首页

> 学术期刊知识库

首页 学术期刊知识库 问题

有关大数据的文献论文

发布时间:

有关大数据的文献论文

大数据论文参考文献回答于2018-09-14现今人们的生活到处充斥着大数据给我们带来的便利,那么大数据论文参考文献有哪些呢?小编为方便大家特意搜集了一些大数据论文参考文献,希望能帮助到大家。大数据论文参考文献一:[1] 陈杰. 本地文件系统数据更新模式研究[D]. 华中科技大学 2014[2] 刘洋. 层次混合存储系统中缓存和预取技术研究[D]. 华中科技大学 2013[3] 李怀阳. 进化存储系统数据组织模式研究[D]. 华中科技大学 2006[4] 邓勇强,朱光喜,刘文明. LDPC码的低复杂度译码算法研究[J]. 计算机科学. 2006(07)[5] 陆承涛. 存储系统性能管理问题的研究[D]. 华中科技大学 2010[6] 罗东健. 大规模存储系统高可靠性关键技术研究[D]. 华中科技大学 2011[7] 王健宗. 云存储服务质量的若干关键问题研究[D]. 华中科技大学 2012[8] 余雪里. 金属氧化物pn异质结对光电响应与气体敏感特性的作用[D]. 华中科技大学 2014[9] 王玮. 基于内容关联密钥的视频版权保护技术研究[D]. 华中科技大学 2014[10] 韩林. 云存储移动终端的固态缓存系统研究[D]. 华中科技大学 2014[11] 田宽. 宫内节育器用Cu/LDPE复合材料的表面改性研究[D]. 华中科技大学 2013[12] 聂雪军. 内容感知存储系统中信息生命周期管理关键技术研究[D]. 华中科技大学 2010[13] 王鹏. 低密度奇偶校验码应用于存储系统的关键技术研究[D]. 华中科技大学 2013[14] 刁莹. 用数学建模方法评价存储系统性能[D]. 哈尔滨工程大学 2013[15] 符青云. 面向大规模流媒体服务的高性能存储系统研究[D]. 电子科技大学 2009[16] 王玉林. 多节点容错存储系统的数据与缓存组织研究

在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。下面是我给大家推荐的计算机与大数据的相关论文,希望大家喜欢!计算机与大数据的相关论文篇一 浅谈“大数据”时代的计算机信息处理技术 [摘 要]在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。本文重点分析大数据时代的计算机信息处理技术。 [关键词]大数据时代;计算机;信息处理技术 在科学技术迅速发展的当前,大数据时代已经到来,大数据时代已经占领了整个环境,它对计算机的信息处理技术产生了很大的影响。计算机在短短的几年内,从稀少到普及,使人们的生活有了翻天覆地的变化,计算机的快速发展和应用使人们走进了大数据时代,这就要求对计算机信息处理技术应用时,则也就需要在之前基础上对技术实施创新,优化结构处理,从而让计算机数据更符合当前时代发展。 一、大数据时代信息及其传播特点 自从“大数据”时代的到来,人们的信息接收量有明显加大,在信息传播中也出现传播速度快、数据量大以及多样化等特点。其中数据量大是目前信息最显著的特点,随着时间的不断变化计算机信息处理量也有显著加大,只能够用海量还对当前信息数量之大形容;传播速度快也是当前信息的主要特点,计算机在信息传播中传播途径相当广泛,传播速度也相当惊人,1s内可以完成整个信息传播任务,具有较高传播效率。在传播信息过程中,还需要实施一定的信息处理,在此过程中则需要应用相应的信息处理工具,实现对信息的专门处理,随着目前信息处理任务的不断加强,信息处理工具也有不断的进行创新[1];信息多样化,则也就是目前数据具有多种类型,在庞大的数据库中,信息以不同的类型存在着,其中包括有文字、图片、视频等等。这些信息类型的格式也在不断发生着变化,从而进一步提高了计算机信息处理难度。目前计算机的处理能力、打印能力等各项能力均有显著提升,尤其是当前软件技术的迅速发展,进一步提高了计算机应用便利性。微电子技术的发展促进了微型计算机的应用发展,进一步强化了计算机应用管理条件。 大数据信息不但具有较大容量,同时相对于传统数据来讲进一步增强了信息间关联性,同时关联结构也越来越复杂,导致在进行信息处理中需要面临新的难度。在 网络技术 发展中重点集中在传输结构发展上,在这种情况下计算机必须要首先实现网络传输结构的开放性设定,从而打破之前计算机信息处理中,硬件所具有的限制作用。因为在当前计算机网络发展中还存在一定的不足,在完成云计算机网络构建之后,才能够在信息处理过程中,真正的实现收放自如[2]。 二、大数据时代的计算机信息处理技术 (一)数据收集和传播技术 现在人们通过电脑也就可以接收到不同的信息类型,但是在进行信息发布之前,工作人员必须要根据需要采用信息处理技术实施相应的信息处理。计算机采用信息处理技术实施信息处理,此过程具有一定复杂性,首先需要进行数据收集,在将相关有效信息收集之后首先对这些信息实施初步分析,完成信息的初级操作处理,总体上来说信息处理主要包括:分类、分析以及整理。只有将这三步操作全部都完成之后,才能够把这些信息完整的在计算机网络上进行传播,让用户依照自己的实际需求筛选满足自己需求的信息,借助于计算机传播特点将信息数据的阅读价值有效的实现。 (二)信息存储技术 在目前计算机网络中出现了很多视频和虚拟网页等内容,随着人们信息接收量的不断加大,对信息储存空间也有较大需求,这也就是对计算机信息存储技术提供了一个新的要求。在数据存储过程中,已经出现一系列存储空间无法满足当前存储要求,因此必须要对当前计算机存储技术实施创新发展。一般来讲计算机数据存储空间可以对当前用户关于不同信息的存储需求满足,但是也有一部分用户对于计算机存储具有较高要求,在这种情况下也就必须要提高计算机数据存储性能[3],从而为计算机存储效率提供有效保障。因此可以在大数据存储特点上完成计算机信息新存储方式,不但可以有效的满足用户信息存储需求,同时还可以有效的保障普通储存空间不会出现被大数据消耗问题。 (三)信息安全技术 大量数据信息在计算机技术发展过程中的出现,导致有一部分信息内容已经出现和之前信息形式的偏移,构建出一些新的计算机信息关联结构,同时具有非常强大的数据关联性,从而也就导致在计算机信息处理中出现了新的问题,一旦在信息处理过程中某个信息出现问题,也就会导致与之关联紧密的数据出现问题。在实施相应的计算机信息管理的时候,也不像之前一样直接在单一数据信息之上建立,必须要实现整个数据库中所有将数据的统一安全管理。从一些角度分析,这种模式可以对计算机信息处理技术水平有显著提升,并且也为计算机信息处理技术发展指明了方向,但是因为在计算机硬件中存在一定的性能不足,也就导致在大数据信息安全管理中具有一定难度。想要为数据安全提供有效保障,就必须要注重数据安全技术管理技术的发展。加强当前信息安全体系建设,另外也必须要对计算机信息管理人员专业水平进行培养,提高管理人员专业素质和专业能力,从而更好的满足当前网络信息管理体系发展需求,同时也要加强关于安全技术的全面深入研究工作[4]。目前在大数据时代下计算机信息安全管理技术发展还不够成熟,对于大量的信息还不能够实施全面的安全性检测,因此在未来计算机信息技术研究中安全管理属于重点方向。但是因为目前还没有构建完善的计算机安全信息管理体系,因此首先应该强化关于计算机重点信息的安全管理,这些信息一旦发生泄漏,就有可能会导致出现非常严重的损失。目前来看,这种 方法 具有一定可行性。 (四)信息加工、传输技术 在实施计算机信息数据处理和传输过程中,首先需要完成数据采集,同时还要实时监控数据信息源,在数据库中将采集来的各种信息数据进行存储,所有数据信息的第一步均是完成采集。其次才能够对这些采集来的信息进行加工处理,通常来说也就是各种分类及加工。最后把已经处理好的信息,通过数据传送系统完整的传输到客户端,为用户阅读提供便利。 结语: 在大数据时代下,计算机信息处理技术也存在一定的发展难度,从目前专业方面来看,还存在一些问题无法解决,但是这些难题均蕴含着信息技术发展的重要机遇。在当前计算机硬件中,想要完成计算机更新也存在一定的难度,但是目前计算机未来的发展方向依旧是云计算网络,把网络数据和计算机硬件数据两者分开,也就有助于实现云计算机网络的有效转化。随着科学技术的不断发展相信在未来的某一天定能够进入到计算机信息处理的高速发展阶段。 参考文献 [1] 冯潇婧.“大数据”时代背景下计算机信息处理技术的分析[J].计算机光盘软件与应用,2014,(05):105+107. [2] 詹少强.基于“大数据”时代剖析计算机信息处理技术[J].网络安全技术与应用,2014,(08):49-50. [3] 曹婷.在信息网络下计算机信息处理技术的安全性[J].民营科技,2014, (12):89CNKI [4] 申鹏.“大数据”时代的计算机信息处理技术初探[J].计算机光盘软件与应用,2014,(21):109-110 计算机与大数据的相关论文篇二 试谈计算机软件技术在大数据时代的应用 摘要:大数据的爆炸式增长在大容量、多样性和高增速方面,全面考验着现代企业的数据处理和分析能力;同时,也为企业带来了获取更丰富、更深入和更准确地洞察市场行为的大量机会。对企业而言,能够从大数据中获得全新价值的消息是令人振奋的。然而,如何从大数据中发掘出“真金白银”则是一个现实的挑战。这就要求采用一套全新的、对企业决策具有深远影响的解决方案。 关键词:计算机 大数据时代 容量 准确 价值 影响 方案 1 概述 自从计算机出现以后,传统的计算工作已经逐步被淘汰出去,为了在新的竞争与挑战中取得胜利,许多网络公司开始致力于数据存储与数据库的研究,为互联网用户提供各种服务。随着云时代的来临,大数据已经开始被人们广泛关注。一般来讲,大数据指的是这样的一种现象:互联网在不断运营过程中逐步壮大,产生的数据越来越多,甚至已经达到了10亿T。大数据时代的到来给计算机信息处理技术带来了更多的机遇和挑战,随着科技的发展,计算机信息处理技术一定会越来越完善,为我们提供更大的方便。 大数据是IT行业在云计算和物联网之后的又一次技术变革,在企业的管理、国家的治理和人们的生活方式等领域都造成了巨大的影响。大数据将网民与消费的界限和企业之间的界限变得模糊,在这里,数据才是最核心的资产,对于企业的运营模式、组织结构以及 文化 塑造中起着很大的作用。所有的企业在大数据时代都将面对战略、组织、文化、公共关系和人才培养等许多方面的挑战,但是也会迎来很大的机遇,因为只是作为一种共享的公共网络资源,其层次化和商业化不但会为其自身发展带来新的契机,而且良好的服务品质更会让其充分具有独创性和专用性的鲜明特点。所以,知识层次化和商业化势必会开启知识创造的崭新时代。可见,这是一个竞争与机遇并存的时代。 2 大数据时代的数据整合应用 自从2013年,大数据应用带来令人瞩目的成绩,不仅国内外的产业界与科技界,还有各国政府部门都在积极布局、制定战略规划。更多的机构和企业都准备好了迎接大数据时代的到来,大数据的内涵应是数据的资产化和服务化,而挖掘数据的内在价值是研究大数据技术的最终目标。在应用数据快速增长的背景下,为了降低成本获得更好的能效,越来越趋向专用化的系统架构和数据处理技术逐渐摆脱传统的通用技术体系。如何解决“通用”和“专用”体系和技术的取舍,以及如何解决数据资产化和价值挖掘问题。 企业数据的应用内容涵盖数据获取与清理、传输、存储、计算、挖掘、展现、开发平台与应用市场等方面,覆盖了数据生产的全生命周期。除了Hadoop版本系统YARN,以及Spark等新型系统架构介绍外,还将探讨研究流式计算(Storm,Samza,Puma,S4等)、实时计算(Dremel,Impala,Drill)、图计算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新进展。在大数据时代,借力计算机智能(MI)技术,通过更透明、更可用的数据,企业可以释放更多蕴含在数据中的价值。实时、有效的一线质量数据可以更好地帮助企业提高产品品质、降低生产成本。企业领导者也可根据真实可靠的数据制订正确战略经营决策,让企业真正实现高度的计算机智能决策办公,下面我们从通信和商业运营两个方面进行阐述。 通信行业:XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取 措施 ,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。中国移动通过大数据分析,对 企业运营 的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。 商业运营:辛辛那提动物园使用了Cognos,为iPad提供了单一视图查看管理即时访问的游客和商务信息的服务。借此,动物园可以获得新的收入来源和提高营收,并根据这些信息及时调整营销政策。数据收集和分析工具能够帮助银行设立最佳网点,确定最好的网点位置,帮助这个银行更好地运作业务,推动业务的成长。 3 企业信息解决方案在大数据时代的应用 企业信息管理软件广泛应用于解决欺诈侦测、雇员流动、客户获取与维持、网络销售、市场细分、风险分析、亲和性分析、客户满意度、破产预测和投资组合分析等多样化问题。根据大数据时代的企业挖掘的特征,提出了数据挖掘的SEMMA方法论――在SAS/EM环境中,数据挖掘过程被划分为Sample、Explore、Modify、Model、Assess这五个阶段,简记为SEMMA: Sample 抽取一些代表性的样本数据集(通常为训练集、验证集和测试集)。样本容量的选择标准为:包含足够的重要信息,同时也要便于分析操作。该步骤涉及的处理工具为:数据导入、合并、粘贴、过滤以及统计抽样方法。 Explore 通过考察关联性、趋势性以及异常值的方式来探索数据,增进对于数据的认识。该步骤涉及的工具为:统计 报告 、视图探索、变量选择以及变量聚类等方法。 Modify 以模型选择为目标,通过创建、选择以及转换变量的方式来修改数据集。该步骤涉及工具为:变量转换、缺失处理、重新编码以及数据分箱等。 Model 为了获得可靠的预测结果,我们需要借助于分析工具来训练统计模型或者机器学习模型。该步骤涉及技术为:线性及逻辑回归、决策树、神经网络、偏最小二乘法、LARS及LASSO、K近邻法以及其他用户(包括非SAS用户)的模型算法。 Assess 评估数据挖掘结果的有效性和可靠性。涉及技术为:比较模型及计算新的拟合统计量、临界分析、决策支持、报告生成、评分代码管理等。数据挖掘者可能不会使用全部SEMMA分析步骤。然而,在获得满意结果之前,可能需要多次重复其中部分或者全部步骤。 在完成SEMMA步骤后,可将从优选模型中获取的评分公式应用于(可能不含目标变量的)新数据。将优选公式应用于新数据,这是大多数数据挖掘问题的目标。此外,先进的可视化工具使得用户能在多维直方图中快速、轻松地查阅大量数据并以图形化方式比较模拟结果。SAS/EM包括了一些非同寻常的工具,比如:能用来产生数据挖掘流程图的完整评分代码(SAS、C以及Java代码)的工具,以及交换式进行新数据评分计算和考察执行结果的工具。 如果您将优选模型注册进入SAS元数据服务器,便可以让SAS/EG和SAS/DI Studio的用户分享您的模型,从而将优选模型的评分代码整合进入 工作报告 和生产流程之中。SAS模型管理系统,通过提供了开发、测试和生产系列环境的项目管理结构,进一步补充了数据挖掘过程,实现了与SAS/EM的无缝联接。 在SAS/EM环境中,您可以从SEMMA工具栏上拖放节点进入工作区的工艺流程图中,这种流程图驱动着整个数据挖掘过程。SAS/EM的图形用户界面(GUI)是按照这样的思路来设计的:一方面,掌握少量统计知识的商务分析者可以浏览数据挖掘过程的技术方法;另一方面,具备数量分析技术的专家可以用微调方式深入探索每一个分析节点。 4 结束语 在近十年时间里,数据采集、存储和数据分析技术飞速发展,大大降低了数据储存和处理的成本,一个大数据时代逐渐展现在我们的面前。大数据革新性地将海量数据处理变为可能,并且大幅降低了成本,使得越来越多跨专业学科的人投入到大数据的开发应用中来。 参考文献: [1]薛志文.浅析计算机网络技术及其发展趋势[J].信息与电脑,2009. [2]张帆,朱国仲.计算机网络技术发展综述[J].光盘技术,2007. [3]孙雅珍.计算机网络技术及其应用[J].东北水利水电,1994. [4]史萍.计算机网络技术的发展及展望[J].五邑大学学报,1999. [5]桑新民.步入信息时代的学习理论与实践[M].中央广播大学出版社,2000. [6]张浩,郭灿.数据可视化技术应用趋势与分类研究[J].软件导刊. [7]王丹.数字城市与城市地理信息产业化――机遇与挑战[J].遥感信息,2000(02). [8]杨凤霞.浅析 Excel 2000对数据的安全管理[J].湖北商业高等专科学校学报,2001(01). 计算机与大数据的相关论文篇三 浅谈利用大数据推进计算机审计的策略 [摘要]社会发展以及时代更新,在该种环境背景下大数据风潮席卷全球,尤其是在进入新时期之后数据方面处理技术更加成熟,各领域行业对此也给予了较高的关注,针对当前计算机审计(英文简称CAT)而言要想加速其发展脚步并将其质量拔高就需要结合大数据,依托于大数据实现长足发展,本文基于此就大数据于CAT影响进行着手分析,之后探讨依托于大数据良好推进CAT,以期为后续关于CAT方面研究提供理论上参考依据。 [关键词]大数据 计算机审计 影响 前言:相较于网络时代而言大数据风潮一方面提供了共享化以及开放化、深层次性资源,另一方面也促使信息管理具备精准性以及高效性,走进新时期CAT应该融合于大数据风潮中,相应CAT人员也需要积极应对大数据带了的机遇和挑战,正面CAT工作,进而促使CAT紧跟时代脚步。 一、初探大数据于CAT影响 影响之机遇 大数据于CAT影响体现在为CAT带来了较大发展机遇,具体来讲,信息技术的更新以及其质量的提升促使数据方面处理技术受到了众多领域行业的喜爱,当前在数据技术推广普及阶段中呈现三大变化趋势:其一是大众工作生活中涉及的数据开始由以往的样本数据实际转化为全数据。其二是全数据产生促使不同数据间具备复杂内部关系,而该种复杂关系从很大程度上也推动工作效率以及数据精准性日渐提升,尤其是数据间转化关系等更为清晰明了。其三是大众在当前处理数据环节中更加关注数据之间关系研究,相较于以往仅仅关注数据因果有了较大进步。基于上述三大变化趋势,也深刻的代表着大众对于数据处理的态度改变,尤其是在当下海量数据生成背景下,人工审计具备较强滞后性,只有依托于大数据并发挥其优势才能真正满足大众需求,而这也是大数据对CAT带来的重要发展机遇,更是促进CAT在新时期得以稳定发展重要手段。 影响之挑战 大数据于CAT影响还体现在为CAT带来一定挑战,具体来讲,审计评估实际工作质量优劣依托于其中数据质量,数据具备的高质量则集中在可靠真实以及内容详细和相应信息准确三方面,而在CAT实际工作环节中常常由于外界环境以及人为因素导致数据质量较低,如数据方面人为随意修改删除等等,而这些均是大数据环境背景下需要严格把控的重点工作内容。 二、探析依托于大数据良好推进CAT措施 数据质量的有效保障 依托于大数据良好推进CAT措施集中在数据质量有效保障上,对数据质量予以有效保障需要从两方面入手,其一是把控电子数据有效存储,简单来讲就是信息存储,对电子信息进行定期检查,监督数据实际传输,对信息系统予以有效确认以及评估和相应的测试等等,进而将不合理数据及时发现并找出信息系统不可靠不准确地方;其二是把控电子数据采集,通常电子数据具备多样化采集方式,如将审计单位相应数据库直接连接采集库进而实现数据采集,该种直接采集需要备份初始传输数据,避免数据采集之后相关人员随意修改,更加可以与审计单位进行数据采集真实性 承诺书 签订等等,最终通过电子数据方面采集以及存储两大内容把控促使数据质量更高,从而推动CAT发展。 公共数据平台的建立 依托于大数据良好推进CAT措施还集中在公共数据平台的建立,建立公共化分析平台一方面能够将所有采集的相关数据予以集中化管理存储,更能够予以多角度全方面有效分析;另一方面也能够推动CAT作业相关标准予以良好执行。如果将分析模型看作是CAT作业标准以及相应的核心技术,则公共分析平台则是标准执行和相应技术实现关键载体。依托于公共数据平台不仅能够将基础的CAT工作实现便捷化以及统一化,而且深层次的实质研究有利于CAT数据处理的高速性以及高效性,最终为推动CAT发展起到重要影响作用。 审计人员的强化培训 依托于大数据良好推进CAT措施除了集中在上述两方面之外,还集中在审计人员的强化培训上,具体来讲,培训重点关注审计工作于计算机上的具 体操 作以及操作重点难点,可以构建统一培训平台,在该培训平台中予以多元化资料的分享,聘请高技能丰富 经验 人士予以平台授课,提供专业技能知识沟通互动等等机会,最终通过强化培训提升审计人员综合素质,更加推动CAT未来发展。 三、结论 综上分析可知,当前大数据环境背景下CAT需要将日常工作予以不断调整,依托于大数据促使审计人员得以素质提升,并利用公共数据平台建立和相应的数据质量保障促使CAT工作更加高效,而本文对依托于大数据良好推进CAT进行研究旨在为未来CAT优化发展献出自己的一份研究力量。 猜你喜欢: 1. 人工智能与大数据论文 2. 大数据和人工智能论文 3. 计算机大数据论文参考 4. 计算机有关大数据的应用论文 5. 有关大数据应用的论文

大数据对高校教育的推动作用论文

当代社会互联网发达,信息技术广泛应用与社会各个领域。当然,利用信息技术来推动高校教育发展也是在信息化教育进程之中。信息技术的发展迅速,大数据也就迅速堆积,大数据记录了信息技术发展的脚步,同样有利于信息技术在社会上的有效发展。高校作为发展人才的地方,自然少不了大量数据累积,信息量巨大,大数据对高校教育也就有着非常大的影响,它不仅推动着高校教育的发展,同时也反映着高校教育数据累积的过程,这类数据与外界环境的共享,一起发挥着大数据对高校教育的推动作用。

1大数据 发挥出在高校教育的发展中的推动作用

高校教育在多年的发展中,逐渐适应了信息化的快速发展进程,将高校教育信息化是必然的条件,这对于高校教育的改革和完善具有完全有效的作用。高校教育信息化同样对提高教学质量,引导创新教学模式,发挥着重要作用。高校教育信息化有利于加强校园文化建设,促进教育高水平发展,有利于改善教学方法,发挥教育各项职能,有利于人才培养,有利于信息交流和教学环境改善。高校教育信息化是教育发展和提升的必要条件,大量的信息交流必定会产生众多数据,针对大数据进行数据收集和处理,方便数据检索和查询。高校教育本身就具有信息量大、数据多样,繁琐的鞥、特点,所以很好的利用大数据为高校教育发展做贡献,一定能更好的推动高校教育的发展。大数据在课堂上的应用,能够改变传统的教学模式,发挥信息技术的无限潜能,不管是时间还是空间的阻碍,都能被信息技术所打破,这将有利于学生更好的融入课堂,使学生更适应课堂,从而使理解知识变得容易。大数据的广泛应用,同样适用于科学研究方面,大数据的全面信息的应用对于信息的共享和交流具有关键推进作用,现代信息技术在社会科学中的应用将改善传统的研究方法,这样不但能提升结果的可信度,更能够提升工作效率,再者,大数据在服务人们方面的应用,高校能够更好的掌握社会需求,了解社会对人才的渴求,从而培养适应社会的人才。这样的好处还有能够加强高校和社会的联系,使得高校能够更好地履行社会职能。大数据还有利于高校建设校园文化与文化传承。高校对于优秀民族和世界文化都有责任和义务传播给更多学生,高校作为文化载体,有更好的条件进行文化教育,通过信息技术手段,方便文化沟通,以及技术交流等。

2大数据与高校教育之间的联系

大数据与高校教育之间不只是简单的应用关系,高校也绝不是被动的接受大数据,其实高校与大数据之间是相互依靠,相互促进的,高校教育的发展同时也是大数据的发展,同时,大数据的发展,也同样推动了高校教育的发展进程。大数据可以说是一种工具,一是顺应了高校教育的发展进程,同时也为高校教育发展做出了许多改善与提升。比方说大数据推动了高校对人才培养的进程,有利于高校选拔适合社会的高等人才,挖掘人才潜在价值,更好的为社会服务,也是为人们服务,帮助学生找到自身优势,使得人才发展变得顺利。前面说的,大数据帮助高校建立完善的文化体系,有助于高校进行文化传承,教育形式改革与创新。大数据有助于高校了解社会需求,发展与培养适应社会的全能人才。反过来,高校教育对大数据的发展也具有非常重要的推进作用。高校由于信息量巨大,也有相对完整的记录和完善形式,对于数据的收集等方面也有非常完善的系统,所以高校教育对于大数据的发展也有积极作用。高校通过长时间的数据利用,自然会产生许多有效的数据分类和整理办法,对数据的研究也非常细致和详细,对数据也会进行补充和完善,分析和创新数据记录办法,所以高校教育方面对数据的整理利用工作也会对大数据的发展做出更多贡献。说完了高校教育与大数据之间的相互利用,还应考虑大数据与高校教育之间的共同发展。许多高校在建立了比较完善的大数据处理和利用方式之后,通常会比较频繁的与外界进行数据处理办法和收集方式的交流和共享,大部分的'数据处理工作都是有目的性的,比方说在网上的数据检索工作,都是在先想好需要什么才去网上搜索的,所以对数据的分类整理工作至关重要。高校教育通常分为大体上的文科和理科,那再往下细分还有工科医科师范类商学类等等。不同的数据有不同的处理方式,不同的数据门类之间有时候也是互通的,所以大数据的处理办法和整体思维都是有分别的,也是有联系的,需要研究者长时间的分析和整理。大数据的使用需要专业的认可,不然的话就会造成资源浪费,看来社会上的机构大概也只有高校和研究员具有资格认证大数据的作用了。大数据广泛应用了信息技术和社会科学等多种学科的资源,在保证数据真实可靠地情况下,为更多数据使用者提供良好的数据参考作用。换句话说,高校教育过程中对数据的使用情况直接影响了大数据的利用率,高校对大数据提供了更多的技术支持,同时也限制了大数据的发展,所以大数据与高校教育之间的这种关系影响了两者之间的共同发展。

3大数据在推动高校教育发展过程中遇到的问题

不可否认,大数据在推动高校教育的发展过程做出了很多贡献,但是在大数据推动高校教育的过程中,仍会出现某些问题,阻止了大数据的推动作用,造成大数据没有完全发挥其应有的功能,没有很好的为高校教育做出更大贡献。首先是高校对于大数据的利用率低,主要体现在进行数据搜索和收集过程中,对需求的认识面太过狭隘,导致数据收集工作不完善,收据收集的不完全,在应用过程中就会有困难,造成信息缺失和资源不足,所以究其原因还是数据收集工作者工作中存在纰漏,或者对数据手机方法不正确不规范,造成了数据缺失情况出现。其次出现大数据利用不完全的问题是因为数据运用者技术不规范和操作不当造成数据使用不完全。和传统的数据使用方法相比,现代的利用大数据进行数据检索和使用工作已经如虎添翼,通过科技手段可以毫不费力的从大量的数据库中筛选出自己所需要的数据来进行利用。这不但大大降低了操作难度,同时也节省了很多时间,我们都知道数据挖掘工作复杂而且繁琐,更需要数据挖掘工作者认真细致的到位的工作态度,一点马虎不得。但是通过技术手段,以及先进的互联网技术,可以很好的解决很多工作中可能会出现的问题。但是机器就是机器,永远不可能有人的思维,就算有那也是人给他格外添加的,永远不可能超过人的思维,所以机器所犯的错误可能也会有很多,这就需要人来利用外力对数据采集处理等工作进行监督,一点失误就会造成数据错误,影响数据的使用。

4提升大数据推动高校教育有效性的对策

针对以上几点问题,首先提出的解决办法就是使人们充分认识大数据的作用,这样从根本上让人们建立起对大数据的作用的基本概念,才能仍大数据更好地为人们服务。大数据实在信息大爆炸的现代社会中人们必不可少的一种数据收集处理方式,对于社会的快速发展,必然会伴随数以万计的数据,那么对于这么多眼花缭乱的数据,要想提取出真正对自己有用的数据,就要利用科技手段,建立完整的数据库,方便人们的数据提取和利用。在认识了大数据的作用之后,就要合理的利用好大数据,正确的使用大数据,在大数据使用过程中应当规范使用办法,避免使用者滥用大数据,检索和分类过程也应当认真细致的操作,因为不仅仅是一次失误,之后的每一个步骤都有可能会对数据处理工作造成误解和偏差,造成大数据的错误使用。为了更好的使用大数据,推动大数据对高校教育的发展,高校应建立完善的大数据使用平台,让使用者能够有地方可查,有资源可用,提高大数据的使用率。至于校园内的配置,应当及时维护,对大数据的保管工作也应时常监督和完善,进一步加强数据使用效率,发挥其应有的价值。在人员配置选拔方面,要认真仔细筛选真正有用的人才,对数据进行分类处理和详细整理,更好的帮助校园内数据使用者进行数据使用程序。

5总结

在当下数据大爆炸的时代,能够更好的使用信息的人,将信息为己所用,那么就是发挥了大数据的真正价值。正确看待大数据,合理利用大数据,将大数据与高校教育有机的结合在一起,尽力发挥大数据应有的价值,有利于人们探索未知的知识和学问,有效的利用好大数据,就是发挥了大数据对高校教育的推动作用。

参考文献 :

[1]邱仁宗,黄雯,翟晓梅.大数据技术的伦理问题[J].科学与社会,2014(01).

[2]王成红,陈伟能,张军,宋苏,鲁仁全.大数据技术与应用中的挑战性科学问题[J].中国科学基金,2014(02).

[3]祝智庭,管珏琪.教育变革中的技术力量[J].中国电化教育,2014(01).

大数据意义

现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。[10]阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。[11]

有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。[12]

大数据的价值体现在以下几个方面:

(1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;

(2)做小而美模式的中小微企业可以利用大数据做服务转型;

(3)面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。

不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。

在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点。企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:

(1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。

(2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。

(3)分析所有SKU,以利润最大化为目标来定价和清理库存。

(4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。

(5)从大量客户中快速识别出金牌客户。

(6)使用点击流分析和数据挖掘来规避欺诈行为。

有关大数据论文的题目

《大数据技术对财务管理的影响》

摘 要:大数据可以快速帮助财务部门建立财务分析工具,而不是单纯做账。大数据应该不仅仅局限于本单位的微观数据,更为重要的关注其他单位的宏观数据。大数据技术不仅带来了企事业单位财务数据搜集的便利和挑战,而且也衍生出了诸多关于单位人员个人信息保密等问题的积极探索。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

关键词:大数据;财务管理;科学技术;知识进步

数据是一个中性概念。人类自古以来几千年的辉煌变迁,无外乎就是数据的搜集和使用过程而已。纵观古今中外的人际交流与合作,充满着尔虞我诈和勾心斗角,那么他们在争什么呢?实际上是在争夺信息资源;历史上品相繁多的战争,实际上不是在维持什么所谓的正义和和平,抑或为了人间的正道,而是在争夺数据的使用权;“熙熙攘攘皆为利往、攘攘熙熙皆为利来”的世俗变迁逻辑已经让位于数据游戏的哲学法则。人类自英国产业革命以来所陆续发明的技术,尽管被人们美其名曰“第四次科技革命的前沿技术”,实际上不过就是“0”和“1”两个数字的嬉戏而已。正如有学者指出的,汽车技术、生命科学技术、基因技术、原子能技术、宇宙航天技术、纳米技术、电子计算机技术,看起来美轮美奂,实则隐含着杀机,那就是由于人们把技术当成了目的后,导致了“技术专制”后的“技术腐败”和“技术灾难”。人类一方面在懒惰基因的诱惑下,发明了诸多所谓的机械装置,中国叫“机巧”;另一方面又在勤奋的文化下,发明了诸多抑制懒惰的制度和机制。本来想寻求节俭,结果却越来越奢侈;本来想节约,结果却越来越浪费;本来想善良,结果却越来越邪恶;本来想美好,结果却越来越丑陋。正如拉美特里所说:“人是什么?一半是天使,一半是野兽。当人拼命想成为天使的时候,其实他会逐渐变成野兽;当人想极力崇拜野兽的时候,结果会逐渐接近天使。”我们不是在宣讲宿命的技术,我们只是在预测技术的宿命。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

一、大数据技术加大了财务数据收集的难度

财务数据的收集是一个复杂的系统工程,国际上一般采用相对性原则,即首先利用不完全统计学的知识对数据进行初步的计算,接着对粗糙的数据进行系统的罗列,最后对类型化的数据进行明分梳理。使用者如果想进入该数据库,就必须拥有注册的用户名和密码。由于国际上对于网络数据的监督均采取了实名注册的模式,所以一旦该用户进入到核心数据库之后想窃取数据,一般都会暴露自己的bug地址源,网管可以循着这一唯一性存留,通过云计算迅速找到该网络终端的IP地址,于是根据人机互动原理,再加上各种网吧所安装的监控平台,可以迅速找到数据库的剽窃者。如果按照上述数据变迁逻辑,那么财务数据的收集似乎变得易如反掌,而事实并非如此。因为:①数据的量化指标受制于云计算服务器的安全性。当云服务器受到不可抗力的打击,如地震、水患、瘟疫、鼠疫、火灾、原子能泄露或各种人为破坏的作用,数据会呈现离散型散落。这时的数据丢失会演变成数字灾难;②各种数据版权的拥有者之间很难实现无缝隙对接。比如在经过不同服务器的不同数据流之间,很难实现现实意义上的自由流通。正如专家所指出的,教育服务器的事业单位的人员数据、行政部门人事管理部门的保密性数据、军事单位的军事数据、医疗卫生事业的数据、工商注册数据、外事数据等在无法克服实际权力的分割陷阱之前,很难实现资源的共享,这时对数据的所谓搜集都会演化为“不完全抽样”的数字假象。由此而衍生的数据库充其量只是一部分无用的质料而已。

二、大数据技术影响了财务数据分析的准确性

对于搞财务管理的人来说,财务数据的收集只是有效实现资源配置的先决条件,真正有价值的或者说最为关键的环节是对财务数据的分析。所谓“财务数据分析”是指专业的会计人员或审计人员对纷繁复杂的单位人力资源信息进行“去魅”的过程。所谓“去魅”就是指去粗取精、去伪存真、由此及彼、由表及里、内外互联,彼此沟通、跨级交流、跨界合作。在较为严格的学术意义上,分析的难度广泛存在与财务工作人员的日常生活中。大数据技术尽管为数据的搜集提供了方便法门,但同时加大了财务人员的工作量和工作难度。原先只是在算盘或者草稿纸上就可以轻松解决的数据计算,现在只能借助于计算机和云图建模。对于一些借助于政治权力因素或者经济利益因素,抑或是借助于自身的人际关系因素上升到财务管理部门的职工来说,更大的挑战开始了。他们不知道如何进行数据流的图谱分析,不知道基于计算机软件技术的集成线路技术的跌级分类,不知道基于非线性配置的液压传动技术的模板冲压技术,不知道逆向网络模型来解决外部常态财务变量的可篡改问题。由于技术不过硬,导致了领导安排的任务不能在规定的时间内完成,即时仓促做完的案例,也会因为数据分析技术的落后而授人以柄,有的脾气不好的领导可能会大发雷霆;脾气好的领导只是强压着内心的怒火,那种以静制动的魄力和安静更是摄魂夺魄。所以说数据分析难度的增加不是由于财务人员的良心或善根缺失,在很大程度上是由于技术的进步和大数据理念给我们带来的尖锐挑战。对于普通的没有家庭和社会背景的财务管理人员来说,能做的或者说唯一可做的就是尊重历史发展的周期律,敬畏生生不息的科学革命,认真领会行政首长的战略意图,提升自己的数据分析技术,升华在自身的“硬实力”。否则觊觎于领导的良心发现和疏忽大意,期望技术的静止或者倒退,抑或是在违法犯罪之后天真的认为可以相安无事,可能都只会落得“恢恢乎如丧家之犬”的境遇。

三、大数据技术给财务人事管理带来了挑战

一个单位的财务人事管理牵扯到方方面面的问题,其意义不可小视。一般来讲,单位在遴选财务管理部门管理人员的时候,大多从德才绩行四个方面全面权衡。然而这种“四有标准”却隐含着潜在的危机和不可避免的长远威胁,这其中的缘由就在于人性的复杂性和不可猜度性。历史和现实一再告诉人们,单纯看眼前的表现和话语的华丽,不仅不能对人才的素质进行准确的评价,而且还会导致官员的远期腐败和隐性腐败。对于中国的腐败,国人大多重视了制度和道德的缘起,却往往忽视了财务管理的因素。试想如果财务管理人员牢牢践行“焦裕禄精神”,不对任何政治权力开绿灯,国有资产又如何流出国库而了无人知晓呢?事实上,中国的所有腐败,不论是国有资产的国外流失抑或是国内流失,都在很大程度上与财务人员有关,可能有些管理人员会强调那不是自己的责任,出纳签字是领导的授意,会计支出费用那是长官的意思清晰表示。实际上,处于权力非法授予的签字、盖章、取现、流转和变相洗钱都是违法的,甚至是犯罪的。间接故意也是应当追究责任的。值得高兴的是,伴随着数字模拟技术的演进,财务管理中的腐败现象和人事管理科学化问题得到了极大的改善,相关领导伸手向财务要钱的行为,不仅会受到数据进入权限的限制,而且还会受到跟数据存留的监控,只要给予单位科技人员以足够的权限,想查找任何一笔资金的走向就变得非常简单,而且对于每一笔资金的经手者的信息也会了如指掌。这在一定程度上减少了只会指挥、不懂电脑的首长的孵化几率。

四、大数据技术加大了单位信息保密的难度

IMA(美国注册会计师协会)研发副总裁Raef・Lawson博士曾经指出:“客观上讲,大数据技术的正面效用是非常明显的,但一个不容回避的事实是大数据技术为财务信息的安全性提出了越来越严峻的挑战。我们已经注意到,在欧洲大陆、美洲大陆已经存在基于数据泄露而产生的各种抗议活动,这些活动牵扯到美国的数据窃听丑闻、俄罗斯对军事数据的强制性战友举动、以色列数据专家出卖阿拉伯世界经济数据的案件、在东方的中国香港一部分利用数据的窃取而发家致富的顶尖级黑客专家。”在数据集成的拓扑领域,大数据技术的保密性挑战肇始于蚁群算法的先天性缺陷。本来数据流的控制是依靠各种所谓的交易密码,实际上这些安全密码只是数据的另一种分类和组合而已。在数据的非线性组合和线路的真空组装模式下,任何密码都只是阻挡了技术侏儒的暂时性举动,而没有超出技术本身的惰性存在。当一个hacker掌握了源代码的介质性接洽技术之后,所剩下的就是信息和数据的搜集了,只要有足够的数据源,信息的户的几乎是轻而易举的。

2003年,北京的一家名为飞塔公司的防火墙安全软件在中关村科技城闪亮上市。该安全控制软件的开发者随机开发了一款名曰MAZE天网的软件,并且采用了“以其之矛攻其之盾”的攻防策略。测试的结果是尽管maze的源代码采用了24进制蝶形加密技术,但 FortiGate防火墙技术仍然能够阻挡住善意木马对电脑终端用户信息的剽窃和非法利用。FortiWeb已经通过全球权威的ICSA认证,可以阻断如跨站脚本、SQL注入、缓冲区溢出、远程文件包含、拒绝服务,同时防止敏感数据库外泄,为企事业单位Web应用提供了专业级的应用安全防护。飞塔公司之所以耗费人力和物力去开发这一新型的换代产品,就在于大数据时代对单位信息保密性的冲击。试想,如果一个单位连职工最起码的个人信息都不能安全存储的话,那么财务管理的科学性和人本性将从何谈起?只能说,即使在人权保护意识相对薄弱的法治环境里,我们也应该尽量提升自己的保密意识,加强对个人信息的保护和合理运用。

作者简介:田惠东(1967- ),女,汉族,河北定兴人,副高级会计师,本科学历,研究方向:财务管理,单位:保定市第一医院

本科学位论文是侧重于动手能力的,所以称为毕业设计,大数据处理类的,如果真的去搭建云平台是稍微有些不太好做,毕竟咱们个人的计算机终端是不够的,所以我觉得侧重于大数据安全,有一些算法,简单仿真,或者基于hadoop对某个行业的数据进行下分析计算也是没问题,到实例部分其实你用数据挖掘的方法去做,结果差不多

数据科学的五大要素: A-SATA 模型 分析思维 (Analytical Thinking) 统计模型 (Statistical Model) 算法计算 (Algorithmic Computing) 数据技术 (Data Technology) 综合应用 (Application) 2. 如何辨证看待“大数据”中的“大”和“数据”的关系? 字面理解 Large 、 vast 和 big 都可以用于形容大小 Big 更强调的是相对大小的大,是抽象意义上的大 大数据是抽象的大,是思维方式上的转变 量变带来质变

大数据导论答案数据科学的五大要素: A-SATA 模型 分析思维 (Analytical Thinking) 统计模型 (Statistical Model) 算法计算 (Algorithmic Computing) 数据技术 (Data Technology) 综合应用 (Application) 2. 如何辨证看待“大数据”中的“大”和“数据”的关系? 字面理解 Large 、 vast 和 big 都可以用于形容大小 Big 更强调的是相对大小的大,是抽象意义上的大 大数据是抽象的大,是思维方式上的转变 量变带来质变,思维方式,方法论都应该和以往不同 计算机并不能很好解决人工智能中的诸多问题, 利用大数据突破性解决了, 其核 心问题变成了数据问题。 3. 怎么理解科学的范式?今天如何利用这些科学范式? 科学的范式指的是常规科学所赖以运作的理论基础和实践规范, 是从事某一科 学的科学家群体所共同遵从的世界观和行为方式。 第一范式:经验科学 第二范式:理论科学 第三范式:计算科学 第四范式:数据密集型科学 今天,是数据科学,统一于理论、实验和模拟 4. 从人类整个文明的尺度上看, IT 和 DT 对人类的发展有些什么样的影响和冲 击? 以控制为出发点的 IT 时代正在走向激活生产力为目的的 DT ( Data Technology ) 数据时代。 大数据驱动的 DT 时代 由数据驱动的世界观 大数据重新定义商业新模式 大数据重新定义研发新路径 大数据重新定义企业新思维 5. 大数据时代的思维方式有哪些? “大数据时代”和“智能时代”告诉我们: 数据思维:讲故事 数据说话 总体思维:样本数据 全局数据 容错思维:精确性 混杂性、不确定性查看更多百度文库提供内容分享点赞踩

有关大数据建设的论文参考文献

大数据论文【1】大数据管理会计信息化解析

摘要:

在大数据时代下,信息化不断发展,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

同时也面临着一些问题。

本文通过分析管理会计信息化的优势和应用现状以及所面临的的问题,以供企业在实际工作中对这些问题的控制和改善进行参考和借鉴。

关键词:

大数据;管理会计信息化;优势;应用现状;问题

在这个高速发展的信息时代,管理会计的功能已经由提供合规的信息不断转向进行价值创造的资本管理职能了。

而管理会计的创新作为企业管理创新的重要引擎之一,在大数据的时代下,管理会计的功能是否能够有效的发挥,与大数据的信息化,高效性、低廉性以及灵活性等特点是密不可分的。

一、大数据时代下管理会计信息化的优势及应用现状

在大数据时代下,管理者要做到有效地事前预测、事后控制等管理工作,在海量类型复杂的数据中及时高效的寻找和挖掘出价值密度低但是商业价值高的信息。

而管理会计信息化就能够被看做是大数据信息系统与管理会计的一个相互结合,可以认为是通过一系列系统有效的现代方法,

不断挖掘出有价值的财务会计方面的信息和其他非财务会计方面的综合信息,随之对这些有价值的信息进行整理汇总、分类、计算、对比等有效的分析和处理,

以此能够做到满足企业各级管理者对各个环节的一切经济业务活动进行计划、决策、实施、控制和反馈等的需求。

需要掌控企业未来的规划与发展方向就能够通过预算管理信息化来实现;需要帮助管理者优化企业生产活动就能够通过成本管理信息化对

供产销一系列流程进行监控来实现;需要对客观环境的变化进行了解以此帮助管理者为企业制定战略性目标能够通过业绩评价信息化来实现。

(一)预算管理信息化

在这个高速发展的信息时代下,预算管理对于企业管理而言是必不可少的,同时对企业的影响仍在不断加强。

正是因为企业所处的环境是瞬息万变,与此同此,越来越多的企业选择多元化发展方式,选择跨行业经营的模式,经营范围的跨度不断增大。

这就需要企业有较强的市场反应能力和综合实力,对企业的预算管理提出了新的发展挑战要求。

虽然不同企业的经营目标各不相同,但对通过环境的有效分析和企业战略的充分把握,从而进行研究和预测市场的需求是如出一辙的。

企业对需求的考量进而反应到企业的开发研发、成本控制以及资金流安排等各个方面,最终形成预算报表的形式来体现企业对未来经营活动和成果的规划与预测,

从而完成对企业经营活动事后核算向对企业经营活动全过程监管控制的转变。

然而从2013国务院国资委研究中心和元年诺亚舟一起做的一项针对大型国有企业的调研结果中得出,仅仅有4成的企业完成了预算管理的信息化应用,

大型的国有企业在预算管理信息化应用这方面的普及率都不高,足以说明我国整体企业的应用情况也不容乐观。

所以从整体上来讲,预算管理信息化的应用并未在我国企业中获得广泛的普及。

(二)成本管理信息化

企业由传统成本管理企业向精益成本管理企业转换是企业发展壮大的必然选择。

而基于大数据信息系统能够为企业提供对计划、协调、监控管理以及反馈等过程中各类相关成本进行全面集成化管理。

而进行成本管理的重中之重就是对企业价值链进行分析以及对企业价值流进行管理。

企业能够通过成本管理信息化对有关生产经营过程中的原材料等进行有效地信息记录及进行标示,并结合在财务信息系统中产生的单独标签,

使与企业有关的供应商、生产经营过程和销售等的过程全都处于企业的监控。

以此企业可以做到掌握生产经营的全过程,即能够通过财务信息系统实时了解到原材料的消耗,产品的入库及出库等一切企业生产经营活动。

同时,结合价值链的分析和价值流管理,企业通过将生产过程进行有效地分解,形成多条相互连接的价值链,运用信息化手段对企业的

每条价值链的成本数进行有效的追踪监管和综合分析,以此为基础为企业提出改进方案,并使用历史成本进行预测,达到减少企业的不需要的损失及浪费,最终达到优化生产经营过程。

虽然成本管理信息化是企业发展的一个重要趋势,以大数据信息技术为基础的信息系统可以使得企业完成全面的成本管理,给企业的成本管理带来了巨大的推动力。

然而信息化在成本控制方面的实施效果并不是很理想。

(三)业绩评价信息化

业绩评价是对企业财务状况以及企业的经营成果的一种反馈信息,当企业的绩效处于良好状态,代表企业的发展状况良好,

也反映了企业现阶段人才储备充足,发展处于上升期,由此企业定制扩张战略计划。

而当企业的绩效不断减少,代表企业的发展状况在恶化,也反映了企业的人才处在流失状态,企业在不断衰退,此时企业应该制定收缩战略计划。

企业进行业绩评价信息化的建设,通过对信息系统中的各类相关数据进行综合分析,有效地将对员工的业绩评价与企业的财务信息、顾客反馈、学习培训等各方面联系在一起。

对于企业而言,具备一套完善且与企业自身相适应的业绩评级和激励体系是企业财务信息系统的一个重要标志,也是企业组织内部关系成熟的一种重要表现。

然而,如今对于具备专业的业绩评价信息化工具平衡分卡等在企业的发展过程中并未得到广泛的应用。

其中最大的原因应该是对业绩评价的先进办法对于数据信息的要求比较简单,通常可以由传统方式获得。

所以,现如今能够完全将业绩评价纳入企业信息系统,并能够利用业绩评价信息化来提高企业管理效率的企业数量并不多。

二、大数据时代下管理会计信息化存在的主要问题

(一)企业管理层对管理会计信息化不重视

我国企业管理层对企业管理会计信息化建设存在着不重视的问题。

首先,对管理会计信息化概念和建设意义没有正确的认识,有甚至由于对于企业自身的认识不够充分,会对管理会计信息化的趋势产生了质疑和抵触心理。

再者,只有在一些发展较好的企业中进行了管理会计信息化的建设工作及应用,但是,企业应用所产生的效果并不是很理想,进而促使管理会计信息化在企业的发展速度缓慢。

(二)管理会计信息化程度较低

大数据时代下,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

但是,由于管理会计在我国受重视程度不够,企业在进行管理会计信息化建设的过程中对与软件的设计和应用也要求较高,所以与管理会计信息化建设相关的基础建设还相对较落后。

(三)管理会计信息化理论与企业经管机制不协调

虽然随着国家政策鼓励和扶持,很多行业的不断涌现出新的企业,企业数量不断增多,但是由于这些企业在规模以及效益等方面都存在着较大的差距,同时在管理决策方面也产生了显著地差别。

很多企业在发展的过程中并没有实现真正的权责统一,产生了管理层短视行为,没有充分考虑企业的长远利益等管理水平低下的问题。

三、管理会计信息化建设的措施

(一)适应企业管理会计信息化发展的外部环境

企业在进行管理会计信息化建设时,要结合企业所处的外部环境进行全方面的规划和建设。

在企业进行规划和建设时,国家的法律法规等相关政策占据着十分重要的位置,需要对市场经济发展的相关法律法规进行充分理解和考虑,为企业管理会计信息化建设提供好的法律环境。

管理会计信息化系统的正常运转要求企业处于相对较好的环境之中,以此充分发挥出其应有的作用。

(二)管造合适的管理会计信息化发展内部环境

企业管理会计信息化的良好发展要求企业能够提供良好的内部环境。

树立有效推进企业管理会计信息化建设的企业文化,企业文化作为企业股东、懂事、管理层以及每个员工的价值观念体现,

有利于各级员工都能够正确认识到管理会计信息化建设的重要性,接受管理会计信息化的价值取向。

再者,企业要储备足够的管理会计人才,为管理会计信息化的建设提供源源不断的血液。

同时,为企业管理会计信息化建设提供强大的资金保障。

最后,对企业内部控制体系不断完善,为企业创造长足的生命力,为管理会计信息化赖以生存的环境。

(三)开发统一的企业信息化管理平台

在大数据时代下,信息化不断发展,对于企业而言,会同时使用多种不同的信息系统进行组合使用,并且这种情况在未来也可能将持续下去,企业需要建立综合统一的企业信息化管理平台。

四、结束语

管理会计信息化已经成为企业发展的重要趋势。

同时也面对着一些问题。

因此,相应的措施和不断地完善和改进是必不可少的,以此才能够促进管理会计信息化的不断发展。

作者:李瑞君 单位:河南大学

参考文献:

[1]冯巧根.

管理会计的理论基础与研究范式[J].

会计之友,2014(32).

[2]张继德,刘向芸.

我国管理会计信息化发展存在的问题与对策[J].

会计之友,2014(21).

[3]韩向东.

管理会计信息化的应用现状和成功实践[J].

会计之友,2014(32).

大数据论文【2】大数据会计信息化风险及防范

摘要:

随着科学技术的不断进步和社会经济的不断发展,大数据时代的发展速度加快,同时也推动着会计信息化的发展进程,提高了企业会计信息化工作的效率和质量,资源平台的共享也大大降低了会计信息化的成本。

但大数据时代下会计信息化的发展也存在一定的风险。

本文将会对大数据时代下会计信息化中所存在的风险给予介绍,并制定相应的防范对策,从而使大数据时代在避免给会计

信息化造成不良影响的同时发挥其巨大优势来促进会计信息化的发展进程。

关键词:

大数据时代;会计信息化;风险;防范

前言

近年来经济全球化进程不断加快,经济与科技的迅猛发展,我国在经历了农业、工业和信息时代以后终于踏入了大数据时代。

大数据是指由大量类型繁多、结构复杂的数据信息所组成的`数据集合,运用云计算的数据处理模式对数据信息进行集成共享、

交叉重复使用而形成的智力能力资源和信息知识服务能力。

大数据时代下的会计信息化具有极速化、规模性、智能性、多元化、和即时高效等特点,这使得会计从业人员可以更方便快捷的使用数

据信息,并在降低经济成本的同时有效实现资源共享,信息化效率逐渐增强。

但同时大数据时代下的会计信息化也面临着风险,应及时有效地提出防范对策,以确保会计信息化的长久发展。

一、大数据时代对会计信息化发展的影响

(一)提供了会计信息化的资源共享平台

进入大数据时代以来,我国的科学技术愈加发达,会计信息化也在持续地走发展和创新之路,网络信息资源平台的建立使数据与信息资源可以共同分享,平台使用者之间可以相互借鉴学习。

而最为突出的成就便是会计电算化系统的出现,它改变了传统会计手工做账的方式,实现了记账、算账和报账的自动化模式,

提高了会计数据处理的正确性和规范性,为信息化管理打下基础,推进了会计技术的创新和进一步发展。

但是“信息孤岛”的出现证明了会计电算化并没有给会计信息化的发展带来实质性的变化。

《大数据技术原理与应用—概念、存储、处理、分析与应用》。hadoop参考文献有《大数据技术原理与应用—概念、存储、处理、分析与应用》,Hadoop是一个开源的框架,可编写和运行分布式应用处理大规模数据。

有关高铁论文的文献数据

一、中国学术期刊网络出版总库:

1、高铁建设对粤港澳大湾区城市群空间经济关联的改变及影响分析[J]. 李彦,王鹏,梁经伟.  广东财经大学学报. 2018(03)

2、高速铁路、城市发展与区域经济发展不平等——来自中国的经验数据[J]. 鲁万波,贾婧.  华东经济管理. 2018(02)

3、高速铁路建设对长三角经济区城市化发展的影响研究[J]. 徐玉萍,唐青,付来美,陆宇.  华东交通大学学报. 2017(06)

4、高速铁路对中国城市可达性和区域经济的影响[J]. 刘莉文,张明.  国际城市规划. 2017(04)

5、中国“铁路外交”:历史演变与当前类型[J]. 钟准,杨曼玲.  国际关系研究. 2018(03)

6、交通基础设施的区域经济效应与影响机制研究——来自郑西高铁沿线的证据[J]. 刘志红,王利辉.  经济科学. 2017(02)

7、我国高铁“走出国门”的机遇与挑战[J]. 陈安娜.  商业时代. 2014(17)

8、加快铁路发展对节能减排的贡献与责任[J]. 陆东福.  铁道运输与经济. 2009(12)

二、中国图书全文数据库:

1、高铁经济学导论[M]. 中国铁道出版社 , 国家铁路局《高铁经济学导论》编写组, 2018

2、高速铁路概论[M]. 中国铁道出版社 , 佟立本, 2017

3、国外铁路改革[M]. 中国铁道出版社 , 罗庆中, 2013

参考资料来源:知网-中国高铁:新时代经济社会发展的重要引擎

知网-高铁对区域城市经济发展的影响研究

关于高铁的战略管理论文范文篇二 武广高铁的经济效应分析 摘 要:在抓住当前高铁对地方经济的影响这一重要经济现象的同时,分析了高铁对三个省区的经济效应。同时,从加强城市建设、发展生态旅游、做好产业布局、强化制度创新、完善交通网络等方面提出了应对高铁经济挑战的对策,具有较强的现实意义。 关键词:高铁经济;同城效应;辐射效应;产业承接与转移效应 中图分类号: 文献标志码:A 文章编号:1673-291X(2011)35-0059-02 近年来,随着我国高速铁路的超常发展,极大地带动了相关高新技术产业的升级。与此同时,以信息技术、自动化技术、制造技术和材料科学等为代表的当代高新技术在铁路行业的广泛运用,也使我国铁路运输在高速、重载等方面实现了历史性跨越。就目前进程而言,高速列车很有机会成为我国高技术装备制造业中最具国际竞争力的产业。运营里程达1 公里的武广高铁,于2009年12月26日正式运营。在这条目前世界上里程最长、时速最高无砟轨道客运专线正式亮相之时,粤湘鄂三小时经济圈亦正式落成。所谓“高铁一响,黄金万两”,武广高铁带来的经济意义到底有哪些呢? 第一,“同城效应”。根据城市断裂点理论,一个城市对周围地区的吸引力与它们的规模成正比,与其的距离成反比。即大城市的影响和辐射在300公里处有一个断裂点,在这个断裂点上需要产生一个新的城市,才能很好地连接这两个省区的经济。全线长约1 公里,途经200多座隧道。设计时速350公里/小时,最高时速394公里/小时,投资总额1 166亿元人民币,创造了多个世界第一的武广高铁于2009年12月26日正式通车。从武汉到广州只有2小时46分,湘粤鄂三省从此步入了三小时经济圈。 武广高铁线路辐射湖北、湖南两省和珠江三角洲、港澳地区,近年来湖北、湖南两省GDP增长很快,珠江三角洲更是我国经济发展的重点区域,港澳地区为特区,经济已经发展成熟。湖北省2009年GDP达12 500亿元,湖南省2009年GDP为12 亿元,而珠三角地区人均GDP更是逼近1万美元。武广高铁南接广、深、港客运专线,可打通“广州―东莞―深圳―香港”强势经济带,这是武广高铁客运发展的客观资源环境与机遇。武广高铁运营里程超过1 000公里,纵贯湖北、湖南、广东三省,沿线大、中、小城市密布。这些省市占全国GDP比重很大,尤其是广东省的GDP约占全国1/8。武广铁路客运专线开通运营后,所带来的高铁效应将更为显著,不仅会大大缩短沿线城市间的时空距离,而且可以使华中与珠江三角洲、港澳地区的经济社会联系和交流更加密切。对于珠江三角洲经济从劳动密集型传统产业向资金密集型现代工业转化,“泛珠三角”区域各省区经济结构互补,促进鄂湘粤及周边地区的合作,促进区域经济协调发展,进一步促进中国经济社会又好又快发展具有极为重要的意义。 长期以来,由于物流瓶颈,与长三角和环渤海形成鲜明的对比,珠三角经济圈缺乏庞大的经济发展腹地。随着武广高铁开通,这一状况将获得极大改善。对广东而言,其经济发展腹地得以真正向湖南、湖北等内陆地区延伸,获得当地巨大的土地资源、人才和市场支持;而湖南、湖北则可因此更加密切地融入泛珠三角,进而联通庞大的海外市场。有专家预测,此前港澳的“前店后厂”经济发展模式将因此发生新的地域转移,形成新的“前店后厂”,广东成为“新店”,湖北、湖南成为“新厂”;广东省委书记汪洋提出的“产业和劳动力双转移”战略,也将跳出广东的地盘而具有新的地域呈现,在粤与湘、鄂三地之间实现新的“双转移”。粤湘鄂三省的经济整合,将使得珠三角在长三角和环渤海经济圈的竞争中获得更多的优势。 第二,“辐射效应”。“高铁”时代将缩小区域之间的差距,以前那种因为交通因素造成区域旅游资源劣势的局面将大为改善,各地会站在同一个旅游交通资源平台上。客观来说,湖南的旅游资源在“武广高铁”沿线这块较大的区域里面,还是具有明显优势的。张家界、凤凰、韶山、岳阳楼、南岳等知名旅游地,在“武广高铁”辐射区域内有很强的品牌优势。以前受交通因素的制约,这些知名景区在吸引珠三角、港澳地区的客流量上,还不如广州附近一个普通名景区多。但“武广高铁”的开通,将沿线的15座城市链接形成串珠状的现代交通构架,其中有3大省会城市,9大地级市,3座县级市。旅游与城市扩张的脚步借着“武广高铁”的开通大步向前,也使湖南旅游业实现“借道超车”,使湖南这些知名景点的比较优势凸显出来,在粤、湘、鄂三省区域中,湖南旅游产业的收益将是最大的。 就湖南郴州而言,长沙、广州对其影响将明显扩大。以旅游为例,2011年7月开展的“红色鄂湘粤、高铁一线牵”活动,给三地旅游带来巨大影响。位于湘粤交界的宜章县,围绕莽山国家森林公园的旅游推介,建设了莽山至宜凤高速的快速通道,完善了县内和景点区内的交通网络,开展了飞驰高铁、壮美莽山、高山对歌等七大主题活动。在高铁的带动下,莽山的旅游十分火爆,带动了郴州的旅游发展。 湖北、湖南两省是中国古代南方文明的代表――楚 文化 的摇篮,有着丰富的文化底蕴,以及红色革命旅游资源,奠定了发展旅游支柱产业的良好基础条件。湖北、湖南两省旅游资源丰富,特别湘西旅游发展与武广高铁运营的关联性更大。港澳旅游在武广高铁乘客消费目的中占到很大的比例,纵观武广高铁沿线,旅游资源消费者成为高铁发展的又一大顾客群,同样能为武广高铁市场发展提供很大机遇。 第三,产业承接与转移效应。高铁的速度冲击,将首先波及客货运业、服务旅游业以及区域产业布局重构。日本新干线的建成,使几个城市连成一片,形成了产业带。同样,中国高铁的发展也使原有的经济圈得以延伸,使大区域之间通过高铁被串联到一块。广东近年提出的“腾笼换鸟”转移劳动密集型产业进行产业升级的战略。武广高铁的开通拉近了两湖和珠三角的距离,将为湖南、湖北带来千亿产业转移投资,加上房地产、物流等方面的投资,数额可能达到数千亿。沿线的粤北、湖南、湖北各市也纷纷建设新的工业园区。 湖南省政府为郴州承接产业转移量身定做了“34条优惠政策”,并大力推进建设工业园“标准厂房”。湖北的咸宁市也专门开辟了“广东工业园区”,还计划投资20亿元,以咸宁北站为中心打造一座现代化的城市新区。 同样,以郴州为例,2009年5月16日,湖南省委、省政府出台了关于支持郴州市承接产业转移先行先试若干政策措施,简称“先行先试”34条,就是要打造政策洼地,承接产业转移。郴州以此为机遇,围绕将郴州建成“湘粤赣省际区域中心城市”和“湖南最开放城市”的目标,将在未来5―10年内,把郴州建成100平方公里、100万人口的规模,努力使郴州成为全国加工贸易承接示范基地、有色金属精深加工基地、江南旅游休闲度假基地、华南能源供应基地、湖南视讯数字产业基地。武广高铁的开通运营,加速构建了长三角、珠三角联系的快捷运输通道,也推动了郴州的“两城”建设。据郴州市统计局数据显示,2010年上半年,郴州新增加工备案企业15家,电子产业增加值增长160%,装备制造工业增加值增长,以电子信息产业为主的新进制造业对规模工业增长的贡献率达71%,拉动规模工业增长。 武广高铁的运营给我国带来了技术上的一次创新实践,从引进外国的先进技术到自主研发,体现了我国科学技术的高速发展。同时,武广高铁对于我国的运输能力有了很大的提高,释放了京广线的运能,这对我国的政治经济都有很大的积极意义。同时,武广高铁的运营,使得我国的经济开始由沿海向中部地区转移,这是一次重要的工业转移过程,在这次转移过程中,政府要积极引导,把握这一次产业结构调整的重要机会。在实现我国经济的转型的同时,发展中部经济,实现经济的全区域发展。 参考文献: [1] 张春莉.武广高铁冲击波[N].人民政协报,2009-12-15. [2] 张建军.武广高铁助广东产业升级[N].经济日报,2010-05-06. [3] 曹彪.武广高铁对区域物流的影响[J].港口经济,2010,(1). [4] 梁雪松,王河江,邱虹.旅游空间区位优势转换发展机遇的再探讨[J].西安 财经 学院学报,2010,(3). 看了“关于高铁的战略管理论文范文”的人还看: 1. 关于高铁的战略管理论文 2. 关于高铁的战略管理论文(2) 3. 关于企业战略管理论文 4. 浅谈企业战略管理论文范文 5. 浅谈企业战略管理

针对我国高速铁路客运专线规划决策中的主要技术经济问题,本文在广泛分析国内外有关研究资料的基础上,结合作者承担或参与的国家高技术发展计划(863)课题和铁道部高速铁路研究课题,综合运用工程技术科学、宏观经济学、微观经济学、决策科学、数量经济学和统计学的理论和方法,对高速客运专线的客运需求、速度目标值、建设时机、技术系统选择、国民经济评价方法等问题进行了研究,研究方法均为国内首次采用。为我国高速铁路规划决策的科学化、定量化提供了有益的支持工具。主要研究成果如下: (1)在高速铁路客运市场份额研究方面,通过研究旅客对交通工具的选择行为,分析了影响旅客选择行为的经济、技术、心理和生理因素,首次将交通工具的多种技术特征引入效用函数中,建立了客运交通工具的效用评价理论;进而用多目标决策、数量经济学和统计学理论建立了交通工具市场份额分析模型。该模型从理论上避免了目前一些常用分析理论在某些交通走廊应用的误差较大甚至出现矛盾的现象。由该模型算出的客运需求变化规律与理论分析具有很好的一致,实例验证取得较好的结果。 (2)在高速铁路客运需求的长期变化规律方面,分析了社会经济发展规模、社会经济结构发展变化、信息传输技术进步等因素对社会客运需求影响,结合国内外社会经济和交通发展的统计资料,提出了社会客运需求长期变化规律的数学模型;从旅客对交通工具服务质量要求的提高、自然资源与环境保护、各种交通技术的发展趋势等方面,论证了高速铁路客运市场份额和客运需求的长期变化规律并建立相应模型。以京沪线为例进行的计算表明,高速铁路客运需求的长期变化规律是:首先因经济发展规模的增长而增加,后因旅客对服务质量的要求发生变化,市场份额降低,客运需求增速减缓甚至下降。这一规律符合培育、发展、饱和和停滞的商品经济规律。 (3)在国内首次系统地通过理论研究和总结实际定线资料,研究了高速铁路速度目标值与其客运需求、工程投资、机车车辆购置费、运营支出等技术经济指标的量化关系。为我国高速铁路项目的科学化、定量化决策提供了良好的研究基础。 (4)在速度目标值决策方面,考虑速度目标值对客运需求、土建工程投资、机车车辆购置费、运营有关支出、无关支出等基础数据的影响,以高速铁路项目的经济效益为目标,用技术经济学的理论研究速度目标值。以京沪线为例的计算结果证实了最佳速度目标值的存在。该最佳速度目标值是基于我国的经济发展水平和市场需求状况的结果,与国外发达国家的高速列车速度水平具有一定的差距。 (5)在高速铁路的建设时机决策方面,提出了以旅客对旅行时间节省的支付意愿为表征的高速铁路建设时机研究方法。以各种交通工具的技术经济特征为基础,运用本模型的计算结果表明,目前我国东部经济发达地区已进入建设高速铁路的合理时机。同时,以财务内部收益率为评价指标,通过分析高速铁路建设期和运营期的投入和产出,结合高速铁路市场需求长期变化规律的分析,以京沪线为例进行的计算表明:目前就是京沪高速铁路的最佳时机。上述研究结论与国内高速铁路技术的成熟性、经济发展对客货运输能力的综合要求、项目建设资金的供给条件等研究相结合,可为我国高速铁路的建设时机决策提供有益的参考。当然,本文算例结论的前提是各种交通方式的技术经济特征保持相对稳定。一旦某种交通工具的服务水平取得重大突破,或者有新的交通系统被引入,研究结论将可能发生变化。 (6)在铁路建设项目经济评价理论方面,本文分析了西方国家、联合国工业发展组织和我国的交通建设项目国民经济评价理论和方法,提出我国现行的铁路建设项目国民经济评价办法中效益计算部分尚待探讨。提出了计算交通建设项目国民经济效益的新观点。并对其中一些观点提出了算法。 (7)在高速磁悬浮铁路技术经济特征分析方面,全面研究了国外高速磁浮交通系统资料,在国内首次系统地总结了高速磁悬浮铁路的线路设计理论;提出了影响通过能力和输送能力的因素和磁浮列车追踪间隔的计算方法;全面分析了高速磁悬浮铁路的工程投资、运营支出等经济特征和能量消耗、土地占用与地表破坏、交通噪声、有害物质排放、磁辐射等环境影响特征。为我国开展高速磁悬浮交通系统的工程应用研究提供了良好的基础。 (8)在高速交通技术系统比较方面,针对我国对两种技术系统的研究基础相差很大,难以进行工程应用全面对比的情况,本文从两种系统的技术原理出发,通过理论分析、试验定线和试验设计,对土建投资、列车费用和运营支出进行了比较。另外,从市场适应性角度出发,分析了两种系统的综合服务质量,以旅客平均时间价值为指标,提出了各自适应的经济发展水平。 本文提出的研究成果,可作为我国高速铁路规划中科学化、定量化决策的辅助工具。本文重点研究辅助决策的技术经济学方法,在具体应用项目的技术经济决策分析中,尚应深化研究主要基础数据,以保证模型计算结果的可靠性。

有关大数据英文论文参考文献

《大数据技术原理与应用—概念、存储、处理、分析与应用》。hadoop参考文献有《大数据技术原理与应用—概念、存储、处理、分析与应用》,Hadoop是一个开源的框架,可编写和运行分布式应用处理大规模数据。

Big data refers to the huge volume of data that cannotbe stored and processed with in a time frame intraditional file next question comes in mind is how big this dataneeds to be in order to classify as a big data. There is alot of misconception in referring a term big data. Weusually refer a data to be big if its size is in gigabyte,terabyte, Petabyte or Exabyte or anything larger thanthis size. This does not define a big data a small amount of file can be referred to as a bigdata depending upon the content is being ’s just take an example to make it clear. If we attacha 100 MB file to an email, we cannot be able to do a email does not support an attachment of this with respect to an email, this 100mb filecan be referred to as a big data. Similarly if we want toprocess 1 TB of data in a given time frame, we cannotdo this with a traditional system since the resourcewith it is not sufficient to accomplish this you are aware of various social sites such asFacebook, twitter, Google+, LinkedIn or YouTubecontains data in huge amount. But as the users aregrowing on these social sites, the storing and processingthe enormous data is becoming a challenging this data is important for various firms togenerate huge revenue which is not possible with atraditional file system. Here is what Hadoop comes inthe Data simply means that huge amountof structured, unstructured and semi-structureddata that has the ability to be processed for information. Now a days massive amount of dataproduced because of growth in technology,digitalization and by a variety of sources, includingbusiness application transactions, videos, picture ,electronic mails, social media, and so on. So to processthese data the big data concept is data: a data that does have a proper formatassociated to it known as structured data. For examplethe data stored in database files or data stored in Data: A data that does not have aproper format associated to it known as structured example the data stored in mail files or in data: a data that does not have any formatassociated to it known as structured data. For examplean image files, audio files and video data is categorized into 3 v’s associated with it thatare as follows:[1]Volume: It is the amount of data to be generated a huge : It is the speed at which the data : It refers to the different kind data which . Challenges Faced by Big DataThere are two main challenges faced by big data [2]i. How to store and manage huge volume of . How do we process and extract valuableinformation from huge volume data within a giventime main challenges lead to the development ofhadoop is an open source framework developed byduck cutting in 2006 and managed by the apachesoftware foundation. Hadoop was named after yellowtoy was designed to store and process dataefficiently. Hadoop framework comprises of two maincomponents that are:i. HDFS: It stands for Hadoop distributed filesystem which takes care of storage of data withinhadoop . MAPREDUCE: it takes care of a processing of adata that is present in the let’s just have a look on Hadoop cluster:Here in this there are two nodes that are Master Nodeand slave node is responsible for Name node and JobTracker demon. Here node is technical term used todenote machine present in the cluster and demon isthe technical term used to show the backgroundprocesses running on a Linux slave node on the other hand is responsible forrunning the data node and the task tracker name node and data node are responsible forstoring and managing the data and commonly referredto as storage node. Whereas the job tracker and tasktracker is responsible for processing and computing adata and commonly known as Compute the name node and job tracker runs on asingle machine whereas a data node and task trackerruns on different . Features Of Hadoop:[3]i. Cost effective system: It does not require anyspecial hardware. It simply can be implementedin a common machine technically known ascommodity . Large cluster of nodes: A hadoop system cansupport a large number of nodes which providesa huge storage and processing . Parallel processing: a hadoop cluster provide theaccessibility to access and manage data parallelwhich saves a lot of . Distributed data: it takes care of splinting anddistributing of data across all nodes within a also replicates the data over the entire . Automatic failover management: once and AFMis configured on a cluster, the admin needs not toworry about the failed machine. Hadoop replicatesthe configuration Here one copy of each data iscopied or replicated to the node in the same rackand the hadoop take care of the internetworkingbetween two . Data locality optimization: This is the mostpowerful thing of hadoop which make it the mostefficient feature. Here if a person requests for ahuge data which relies in some other place, themachine will sends the code of that data and thenother person compiles it and use it in particularas it saves a log to bandwidthvii. Heterogeneous cluster: node or machine can beof different vendor and can be working ondifferent flavor of operating . Scalability: in hadoop adding a machine orremoving a machine does not effect on a the adding or removing the component ofmachine does . Hadoop ArchitectureHadoop comprises of two componentsi. HDFSii. MAPREDUCEHadoop distributes big data in several chunks and storedata in several nodes within a cluster whichsignificantly reduces the replicates each part of data into each machinethat are present within the no. of copies replicated depends on the replicationfactor. By default the replication factor is 3. Thereforein this case there are 3 copies to each data on 3 differentmachines。reference:Mahajan, P., Gaba, G., & Chauhan, N. S. (2016). Big Data Security. IITM Journal of Management and IT, 7(1), 89-94.自己拿去翻译网站翻吧,不懂可以问

英文论文写作参考文献

参考文献是文章或著作等写作过程中参考过的文献,文后参考文献是指为撰写或编辑论文和著作而引用的有关文献信息资源。

[1]AgranoflF, R. and Michael,M., 2003,“Collaborative Public Management; New Stiategies for Local Governments”, Geo^etown University Press,Washington,D. C.

[2]Aguinis, H. and Glavas, A., 2012, “What We Know and Don't Know About Corporate Social Responsibility: A Review and Research Agenda”,Journal of Management, 38(4),pp. 932-968.

[3]Altman, E.,1998' “Financial Ratio,Discriminant Analysis and the Prediction of Corporate Banlruptcy”? Journal of Finance, 23(4),pp. 589-609.

[4]Arenas, D.,Lozano,J. M. and Albareda,L.,2009,“The role ofNGOs in CSR:Mutual Perceptions Among Stakeholders”, Journal of Business Ethics,88,pp. 175-197.

[5]Aupperie, K., Carroll, A. and Hatfield,J.,1985,“An Empirical Examination of the Relationship between Corporate Social Responsibility and Profitability”,Academy of Management Journal, 28(2), pp. 446-463.

[6]Austin, J. E.,2000,“Strategic collaboration between nonprofits between businesses”, Nonprofit and Voluntary Sector Quarterly, 29(1), pp. 69-97.

[7]Baron,D. R, 1997,Integrated strategy* trade Policy, and global competition'California Management Review? 39(2), pp. 145-169.

[8]Baron,R. A., 2006, “Opportunity Recognition as the Detection of Meaningful Patterns: Evidence from Comparisons of Novice and Experienced Entrepreneurs”?Management Science, 9,pp. 1331-1344.

[9]Baiy, A. D?,1879,: “Die Erscheinung der Symbiose”, Strasbourg.

[10] Kotha, B. ., 1999,“Does Stakeholder Orientation Matter? The Relationship Between Stakeholder Management Models and Firm Performance”. Academy ofManagement Jounal, 42,pp. 488-506.

[11]Binghamf C. B. and Davis,J. P.,2012, “Learning Sequences: Their Emeigence? Evolution and Effect”. Academy of Management Journal 55(3), pp. 611-641.

[12]Blumer, H. , 1980, “Mead and Blumer : The Convei^ent Methodological Perspectives of Social Behaviorism and Symbolic Interactionism”,AmericanSociological Review, 45,pp. 409-419.

[13]Bondy,K.,2008,“The Paradox of Power in CSR : A Case Study on Implementation”. Journal of Business Ethics? 82(2),pp. 307-323.

[14]Bowen, F.,Aloysius. N. K. and Herremans,I.,2010,“When Suits Meet Roots:The Antecedents and Consequences of Community Engagement Strategy”, Journal of Business Ethics, 95,pp. 297-318 ?

[15]Brammer,S, and Millington,A., 2003, “The Effect of Stakeholder Preferences >Organizational Structure and Industry Type on Corporate Community Involvement”,Journal of Business Ethics,45(3)? pp. 213-226.

[16]Bridoux, F. and Stoelhorst, J. W.,2014, “Microfoundations for Stakeholder Theoiy : Managing Stakeholders with Heterogeneous Motives” , Strategic Management Joumah 35, pp. 107-125

[17]Bryson, J. M., Crosby, B. C, and Stone? M. M.,2006, “The Design and Implementation of Cross-Sector Collaborations: Propositions from the Literature”,Public Administration Review, 66(sl)。

[18]Carey, J. M.,Beilin, R., Boxshall,A.,Burgman M. A. and Flander , “Risk-Based Approaches to Deal with Uncertainty in a Data-Poor System:Stakeholder Involvement in Hazard Identification for Marine National Parks and Marine Sanctuaries in Victoria,Australia”, Risk Analysis: An International Journal,27(1),pp. 271-281,

[19]Carroll> A. B., 1979, “A TTiree-Dimensional conceptual Model of Corporate Performance”. Academy of Management Review, 4(4), pp. 497-505.

[20] Carroll, A. B?,1991,“The Pyramid of Corporate Social Responsibility: Toward the Moral Management of Organizational Stakeholders”. Business Horizons,34(4),pp. 39-48.

[1] Zhixin W, Chuanwen J, Qian A, et al. The key technology of offshore wind farm and its new development in China[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1):216-222.

[2] Shahir H, Pak A. Estimating liquefaction-induced settlement of shallow foundations by numerical approach[J]. Computers and Geotechnics, 2010, 37(3): 267-279.

[3] Hausler EA. Influence of ground improvement on settlement and liquefaction:a study based on field case history evidence and dynamic geotechnicalcentrifuge tests. PhD dissertation, University of California, Berkeley; 2002.

[4] Kemal Hac efendio lu. Stochastic seismic response analysis of offshore wind turbine including fluid‐structure‐soil interaction[J]. Struct. Design Tall Spec. Build.,2010,

[5] Arablouei A, Gharabaghi A R M, Ghalandarzadeh A, et al. Effects of seawater–structure–soil interaction on seismic performance of caisson-type quay wall[J]. Computers &Structures, 2011, 89(23): 2439-2459.

[6] Zafeirakos A, Gerolymos N. On the seismic response of under-designed caisson foundations[J]. Bulletin of Earthquake Engineering, 2013: 1-36.

[7] Snyder B, Kaiser M J. Ecological and economic cost-benefit analysis of offshore wind energy[J]. Renewable Energy, 2009, 34(6): 1567-1578.

[8] Ding H, Qi L, Du X. Estimating soil liquefaction in ice-induced vibration of bucket foundation[J]. Journal of cold regions engineering, 2003, 17(2): 60-67.

[9] Shooshpasha I, Bagheri M. The effects of surcharge on liquefaction resistance of silty sand[J]. Arabian Journal of Geosciences, 2012: 1-7.

[10] Bhattacharya S, Adhikari S. Experimental validation of soil–structure interaction of offshore wind turbines[J]. Soil dynamics and earthquake engineering, 2011, 31(5): 805-816.

[11] H. Bolton Seed, Izzat M. Idriss. Simplified procedure for evaluating soilliquafaction potential. Journal of the Soil Mechanics and Foundations Division. 1971,97(9): 1249-1273

[12] W. D. Liam Finn, Geoffrey , Kwok . An effective stress model for liquefaction. Journal of the Geotechnical Engineering Division, 1977, 103(6):517-533

[13] liquefaction and Cyclic Mobility Evolution for Level Ground During Earthquakes, J of the Geotechnical Engineering Division ASCE , 1979,

[14] and Cyclic Deformation of Sands-A Critical Review,Proceedings of the Fifth Pan American Conference on Soil Mechanics and Foundation Engineering,Buenos Aires,Argentina,1975.

[1] T. Paulay and J. R. Binney. Diagonally Reinforced coupling beams of shear Walls[S].ACI Special Publication 42, Detroit, 1974, 2: 579-598

[2] Lam WY, Su R K L, Pam H J. Experimental study of plate-reinforced composite deep coupling beams[J]. Structural Design Tall Special Building, 2009(18): 235-257

[3] ACI 318-02: Building Code Requirements for Structural Concrete, ACI318R-02:Commentary, An ACI Standard, reported by ACI Com-mittee318, American Concete Institute, 2002

[4] Siu W H, Su R K L. Effects of plastic hinges on partial interaction behaviour of bolted side-plated beams[J]. Journal of Construction Steel Research, 2010, 66(5):622-633

[5] Xie Q. State of the art of buckling-restrained braces inAsia[J]. Journal of Construction Steel Research, 2005, 61(6):727-748

[6] Kim J,Chou H. Behavior and design of structures with buckling-restrained braces[J].Structural Engineering, 2004,26(6):693-706

[7] Tsai K C, Lai J W. A study of buckling restrained seismic braced frame[J].Structural Engineering, Chinese Society of Structural Engineering, 2002, 17(2):3-32

[8] Patrick J. Fortney, Bahrem M. Shahrooz, Gian A. Rassati. Large-Scale Testing of a Replaceable “Fuse” Steel Coupling Beam[J]. Journal of Structural 2007:1801-1807

[9] Qihong Zhao. Cyclic Behavior of traditional and Innovative Composite Shear Walls[J]. Journal of Structural Engineering, Feb. 2004:271-284

相关百科

热门百科

首页
发表服务