首页

> 学术期刊知识库

首页 学术期刊知识库 问题

关于阻燃胶合板的论文题目

发布时间:

关于阻燃胶合板的论文题目

一、什么是阻燃板阻燃板,又名难燃板、阻燃胶合板、难燃胶合板等,是由原木旋切成木片或由木方刨切成小木方块,对木片进行阻燃处理后再用胶粘剂胶合而成的三层或多层的胶合板。阻燃板材在现代装修中的使用率越来越高,尤其是在突发灾难来临时,它能为我们的生命保驾护航,同时在日常生活中,优质的阻燃板环保健康耐用,在各种装修板材中具有着不可替代的作用。二、阻燃板是何原理?1、阻碍原理:依靠阻燃剂的表面覆盖作用,阻止木材表面与周围环境进行物质和能量交换,既切断了氧气的供给,又抑制了可燃性气体的产生,减缓木材的热分解;2、挥发物降低原理:阻燃剂催化木材热解过程,使它朝着产炭来量增加和可燃气体减尘的方向发展,以形成表面和木炭保护层并抑制了有焰燃烧。3、不燃气体稀释原理:阻燃剂受热时可自动释放出阻燃气体而降低燃烧面周围的热量。同时,不燃气体稀释了可燃气体的浓度,干扰了燃烧连锁反应;4、热原理:利用阻燃剂在胶合板的表层的覆盖,起到散热、吸热和隔热作用,抑制木材的燃点;三、阻燃板优缺点阻燃板有阻止火势蔓延的作用,它可以为我们逃离火灾现场有足够的时间。阻燃板是在胶合板的基础上制作而成的,所以它施工较为方便,成本较低,质量比较轻,容易加工。阻燃板的结构强度要远远大于其他板材,所以它的抗弯能力是比较强的。当然了,阻燃板也有一定的缺点,阻燃板在阻燃之后,板材的胶合度会有一定的影响。

建筑方面的可以班忙写具体的内容和题目

阻燃板以木材为主要原料生产的阻燃板,由于其结构的合理性和生产过程中的精细加工,可大体上克服木材的缺陷大大改善和提高木材的物理力学性能,同时难燃胶合板也克服了普通胶合板易燃烧的缺点,有效提高了胶合板阻燃性能,阻燃板生产是充分合理地利用木材、改善木材性能的一个重要方法。阻燃板的分类一类阻燃板为耐气候、耐沸水难燃胶合板,由此及彼有耐久、耐高温,能蒸汽处理的优点。二类阻燃板为耐水阻燃板,能在冷水中浸渍和短时间热水浸渍。三类阻燃板为耐潮阻燃板,能在冷水中短时间浸渍,适于室内常温下使用。

推荐工程造价毕业论文题目:1·国内外工程造价构成研究2.浅谈定额计价与清单计价的异同3.探讨低价中标在建筑工程中的合理应用4.如何编制一份高质量的工程量清单5.项目决策阶段影响工程造价的主要因素研究6.建设项目投资估算方法研究7.建设项目设计阶段工程造价的计价与控制研究8.浅谈建设项目施工招投标9.工程进度款的支付研究10.建筑工程项目的施工质量管理研究 11.建设工程索赔研究 12.建设工程项目施工成本控制研究13.建设工程项目进度控制研究14.浅谈建设工程合同与合同管理15.建设工程项目信息管理研究16.浅谈工程项目风险管理17.项目资金筹措的渠道与方式研究18.项目融资的主要方式研究19.工程量清单计价下施工过程中风险分担研究20.论防水材料的选用21.浅谈工程地质队工程造价的影响22.浅谈地下连续墙施工技术23.水泥的主要特性及适用范围分析24.桩基础施工方法及适用范围分析25.钢筋焊接连接方法及适用范围分析26.施工组织设计技术经济分析27.浅谈建筑工程合同价款的确定与调整28.浅谈用价值工程原理控制工程成本29.建设工程纠纷的处理研究30.建设工程违约责任分析

化学学报关于阻燃的文章

阻燃胶应用很广的,很多有机材料都要求有阻燃性。比如电线电缆外皮,电子元件外壳,橡胶制品,塑炼制品,家装材料等。发展趋势自然是高效无毒环保。目前电子行业阻燃要求变化明显,正在从有卤阻燃向无卤阻燃过渡

随着现代科技的发展,塑料、合成橡胶、合成纤维三大类人工合成材料得到普遍应用,但其作为有机高分子材料的易燃性也给人类带来大量的火灾隐患。在此背景下,阻燃剂产量迅速增长,其用量和生产量也是日益增长,阻燃材料成为了当今社会生产生活中,被广泛采用的关键基础材料。下面这篇文章我们就来了解下亚洲阻燃发展现状、中国阻燃发展现状,以及中国阻燃企业,最后总结下阻燃剂发展的趋势。一、亚洲阻燃剂市场快速发展阻燃剂产业起源于欧美发达国家,亚洲地区起步较晚。但从2005年开始,以中国为代表的亚洲市场快速发展。目前全球主要的阻燃剂供应商大多分布在亚洲、欧洲、北美洲等地,主要的消费市场也集中在这些地区。据统计,去年全球阻燃剂行业市场规模约80亿美元,预计未来全球阻燃剂市场年均复合增长速度约为6%,到2030年将达到135亿美元。2021年全球阻燃剂需求量为320万吨,其中氢氧化铝吨()、溴系万吨()、磷系()万吨、氮系 万吨()、氧化锑万吨()以及其他阻燃剂万吨()。预计年均需求增速约5%,到2030年将达约470万吨。二、中国阻燃剂市场近几年,随着塑料产品的增加以及安全标准的提高,阻燃材料的应用变得更加广泛。我国的无机阻燃材料消费量迅速增长。我国拥有超过一万家阻燃材料相关从业公司,其中形成以广东、江苏、山东、安徽等地群聚的集中趋势。以塑料为例,国内大部分的改性塑料企业都会或多或少涉及一些与阻燃相关的产品,而做电缆料(弹性体)的材料基本都是阻燃料,阻燃纤维目前也是市场上非常常见的一类阻燃材料。溴系阻燃剂和磷氮系阻燃剂作为两个最大的阻燃剂类别,在相关领域涌现出一批具有较大生产规模的企业。更多塑料知识干货,可以上最有料平台查看

竞争层次:国际领先企业加剧国内阻燃剂市场竞争

从市场主体来看,我国阻燃剂行业主要以国内阻燃剂上市企业、国际化工跨国企业在华分公司、国内中小型阻燃剂生产企业三种市场主体构成。

从国际市场来看,部分欧美大型化工企业基于其先发优势,处于行业领先地位。目前,美国雅宝公司、德国朗盛公司、以色列化工集团、瑞士科莱恩等是全球阻燃剂生产商巨头。国内的阻燃剂生产厂商中,其中晨化股份有限公司、江苏雅克科技股份有限公司、浙江万盛股份有限公司、山东寿光卫东化工有限公司、山东天一化学股份有限公司等为主要的阻燃剂生产厂商。未来,阻燃剂行业将围绕产品质量的可靠性、环境友好型阻燃剂的研发能力、对各国各地区日趋严格的环境保护标准的适应能力和清洁生产管理能力展开竞争。

企业竞争格局:国内企业以万盛股份领先市场

从国内市场来看,中国阻燃剂企业以万盛股份为龙头,2021年,其阻燃剂业务年营收达亿元,占据15%的市场份额;排名第二的苏利股份阻燃剂业务营收亿元,市场份额为;雅克科技以亿元的业务收入占据的市场份额,其余上市企业市场份额均不足2%。

注:各公司市场份额为前瞻根据各公司阻燃剂业务营收与市场销售收入测算所得,仅供参考。

区域竞争格局:区域分布集中在长三角与珠江三角洲区域

目前国内阻燃剂生产主要分布在长江三角洲和珠江三角洲等交通便捷、经济发达地区。江、浙地区主要生产磷系阻燃剂,山东地区以溴系阻燃剂为主,广东阻燃剂的品种较多。江苏、广东和上海为主要的阻燃剂消费地区,对比生产地区,山东、浙江是阻燃剂生产大省,但阻燃制品生产相对较少;上海地区阻燃剂生产较少,但阻燃制品生产企业较多;广东和江苏地区阻燃剂和阻燃制品两类生产企业均比较多。目前,溴系领先企业有寿光卫东化工、山东兄弟科技;氢氧化铝阻燃剂领先企业有中铝中州铝业、中铝山东有限公司、中超新材,淄博鹏丰;磷系比较大的江苏雅克、万盛股份等。

市场集中度:企业业务布局分散 市场集中度较低

从企业的销售市场集中度来看,2021年行业CR3仅为,CR5为,行业集中度较低,主要系阻燃剂类型多样,企业产品布局较为分散。但从细分市场来看,我国磷系阻燃剂行业集中度较高,雅克科技和万盛股份占据磷系阻燃剂大部分的市场;溴系阻燃剂生产企业主要集中现在山东地区,生产企业达百余家;无机系阻燃剂生产商数量多,集中度较低,而规模较大的企业多为采矿企业,拥有铝矿、镁矿资源。

—— 更多行业相关数据请参考前瞻产业研究院《中国阻燃剂行业市场需求预测与投资战略规划分析报告》

在阻燃剂当中,溴系阻燃剂是应用最广泛的一种,同时围绕着它也产生了种种争议 。一篇题为《有毒阻燃剂阴影逼向中国》的文章引起各方关注。该文介绍,阻燃剂十溴二苯醚可能正在威胁人类健康;一些欧美国家已禁止或限制使用溴系阻燃剂,而中国正成为溴系阻燃剂在世界范围内增长最快的国家。那么,究竟什么是十溴二苯醚?它会给人体带来怎样的危害?请看——人体十溴联苯醚水平已增长百倍通过长期的对比研究,美国学者发现在同一人群中,体内十溴联苯醚同系物含量在逐年增加;在人类应用十溴联苯醚的30年内,十溴联苯醚在人体内的水平已经增长了100多倍。最为重要的是,美国学者在母亲和婴儿的血液中检测到6种十溴联苯醚的同系物。母亲血液中总十溴联苯醚含量为15~580ng/kg,婴儿血液中为14~460ng/kg,与母亲相差不大。由此推测,十溴联苯醚可以通过胎盘屏障和乳汁输送给新生儿。普通人体内十溴联苯醚的浓度范围是1~400ng/g脂肪,在高风险电子垃圾区的工人体内,十溴联苯醚最高达。这些数据表明,十溴联苯醚在人体内的蓄积量有加速上升的倾向,这自然会引起科学界的高度关注。什么是多溴联苯醚多溴联苯醚的英文名为Poly Brominated Diphenyl Ethers(简称PBDEs),有四溴联苯醚、五溴、六溴、八溴、十溴等209种同系物。其商品多溴联苯醚是一组溴原子数不同的联苯醚混合物,因此被总称为多溴联苯醚。多溴联苯醚的最大用途是作为阻燃剂,在产品制造过程中添加到复合材料中去,以提高产品的防火性能。因为多溴联苯醚可在高温状态下释放自由基,阻断燃烧反应。其中十溴联苯醚(PBDE-209)是多溴联苯醚家族中含溴原子数最多的一种化合物,由于它价格低廉,性能优越,急性毒性在所有溴联苯醚中最低,所以在全球范围内使用最广,如用于各种电子电器和自动控制设备、建材、纺织品、家具等产品中。说起多溴联苯醚,多数人并不熟悉,但对等多氯苯及其衍生物多氯联苯却并不陌生。多年前,由于国际社会公认多氯联苯在环境中的残留周期特别长,能在生物及人类脂肪组织中蓄积,不仅各国纷纷禁用六六六、DDT,而且制定了非常严格的食品有机氯允许含量标准。多溴联苯醚恰恰与它们有着很多相似之处,只是因为多溴联苯醚的应用较晚,因此,人们对它的了解要比多氯联苯晚了半个世纪。急性毒性很低多溴联苯醚为淡黄色、无特殊气味的粉末状物质,对皮肤无刺激作用。其急性毒性很低,大鼠经口半数致死剂量(LD50)高达5800~7400mg/kg。原型物质进入胃肠道后基本上不被吸收,最终由粪便排出。慢性毒性很多1.发育毒性。研究表明,由于幼年动物排泄多溴联苯醚的能力低,会造成幼体多溴联苯醚浓度过高而导致组织(包括脑)损伤。胎儿和婴儿在出生前后接触多溴联苯醚,会引起持久性的行为改变。给孕期大鼠持续管饲多溴联苯醚后,可发现胎鼠后肢畸形。2.干扰内分泌功能。研究还发现,多溴联苯醚能扰乱成年期和发育期哺乳动物的甲状腺系统,使T4代谢紊乱。3.生殖毒性。低剂量的多溴联苯醚染毒雄性小鼠的精子和精原细胞数量下降。4.可能致癌。给大鼠染毒1200~2500mg/kg连续20周,肝脏和胰腺的腺瘤发生率增加。可污染食物链除了生产厂家以粉尘的方式向周围环境排放外,多溴联苯醚污染环境的主要途径是对于含多溴联苯醚的电子垃圾进行焚烧、粉碎和掩埋处理等。由于多溴联苯醚在环境中相当稳定,难以降解,所以,土壤里的残留量逐年增加。而且多溴联苯醚不溶于水,易溶于脂肪,所以,容易被动物吸收而在食物链中逐渐富集。接触多溴联苯醚的途径直接接触能直接接触多溴联苯醚的主要是生产工人,每日接触到的多溴联苯醚粉尘绝大多数被排出体外。但逐日积累,体内储积量会逐渐增多。经食物获得大气、水体、土壤中痕量的多溴联苯醚可通过食物链最终进入人类的食物。所以,多数人接触多溴联苯醚的方式是通过食物获得。怎样减少阻燃剂的危害中国对多溴联苯醚的研究尚处于初级阶段,对污染的底数、人体的蓄积状况也不十分了解,需要进行大规模的摸底调查。敏感人群,如孕妇、发育中的胎儿和婴儿等,要想把阻燃剂的危害控制在尽可能低的水平,建议采取以下措施:▲进行持久的科普宣传,提高公众对多溴联苯醚这个重大隐患的自觉防范意识。▲为孕产妇和婴儿提供合格的安全食品。▲直接接触多溴联苯醚的工人应特别注意饮食安全,不要在露天和污染的环境中吃饭,饭前一定要认真洗手。▲开发环保阻燃材料,以替代多溴联苯醚。剂量溴系阻燃剂对健康造成影响的数据主要来自动物实验。在实验动物当中,一些阻燃剂对肝脏、神经、免疫、内分泌系统等造成了影响。不过,出现这些效益的剂量往往远高于环境中的阻燃剂含量 。

阻燃板燃烧性能研究论文

阻燃板的优点:

1、首先阻燃板具有阻止火势蔓延,为逃离火灾现场赢得宝贵时间。阻燃板并不代表它就不燃烧,只是阻止火势迅速蔓延。

2、阻燃板是在胶合板基础上加工而成,其质轻、易加工,施工方便,降低成本。3、阻燃板具有结构强度好,抗弯能力强。

阻燃板的缺点:

1、阻燃板在燃烧过程中会产生有毒气体。千年舟阻燃板采用先进的阻燃剂大大降低火灾中的有毒气体产生。

2、阻燃板经过阻燃处理后,会对板材胶合强度有一定影响。

阻燃板工作原理:

1、基材阻燃:选用的是阻燃效果持久、抗流失性好、防水耐潮的的环保型阻燃剂,对板基材进行特殊条件的处理以后,使阻燃剂与木材纤维充分的结合,在燃烧的过程中,阻燃板可以有效的稀释可燃气体、隔离空气和火源,在未燃烧时改变木材裂解过程,控制地板的燃烧趋势和进程,最后以实现阻燃目的。

2、表面和底层阻燃:表面采用专利技术,在面层中添加了一些无机钢化材料,因此可以在增加地板的抗冲击性、耐磨性同时,又使地板具有了不同一般的阻燃效果;并且在其底层添加了的是防火板设置,既可以防水防潮又能够防火阻燃的双重保障。

北京盛大华源是专业的阻燃板厂家,盛辉阻燃材料是盛大华源子公司坐落在固安南工业区,集研发生产销售于一体的综合公司,主营产品有,阻燃密度板、阻燃胶合板、阻燃细木工板、阻燃刨花板、阻燃木材等,广泛应用于展柜道具,建筑装修、家具制造、防火门等领域,如果您有需要可与我们联系,厂家直销电话 。量大优惠,厂家直销罗文圣 博士/教授级高工 北京盛大华源科技有限公司总经理公司荣获北京市科学技术奖、梁希林业科学技术奖、中国林业科学研究院技术进步奖、中关村优秀留学人员企业。公司通过ISO9001质量管理体系认证,是中关村国家自主创新示范区重点瞪羚企业、北京市专利试点单位、北京市标准试点单位。主持和参与完成的省部级项目15项,主持制定国家标准1项、参与制定的国家标准2项,参与修订国家标准2项、行业标准1项。“甲醛清除触媒”被列为国家重点新产品,“高强度环保阻燃中密度纤维板及其阻燃剂”被列为北京市火炬计划项目。拥有自主知识产权授权发明专利10件、中国林科院木材工业研究所授权转让发明专利1件、北京林业大学授权使用发明专利2件。五类产品被认定为北京市自主创新产品,四类产品被认定为中关村国家自主创新示范区新技术新产品。主要技术• 阻燃木质材料生产技术及产品:B1/E0级阻燃纤维板及其专用阻燃剂,B1/E0级阻燃刨花板及其专用阻燃剂,阻燃细木工板,高铁用阻燃胶合板,阻燃地板基材及其生产技术,家具及装修用阻燃胶合板及其生产技术,阻燃木材。• 环保产品及净醛负离子人造板生产技术:人造板功能添加剂,净醛负离子添加剂,治理、清除室内装饰装修甲醛、苯系物、异味、TVOC等污染的触媒。• 生物质胶黏剂生产技术及生物质胶黏剂人造板:胶合板及细木工板用高含量生物质胶黏剂(固体含量大于45%)、中密度纤维板用低粘度生物质胶黏剂(粘度小于500cps)。• 功能壁纸添加剂:阻燃壁纸,净醛壁纸,净味壁纸,负离子壁纸,抗菌壁纸等添加剂。• 功能木质材料添加剂:木质材料防霉抗菌剂,环保防腐防霉剂,纳米防水剂,木材增强剂。

阻燃板,有阻燃密度板、阻燃胶合板等,是在人造板生产流程中,通过复杂的工艺,将阻燃剂添加到板材生产线中制成的人造板。1,健康环保是阻燃板的一个很好的优势,因为阻燃板在加工工程中,由于木材的完整性,所以在加工过程中可以避免使用更多的液体胶水,以及常见的装饰污染源甲醛潜伏在液态胶中,从这种情况看,阻燃板更环保健康。2,阻燃板具有良好的防腐性能:阻燃板表面层选用优质木材经过干燥,脱脂,健康和切片后的几道工序,表面不应有腐烂,死结,虫洞,裂缝缺陷如剥皮,但对于小滑动,色差不能太苛刻,因为它是木材的天然特性。在某些地方,阻燃板的含水量通常为5%-14%。大王椰阻燃板采用进口装饰纸,经过含浸、烘干、高温高压等加工步骤制作而成,表面装饰纸用耐火建材,光滑阻热材料具有超强耐火耐腐物理性能;

在如今的家居装饰中,我们一般会使用多种板材,阻燃板也是消费者的选择之一。当然,使用板材对于许多想要装饰的朋友来说是非常陌生的。今天,带大家来了解一下阻燃板,看看阻燃板的优缺点。1,健康环保是阻燃板的一个很好的优势,因为阻燃板在加工工程中,由于木材的完整性,所以在加工过程中可以避免使用更多的液体胶水,以及常见的装饰污染源甲醛潜伏在液态胶中,从这种情况看,阻燃板更环保健康。2,阻燃板具有良好的防腐性能:由于阻燃板表面层选用优质木材经过干燥,脱脂,健康和切片后的几道工序,表面不应有腐烂,死结,虫洞,裂缝缺陷如剥皮,但对于小滑动,色差不能太苛刻,因为它是木材的天然特性。在某些地方,阻燃板的含水量通常为5%-14%。3,以上是几个优点的介绍,但阻燃板也有相应的缺点:多层板适合作为各种家具使用,环保效果优于刨花板。然而,阻燃板的泡罩在损坏后不能修复,并且脚的感觉也很差。与其他材料相比,阻燃板需要照顾。还应注意防水,防烫,防日晒;阻燃板的资源越来越少,价格也越来越高,很容易因环境而变形。

文献关于燃料的论文题目

生物质能与中国新农村建设084386 汉语言文学 兰艳丽摘 要:本文通过新能源——生物质能的概述,初步展示其性质特点。同时,结合当下时事,论述其在新农村建设中起到的作用来证明新农村的建设离不开生物质能的应用与发展,重点讲述了秸秆在实际应用中的途径与意义。而生物质能作为一种无污染,效益高的新性能源,通过查阅相关文献了解到其发展过程中存在的主要问题进行分析研究,进而提出了几点对策。关键词:生物质能,新农村建设,秸秆应用,现状分析生物质是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。而所谓生物质能(biomass energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源依据来源的不同,可以将适合于能源利用的生物质分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物和畜禽粪便等五大类。生物质能特点1) 可再生性 生物质属可再生资源,生物质能由于通过植物的光合作用可以再生,与风能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用; 2) 低污染性 生物质的硫含量、氮含量低、燃烧过程中生成的SOX、NOX较少;生物质作为燃料时,由于它在生长时需要的二氧化碳相当于它排放的二氧化碳的量,因而对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应; 3) 广泛分布性 缺乏煤炭的地域,可充分利用生物质能; 4) 生物质燃料总量十分丰富。生物质能是世界第四大能源,仅次于煤炭、石油和天然气。根据生物学家估算,地球陆地每年生产1000~1250亿吨生物质;海洋年生产500亿吨生物质。生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的10倍。我国可开发为能源的生物质资源到2010年可达3亿吨。随着农林业的发展,特别是炭薪林的推广,生物质资源还将越来越多。 生物质能应用生物质能一直是人类赖以生存的重要能源,它是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位。有关专家估计,生物质能极有可能成为未来可持续能源系统的组成部分,到下世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。目前人类对生物质能的利用,包括直接用作燃料的有农作物的秸秆、薪柴等;间接作为燃料的有农林废弃物、动物粪便、垃圾及藻类等,它们通过微生物作用生成沼气,或采用热解法制造液体和气体燃料,也可制造生物炭。生物质能是世界上最为广泛的可再生能源。据估计,每年地球上仅通过光合作用生成的生物质总量就达1440~1800亿吨( 干重 ),其能量约相当于20世纪90年代初全世界总能耗的3~8倍。但是尚未被人们合理利用,多半直接当薪柴使用,效率低,影响生态环境。现代生物质能的利用是通过生物质的厌氧发酵制取甲烷,用热解法生成燃料气、生物油和生物炭 ,用生物质制造乙醇和甲醇燃料,以及利用生物工程技术培育能源植物,发展能源农场。新农村建设离不开新能源发展 中国是一个农业大国,农村人口占大多数,因此农村和农民问题是关系到国家稳定与发展的关键性问题。近年来,随着农村经济的发展,农民生活水平不断提高,广大农村对于能源的需求量也在不断上升,传统能源的大量使用造成了严重的污染问题,同时日益增大的农村能源需求量也给我国本已严峻地能源形势带来了更大的挑战。根据《2004年世界BP能源统计年鉴》提供的资料,2003年世界石油探明总储量为1567亿吨,中国石油探明总储量仅占世界的,但中国的石油年消费量却占到了世界的年中国石油对外依存度达到了35%,专家预计这一数字到2020年将达到60%。同时我国农村许多地区风能、太阳能、生物质能源丰富,蕴含着发展新能源的巨大潜力,因此,将可持续发展理念引入农村能源利用领域,大力推进新能源建设,则是解决农村能源与环境之间矛盾的有效途径。新农村建设是我国现代化进程中的重大历史任务,目的在于改善农村生态环境,提高农民生活质量。其中一项重要措施就是大力发展循环农业,开发使用新能源。过去对于农村能源有一个十六字方针,即“因地制宜,多能互补,综合利用,讲求效益”,这是在短缺经济的背景下,针对能源危机而提出来的。目前,我国农村的社会、经济及其能源供需结构形势发生了重大变化,大量商品能源进入农村市场,农村能源面临着结构升级和如何现代化的问题,原十六字方针因缺少生态观和市场观,已不符合现时和未来农村能源可持续发展的实际。因而开发利用生物质能对中国农村更具特殊意义。中国80%人口生活在农村,秸秆和薪柴等生物质能是农村的主要生活燃料。尽管煤炭等商品能源在农村的使用迅速增加,但生物质能仍占有重要地位。1998年农村生活用能总量亿吨标煤,其中秸秆和薪柴为亿吨标煤,占%。因此发展生物质能技术,为农村地区提供生活和生产用能,是帮助这些地区脱贫致富,实现小康目标的一项重要任务。 1991年至1998年,农村能源消费总量从亿吨标准煤发展到亿吨标准煤,增加了%,年均增长。而同期农村使用液化石油气和电炊的农户由1578万户发展到4937万户,增加了2倍多,年增长达%,增长率是总量增长率的6倍多。可见随着农村经济发展和农民生活水平的提高,农村对于优质燃料的需求日益迫切。传统能源利用方式已经难以满足农村现代化需求,生物质能优质化转换利用势在必行。 生物质能在新农村建设中的应用意义生物质能是绿色植物通过叶绿素将太阳能转化为化学能储存在生物质内部的能量。有机物中除矿物燃料以外的所有来源于动植物的能源物质均属于生物质能,它通常包括以下几个方面:一是木材及森林工业废弃物;二是农业废弃物;三是水生植物;四是油料植物;五是城市和工业有机废弃物;六是动物粪便。在世界能耗中,生物质能约占14%,在不发达地区占60%以上。全世界约25亿人的生活能源的90%以上是生物质能。以秸秆产能技术为例,秸秆产能是生物质能里面具有代表性的一种。秸秆属可再生能源,年复一年可保证能源的永续利用。有资料介绍,植物在燃烧过程中放出二氧化碳,但它在生长过程中要吸收二氧化碳,这放出和吸收是基本平衡的,所以对环境保护有利。同时从秸秆的化学成分和热值看亦有它的优势,将它燃烧产生的灰分不小于10%,而且灰分还是一种好的农作物所需的肥料,是发展循环经济的好项目。农作物的成熟期主要集中在春季和秋季,由于它们的生长期和成熟期与气候密切相关,因地区不同也有一些差异。我国秸秆的产生量主要集中在春末或春夏交替期、夏末或夏秋交替期及秋季。由于中国土地辽阔,秸秆的收获时间也存在一定的差异,但趋势是一致的。这里所谈季节性主要针对农作物成熟时产生的秸秆,至于农作物收获后,经过加工过程产生的生物质资源如稻壳等不在此列,它根据粮食的市场需求加工产生。以上秸秆产生的特点将对开发利用秸秆的管理和技术方面带来重大影响。当然对于一些具体情况,应该具体问题具体分析处理。从实际应用来说,秸秆作为能源原材料可用于制作秸秆煤或者用于秸秆发电。秸秆煤比起普通煤炭,秸秆煤不仅投入小、生产安全,还具有易燃耐燃、热效率高、残渣少等特点,在新农村建设中推广秸秆煤,不仅能使农村的生态环境得到保护,而且能使生产秸秆煤的农民家庭带来丰厚的利润回报。目前利用秸秆发电的途径有两种:一是秸秆气化发电,二是秸秆直接燃烧发电,用得最广泛的是秸秆直接燃烧发电。秸秆发电与常规的火力发电的不同之处主要是燃料不同引起燃烧系统的变化,重点是燃烧设备的变化,而热力系统的其余部分和电气系统与常规一般火电厂类同。秸秆燃烧的另一途径是利用已经运行电厂中的锅炉进行掺烧,这既可节约煤,又可增加秸秆利用的途径。各地电厂所配炉型不同,可以由秸秆的各种成型来满足不同炉型锅炉燃烧要求。有一种在煤粉炉中掺烧秸秆的思路是炉膛中下部稍加改造增加一块炉排烧秸秆,称之为联合燃烧。还有对将按要求被关闭的小型火力发电厂,可以对其锅炉改造或重新建设锅炉装置,改造成为生物质能电厂,这也是有利的途径。在新农村建设中使用秸秆发电,能够有利于减轻农民的负担,同时可以有利于保护环境。 生物质能在新农村建设的现状与发展对策我国政府历来重视生物质能的开发利用,将其作为能源领域的一个重要方面,纳入了国家能源发展的基本政策之中,先后签署了《里约宣言》、《气候变化框架公约》等国际公约,颁布了《中国21 世纪议程》和《中国环境与发展十大对策》,在十届全国人大第四次会议通过了《国民经济和社会发展第十一个五年规划纲要》,确定了可再生能源的发展目标,并提出要实行优惠的财税、投资政策和强制性市场份额政策,鼓励生产与消费可再生能源,提高可再生能源在一次能源消费中的比重,出台了一些支持可再生能源技术发展的政策性文件,这些都有力地推动着可再生能源(包括生物质能)的发展。十一届全国人大常委会第十次会议对可再生能源法修正案(草案)进行了初次审议。在审议中,常委会组成人员建议———大量消费煤炭造成环境污染, 农作物秸秆等发电利国利民。但现实却是,我国可作为能源使用的农作物秸秆、林业剩余物等却大量被废弃。资料显示,每年全国可作为能源使用的农作物秸秆资源量约为1.5亿吨标准煤,林业剩余物资源量约2亿吨标准煤,小桐子(麻疯树)、油菜籽、蓖麻、漆树、黄连木和甜高粱等油料植物和能源作物潜在种植面积,理论上可满足年产5000万吨生物液体燃料的原料需求。工业有机废水和畜禽养殖场废水资源量,理论上可以生产沼气近800亿立方米,相当于5700万吨标准煤。但到2008年底,全国生物质发电装机容仅315万千瓦,其中蔗渣发电170万千瓦,碾米厂稻壳发电5万千瓦,城市垃圾焚烧发电40万千瓦,秸秆、林木废弃物发电55万千瓦。生物质能源技术同其他新能源技术一样,在其发展的进程中面临着众多的问题。概括而言,这些问题主要有两类:一类是共同性的问题,即绝大多数生物质能源都面临的问题;另一类是特殊性问题,即生物质能各个领域中某些技术所面临的特殊问题,一般来说,由于生物质能源技术多种多样,其工艺特征不同、发展阶段不同、市场的取向不同,因此在发展过程中所面临的问题也有所不同。从共性上分析,主要存在以下几个主要问题。分别是:思想认识不到位,技术研发。创新能力弱,政府配套政策不健全,资金缺口大。投融资体系单一,市场体系建设不完善。针对这些存在的问题,为了生物质能的发展应需要做到:提高认识、理清思路、加大宣传,加强人才能力建设、加大科研投入,搞好试验示范,开展资源评价、调整种植业结构、发展能源作物。完善相关的法律法规,吸收外国的成功经验等等。在呼唤环保建设的今天,无污染的生物质能将会成为热门的能源,为新农村建设带来经济性和环保性的双效收益。总而言之,生物质能是可再生能源,它的应用对于新农村建设有重大的意义,有利于环保工作的进行,而且产能的原材料数量多,分布广,有部分原材料还起到了变废为宝,回收利用等,加大应用生物质能的力度,能够促进调整能源结构,保障能源安全。当然,生物质能也不是没有缺点的,热值及热效率低,体积大而不易运输。直接燃烧生物质的热效率仅为10%一30%。这些缺点都需要技术的革新和政策的相应变动来进行改善,从而为新农村建设发展指向一条明亮的,无污染的发展道路。 【1】 秦大东曹军.浅论我国生物质能发展现状及对策.安徽通报,Anhui (1):133-135.【2】 闫廷满.生物质能: 秸秆; 发电的思考.东方电气评论第21卷,第1期,2007:1-4【3】 田永淑. 新型秸秆气化炉及净化工艺. 河北唐山,可再生能源 【4】 法忠勇.推进我国农村新能源推广应采取的措施, 甘肃农业2007 年第9 期【5】 陈亚中 生物质能源应用前景分析 2008【6】 百度百科

新能源汽车竞争力,题目选题还可以,偶会

找中国论文榜,说清楚论文要求就好了

新能源汽车是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力操控和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。主要区别于现在我们常见的汽油和柴油为燃料的内燃机汽车。新能源汽车包括纯电动汽车、增程式电动汽车、混合动力汽车、燃料电池电动汽车、氢动力汽车、其他新能源汽车等。下面介绍几个市场主流的新能源汽车类型:1、新能源包括混合动力汽车:采用燃油和电作为驱动原料的混合动力。目前各大品牌基本都有此类车型,比如:奔驰S400、宝马5系等,这些混动车辆都会标有Hybrid字样。2、纯电动汽车:此款车完全脱离了燃油,完全靠电作为驱动原料的混合动力。3、燃料电池汽车:这款车也是电池车,是一种氢氧混合燃料电池,您可以快速将电池燃料灌满,无需充电等待。4、氢能源动力汽车:此款车也完全脱离了燃油,利用氢能源替代了燃料。5、太阳能汽车:这款车大家比较容易理解,通过太阳能电池板,转化成电能来驱动车辆。还有其他新能源汽车,如:双燃料汽车、天然气汽车等

超支化聚合物阻燃剂毕业论文

阻燃剂就是放到塑料粉末里的一种助剂,能够有效的阻燃。大多数是粉末状。因而在工厂里使用对工人健康不利。当然如果你想要更好的阻燃效果,可以考虑阻燃母粒,一般都是圆形颗粒状,方便运输还更环保。我现在专门做阻燃这一块 你要是还有问题可以问我 ~

“衣食住行”,人类基本生活需要中,衣为先。纺织工业在人类生活、工业发展、科技进步中有着举足轻重的作用。这是我为大家整理的纺织科技论文,仅供参考!纺织科技论文篇一 纺织计量发展浅析 摘 要:“衣食住行”,人类基本生活需要中,衣为先。纺织工业在人类生活、工业发展、科技进步中有着举足轻重的作用。而纺织计量工作对纺织工业又有着重要影响,监测质量、指导生产、改进工艺。所以,纺织计量的发展,足以影响和推动纺织行业的发展,显现出纺织计量在整个纺织行业的重要性。但是,随着整个纺织行业的曲折发展,纺织计量工作也几经起伏。2012年5月9日至11日,纺织计量技术委员会在湖南张家界市召开了《电子单纱强力机(仪)校准规范》等12项纺织计量校准规范审稿会,会议审定了《电子单纱强力仪(机)校准规范》等12项纺织计量校准规范。这是继2009年宁波会议后第二次组织的纺织计量校准规范审稿会,标志着纺织计量工作进入循序渐进、有效发展阶段。 关键词:纺织工业;纺织计量;检定/校准;校准规范;标准器 中图分类号:X791 文献标识码:A 1 纺织计量概述 JJF《通用计量术语及定义》中,“计量”(metrology)词条,定义为实现单位统一和量值准确可靠的活动。它属于测量,源于测量,而又严于一般测量,它涉及整个测量领域,并按法律规定,对测量起着指导、监督、保证的作用。计量与 其它 测量一样,是人们理论联系实际,认识自然、改造自然的 方法 和手段,它是科技、经济和社会发展中必不可少的一项重要的应用。然而,计量与测试是含义完全不同的两个概念。测试是具有试验性质的测量,也可理解为测量和试验的综合。它具有探索、分析、研究和试验的特征.计量是技术和管理的结合体,凡是以实现计量单位统一和测量准确可靠为目的的科学、法制、管理等活动都属于计量的范畴。 随着市场经济的发展,计量校准正逐渐被国内更多的用户所接受。校准在国内计量技术机构开展的计量活动中的比重正在逐步加大,已经作为一种新型的计量活动与检定相提并论。纺织计量是工程计量(也称工业计量)的一部分,是计量科学在纺织行业中的应用。主要体现在纺织专用仪器的制造、使用、管理、量值溯源、量值传递、检定/校准等方面。纺织计量的主要内容有:检定规程/校准规范的制修订,纺织计量标准器的确定,周期检定/校准等活动,目前,纺专仪器的溯源方式也主要由检定转变为校准。正确开展检定和校准活动,利用检定和校准结果,最终实现量值统一,为纺织行业提供技术支撑,进而保证纺织工业的健康发展。 2 纺织行业及纺织计量的发展 在我国,纺织工业的发展,是随着纺织服装业的主管部门——中华人民共和国纺织工业部的变迁而发展变化的。1949年10月设立中央人民政府纺织工业部,新中国纺织业开始发展,建国初期,物资匮乏,尤其关乎民生穿衣的纺织品,国家大力支持纺织业,全国范围内兴建纺织厂。1954年9月成为中华人民共和国纺织工业部,纺织业大规模发展,全国上下,力争上游,攻坚克难,一批批大规模纺织企业出现,技术人员全国交流,相互支援,此后的三十余年,纺织业曾一度辉煌。1998年3月,纺织工业部改为国家纺织工业局。2001年2月国家纺织工业局撤销,中国纺织工业协会成立,计划经济年代传统纺织业逐步退出发展潮流,尤其曾经繁荣几十年的国有大型纺织企业,纷纷破产、倒闭、改制。新兴纺织服装行业开始走上历史舞台,曾经的小作坊,雅戈尔、劲霸、利郎等著名品牌开始主导服装潮流。 同样,作为纺织服装产业的重要技术支撑——纺织计量工作,也随着纺织工业趋势而起伏。1984年我国计量法公布实施以后,在原纺织部主持下,立即组织了纺织专用仪器计量检定规程的制订。1985年4月批准并于1985年10月施行了十九种纺织专用仪器计量检定规程之后,到1995年10月1日止的十年期间,先后共七批发布了66个纺织仪器和标准器的部门计量检定规程。基本覆盖当时纺织工业的所有检测仪器和设备,最重要的是,从检定规程的制定,到发布实施,到标准器的统一,全国联动,政府、行业、部门、企业高度重视,从纺织部到各省的计量站,再到纺织企业计量部门,认真学习,广泛交流,严格执行纺织计量检定规程及相关计量条例,纺织计量的发展达到辉煌。 2001年,国家纺织工业局撤销,此后两年时间内,全国各省纺织工业厅也陆续撤销,加之国家经济体制的改革,计划经济逐步转为市场经济,纺织服装亦不是紧缺产品,传统纺织业开始下滑,甚至倒闭。纺织计量工作也曾一度低靡,2001至2010十年间,基本没有什么发展,甚至许多省份,纺织计量技术部门也遭遇尴尬局面。2006年,根据计量管理要求,纺专仪器的计量要求也由检定改为校准,检定规程取消,由校准规范代替,纺专仪器计量校准规范也随之老化,缺失。 直到2009年,中国纺织工业协会科技发展部于11月30日-12月1日在浙江宁波召开了2009年全国纺织计量校准规范工作会议。来自全国各级纺织计量机构、纺织仪器企业等27家单位38名代表参加会议。会议回顾了纺织计量工作的历史,分析了目前纺织计量工作面临的问题,对进一步开展纺织计量工作达成了几点意见:要抓紧纺织计量校准规范的制修订工作,争取3-5年解决规范老化、缺失问题;尽快组建完善纺织计量技术委员会,全面启动纺织计量工作;大力宣贯纺织计量校准规范,培养纺织计量人才;尽快制定《纺织计量校准规范制修订暂行管理办法》,建立有效工作机制;摸清计量校准规范、计量机构及仪器企业现状,充分发挥各级计量机构和仪器企业等各方面的作用,努力开拓计量工作新局面。 3 纺织计量目前存在的问题 校准规范的老化、缺失问题函待提高完善,目前纺织专用仪器已达100余种,而新的校准规范仅定稿24部,发布实施12部。纺织计量主管部门-纺织计量技术委员会仍有大量工作,政府、企业支持力度不够。 纺织计量标准器需要统一、规范,仪器生产厂家技术参数需要保持一致,同时,进口纺专仪器计量性能要有据可依。 纺专仪器新品种,新产品逐步出现,比如棉纤维气流仪,渗水仪,电热鼓风干燥烘箱,织物透湿量仪,织物透气量仪等仪器的计量校准工作,也需有规程可依,或参照现有同类校准规范,或制订对应规范。 纺织计量技术机构、人员、能力建设等方面薄弱,缺乏监管职能,政府计量管理部门及法定计量技术机构对纺织专项计量工作不够重视,支持力度较弱。 4 关于纺织计量的几点建议 部门重视:纺织计量技术委员会是纺织计量的主管部门,依托国家纺织计量站,应更加高度重视纺织计量工作,在校准规范的完善、信息搜集整理、技术指导、组织交流学习及标准器配置上统一指导协调,并组织制定有关纺织专用计量技术法规,承办有关计量监督管理工作。各省市纺织计量技术机构应积极配合,积极参与。 政府督导:国家质检总局及地方计量行政部门在政策上加大纺织计量工作的政策扶持及纺织专用仪器的日常管理,可考虑将纺织计量纳入地方行政计量管理层面,比如力值、温度、长度、质量等指标。明确纺织计量技术机构的职能和责任,提高对纺织计量工作的重视。 企业支持:纺织计量工作,任重道远,不仅需要部门的重视,还需要整个行业,尤其企业的大力支持,包括仪器厂商和纤维纺织服装企业的配合和支持。 根据全国纺织纤维检验机构状况,31个省、市、自治区、直辖市,除西藏、海南外,各地都有纤维、纺织检验机构。纺织计量应与纤维计量部门有效结合,形成合力,监督管理与技术服务相结合,优势互补,开拓进取,快速发展。强化全国纺织纤维计量机构的信息沟通,促进互相交流,为推动纺织计量工作的发展、纺织检测能力的提高、振兴纺织工业服务。 参考文献 [1]郭明.纺织工业计量与企业节能降耗[J].工业计量,2007(3). [2]纺织工业中新的计量单位系统“SL系统”[J].麻纺织技术,1980(1). 纺织科技论文篇二 阻燃纺织品 摘要: 本文通过阐述纺织品的阻燃机理,介绍了几种阻燃纺织品的加工方法,现阶段常用的评判、测试方法以及阻燃纺织品的发展趋势。 关键词:阻燃纺织品;阻燃机理;加工方法;燃烧性能测试 引言 随着现代化科学技术的发展、纺织工业的进步,纺织品种类不断增多,其应用范围不断扩展延伸到人们生产、生活的各个方面。但纺织品材料一般都易燃或可燃,容易引发火灾事故。据统计,世界上约20%以上的火灾事故都是由纺织品燃烧引起或扩大的,尤其是住宅失火。因此,纺织品的阻燃功能对消除火灾隐患,延缓火势蔓延,降低人民生命财产损失都极为重要。近年来,各国纷纷开展纺织品阻燃技术方面的研究,并制定了相应的纺织品燃烧性能测试方法、阻燃制品标准和应用法规等。 1 纺织品的阻燃机理 所谓“阻燃”,并非阻燃整理后的纺织品在接触火源时不会燃烧,而是使织物在火中尽可能降低其可燃性,减缓蔓延速度,不形成大面积燃烧,离开火焰后,能很快自熄,不再续燃或阴燃[1-3]。 纤维材料的燃烧与阻燃原理 合成纤维的燃烧是材料和高温热源接触,吸收热量后发生热解反应,热解反应生成易燃气体,易燃气体在氧存在的条件下,发生燃烧,燃烧产生的热量被纤维吸收后,又促进了纤维继续热解和进一步燃烧,形成一个循环。对此人们提出了阻燃的基本原理:减少(或者基本没有)热分解气体的生成,阻碍气相燃烧的基本反应,吸收燃烧区域的热量,稀释和隔离空气等。 阻燃剂的阻燃机理 纤维用阻燃剂有:铝镁氢氧化物、含硼化合物、卤硼化合物、卤系阻燃剂、磷系阻燃剂等。不同阻燃剂的阻燃机理有很大的区别。概括起来主要有以下几种。 覆盖机理 在可燃材料中加入阻燃剂后,阻燃剂在高温下可在聚合物表面形成一层玻璃状或稳定泡沫覆盖层以隔热、隔绝空气,起到阻止热传递、减少可燃性气体释放和隔绝氧的作用从而达到阻燃目的。阻燃剂形成隔离膜的方式有两种,一是阻燃剂降解产物促进纤维表面脱水炭化,进而形成结构更趋稳定的交联状固体物质或炭化层,炭化层能阻止聚合物进一步热裂解,还能阻止其内部的热分解产物进入气相参与燃烧过程。含磷阻燃剂对含氧聚合物的阻燃作用即是通过此种方式实现的。二是阻燃剂在燃烧温度下分解成不挥发的玻璃状物质包覆在聚合物表面起隔离膜的作用,硼系和卤化磷类阻燃剂具有类似特征。 不燃性气体窒息机理 阻燃剂受热分解出现不燃性气体,将纤维燃烧分解出来的可燃性气体浓度冲淡到能产生火焰浓度以下,同时稀释燃烧区内的氧浓度,阻止燃烧继续进行,又由于气体的生成和热对流带走了一部分热,从而达到阻燃作用[4-5]。 吸热机理 任何燃烧在短时间所放出的热量有限,如果能在短时间内吸收火源所放出的部分热量,火焰温度就会降低,辐射到燃烧表面和作用于自由基的热量就会减少,燃烧反应受到抑制。 高温条件下,阻燃剂发生吸热脱水、相变、分解或其他吸热反应,降低纤维表面及燃烧区域的温度,降低可燃物表面温度,有效地抑制可燃性气体的生成,阻止燃烧的蔓延,最终破坏维持聚合物燃烧的条件,达到阻燃目的。如铝、镁及硼等无机阻燃剂,充分发挥其结合水蒸气时大量吸热的特性,提高自身的阻燃能力。 自由基控制机理 根据燃烧的链反应理论,维持燃烧的是自由基。阻燃剂在气相燃烧区捕捉燃烧反应中的自由基,阻止火焰的传播,使燃烧区的火焰密度下降,最终使燃烧反应速度下降直至终止。如含卤阻燃剂的蒸发温度和聚合物分解温度相同或相近,当聚合物受热分解时,阻燃剂也同时挥发出来,此时含卤阻燃剂与热分解产物同时处于气相燃烧区,卤素便能够捕捉燃烧反应中的自由基,阻止火焰的传播,使燃烧区的火焰密度下降,最终使燃烧反应速度下降直至终止[6-7]。 催化脱水机理 阻燃剂在高温下生成具有脱水能力的羧酸、酸酐等,与纤维基体反应促进脱水炭化,减少可燃性气体的生成。 2 阻燃纺织品的加工方法 研究织物的阻燃技术是指通过物理或化学的方法赋予织物一定的阻燃性能,降低材料的可燃性,减慢火焰蔓延速度,其实质是破坏织物中纤维的燃烧过程。近年来,世界各国主要从以下两个方面来开展对织物阻燃技术的研究:一是生产阻燃纤维;二是对织物进行阻燃整理[8-9]。 阻燃纤维的制造 纤维阻燃的途径是阻止或减少纤维热分解,隔绝或稀释氧气,快速降温使其终止燃烧。为实现上述目的,一般是将有阻燃功能的阻燃剂通过聚合物聚合、共混、共聚、复合纺丝、接枝改性等加入到化纤中或用后整理方法将阻燃剂涂在纤维表面或渗入纤维内部。在实际应用中,往往采用多种阻燃剂,以两种以上方式协同效应达到阻燃效果。 共聚法 现行的阻燃腈纶和涤纶大多数采用共聚方法生产,其技术已较成熟。由于阻燃元素结合在成纤高分子链上,因此阻燃性能持久,对纤维的其他性能影响较小,采用这种方法生产的阻燃腈纶通常称为改性腈纶。 共混法 共混法技术具有生产简便、品种更换灵活等特点,因此是阻燃纤维开发的重要技术路线,几乎所有阻燃化学纤维均可采用这种方法制备。 接枝法 主要用于制备阻燃涤纶或混纺织物,其方法有化学法、辐射法和等离子体法,接枝体都为具有不饱和双键的化合物。接枝法技术使用灵活,既可用于纤维也可用于织物的阻燃,但因成本高、设备较复杂而还没有工业化。 皮芯复合纺丝法 以共混或共聚阻燃高聚物为芯、普通高聚物为皮,通过复合纺丝制成的阻燃复合纤维可避免阻燃纤维变色和耐光性差的问题,提高阻燃性能的稳定性和染色性能,但加工设备要求高。 本质阻燃纤维 按性能分类,阻燃纤维可分为阻燃常规改性纤维和阻燃高性能纤维,阻燃常规改性纤维以阻燃涤纶和腈纶产量最大,由于航空航天等尖端高技术和军事工业发展的需要,阻燃高性能纤维得到越来越广泛的应用。阻燃高性能纤维主要包括芳香族聚酰胺Nomex和Kevlar,聚酰亚胺如法国的Kermal,聚砜酰胺,聚芳酣,聚酚醛树脂,聚四氟乙烯,以及陶瓷、玻璃等纤维。 织物的阻燃整理 织物的阻燃整理是通过吸附沉积、化学键合、粘合作用使阻燃剂覆在织物上。当遇到火种时发生物理和化学反应,从而达到阻燃效果。 喷涂 适宜于不需洗涤织物或洗涤次数极少的装饰织物和建筑用织物,如地毯、墙布等。喷涂加工后一般不经水洗等后处理,对阻燃剂的选择要求不高,工艺简单,操作简便。 浸轧和浸渍 适宜于加工睡衣、床上用品和家具用品等,也可加工外衣。要求阻燃剂的耐洗牢度优良。可结合其他特种功能――浴浸轧型整理,也可分步加工。此种加工方式工艺复杂,适用范围广,成本较喷涂高。 涂层 适宜于加工劳动保护服,以及装饰织物。对阻燃剂的选择要求较高,要求阻燃性和耐热性好。在加工过程中,一般与其他特种功能涂层同时进行。 3 阻燃织物的测试 GB/T17591―2006《阻燃织物》标准规定了阻燃织物的产品分类、技术要求、试验方法、检验规则、包装和标志,适用于装饰用、交通工具内饰用、阻燃防护服用的机织物和针织物。 评判标准 评判织物的阻燃性能通常采用两种标准:一是从织物的燃烧速度来进行评判,即经过阻燃整理的面料按规定的方法与火焰接触一定的时间,然后移去火焰,测定面料继续有焰燃烧的时间和无焰燃烧的时间,以及面料被损毁的程度。有焰燃烧的时间和无焰燃烧的时间越短,被损毁的程度越低,则面料的阻燃性能越好;反之,则表示面料的阻燃性能不佳。 另一种是通过测定样品的极限氧指数来进行评判。面料燃烧都需要氧气,氧指数LOI是样品燃烧所需氧气量的表示,故通过测定氧指数即可判定面料的阻燃性能。氧指数越高则说明维持燃烧所需要的氧气浓度越高,即表示越难燃烧。该指数可用样品在氮、氧混合气体中保持燃烧所需氧气的最小体积百分数来表示。从理论上讲,纺织材料的氧指数只要大于21%,其在空气中就有自熄性。根据氧指数的大小,通常将纺织品分为(LOI<20%)、可燃(LOI=20%~26%)、难燃(LOI=26%~34%)和不燃(LOI>35%)4个等级。事实上,几乎所有常规纺织材料都属易燃或可燃的范围。 测试方法 燃烧试验方法主要用来测试试样的损毁长度、面积,续燃时间和阴燃时间,火焰蔓延速率等指标。 根据试样与火焰的相对位置,可分为垂直法、倾斜法和水平法。国际上对纺织材料的燃烧性能测试方法的标准化已经相当全面和完善,包括ISO、ASTM、BS、JIS在内的国际和国外先进标准都各自有10余项相关的测试方法标准,如:GB/T5454―1997《纺织品燃烧性能试验氧指数法》、GB/T5455―1997《纺织品燃烧性能试验垂直法》、GB/T5456―2009《纺织品燃烧性能试验垂直方向火焰蔓延性能的测定》,GB14645《纺织织物 燃烧性能 45°方向损毁面积和接焰次数测定》,FZ/T01028《纺织织物 燃烧性能测定 水平法》等。 中国目前对于服装阻燃性能的测试主要采用GB/T5455―1997《纺织品燃烧性能试验垂直法》。其原理是将一定尺寸的试样垂直于规定的燃烧试验箱中,用规定的火焰点燃12 s除去火源后,测定试样的续燃时间和阴燃时间,阴燃停止后,按规定的方法测出损毁长度。 4 阻燃纺织品的发展趋势 随着纺织技术的快速发展,我国的阻燃纺织品近年来也获得了长足的进步,并呈现出不同的发展趋势。 功能复合化 阻燃功能纺织品除早期的阻燃防热辐射、阻燃抗静电以外,近年来根据纺织品面料应用场所不同提出了新的要求,如日本专利报道的用于浴室等潮湿环境下的窗帘、帷幕等,除阻燃外,还要求防霉和拒水;用于服用、沙发和床单等面料要求阻燃外还需具有卫生保健功能。在军事领域,作战服和军事装备的伪装材料不仅要求具有阻燃性,还要求具有防伪功能。在我国,阻燃抗静电纺织品研究较成熟,对阻燃拒水和拒油产品也有研究,具有卫生保健功能的纺织品开发值得关注。 绿色环保化 阻燃纤维的绿色化,是指减少生产过程对环境和操作人员的毒害作用,防止纤维对穿用人产生不良影响,火灾发生时,不会产生“二次毒害”。这是因为,阻燃纤维所用阻燃剂一般含有卤、磷、硫等元素,大都具有较大的毒性,在阻燃剂合成和纤维生产过程中会对操作人员产生一定的毒害作用,其“三废”的排放会带来较严重的环境污染。从环境保护、人类安全和阻燃效率的角度出发开发无卤、高效、低烟、低毒的环境友好型阻燃纺织品是未来的发展趋势。有机硅系阻燃剂作为典型的无卤阻燃剂,具有高效、无毒、低烟、无污染的特点,并具有改善分散性和加工性能的特点。 高技术化 高技术纤维是随着高新产业的发展需要而开发出来的一系列具有高性能、高功能的纤维。高技术纤维在生产工艺中应用发展了一系列新技术,如静电纺丝、凝胶纺丝、膜裂纺丝、液晶纺丝、离心纺丝等,给合成纤维工业带来新的生命。高技术耐高温阻燃纤维是其中的一个重要分支,高技术型阻燃纤维由于自身独特的化学结构,无须添加阻燃剂或进行改性,本身就具有耐高温阻燃的特性。如聚丙烯腈预氧化纤维(OPANF)、聚苯并咪唑(PBI)纤维、聚间苯二甲酞二胺(MPIA)纤维、三聚氰胺缩甲醛纤维(MF)等。 舒适型阻燃纤维 在高温、强热辐射及有明火的环境中,作业人员必须穿着阻燃防护服或热防护服。在上述条件下,人的热负荷过高,难以长时间坚持正常的工作效能。因此对于阻燃纺织品而言,必须兼顾纺织品的舒适性。对于阻燃纤维而言则应兼顾阻燃性能、可纺性能和热湿舒适性能。 参考文献: [1]邱发贵.阻燃纺织品加工方法及发展趋势[J].高科技纤维与应用,2007,32(5):34-36、44. [2]周向东.国内外用于纺织品阻燃剂的发展动态[J].阴燃助剂,2008,25(9):6-9. [3]LEWIN novel system for flame retarding polyamides[C].Recent advances in flame retardancy of polymeric materials Norwalk,CT:Business Comnunications Co.,2001,12:84-96. [4]方志勇.我国纺织品阻燃现状及发展趋势[J].染料与染色,2005,42(5):46-48. [5]刘立华.环保型无机阻燃剂的应用现状及发展前景[J].化工科技市场,2005(7):8-10. [6]眭伟民.阻燃纤维及织物[M].北京:纺织工业出版社,1990. [7]蔡永源.高分子材料阻燃技术手册[M].北京:北京化学工业出版社,1993. [8]位丽.国内外阻燃家用纺织品的要求及发展方向[J].纺织科技进步,2009(5):25-26、62. [9]于学成.谈织物的阻燃整理[J].丹东师专学报,2003,(6):140-141. (作者单位:浙江省纺织测试研究院)

高分子材料专家牛人很多,我介绍些院士你认识认识:周其凤——中科院院士、高分子化学家,现任吉林大学校长、中国科学院院士、教授、博士生导师曹镛教授,1998年至现在华南理工大学材料学院教授、博士生导师,分子光电材料及器件研究室主任。2001年12月当选中国科学院化学学部院士。徐 僖教授,1921年1月出生,江苏南京人,我国著名高分子材料科学家,中国科学院院士。现任四川大学(成都科技大学)教授、高分子研究所所长。程镕时教授,中科院院士,高分子物理及物理化学家。江苏宜兴人。1949年毕业于金陵大学化学系。1951年毕业于北京大学化学研究部。南京大学、华南理工大学教授。江明教授,中国科学院院士、著名高分子学家、复旦大学教授。毛炳权院士,高分子化工专家。广东省东莞市人。1933年11月2日出生。1959年毕业于莫斯科门捷列夫化工学院获工程师学位。北京化工研究院高级工程师。1995年当选为中国工程院院士。已故院士:我国高分子物理的一代宗师、中国科学院院士、中国科学院化学研究所前所长钱人元先生于2003年12月6日因患胰腺癌在北京医院去世,享年86岁.钱人元先生是一位卓越的科学家、教育家,是我国高分子物理、有机固体的奠基人之一。从1956年起,钱先生就一直在化学研究所工作,12月16日,化学研究所将新建成的分子大楼的一间会议室开辟为钱先生缅怀室,悼念这位在化学研究所工作了47年的科学家。颜德岳 中科院院士,高分子化学家。上海交通大学教授。1937年生于浙江永康。1961年毕业于南开大学化学系,1965年吉林大学化学系研究生毕业。2002年获比利时Leuven天主教大学自然科学博士学位。长期致力于聚合反应动力学研究、超支化聚合物的分子设计和不规整聚合物的超分子组装领域的研究。提出了聚合物分子量分布等分子结构参数及其与聚合反应条件之间的数学关系;利用不同聚合反应基团的活性差别,建立了用商品化的双组分单体原位合成AB2型中间体的方法大量制备超支化聚合物的新方法,并采用该方法合成了一系列复杂的新型超支化聚合物;基于氧杂环单体的自缩合开环聚合反应,合成了一种带超支化“核”合聚氧化乙烯“臂”的两亲性多臂共聚物;进而提出了其分子堆砌模型和宏观分子自组装机理,在实验室实现了宏观尺度的分子自组装和结构不规整大分子的宏观自组装。王基铭 中国工程院院士,中国石化副董事长。王先生1964年9月华东化工学院石油炼制专业毕业,教授级高级工程师,在中国石油石化行业拥有三十多年管理工作的丰富经验。自1984年11月至1993年6月,任原中国石油化工总公司上海石油化工总厂副厂长、代厂长、厂长;自1993年6月至1994年2月,任上海石油化工股份有限公司董事长兼总经理;自1994年2月至1998年4月,任原中国石油化工总公司副总经理兼上海石油化工股份有限公司董事长;自1998年4月至2000年2月,任中国石油化工集团公司副总经理;自2001年12月至2003年7月,兼任上海赛科石油化工有限责任公司董事长。王先生自2000年2月至2003年4月,任中国石化首届董事会董事,并任中国石化总裁;自2003年4月至2005年3月任中国石化总裁;在2003年4月当选为中国石化第二届董事会董事、副董事长。吴奇院士,我国著名的高分子物理学家,激光光散射领域的国际权威。何炳林,男,1918年生,广东番禺人。高分子化学家。1942年毕业于西南联合大学。1952年获美国印第安纳大学博士学位并在美国纳尔哥公司任高级有机化学研究员。新中国成立后,何炳林和夫人陈茹玉怀着强烈爱国心愿冲破诸多困难和阻挠,于1956年回国到南开大学化学系,任南开大学教授、高分子研究所所长。中国化学会高分子化学委员会副理事长;中国生物材料与人工器官学会副理事长;中国石油化工总公司顾问;兼任青岛大学校长。《中国科学》、《科学通报》、《Reactive and Functional Polymers》编委,《高分子学报》、《高等学校化学学报》中英文副主编,《离子交换与吸附》和《Chinese Journal of Reactive Polymers》主编。1980年当选为中国科学院院士。

1.一种合成超支化聚脂—胺的方法,其特征在于:先将1,2,4-苯三酸酐、丙醇胺和乙酸酐通过简单的酸酐胺解反应和羟基乙酰化反应,合成了单体N-(2-乙酰氧基丙基)-N-(1’,3’-二羧基苯甲酰基)胺,并采用催化和加热的聚酯反应法将该单体制备成超支化聚酯—胺;其合成方法包括以下三步: 1).N-(2-羟基丙基)-N-(1’,3’-二羧基苯甲酰基)胺的合成:将摩尔比1∶1~ 的1,2,4-苯三酸酐和丙醇胺分别按体积比为1∶3溶于的无水乙醇中,将丙醇胺的乙醇溶液置于带有搅拌装置的三口烧瓶中,用恒压滴液漏斗将1,2,4-苯三酸酐的乙醇溶液缓慢滴加至三口瓶中,在滴加过程中用冰水载制体系温度,以减少副反应,滴加完毕,即在室温下搅拌反应1h~4h,得到无色溶液,旋转蒸发除溶剂乙醇,得到浓缩液体,将此液体在80℃下真空烘箱抽真空1-5Pa,烘24 -48小时,将继续浓缩的液体溶于10-20倍的去离子水中,滴入适量 倍盐酸(1mol/L),放置12-24小时,过滤沉淀,干燥得单体N-(2-羟基丙基)-N-(1’,3’-二羧基苯甲酰基)胺; 2).N-(2-乙酰氧基丙基)-N-(1’,3’-二羧基苯甲酰基)胺的合成:在60~ 90℃水浴中,用~2倍摩尔比的乙酸酐对第一步单体进行乙酰化,可以滴加4 滴浓硫酸进行催化;反应~1h,得白色粗产物,用去离子水洗涤数次以除去过量的乙酸酐和其它杂质,得到制备超支化聚合物所需的单体N-(2-乙酰氧基丙基)-N-(1’,3’-二羧基苯甲酰基)胺; 3)超支化聚酯—胺的合成:将单体N-(2-乙酰氧基丙基)-N-(1’,3’-二羧基苯甲酰基)胺及催化剂Zn(OAc)2或对甲苯磺酸置于反应管中,加入的质量比为1∶ ~,在氮气保护下,将反应体系加热至190℃~210℃,保温反应~ 2h,然后抽真空1-5Pa,继续反应1h~8h,反应完毕后,冷却至室温即可得到固体的产物。基金资助: 江苏省研究生培养创新工程( CX09B_023Z) , 国家自然科学基金( 20974076) ;作者简介: 黄萍珍( 1977- ) , 女, 苏州大学材料与化学化工学部材料学专业在读博士生;* 通讯作者, Tel: + 86 512 65880967, Email: ajgu@ suda. edu. cn.超支化聚醚的合成与应用应用研究进行了综述。目前超支化聚醚的制备方法主要包括在缩合反应、开环聚合反应、及质子转移等其它聚合反应。超支化聚醚的应用研究领域非常广阔, 主要包括聚合物电解质、生物医药、无机物表面改性、荧光功能高分子材料、聚合物改性以及负载、液晶、水凝胶等其它功能材料方面显示出了巨大的应用潜力。本文还对超支化聚醚今后的应用前景进行了展望。.. .. 关键词: 超支化; 聚醚; 合成; 应用超支化聚合物以其特有的准三维球形和高度支化的结构, 优越物理化学性能而逐渐成为高分子科学研究的一个热点[ 1] 。目前超支化聚合物的制备方法有: 缩合反应、加成反应、开环聚合及接技聚合等。聚醚多元醇( 简称聚醚) 是由起始剂( 含活性氢基团的化合物) 与环氧乙烷( EO) 、环氧丙烷( PO) 、环氧丁烷( BO) 等在催化剂存在下经加聚反应制得, 具有化学物理稳定的键接键、无毒、无腐蚀性, 低挥发性、不易吸潮及结构可调控性等优点, 以及良好的水及有机溶剂溶解性和生物相容性, 已作为乳化剂、分散剂、消泡剂、破乳剂、防腐剂、抗静电剂、渗透剂及聚氨酯泡沫塑料的中间体及各类润滑油的主要组分得到广泛的应用。利用超支化技术, 制备具有独特功能的新型超支化聚醚( HBPE) 具有重要的研究和应用价值, 这引起了研究人员浓厚的兴趣, 短短几十年报道日益增多, 本文对其近年来的合成及应用研究进行综述。1 .. 超支化聚醚的合成方法1.. 1 .. 缩合反应超支化聚合物的合成一般采用.. 一步缩聚法 , 即通过ABx 型单体( x !2) 不加控制、一步反应而得到。1992 年Fr..chet 等[ 2] 首次报道了以AB2 型单体5..( 溴甲基) ..1, 3..二苯酚在K2 CO3 的冠醚溶液中通过自缩合反应得到HBPE, 1998 年Mueller 等报道以3, 5..二( 五氟苯甲氧基) 苯甲醇为AB2 型单体[ 3] 在金属钠催化下合成超支化聚苯醚。之后应用一步缩聚法制备HBPE 报道也较多。2003 年Kim 等[ 4] 利用乌尔曼反应使3, 5..二溴苯酚缩聚得到含有溴端基的超支化聚苯醚, 支化度为61% ( 见图1) 。该产物呈无定形态, 由于高度支化结构和许多末端基团的存在显著改善了溶解性能, 其末端羧酸化后在水溶液中呈现出良好的单分子胶束特性。2004 年, Baek 等[ 5] 将自制的AB2 单体经自缩聚反应得到带有苯基喹喔啉单元和柔性脂肪族链的HBPE( 见图2) 。该产物可溶于极性溶剂中, Mn和Mw 分别为823, 000 和1, 507, 000。Tg 为83 . , T GA研究发现该产物具有良好的热稳定性, 其失重5%的温度为401 . 。张纪贵等[ 6] 利用改性U llumann 醚化反应, 经AB2 型支化单体( 4..溴..4#, 4...二羟基三苯甲烷) 一步缩合聚合, 制备了分子内含三苯次甲基外为酚羟基的新型超支化聚苯醚( 见图3) 。该超支化聚苯醚经甲醇、正丁醇、乙二醇单甲醚等改性后, 在普通有机溶剂里的溶解能力得到了很大的改善。该课题组又以4.... 第10 期高.. .. 分.. .. 子.. .. 通.. .. 报% 97 %图1.. Kim 等合成的超支化聚苯醚Fig ure 1.. Hy per br anched a romatic po lyether s sy nthesized o f by Kim& s图2 .. Baek 等合成的超支化聚醚Fig ur e 2.. H yperbr anched polyethers synthesized by Baek& s溴..4#, 4...二羟基三苯甲烷和2..( 2..氯乙氧基) 乙醇( CD 型) 为反应单体, 经一次两步缩合, 制备得到新型超支化脂肪..芳香共聚醚, 其支化度约为41%。该聚合物也具有很好的溶解性能。图3 .. 张纪贵合成的新型超支化聚苯醚Figure 3 .. A no vel hy per br anched po ly( phenylene o xide) sy nt hesized by ZhangRamakrishnan 等将2, 4, 6..三甲基苯酚二氯甲基化, 再在甲醇/ 甲醇钠溶液中反应得到一个中间体产物( 见图4( a) ) 。该中间产物可以与不同的....卤代醇经烷化反应得到一系列结构各异的AB2 单体, 经熔融转移醚化缩聚得到高分子量的HBPE [ 7, 8] , 并研究了直链烷基长度对超支化聚合物Tg 的影响。2008年他们又报道了一种由中间体产物与直链溴代醇反应得到AB2 单体, 再与A 型单体聚乙二醇( PEG) 发生缩合反应得到不同超支化核的嵌段PEG 的目标产物( 见图4( b) ) [ 9] 。随后该研究小组又利用溴甲基化的2, 4, 6..三甲苯酚, 经溴代炔丙醇和6..溴己醇改性得到AB2 单体, 一步合成端基带有大量炔丙基的HBPE, 合成路线如图5 所示, 该端基基团的存在可使HBPE 易与许多有机叠氮化物发生click 反应[ 10] 。图4.. Ramakr ishnan 等合成的AB2 型中间体产物及超支化聚醚Fig ur e 4.. AB2 intermediate and hyperbranched po ly ethers synthesized by Ramakrishnan& s1.. 2 .. 开环聚合反应与传统的缩聚法制备超支化聚合物不同, 现有的开环聚合法合成超支化聚合物主要是利用环氧基团% 98 % 高.. .. 分.. .. 子.. .. 通.. .. 报2010 年10 月..图5.. Ramakr ishnan 等合成的超支化聚醚Figur e 5 .. A hyperbranched po ly ether synthesized by Ramakrishnan& s的开环反应, 可分为阳离子聚合反应和阴离子聚合反应。1.. 2.. 1 .. 阳离子聚合反应.. 有关阳离子聚合反应制备HBPE 的研究中最常用是3..乙基..3..羟甲基环氧丁烷( EHO) 和3..甲基..3..羟甲基环氧丁烷( MH O) 分别在引发剂下自缩合阳离子开环聚合( 见图6) [ 11 . 13] ,Hult 等认为提高单体转化率可提高产物的支化度( DB) [ 13 ] ; Yan 等发现产物的DB 可通过引化剂与单体的加料比来调节, 玻璃化转变温度( Tg ) 随着支化度的增大明显降低[ 14] 。Penczek 等[ 15] 还对EHO 的聚合机制作了研究, 认为活性链端机制( ACE) 和活性单体机制( AM) 在反应中共同起作用。图6 .. EH O 阳离子开环聚合Fig ur e 6 .. The catio nic r ing..o pening po lymer izatio n o f EH O环氧基团的阳离子开环反应还可在含有羟基的物质上进行。宋雪晶等以1, 1, 1..三羟甲基丙烷( TMP) 为反应核, 分批加入MHO 使其通过阳离子开环制备了不同分子量的HBPE[ 16] 。Rahm 等[ 17] 以线性聚乙二醇为核, 运用逐滴加入法使EH O 阳离子开环聚合得到了新型HBPE, Mn / Mw 为1.. 2~ 1.. 4。该三嵌段共聚物呈哑铃形, 通过控制聚乙二醇链上接枝聚醚的数量可成功的调协其热性能。近几年来, 几种新的超支化单体相继出现( 见图7) , 使阳离子开环聚合制备HBPE 有了新的发展, 如采用以3, 3..二羟甲基..环氧丁烷( BHMO) [ 18] 和3..{ 2..[ 2..( 2..羟乙氧基) 乙氧基] 乙氧甲基}..3..甲基环氧丁烷( HEMO) [ 19] 合成了HBPE。由于以上单体制备的HBPE 的分子量较低, 还出现了在EHO 和MHO 中添加多羟基的氧杂环化合物来制备HBPE 以提高材料分子量的方法。如Bednarek[ 20] 将适当少量双官能团的氧丁杂环化合物( diEOX) 加入EHO 中, 在BF3 % Et 2O 催化下共聚得到HBPE, 其分子量高于同一条件下EH O 自聚合得到的超支化聚合物。Ye 等[ 21] 又以两种氧杂环单体MH O 和3..{ 2..[ 2..( 2..甲氧乙氧基) 乙氧基]..乙氧基} 甲基..3'..甲基环氧丁烷( MEMO) 开环共聚制备得到HBPE, 其超支化结构主要由MHO 决定, 共聚中MH O 的用量由30%提高到70%, DB 值由0.. 148 增大至0.. 236, Mn 为5600~ 6800。1.. 2.. 2 .. 阴离子聚合反应.. 缩水甘油是一种潜在的环状AB2 型单体, Frey 等[ 22] 首次通过开环多枝聚合法( ROMBP) 制备了超支化多羟基脂肪族聚醚, 并研究了该反应的聚合机理。研究表明, 缓慢的单体添加, 控制单体/ 引发剂的比例可控制产物分子量分布, 并可以避免环化反应的发生, 使多分散指数低于1.. 5, 13 C NMR 研究表明DB 为0.. 53~ 0.. 59。而Kainthan 等提高单体/ 引发剂的比例制备得到的HBPE,Mn 可高达700000[ 23] 。运用ROMBP 法由缩水甘油制备HBPE 需要一种反应中心核。作为反应中心核有: 甘油[ 24] 、六臂星.. 第10 期高.. .. 分.. .. 子.. .. 通.. .. 报% 99 %图7 .. 几种阳离子开环聚合的单体Figur e 7 .. Severa l monomer s fo r cationic ring..opening polymerization状聚( 环氧丙烷嵌段乙撑氧) 共聚物( P( PO..b..EO) [ 25] 、乙撑氧和乙氧基乙基缩水甘油醚共聚物( PEO..b..( l..PG) [ 26]、2 , 2#, 4, 4#..四羟基二苯甲酮[ 27] 、含有单官能团和双官能团的n..烷基胺, 以及芳基胺( 苄胺和1..萘甲胺) [ 28] 等。采用ROMBP 法制备得到功能基团为中心核的HBPE, 可以较好地控制超支化聚合物的分子量。值得一提的是, Frey 等[ 29] 首次采用ROMBP 法在聚乙撑氧的端羟基上使缩水甘油开环聚合, 制备ABA 型超支化..线性..超支化三嵌段共聚物, 该材料展示出较低的多分散性, Mn / Mw 为1.. 19~ 1.. 45, Mn可达6300~ 26200gmol- 1。除了缩水甘油制备超支化聚醚外, EH O 等氧杂环化合物也可阴离子开环聚合制备HBPE。Nishikubo 等[ 30] 在异丁醇钾和冠醚混合溶液中分别使EHO 和MHO 聚合, 得到数均分子量分别为2200~ 4100 和4600~ 5200 的HBPE( 见图8) 。图8.. EH O 的阴离子开环聚合Fig ur e 8.. The anionic r ing..o pening polymer ization of EH O1.. 3 .. 其它聚合方法Karak 等通过三聚氰氯和双酚A 的钠盐进行亲核取代聚合反应制备了一种新型H BPE ( 见图9) 。与其线性类似物相比该超支化聚醚表现出更好的溶解性和更低的粘度特性。此外该物质在245 . 以下不发生分解, 究其原因可能是产物中存在大量末端羟基、氯原子和三嗪结构单元。这种结构上的特点将有利于其在抗氧化剂和阻燃添加剂材料方面的应用[ 31, 32] 。2010 年该课题组采用四溴双酚A 的钠盐制备了HBPE, 该产物显示出更好的阻燃性能[ 33] 。.. .. Emrick 等采用质子转移方法合成HBPE[ 34] , 即芳香醚( 见图10( a) ) 在碱性条件下经过质子转移、酚羟基亲和取代和氧键断裂等过程最终得到了目标产物。该研究组又分别以AB2 ( 见图10( b) ) 和AB3 型单体( 见图10( c) ) 的质子转移聚合法制备含有环氧基团的超支化脂肪族聚醚。此外, 又以1, 2, 7, 8..二环氧辛烷( A2 ) 和三羟甲基乙烷( B3 ) 作为原料, 制备得到末端含有环氧基团的超支化脂肪族聚醚, 其中环氧基团的含量可通过单体的配比加以调节。% 100 % 高.. .. 分.. .. 子.. .. 通.. .. 报2010 年10 月..图9 .. Kar ak 等合成的超支化聚醚Figure 9 .. H yperbranched po ly ether s synthesized by Kar ak& s图10.. 几种用于质子转移聚合反应的单体Fig ure 10 .. Severa l monomer s fo r pr oton..tr ansfer po lymer izationJia 等[ 35] 采用1, 4..丁二醇二缩水甘油醚和不同的三元醇化合物( 三羟甲基丙烷或三羟甲基乙烷) 通过质子转移法合成了具有温敏性HBPE( 见图11) , 其最低临界溶解温度( LCST) 可在19.. 0. ~ 40.. 3 . 调节。该课题组又以聚丙二醇二缩水甘油醚和甘油制备得到了另一种温敏性HBPE, Mn 在1..76 ( 104~ 2.. 43 ( 104。通过控制聚丙二醇二缩水甘油醚和甘油的投料比, 可调节HBPE 的LCST 在28..3~ 39..6 . 之间[ 36] 。图11.. Jia 等合成的超支化聚醚Figur e 11.. H y per br anched po lyether s sy nthesized by Jia& sBlencow e 等[ 37] 合成了一系列的带有酚羟基官能团的双吖丙啶单体( 见图12) , 通过光致聚合法合成了超支化聚芳醚。以单体1..3 合成的聚醚完全溶于甲醇、DMF 和DMSO 中, 可部分溶于THF 溶液中;而单体4 合成的产物加热时可溶于DMF 和DMSO 中。研究发现溶剂、单体浓度和反应时间可对聚合过程产生影响。GPC 分析表明增加单体浓度、延长反应时间可提高产物的分子量。光谱分析表明超支化聚合物的联接方式主要是卡宾插入O . H 键中形成醚键联接, 有关这种聚合方法的应用研究正在进一步探讨中。带有功能结构单元的单体可直接合成功能高聚物。Sriniv asa Rao 等[ 38] 自制六种不同的光敏双亚苄基酮二醇单体, 分别与三( 4..羟基苯基) 甲烷三缩水甘油基醚通过加聚作用合成两类端基带环氧基的HBPEs。研究发现该HBPEs 的液晶和光敏特性与其结构参数有关。2 .. 超支化聚醚的应用研究2.. 1 .. 在聚合物电解质领域的研究周啸等[ 39] 将超支化聚缩水甘油上的羟基硫酸化, 再用碳酸锂中和得到了超支化的大分子锂盐, 发现.. 第10 期高.. .. 分.. .. 子.. .. 通.. .. 报% 101 %图12 .. 双吖丙啶功能单体结构Fig ure 12 .. Structures of diazirine funct ionalized monomers 1..4该锂盐的非水溶液在低浓度下粘度低、电导率高, 适合于作为锂离子电池的电解质。潘春花等[ 40] 将超支化聚醚与六次甲基二异氰酸酯缩合生成一种新型的超支化聚氨酯聚合物电解质。利用交流阻抗技术对聚合物电解质的离子导电性能进行了研究, 发现该聚合物室温的离子电导率可达0.. 612 ( 10- 3S/ cm。采用循环伏安法测得该物质的电化学稳定窗口为2~ 5V,可以满足锂离子电池的要求。Ye 等将MHO和MEMO 开环共聚得到了HBPE 掺杂锂盐, 当MHO 的比例为30%时所制得聚合物具有最大的离子电导率, 在30 . 和80 . 时分别为8.. 0 ( 10- 5S/ cm 和7.. 4 ( 10- 4 S/ cm[ 21] 。2.. 2 .. 在生物医药领域的研究Kainthan 等[ 41] 分别采用1, 2..环氧基十八烷和甲氧基聚乙二醇将超支化聚醚部分羟基改性后用作人体血清蛋白替代品, 动物实验表明, 该物质的剂量高达1g / kg 时, 未对老鼠产生不良影响. 通过控制聚醚的分子量和聚乙二醇在大分子中的含量, 可控制该聚合物的血浆半衰期, 在25~ 34h 中变化, 这种具有长血浆半衰期的聚合物非常有利于成为血清蛋白替代品。大量羟基官能团的存在能够明显改善HBPE 亲水性, 并可通过进一步的修饰而成为一种有前景的药物传输材料。Hong 等[ 42] 以HBPE 为中心核, 在其端羟基接枝共聚物, 在水溶液中通过自组装可形成核/ 壳单分子胶束( 约10nm) 。以此胶束为药物装载体, 研究发现该胶束在温度靠近临界溶解温度时展示出很快的药物释放能力。Wan 等利用EHO 与乙撑氧制备了超支化聚醚( HP..g..PEO) , 在水溶液中经自组装形成以疏水的HP..g..PEO 为核、多枝亲水的聚乙二醇为臂的核/ 壳纳米颗粒( N P) [ 43] 。以疏水药物磷酸盐缓冲液( PBS) 为装载对象, 发现PBS 与疏水的超支化核存在交互作用, 使NP 可以控制释放速率。Burakow ska 等[ 44] 合成了外层壳可交联的光敏超支化聚缩水甘油醚纳米胶囊, 该物质可有效地与带相反电荷的离子型分子结合形成稳定的主..客体复合物。通过光引发降解此纳米级装载物, 可有效释放封装在内的客体分子, 这将为药物传输领域提供一个极有效的工具。Tziv eleka 等[ 45] 利用季铵盐修饰HBPE 的部分端羟基, 利用其与DNA 质粒反应形成复合载体进行研究。结果显示, 在哺乳动物细胞中该聚合物表现出极低毒性, 但具有与聚乙烯亚胺( PEI) 相似的转染效果。而Zhang 等[ 46] 以HBPE 为核, 接枝不同分子量的PEI 制备了超支化高聚物, 实验发现该类高聚物显示出与DNA 极好的结合性能, 在转基因表达和降低毒素方面均比纯PEI 的有所提高, 可见这一系列的聚醚衍生物在基因载体领域显示出极大的应用价值。以聚乳酸链接技到超支化聚缩水甘油醚在水溶液中可形成纳米颗粒, 研究发现该纳米颗粒具有生物相容性和生物可降解性, 并具有极高的包裹能力, 可用于蛋白质传递[ 47] 。硅树脂微流控芯片表面及其微通道中引入羧基官能化的超支化聚缩水甘油醚可选择性的捕获蛋白质。实验表明, 在浓度为0.. 02mg / ml的两种蛋白质溶液( 抗生物素蛋白: 血清白蛋白质量比为1)1) 中抗生物素蛋白的捕获效率为每3 分钟100 . 2.. 95%[ 48] 。熔融石英毛细管壁沉积PMHO 使其成膜可有效分离碱性蛋白[ 49] 。计剑等制备了磺酸基修饰的水溶性的类肝素超支化聚醚( HBPO..SO3 ) , 该高聚物体现了良好的抗凝血性能, 同时具有低的细胞毒性和良好的细胞相容性, 适用于与血液直接接触的体内环境。由于HBPO..SO3 聚集体尺寸基本小于100nm, 且具有包载疏水小分子的能力, 因此具有作为纳米药物载体的潜在应用价值[ 50] 。由该聚合物和壳聚糖通过层层自组装形成的多功能膜还显示出抗菌活性, 以及良好的装载和控制释放憎水药物的能力[ 51] 。由于HBPE 拥有极佳的水溶性和无毒性, 以及端羟基极易功能化改性, 在生物医药领域的研究报道可谓层出不穷。Vargas 等将超支化聚缩水甘油醚和药物结合以静电纺织技术制备纳米纤维可用于创伤涂敷[ 52] 。疏水基官能化的聚缩水甘油醚衍生物可显著提高抗癌药物紫杉醇的水溶性但不会影响该药物% 102 % 高.. .. 分.. .. 子.. .. 通.. .. 报2010 年10 月..的纳米颗粒尺寸[ 53] 。2.. 3 .. 对无机物表面改性研究Huck 等[ 54] 用醇钠对Si/ SiO2 表面的羟基进行部分质子交换后, 在110 . 温度下引发缩水甘油开环聚合, 可以在Si/ SiO2 表面形成不同厚度的超支化聚缩水甘油醚毛刷层。缩水甘油单体的用量可影响超支化聚缩水甘油醚毛刷层的厚度, 最大厚度可达到70nm。该研究为材料的表面化学改性提供了新的途径。Wang 等[ 55] 使碳黑表面羟甲基化, 并以其为反应生长点, 使EHO 开环聚合接枝到碳黑表面。改性碳黑在溶剂中的分散能力得到明显改善, 可部分溶于乙醇和氯仿中, 完全溶于T MF。Zho u 等[ 56] 在多层碳纳米管上引入羟基官能团( MWNT..OH) , 而后缩水甘油经原位阴离子开环聚合共价接枝到碳纳米管表面, 实现了碳纳米管的化学修饰。调节缩水甘油与MWNT..OH 的比率可极易调整HBPE 在MWNT 表面的数量。改性后的MWNT 在水、DMSO、DMF 和甲醇中具有很好的分散能力, 而且还可与功能分子如荧光分子罗丹明6B 结合制备多功能杂化材料。2.. 4 .. 在荧光功能高分子材料领域的研究N, N..二甲氨基对苯甲醛与HBPE 的末端羟基发生羟醛缩合反应, 制得在固态及溶液状态下皆发射黄..绿色荧光的HBPE, 表现出普通荧光高分子所没有的.. 质子化碎灭 和.. 络合淬灭 两种新效应, 可望在荧光光谱分析学中获得重要应用[ 57] 。Zhang 等[ 6] 以9..蒽甲醇为封端剂制得了末端含蒽生色团的新型荧光HBPE。光谱学研究发现, 所得荧光HBPE 在激发..发射过程中发生了分子内能量迁移或转移, 表现出了典型的主客体发射体系的特性。该聚合物薄膜的最大吸收和发射波长分别是393nm 和450nm。Sr inivasa Rao 等制备了含有亚苄基的HBPEs, 其在510~ 575nm 具有荧光特性[ 38] 。2.. 5 .. 用于聚合物共混的研究Rokicki 等[ 58] 将HBPE 的部分末端羟基改性, 剩余末端羟基用乙酸乙酯保护以提高其憎水性并有利于与环氧树脂共混, 该共混材料的冲击强度高于未改性树脂, 含有20%~ 25% 的固化剂( T ETA ) 和20%的改性HBPE 的共混树脂显示出最大的冲击强度。M..lhaupt 等[ 25] 以( 聚环氧丙烷嵌段聚乙撑氧) 共聚物为生长点, 在邻苯二甲酸酐催化剂的作用下,通过逐步控制重复反应引入缩水甘油和环氧丙烷, 得到的HBPE 是多层液态橡胶核壳型聚合物, 其核带有PPO 和高度支化的聚甘油嵌段, 壳层含有大量羟基封端的聚乙撑氧。以该超支化液态聚醚作为原料,通过不同的羟基酯交换反应可以制备一系列的超支化嵌段共聚醚, 用于增韧环氧树脂。该课题组又利用此超支化液态聚醚的端羟基与烯丙基缩水甘油醚发生开环接枝反应, 用于乙烯酯/ 聚氯酯共混树脂的增韧[ 59] 。带有高含量乙烯基的树枝状大分子与该共混树脂发生加聚反应, 得到具有复杂而有规则网络结构的产物, 这种结构可引起材料的硬度下降, T g 增大及更容易扩散剪切变形。与此共混树脂相比, 加入10% ( w t) 的改性HBPE 能使共混树脂的断裂能提高三倍。2006 年Karak[ 60] 报道了将含有三嗪结构单元的HBPE 分别与低密度聚乙烯和聚氯乙烯共混研究。随着加入的HBPE 含量增加, 共混材料的粘度下降, 力学性能和阻燃性能均得到改善。为改善端羟基超支化聚醚与丁羟聚氨酯的相容性, 宋雪晶等[ 16] 采用长链脂肪族酸对丁羟聚氨酯进行酯化改性, 生成了HT PB 型聚氨酯, 并与超支化聚醚原位聚合形成超支化聚醚/ 丁羟聚氨酯互穿聚合物网络。与HTPB 型聚氨酯相比, 超支化聚醚/ 丁羟聚氨酯的拉伸强度与延伸率得到了大幅度的提高。2.. 6 .. 在其它领域的研究将HBPE 端羟基与含有液晶基元的物质结合显示出液晶相[ 61, 62] ; 二茂铁接枝改性的HBPE 具有阴离子识别能力[ 63] ; 紫精基封端的HBPE 可用于制备光和电致变色的功能材料[ 64] ; 咪唑盐改性的HBPE表现出新奇可逆的最低临界溶解温度, 在有机介质中可进行液..液, 液..固相变行为[ 65] 。而HBPE 用作负载工具[ 66, 67] 、水凝胶的制备[ 68] 、多孔膜的制备[ 69] 、光固化涂料的合成[ 70] 及金属纳米材料的制备[ 71] 等领域的应用研究也已见诸报道。.. 第10 期高.. .. 分.. .. 子.. .. 通.. .. 报% 103 %3 .. 展望由于超支化聚合物的合成要比树状大分子简单得多, 却继承了许多树状大分子所具有的溶解性好、粘度低和末端功能基团等特性。除了具有一般超支化聚合物共同的特性外, HBPE 还具有分子内部稳定、生物相容性好等优点, 此外其分子外围大量羟基的存在, 使HBPE 的改性易于进行。有理由相信随着相关研究的不断深入, 越来越多的新型HBPE 大分子将会被设计合成出来, 其功能和应用领域也将进一步拓展。

相关百科

热门百科

首页
发表服务