果的好坏也直接影响到学生数学思维能力的培养,关于初中数学教学你有什么独到的看法呢?本文是我为大家整理的初中数学教学论文 范文 ,欢迎阅读! 初中数学教学论文范文篇一:初中数学智能教学研究 一、初中生智能 智能简单地说,就是智慧和能力。主要体现于大脑的功能,表现为大脑对外界信息加工处理的本领,它包括感知能力、记忆能力、想象能力和思维判断的能力,感知能力和记忆能力是智慧的基础,想象能力和思维判断的能力是智慧的核心。反映在数学上,就是区分形状不同的几何图形,不同变量变化的规律,从具体的形象思维——抽象概括思维—— 逻辑思维 ,对前人 总结 的定理、公示、法则的在现,洞察二维、三维空间物体相互位置关系,以及以记忆为基础的各种思维判断能力。中学生经过六年小学阶段 教育 ,已具备一定的“数学与逻辑推理能力”,从生理学角度来看,其大脑的四个功能区,即感受区、判断区、想象区已基本成熟,接近成年人这一阶段,人的认识呈“飞跃”式发展。初中生从十一、二岁进入学校,到十四、五岁初中 毕业 ,这一段时间有人把它称为人生中“黄金时段”我们就要抓住人生中的“黄金时段”,适时开发中学生智能,培养学生的创新精神,才能获得智能资源的大丰收。 二、发展智能是初中数学教学的重要任务 数学作为一门研究现实世界空间形成和数量关系的科学,是学习和研究现代科学技术必不可少的基础知识和基本工具。作为教师不能奢望每个学生都能成为一代娇子,但也完全可能让每个学生在他现有智能基础上得到充分的发展。为提高整个一代人的智能水平做出最大努力,这一出发点也可列为中学教师应尽的责任之一。中学数学的教学任务不仅要传授知识,尤其重要的是开发智力和培养能力。所以在数学教学中,传授知识和发展智能是相互影响、相互制约、不可分割的有机统一体。那种把发展智能和传授知识相对立起来,或者严重脱节的倾向,把发展智能神秘化,甚至认为高不可攀的观点都是错误的。作为一名学生教师应该清楚自己不仅是知识的传授者,而且是智能的开发者,应该把主要力量放在开发学生的智能上,在人生的最重要的“黄金时段”发掘人的最宝贵的东西——智能。 三、初中生的智能开发 开发学生的智能,要遵循客观规律。使每个学生的创造力和创造精神得到发展,凡有利于这一工作的工作,都属于开发智能的范畴。作为中学数学教师,在开发学生智能方面应该认识并做到以下几点:从人性角度看,人既是主体性与客观性的统一,又是能动性和受动性的统一,也是独立性与依赖性的统一。学生在学习活动中表现为:我要学和要我学。我要学是基于学生对学习的一种内在需要,表现为学习兴趣。学生有了学习兴趣,学习活动对他来讲就不是一种负担,而是一种享受,一种愉快的体验,学生会越学越想学,越学越爱学,有兴趣的学习事半功倍。兴趣是学生学好知识的、内在的、直接的动力,不断激发学生的学习兴趣,使学生始终处于积极的思维状态,是发展学生智能的基础。有人说:“生趣才能爱学,爱学才能增加,增加才能长智。”可见,生趣是爱学、增加、长智的起点。在实际的教学工作中,每节课都必须精心设计,以激发学生的求知欲。例如在讲“函数”时授课前让学生先计算:2的4次方是多少?2/3的三分之二次方是多少?学生在解决了第一题后,所学知识不能解出第二题,于是就有了找到解法的欲望。这时教师就顺势导出将要学习的新知识——函数。从而达到了激发学生学习兴趣的目的。 初中数学教学论文范文篇二:初中数学教学中数学思维培养 一、数学思维的特点 任何一门学科都具有其自身的特点,数学作为一门基础学科,更是具备了严谨性和抽象性的显著特点,只有牢牢把握数学的特点,在严谨性和抽象性特点的指导下开展教学工作,才能更好的培养学生严谨的数学 思维方式 。 1.数学思维具有严谨性 数学是一门对逻辑性思维要求十分严格的学科,它要求教学人员对概念和定义有精准的把握和透彻的理解,对于问题的结论,也应做到反复论证,以便在教学中能够完整的表达数学名词的实质意义。在实际教学过程中,不同学生对知识的理解能力也各不相同,因此在传授知识的过程中不能够向数学科学一样做到绝对精准,这就要求老师因材施教,差别化的对待不同学生,进行数学思维的培养,进而逐步走向严谨。 2.数学思维具有抽象性 所谓抽象性,就是指用数学来表示客观存在的事物的本质特征和物与物之间的关联性。所有的数学定义都是从客观事物中总结归纳而来的,并不断提升,不断探索新的规律和法则,最终形成的完整的数学体系。而在这个过程中,抽象性不断加深,概况性不断提升,人们对事物的认识程度也就不断加深。因此,与其他学科思维相比,数学学习所需的 抽象思维 更有层次性。 二、培养初中生良好思维方式的 方法 具备良好的思维方式是学好一门学科的关键,而思维的发展也需要一定的知识基础作铺垫。在初中教学中,也应掌握恰当的方式方法,综合运用不同技巧加强对学生数学思维的培养和引导。 1.不断拓展学生的思维 在教学过程中,老师的教授讲解固然重要,但也应适当给予学生独立思考的时间,并在习题练习的过程中对知识进行把握和充分理解。教师在对一些特殊概念和知识的讲解过程中应与学生深入探讨,而非停留在只教授不讨论、只讲概念不深入探究的阶段。要加强对学生自主学习能力的培养,带动学生学习的主动性,从而逐步拓宽学生的思维,增强学生数学学习的逻辑思维能力。另外,也要充分利用学生的错误,在学生错误解答题目或错误理解概念时,应当深入分析出错的原因,从根本上纠正错误的思维方式。 2.运用正确的引导方式和教学方式 教师在教学过程中,要有清晰的头脑和明确的思维逻辑方式,在讲解过程中应有步骤、有层次的进行讲解。例如,在初中数学中引入绝对值的概念,这就区别于低年级的数学教学,介绍负数的概念给学生,从而拓宽了学生对于数字的理解范围。对于|x|,x的值不是单一的+x,而是分成不同的情况。它的值可能是-x,也可能是+x,也可能是0。而教师在讲解绝对值概念时,也应结合数轴上的点来介绍绝对值的大小,即到原点零的距离。另外,对于不同版本的课本和教材,也应有不同的 教学方法 和顺序,适时调整教学活动,不拘泥于课本,才能更好的培养学生的思维能力,提升学生数学学习的整体能力。 3.培养学生的学习兴趣 学习兴趣是促进学生进步和发展的最大动力,因此,老师在教学的同时要善于培养学生的学习兴趣,有利于学生更快速的理解知识,使学生能够积极主动的学习而非被动听课。同时,应关心稍稍落后的学生,适时的给予鼓励和并加以引导,促使他们积极思考,不断发掘新问题,提出疑惑,并和学生一同思考解答。例如,在讲解“如何求解一元二次方程的根”的问题时,应带领学生尝试不同方法进行求解。详细介绍因式分解法、图象求解法、配方法等多种方法,并对应习题进行练习讲解,而不是固定的只讲解一种方法,应让学生自主选择合适的方法。 4.运用现代教学方式和技术进行课堂教学 随着科技的不断进步与发展,计算机电子技术的进步,应将其综合运用到数学教学中,对于几何学的教学,可采用动态图的演示方式,更加具体的使学生感受到图形的变化以及变化过程中的规律,及时进行归纳总结。对于没有条件的地区,教师在教授过程中,应有过硬的绘图功底,通过绘制主要的图形变化过程帮助学生理解课堂知识,拓宽思维。 三、结束语 数学思维能力的好坏直接关系到分析其他问题的能力,而课堂教学效果的好坏也直接影响到学生数学思维能力的培养,因此应当引起教学工作者足够的重视。在适当时应摒弃传统落后的教学观念,结合新的思维方式进行教学,留给学生充分的独立思考空间,激发学生学习数学的兴趣,使学生在学习过程中做到举一反三,让学生在自主学习的过程中发现数学的乐趣,并养成良好的思维方式,从而为今后的数学学习以及其他学科的学习打下扎实的基础。 初中数学教学论文范文篇三:初中数学教学课堂小结研究 一、进行课堂小结的方式 1.梳理课堂知识.一种常见的课堂小结方式,就是把整堂课的知识用简短的话从头到尾梳理一遍,这种梳理不是通篇的叙述,而是有重点的、分层次的总结.例如,在讲“点和圆,直线和圆的位置关系”时,课堂小结就主要是把点与圆的三种位置关系、直线与圆的三种位置关系,结合黑板上的图例再次梳理一遍.这种总结方式,可以让学生全面地复习一遍所讲内容,对新知识有整体了解,同时可以让学生形成对知识的网络式记忆,把知识延伸到整个学习系统中. 2.概括课堂知识.教师还可以对课堂内容进行几句话的概括总结,这种概括要涉及新课内容的关键点,通常用于新课内容有多个重要知识的情况下. 3.联系以前知识.有些新课的内容是在以前所学知识的基础上进一步扩展而来,或者是新课与所学知识有着一定的相似度.在课堂小结的时候,教师可以将两者进行联系,进行对照解读.这样的课堂小结,可以让学生具体形象地理解所学内容.当然,当遇到新课与旧知识有着明显反差的时候,教师也可以拿来对比解读,以避免学生对新知识和旧知识产生混淆.这样一来,学生心中的知识脉络就会更加清晰. 4.和学生共同回想课堂知识.数学教师在讲课时往往是单方面讲授课堂内容给学生,而很少有和学生进行互动的,这都是因为学科的特性和课堂时间的紧迫,而缺乏互动可能导致学生和课堂的融入度不够,容易造成开小差的现象.教师在进行课堂总结时可以有意地和学生进行互动,共同复习整堂课的知识.可以是对学生进行课堂关键内容的提问,也可以是向学生询问他们所认为的难点内容来再一次讲解以答疑和强化记忆.这样,不仅活跃了课堂气氛,拉近了教师与学生的距离,让学生更亲近课堂,让教师更了解学生的学习现状,同时让学生对难点内容有了进一步的学习和消化. 二、进行课堂小结的注意点 课堂小结不是教师一味地总结讲课知识,这里的本体应该是学生自己,是学生来回味和消化课堂所学内容,不懂的地方提出疑问,教师起到串联和辅导作用.教师可以从学生的角度考虑如何总结,才能提高复习效果. 1.课堂小结的概括性.课堂小结要简单明了,用几句概括性的话语进行总结,不宜多次重复复杂内容,这样不仅起不到总结的效果,还会让学生更加混淆,对所学知识产生过多疑问.另外,课堂小结应该用最直接的语言讲述出课堂内容,不应该加以多少修饰,以避免所述内容的冗长,导致上课时间的不够. 2.课堂小结要有重点.有的人说,一堂课里有一半的时间讲重点内容就很难得,而学生只要把这些重点听明白,他们这堂课的收益就很大.课堂小结相对于课堂上的详细讲解而言,是为大部分学生整理的要点总结,不需要对整堂课的内容都重述一遍,而要对讲课内容的要点进行有针对性的重点回顾,这样可以帮助学生理清课堂的重点内容,进行重点练习和记忆. 3.课堂小结要能引导课外学习.课堂小结是一堂课的结尾总结,也是学生课外学习的一个开始.课堂小结要注重引导学生对所学知识进行深入探究.例如,在讲解例题后,可以让学生寻找课外相似的题目进行训练,充分利用学生的课外时间进行学习拓展.同时,能使课堂与课外连接起来,促进学生的课外学习.总之,课堂小结是初中数学教学中必不可少的环节之一.做好课堂的总结是每个教师的分内之事,它不是一个可有可无的环节.做好课堂小结,不仅能让学生的学习更加轻松有效率,而且能够帮助教师进行授课总结,从而提高教学效果.
几何的三大问题 平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。 几何三大问题是: 1、化圆为方——求作一正方形使其面积等於一已知圆; 2、三等分任意角; 3、倍立方——求作一立方体使其体积是一已知立方体的二倍。 圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为π(1)2=π,所以化圆为方的问题等於去求一正方形其面积为π,也就是用尺规做出长度为π1/2的线段(或者是π的线段)。 三大问题的第二个是三等分一个角的问题。对於某些角如90°、180°三等分并不难,但是否所有角都可以三等分呢?例如60°,若能三等分则可以做出20°的角,那麽正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360°/18=20°)。其实三等分角的问题是由求作正多边形这一类问题所引起来的。 第三个问题是倍立方。埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。 这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。 1637年笛卡儿创建解析几何以后,许多几何问题都可以转化为代数问题来研究。1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。