首页

> 学术期刊知识库

首页 学术期刊知识库 问题

阻燃板燃烧性能研究论文

发布时间:

阻燃板燃烧性能研究论文

阻燃板的优点:

1、首先阻燃板具有阻止火势蔓延,为逃离火灾现场赢得宝贵时间。阻燃板并不代表它就不燃烧,只是阻止火势迅速蔓延。

2、阻燃板是在胶合板基础上加工而成,其质轻、易加工,施工方便,降低成本。3、阻燃板具有结构强度好,抗弯能力强。

阻燃板的缺点:

1、阻燃板在燃烧过程中会产生有毒气体。千年舟阻燃板采用先进的阻燃剂大大降低火灾中的有毒气体产生。

2、阻燃板经过阻燃处理后,会对板材胶合强度有一定影响。

阻燃板工作原理:

1、基材阻燃:选用的是阻燃效果持久、抗流失性好、防水耐潮的的环保型阻燃剂,对板基材进行特殊条件的处理以后,使阻燃剂与木材纤维充分的结合,在燃烧的过程中,阻燃板可以有效的稀释可燃气体、隔离空气和火源,在未燃烧时改变木材裂解过程,控制地板的燃烧趋势和进程,最后以实现阻燃目的。

2、表面和底层阻燃:表面采用专利技术,在面层中添加了一些无机钢化材料,因此可以在增加地板的抗冲击性、耐磨性同时,又使地板具有了不同一般的阻燃效果;并且在其底层添加了的是防火板设置,既可以防水防潮又能够防火阻燃的双重保障。

北京盛大华源是专业的阻燃板厂家,盛辉阻燃材料是盛大华源子公司坐落在固安南工业区,集研发生产销售于一体的综合公司,主营产品有,阻燃密度板、阻燃胶合板、阻燃细木工板、阻燃刨花板、阻燃木材等,广泛应用于展柜道具,建筑装修、家具制造、防火门等领域,如果您有需要可与我们联系,厂家直销电话 。量大优惠,厂家直销罗文圣 博士/教授级高工 北京盛大华源科技有限公司总经理公司荣获北京市科学技术奖、梁希林业科学技术奖、中国林业科学研究院技术进步奖、中关村优秀留学人员企业。公司通过ISO9001质量管理体系认证,是中关村国家自主创新示范区重点瞪羚企业、北京市专利试点单位、北京市标准试点单位。主持和参与完成的省部级项目15项,主持制定国家标准1项、参与制定的国家标准2项,参与修订国家标准2项、行业标准1项。“甲醛清除触媒”被列为国家重点新产品,“高强度环保阻燃中密度纤维板及其阻燃剂”被列为北京市火炬计划项目。拥有自主知识产权授权发明专利10件、中国林科院木材工业研究所授权转让发明专利1件、北京林业大学授权使用发明专利2件。五类产品被认定为北京市自主创新产品,四类产品被认定为中关村国家自主创新示范区新技术新产品。主要技术• 阻燃木质材料生产技术及产品:B1/E0级阻燃纤维板及其专用阻燃剂,B1/E0级阻燃刨花板及其专用阻燃剂,阻燃细木工板,高铁用阻燃胶合板,阻燃地板基材及其生产技术,家具及装修用阻燃胶合板及其生产技术,阻燃木材。• 环保产品及净醛负离子人造板生产技术:人造板功能添加剂,净醛负离子添加剂,治理、清除室内装饰装修甲醛、苯系物、异味、TVOC等污染的触媒。• 生物质胶黏剂生产技术及生物质胶黏剂人造板:胶合板及细木工板用高含量生物质胶黏剂(固体含量大于45%)、中密度纤维板用低粘度生物质胶黏剂(粘度小于500cps)。• 功能壁纸添加剂:阻燃壁纸,净醛壁纸,净味壁纸,负离子壁纸,抗菌壁纸等添加剂。• 功能木质材料添加剂:木质材料防霉抗菌剂,环保防腐防霉剂,纳米防水剂,木材增强剂。

阻燃板,有阻燃密度板、阻燃胶合板等,是在人造板生产流程中,通过复杂的工艺,将阻燃剂添加到板材生产线中制成的人造板。1,健康环保是阻燃板的一个很好的优势,因为阻燃板在加工工程中,由于木材的完整性,所以在加工过程中可以避免使用更多的液体胶水,以及常见的装饰污染源甲醛潜伏在液态胶中,从这种情况看,阻燃板更环保健康。2,阻燃板具有良好的防腐性能:阻燃板表面层选用优质木材经过干燥,脱脂,健康和切片后的几道工序,表面不应有腐烂,死结,虫洞,裂缝缺陷如剥皮,但对于小滑动,色差不能太苛刻,因为它是木材的天然特性。在某些地方,阻燃板的含水量通常为5%-14%。大王椰阻燃板采用进口装饰纸,经过含浸、烘干、高温高压等加工步骤制作而成,表面装饰纸用耐火建材,光滑阻热材料具有超强耐火耐腐物理性能;

在如今的家居装饰中,我们一般会使用多种板材,阻燃板也是消费者的选择之一。当然,使用板材对于许多想要装饰的朋友来说是非常陌生的。今天,带大家来了解一下阻燃板,看看阻燃板的优缺点。1,健康环保是阻燃板的一个很好的优势,因为阻燃板在加工工程中,由于木材的完整性,所以在加工过程中可以避免使用更多的液体胶水,以及常见的装饰污染源甲醛潜伏在液态胶中,从这种情况看,阻燃板更环保健康。2,阻燃板具有良好的防腐性能:由于阻燃板表面层选用优质木材经过干燥,脱脂,健康和切片后的几道工序,表面不应有腐烂,死结,虫洞,裂缝缺陷如剥皮,但对于小滑动,色差不能太苛刻,因为它是木材的天然特性。在某些地方,阻燃板的含水量通常为5%-14%。3,以上是几个优点的介绍,但阻燃板也有相应的缺点:多层板适合作为各种家具使用,环保效果优于刨花板。然而,阻燃板的泡罩在损坏后不能修复,并且脚的感觉也很差。与其他材料相比,阻燃板需要照顾。还应注意防水,防烫,防日晒;阻燃板的资源越来越少,价格也越来越高,很容易因环境而变形。

二甲醚燃烧性改性研究论文

为使内燃机在降低有害物排放的同时减少温室气体排放,由BMW公司成立的联合组织针对未来用于柴油机的代用燃料进行了试验,并研究该类燃料的燃烧和排放特性。

1 动机

为了限制全球变暖,减少和避免温室气体(THG)已成为全球工业应用的最重要的技术推动方式之一,其中交通领域为最大的温室气体排放源,轿车和商用车产生的CO2排放已成为政治和社会讨论的重点,因此需进一步开展相关工作,以降低大气中的CO2浓度,从而缓解全球变暖趋势。除了如纯电动车等全新车型方案之外,使传统内燃机燃用由再生能源制取的合成燃料也有着较好的应用前景。

2 对能持久应用的合成燃料的要求

因为近几年可再生合成燃料已成为车载动力系统发展过程中的重要课题,为未来汽车选择代用燃料时需设定相关标准,以便集中研究和开发资源,相关标准如下所示:

(1)降低CO2排放:对于现代采用的合成燃料而言,在当前情况下,车辆应在行驶过程中降低CO2排放,应用合成燃料的CO2排放至少不应高于传统化石燃料;

(2)降低有害物排放:新型燃料应不仅能降低CO2排放,而且还应充分避免产生其他有害物排放;

(3)适用性和成本:降低CO2排放是针对现代交通运输而提出的任务,开发新型燃料标准并将其应用到车型认证过程中需花费较高的成本和较长的时间,因此使燃料实现标准化应更具优势,其能以适当的价格尽推广至全球。

(4)从这些要求出发,二甲醚(DME)和氧亚甲基醚(OME)被认为是适合于柴油机的代用燃料,并由此开展了相关试验研究。

3 二甲醚作为柴油机的代用燃料

在该项目的框架下,基础喷射试验的燃料开展了单独试验、整机试验以及实车试验,由此评价其用于替代柴油的潜力。下文根据DME来讨论甲基醚的物理和化学特性。

4 物理和化学特性

通过DME燃烧形成的排放物已确认,由于其含氧量较高()并且无C-C碳链,由此可实现几乎无碳烟的燃烧过程,而无碳烟排放就能应用较高的废气再循环(EGR),并同时降低氮氧化物(NOx)排放。表1列出了DME物理特性及其与柴油(EN 590)的对比。为了使用DME运行,表中在热值、密度、润滑性和粘度方面进行了显示出来的差异要求对燃油箱和喷射系统进行技术调整。

DME是性质与液化石油气(LPG)相似的蒸汽压曲线的液化气,因而可应用与LPG相似的燃油箱和低压燃料供应部件,系统部件已用DME进行过检验,并按需进行了调整。DME根据环境温度在饱和状态下以~ MPa的压力贮存于燃油箱中。液化DME从燃油箱输送给压力位2~3 MPa的燃料调节回路,此处燃料温度被调节到<40 ℃,以避免发生相态变化,并在接头处供给喷油系统。

5 二甲醚共轨喷射系统

为了进行试验研究工作,将一种柴油机共轨喷射系统按照DME特有的燃料特性进行调整。由于在高压燃油泵中存在泄漏情况,以往由于DME的体积压缩模量较低等缘故,通常将最大喷射压力限制在60 MPa。减小死容积就能将共轨压力最高提高到100 MPa。同时采用干式电磁伺服阀,以避免浸润和溶解树脂,密封圈用可耐受DME的全氟醚橡胶(FFKM)制成。

与柴油燃料相比,DME热值和密度值较低,不能在相同的时间内将所必需的内能带入燃烧室以实现燃烧,而必须通过加大喷油嘴的流通横截面予以补偿,为此喷油嘴的液压流量要相对于基准柴油喷油嘴(PC-D)提高倍(),同样在100 MPa最大共轨压力下也要求调整加大倍标定的喷油嘴()的流量特性。为了在高压喷雾罐中进行试验,设计了具有3个喷孔的专用喷油嘴,以便改进单个喷束的光学通道,而为单缸机试验则提供了一个基于计算流体力学(CFD)优化结果的附加喷油嘴()。

为了能描述喷油嘴加大喷孔对喷束扩展特性的影响,在高压喷雾罐(HPC)中进行喷雾试验,在轿车柴油机燃烧过程用的基准喷油嘴(PC-HPC-D)的基础上对前文所描述的标定的DME喷油嘴进行试验。

采用光学测量方法在高压喷雾罐中采集喷束随时间扩展的宏观特性。在测量中除了气态贯穿深度(GPL)和液态贯穿深度(LPL)之外,还要查明火焰提升高度(LOL)。为了测定GPL使用了纹影图像,而借助于测量活跃的氢氧基残余辐射来测定LOL。柴油的LPL同样通过纹影图像进行测定,而DME因密度较小则采用米氏散射光方法来进行测量。

图1示出了柴油和DME在罐内压力pa?= 5 MPa和温度Ta?= 840 K的情况下高压罐测量的结果,这种环境条件是从基准量产发动机喷油开始时的负荷工况点推导出来的。喷油器控制脉冲持续时间为ten=1 000 μs,而共轨压力被调整到100 MPa。在与基准喷油嘴(PC-HPC-D)比较LPL时,柴油的液态喷束长度明显比DME更长,这可通过DME较低的沸点和蒸汽压来说明,其蒸汽压与高压喷雾罐中的环境压力非常接近,DME的相态从液态变化到气态几乎是同时发生的,因而得到了缩短的LPL。喷孔直径较大的喷油嘴()对DME的LPL产生了显著影响,液态柴油喷束的贯穿深度仅有小幅度增长,而DME却因喷束蒸发较强烈的冷却作用而产生了明显的差别。

为了对发动机气缸内的燃烧过程进行试验研究,从稍后试验的整机衍生出了单缸试验发动机,并且应用合适的喷油系统部件作为试验载体。在试验中,根据量产柴油机的特性曲线场选择有代表性的负荷工况点。

下面更进一步地考察柴油和DME在中等负荷时的一个运行工况点。对于不同燃料和喷油嘴结构发动机边界条件都保持不变,而喷油器控制始点和持续期以及EGR率则根据燃料和喷油嘴参数进行调整,以保持燃烧重心位置恒定不变。在单缸发动机上进行的试验,与提供量产发动机的数据不同,仅使用一次主喷射。图2示出了柴油基础测量与采用2种不同喷油嘴喷孔直径的DME之间的比较。基础柴油采用量产结构的基准喷油嘴(PC-D)进行测量,而DME则采用补偿物理特性()和补偿喷油压力较低()的喷油嘴进行试验。为了适应不同的NOx比排放水平(ISNOx)而调整EGR率。

正如从图2所示,DME在2种不同配置的喷油嘴情况下,甚至在最低NOx排放时,根据滤纸烟度值(FSN值)都检测不到碳烟排放,这种特性归因于快速的混合气形成、较高的氧含量和无C-C碳链。无C-C碳链导致CO形成,并由此替代了高温热解状况中的碳烟。

所有3种情况描述的HC(ISHC)和CO(ISCO)比排放数量级是相似的,仅在低EGR率时DME的HC排放比柴油更低。

与此相反,3种配置之间的差别主要体现在最大压力升高数值上。尽管DME具有较高的十六烷值,并且通常会导致不明显的压力升高现象,但在此处却显示出较高的压力升高数值,这可通过燃烧持续期(BD5-90,译注:指燃烧5%~90%充量质量的持续期)缩短现象来解释,因此这种较小的喷油嘴()是大有裨益的,特别是在能同时观察到可应用较高的EGR率的背景下。

在图2中可看到DME与柴油的一个较大差别是指示效率(ηi),DME因燃烧持续期(BD5-90)较短和废气温度较低而相对于柴油呈现出更高的效率。

6 二甲醚用于轿车的整机试验结果

应用福特公司一款 L柴油机作为在发动机台架和汽车上进行试验的试验载体。发动机硬件必须针对DME喷射部件而进行调整(图3),其中集成高压燃油泵是最大的挑战,因DME润滑性能不良,通过发动机机油来确保燃油泵的润滑,同时因泵油相位发生变化,针对皮带传动机构进行的调整也是必不可少的。

此外,为了优化发动机硬件设备,必须将用于调节高压燃油系统的传感器和调节执行机构集成到发动机电控系统中,以便使发动机能在稳态和动态条件下运行。除了量产发动机电控单元中的喷油参数之外,发动机电控系统保持不变,而DME喷射系统则由另一个电控单元来进行调节,2个电控单元通过CAN接口相互通讯。

整机在10个部分负荷和3个全负荷运行工况点进行测量。图4示出了DME在一个运行工况点(n=2 000 r/min,pm= MPa)下的优化标定方式。从保持NOx排放恒定不变,在尽可能保持柴油机标定和相应的边界条件情况下改变共轨压力、燃烧重心位置和过量空气系数。与柴油机的基本情况不同,通过DME进行测量时取消预喷射,因为单缸试验机上的试验在使用小喷油嘴时采用简单的喷射策略、较高的EGR率和降低共轨压力相结合的情况下,在优化噪声特性方面显现出良好前景。

单参数变化的目标是,在CO排放较低的情况下达到尽可能更高的效率。由于相对于柴油而言DME的燃烧持续期较短和与其相关的废气温度较低,因而废气涡轮增压器是主要限制因素之一,因此在相对较高的NOx比排放( g/(kW·h))情况下进行优化,以确保可变涡轮几何截面(VTG)位置的回旋余地。

在调整喷油始点的同时将共轨压力降低到35 MPa,就能显现出在CO和效率方面的优势。正如预计,在高压指示效率随共轨压力的降低而降低的同时,有效效率却得以相应提高,一方面可用因高压燃油泵的传动功率降低而减小了摩擦损失来进行解释,另一方面与采用72 MPa共轨压力的柴油基本测量相比,随着共轨压力的降低,燃烧持续期相应延长,从而增加了废气热焓,使废气涡轮增压器在较高的效率下运行,并降低了换气损失,而共轨压力降低到35 MPa以下就会带来一系列弊端。对于改变燃烧重心位置而言,可观察到相似的发展趋势,燃烧重心位置向早期方向调节能在CO排放几乎相同的情况下改善效率。改变过量空气系数表明,在λ=的情况下应进行稀薄燃烧,但是无法实现与汽油机相似的化学计量比燃烧,因为由此会使效率降低,并使CO排放显著增加,从而明显高于现代汽油直接喷射汽油机的数值。

附加的废气成分通过颗粒计数器和傅里叶转换红外线光谱计(FTIR)进行测量。经柴油机氧化催化转化器后的CH4排放不会受到共轨压力和燃烧重心位置变化的影响,但是其会随着过量空气系数的降低而增加,并在λ=时达到最大值,而过量空气系数进一步降至λ=时就会使CH4排放降低到接近极限的水平,此时废气温度就会大幅升高(约550 ℃),以致于超过了CH4在催化转化器中实现合理转化的阈值,但在低负荷时仍达不到较低的废气温度水平。颗粒数(PN)原始排放始终保持在图4所示的变化范围内,明显低于现代直喷式汽油机的数值,但是在其他运行工况点按趋势来看,则处于较高或相同的水平,由此在优化过程中所获得的知识基础上逐步改变EGR率(图5)。

在用最佳标定测量时的效率几乎相当于传统柴油机。因其相对于柴油具有更佳的H/C比值,从而使DME具备CO2排放方面的优势,而CO排放始终较高。

根据从优化稳态运行工况点推导出的特性曲线场范围的标定规定,还需应用降低NOx排放(DeNOx)系统和柴油机颗粒捕集器,其标定状况示于图6。

为了最终证实DME作为柴油机代用燃料的潜力,在Ford公司Mondeo轿车基础上采用得以充分优化的发动机硬件和燃油箱系统,并开发出了一种演示车辆,在试验台试验中所积累的经验都应用到了该演示车辆的开发过程中。

DME在全球统一的轻型车试验程序(WLTC)中的排放潜力与柴油的比较示于图7,并针对颗粒、NOx和CO2原始排放进行评估。对于DME的燃烧就不再存在传统柴油机燃烧所特有的炭烟与NOx排放的目标冲突了,其颗粒质量处于零排放水平,其NOx排放相对于柴油同样也能显著降低(-33%),而CO2排放几乎保持不变。如果DME通过可再生能源进行制取(E-DME)并与油井-车轮(TtW)平衡相结合的话,那么就能几乎保持CO2排放不变并实现无有害物排放的运行状态。

7 结论

在由德国联邦政府经济和能源部推进的“新型车辆和系统技术”专业计划进程中,在“XME-Diesel”项目中研究甲基醚燃料(DME/OME)是否适于用作轿车和商用车柴油机的代用的燃料,并是否能实现可持续发展。在考虑到对未来用作柴油机代用燃料的多种要求(TtW-CO2和废气排放,可用标准,全球的适用性和低成本)情况下,证实了DME堪称一种充满前景的新型代用燃料。在该项目计划中,基于高压喷雾试验、单缸试验和整机试验以及实车试验,对DME的工作能力进行了充分分析和演示。

作者:[德]等

整理:范明强

编辑:伍赛特

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

(1)①H2(g)+12O2(g)=H2O(l)△H=②CO(g)+12O2(g)=CO2(g)△H=-283kJ/mol③CH3OCH3(g)+3O2=2CO2(g)+3H2O(l)△H=用水煤气成分按1:1合成二甲醚,将方程式3①+3②-③得:3H2(g)+3CO(g)=CH3OCH3(g)+CO2(g)△H=3()+3(-283kJ/mol)-()=,故答案为:3H2(g)+3CO(g)=CH3OCH3(g)+CO2(g)△H=;(2)①燃料电池中,正极上氧化剂氧气得电子和二氧化碳发生还原反应生成碳酸根离子,电极反应式为O2+4e-+2CO2=2CO32-;熔融碳酸盐性质要稳定,高温时不能分解生成其它物质,A.MgCO3高温下分解生成氧化镁和二氧化碳而得不到碳酸根离子,故错误;    B.Na2CO3性质较稳定,熔融状态下只发生电离而不发生分解反应,故正确;   C.NaHCO3性质不稳定,易分解而得不到碳酸根离子,故错误;D.(NH4)CO3性质不稳定,易分解而得不到碳酸根离子,故错误;故选B;故答案为:O2+4e-+2CO2=2CO32-;B;②阳极上Fe失电子生成亚铁离子,阴极上生成氢氧根离子,亚铁离子和氢氧根离子反应生成氢氧化亚铁,氢氧化亚铁不稳定,被氧气氧化生成氢氧化铁,离子反应方程式为:4Fe2++O2+10H2O=4Fe(OH)3↓+8H+,故答案为:4Fe2++O2+10H2O=4Fe(OH)3↓+8H+;③c(Fe3+)=Kspc3(OH?)=×10?38(10?1410?5)3mol/L=×10-11 mol/L,故答案为:×10-11mol/L;④乙装置中阴极上甲醚失电子生成二氧化碳,根据CH3OCH3---2CO2---12e-计算n(CO2)=×2=,n(Na2S)=×,根据电离平衡常数知发生反应CO2+S2-+H2O═HCO3-+HS-,则溶液中的溶质是等物质的量浓度的NaHCO3、NaHS,A.根据以上分析知,发生反应的离子方程式为:CO2+S2-+H2O═HCO3-+HS-,故错误;B.根据以上分析知,发生反应的离子方程式为:CO2+S2-+H2O═HCO3-+HS-,故正确;C.根据物料守恒得c(Na+)=2[c(H2S)+c(HS-)+c(S2-)],故正确;D.根据电荷守恒得c(Na+)+c(H+)=2c(CO32-)+2c(S2-)+c(OH-)+c(HS-)+c(HCO3-),故错误;E.碳酸氢根离子和硫氢根离子都水解和电离,但程度都较小,钠离子不水解,根据电离平衡常数知,HCO3-水解程度小于HS-,所以离子浓度大小顺序是c(Na+)>c(HCO3-)>c(HS-)>c(OH-),故正确;故选BCE.

立帜汽车制造网 随着世界能源危机和环保问题日益突出,汽车工业面临着严峻的挑战。一方面,石油资源短缺,汽车是油耗大户,且目前内燃机的热效率较低,燃料燃烧产生的热能大约只有35%—40%用于实际汽车行驶,节节攀升的汽车保有量加剧了这一矛盾;另一方面,汽车的大量使用加剧了环境污染,城市大气中CO的82%、NOx的48%、HC的58%和微粒的8%来自汽车尾气,此外,汽车排放的大量CO2加剧了温室效应,汽车噪声是环境噪声污染的主要内容之一。我国作为石油进口国和第二大石油消费大国,污染严重,世行认定的20个污染最严重的城市有16个在中国。国内汽车产品水平与国外差距很大,平均油耗高出10%—30%,排放约为15—20倍,汽车工业面临的压力更大。上个世纪末以来世界各国和各大汽车公司以及国内各大科研机构和高等院校纷纷致力于开发清洁节能汽车,新能源汽车获得了长足发展。汽油和柴油是传统内燃机汽车的能源,利用除此以外的能源提供汽动力的汽车均可称为新能源汽车。目前正在开发的新能源包括天然气、液化石油气、醇类、二甲醚、氢、合成燃料、生物气、空气以及电荷燃料电池等。本文介绍新能源汽车技术的发展概况,并对其发展前景提出看法。1 新能源汽车的种类及其特点 天然气汽车和液化石油气汽车天然气汽车又被称为“蓝色动力”汽车,主要以压缩天然气(CNG)、液化天然气(LNG)、吸附天然气(ANG)为燃料,常见的是压缩天然气汽车(CNGV)。液化石油气汽车(LPGV)是以液化石油气(LPG)为燃料。CNG和LPG是理想的点燃式发动机燃料,燃气成分单一、纯度高,与空气混合均匀,燃烧完全,CO和微粒的排放量较低,燃烧温度低因而NOx排放较少,稀燃特性优越,低温起动及低温运转性能好。其缺点是储运性能比液体燃料差、发动机的容积效率较低、着火延迟期较长。这两类汽车多采用双燃料系统,即一个汽油或柴油燃料系统和一个压缩天然气或液化石油气系统,汽车可由其中任意一个系统驱动,并能容易地由一个系统过渡到另一个系统。康明斯与美国能源部正合作开发名为“先进往复式发动机系统(ARES)”的新一代天然气发动机,根据开发目标,该发动机热效率达50%(热电联产时达到80%以上),NOx排放量低于/km,制造成本为400450美元/kW,维护费用低于美元/kwh,在满足这些目标的同时,发动机具有较高的可靠性。 醇类汽车醇类汽车就是以甲醇、乙醇等醇类物质为燃料的汽车,使用比较广泛的是乙醇,乙醇来源广泛,制取技术成熟,最新的一种利用纤维素原料生产乙醇的技术其可利用的原料几乎包括了所有的农林废弃物、城市生活有机垃圾和工业有机废弃物。目前醇类汽车多使用乙醇与汽油或柴油以任意比例掺和的灵活燃料驱动,既不需要改造发动机,又起到良好的节能、降污效果,但这种掺和燃料要获得与汽油或柴油相当的功率,必须加大燃油喷射量,当掺醇率大于15%—20%时,应改变发动机的压缩比和点火提前角。乙醇燃料理论空燃比低,对发动机进气系统要求不高,自燃性能差,辛烷值高,有较高的抗爆性,挥发性好,混合气分布均匀,热效率较高,汽车尾气污染可减少30%以上。这种汽车最早由福特公司在20世纪80年代中期开发,到2003年底,美国有230多万辆乙醇汽车,其中多数是道奇和克莱斯勒厢式车——2003年已卖出233466辆。 氢燃料汽车氢是清洁燃料,采用氢气作燃料,只需略加改动常规火花塞点火式发动机,其燃烧效率比汽油高,混合气可以较大程度地变稀,所需点火能量小,有利于节约燃料。氢气也可以加入其它燃料(如CNG)中,用于提高效率和减少N02排放。氢的质量能量密度是各种燃料中最高的一种,但体积能量密度最低,其最大的使用障碍是储存和安全问题。宝马公司一直致力于氢气发动机研制,开发了多款氢发动机汽车,其装有V12氢发动机的7系列轿车是世界上首批量产的氢发动机,该发动机可使用氢气和汽油两种燃料。 二甲醚汽车二甲醚(DME)是一种无色无味的气体,具有优良的燃烧性能,清洁、十六烷值高、动力性能好、污染少,稍加压即为液体,非常适合作为压燃式发动机的代用能源,使用该燃料的车辆可达到美国加州的超低排放标准。日本NKK公司成功地开发出用劣质煤生产二甲醚的设备,并且和住友金属工业公司于1998年完成了用二甲醚作为汽车燃料的试验,二甲醚汽车(DMEV)不会排放黑色气体污染环境,产生的NOX比柴油少20%。 气动汽车以压缩空气、液态空气、液氮等为介质,通过吸热膨胀做功供给驱动能量的汽车称为气动汽车,气动发动机不发生燃烧或其他化学反应,排放的是无污染物辐射的空气或氮气,真正实现了零污染。目前开发比较成功的是压缩空气动力汽车(APV),工作原理类似于传统内燃机汽车,只不过驱动活塞连杆机构的能量来源于高压空气。APV介质来源方便、清洁,社会基础设施建设费用不高,较容易建造。无燃料燃烧过程,对发动机材料要求低,结构简单,可借鉴现有内燃机技术因而研发周期短,设计和制造容易。但目前APV能量密度和能量转换率还不够高,续驶里程短。1991年法国工程师Guy Negre获得了压缩空气动力发动机的专利,并加盟MDI公司,2000年MDI公司推出的名为“进化”(evolution)的APV,质量仅700kg,其发动机质量仅为35kg,速度可达120km/h,一次充满压缩空气可行驶200km,充气费用仅为美元,在城市中约可行驶10h,在压缩空气站充气2min就可完成,用气泵充气3h可完成。 电动汽车世界上第一辆电动车(EV)由美国人在19世纪90年代制造。EV大致分为蓄电池电动汽车(BEV)、燃料电池电动汽车(FCEV)和混合动力电动汽车(HEV)。电动汽车的一个共同特点是汽车完全或部分由电力通过电机驱动,能够实现低排放和零排放。蓄电池电动汽车是最早出现的电动汽车。使用铅酸电池的汽车整车动力性、续驶里程与传统内燃机汽车有较大的差距,而使用高性能镍氢电池或者锂电池又会使成本大大增加。而JtBEV都需有一定充电时间及相应的充电设备,使用场合受到了限制。燃料电池具有近65%的能量利用率,能够实现零排放、低噪声,国外最新开发的高性能燃料电池已经能够实现几乎与传统内燃机汽车相当的动力性能,发展前景很好,但成本却是制约其产业化的瓶颈。在加拿大进行的示范试验表明,使用燃料电他的公共汽车制造成本为120万加元,而使用柴油机的公共汽车仅为万加元。混合动力汽车融合了传统内燃机汽车和电动汽车的优点,同时克服了两者的缺点,近年来获得了飞速发展,并已经实现了产业化和商业化,PRIUS和INSIGHT两款混合动力汽车的成功向人们展现了混合动力技术的魅力和巨大的市场潜力。 以植物油为燃料的汽车为了寻找可代替石油的新能源,科学家也将目光投向了植物油,正在研制以植物油如大豆油、玉米油及向日葵油为原料的内燃机油。科学家们还在研究生物柴油,这是一种以植物油为原料的燃料,将来可作为柴油的替代品大量用于卡车和轮船。生物柴油中不含硫,因此不会对环境造成酸雨威胁。为生产生物柴油,化学家们正在对植物油进行酯化加工,使之变成甲基酯化合物,燃烧起来更干净,发动机内残留物也较少。2 我国新能源汽车的发展概况我国天然气资源丰富,分布广泛,海南、北京、上海、重庆等省市被列为国家燃气汽车重点示范城市,各地均在燃油汽车基础上研制开发改装了压缩天然气汽车和液化石油气汽车,主要用于出租车、公交客车、大型车辆和工程设施等。一汽—大众公司开发了捷达LPG,上海交大研制成LPG轿车并和申沃客车联合开发成功改装型LPG城市bus,北京开发了CNG城市bus。山西是产煤大省,甲醇汽车项目已进行多年,目前已达到商业运行阶段,所用甲醇汽车采用灵活燃料系统,既可用甲醇,也可用汽油,将乙醇当作有氧燃料使用,现在在河北和黑龙江等地推广。同时国家制定了乙醇汽油燃料相关标准。我国云岗汽车公司大同汽车制造厂开发了甲醇中巴车。我国煤炭资源丰富,政府支持以煤炭为原料制造车用燃料项目。煤直接液化和间接液化制取车用燃料的项目正在积极进行。“十五”期间在云南和陕西建立了煤直接液化示范厂,以煤为原料合成石油或二甲醚等车用燃料。西安交通大学与中国科学院煤化工研究所经过5年协同攻关,于2000年研制出了“超低排放二甲醚汽车”,通过在TYll00单缸柴油机及装备有大连柴油机厂生产的CA498柴油机的面包车上燃用二甲醚的试验,发现发动机的功率可提高10%-15%,热效率提高2—3个百分点,噪声降低10%-15%。我国从事燃料电池研究的单位有20余家,质子交换膜(PEM)燃料电池技术已取得较大进展,但与国外还有不小差距,例如,国外将功率50—80kW的PEM燃料电池用于轿车,而我国最大的PEM燃料电池单堆功率为5kW,离轿车使用相距甚远。我国的金属燃料电池技术已经达到世界先进水平。我国的镍氢电池和锂电池技术水平也已经达到国际先进水平,比亚迪在2005年上海车展展出的E1电动车已经具备了很好的整车动力性能。目前国内对压缩空气动力汽车的研究报道最多的是浙江大学,他们已经开发出压缩空气动力摩托车研究平台,探索出不少有益的结论,正在进一步深入研究,此外重庆大学和同济大学也做过一些探索性研究。应当说APV在国内的发展才刚刚起步。3 代用燃料汽车的发展前景在各种汽车代用燃料中,LPG和CNG最方便投入使用,而且目前已经具有好的配套基础设施。在排放和经济性能要求较高而动力性能要求一般的公共交通领域具有很好的应用前景,美国近年来新型公交客车中天然气汽车就占据了较大比例。在中国这样的农业大国特别是一些农业大省,乙醇资源丰富,乙醇汽车有良好的应用前景。二甲醚等合成燃料具有很好的排放特性,也将具有很好的应用前景,特别是作为代用柴油应用于混合动力汽车。混合动力汽车毫无疑问是下一代汽车动力系统的主要形式。蓄电池电动汽车的使用性能不如混合动力汽车和燃料电池汽车,且成本高。氢燃料发动机的能量利用率不如氢氧燃料电池。因而蓄电池电动汽车和氢发动机汽车的发展前景不是十分乐观。当然随着太阳能电池技术的发展和突破,也许纯电动汽车能迎来一个不错的发展局面。压缩空气动力汽车虽然实现了零污染,但其整车性能与传统汽车相差太远,只能在较小的范围内应用于特定场合。燃料电池是目前技术条件下能量利用率最高的车用能源。燃料电池的比能量可达200—350Wh/kg,为锂离子电池的2—3倍;能量转换效率高达60%~80%,是汽油机或柴油机的~2倍,能实现超低污染甚至零污染,而且燃料电池使用的氢能源是可再生的。目前以甲醇燃料电池技术最为成熟。国外各大石油公司和汽车均在致力于燃料电池汽车的研发以抢占在未来汽车发展中的滩头。戴姆勒—奔驰汽车公司从1993年到2000年先后推出了NecarI—NecarⅣ和Nebas等系列FCEV,2001年5月Necar4在美国试车,功率55kW,最高车速145km/h,装载行程450km,最新推出的Necar V-FCEV采用甲醇燃料电池。1997年Ballard动力公司和福特汽车公司组建了Xcellsis公司开发燃料电池轿车,美国AR—CO、壳牌、德士古等石油公司和加州CARB先后加盟,组成世界上最强大的燃料电池车开发联盟。日本电力中央研究所正在开发一种全面使用耐热陶瓷的燃料电池,电池在发电效率非常高的1000℃的高温下工作,电解质的输出功率达到1W/cm2,相当于传统燃料电池的5倍。EvomR公司致力于开发铝和锌燃料电池,已具有相当水平。总之对代用燃料的综合评价应考虑以下因素:燃料成本;车辆成本;对进口石油的依赖程度;有效能源利用率;温室效应;排放污染;生产、储运、分销、加注设施;装载行驶里程和加注时间;安全性。基于这些因素,目前最容易投入使用的代用燃料是CNG和LPG。电、甲醇和乙醇的综合评价指数都低于汽油。可以预计LPG和CNG以及乙醇的市场份额将会不断增加。二甲醚和合成柴油在十年后其市场份额会快速稳定增长。混合动力汽车会进一步发展,迅速增加市场份额。而燃料电池汽车会在20年之后开始实现产业化逐渐增加市场份额。传统汽油机汽车的市场份额会在20年之后开始出现明显的下降,但柴油车会在重型车辆领域继续保持很高的市场份额。4 结束语在未来的20年内,汽油和柴油仍是汽车主要的能量来源,但汽油和柴油的质量要求越来越高,发动机技术将快速发展以提高能量利用率。代用燃料会得到迅速运用,天然气汽车和乙醇汽车会率先大规模投入使用,二甲醚和合成燃料会逐步扩大应用。混合动力系统会得到快速发展和应用,混合动力汽车将至少在30年内都是汽车工业最切实可行的解决能源问题和污染问题的途径。因此应当整合资源加速混合动力汽车的开发,抢占汽车技术发展的新高地。燃料电池是最有前途的车用能量,也是未来汽车的主要能量源,国内石油工业应该与汽车工业联手开发先进的燃料电池技术,抢占未来先进汽车技术的前沿阵地!

水滑石阻燃研究论文

要看你用在什么产品里的阻燃,一般无机阻燃剂首先要做的就是研磨,细化,固体颗粒越细在材料中的阻燃效果越好。有很多材料,该阻燃剂在其中不好分散,要做胶囊包覆处理,让阻燃剂更好的分散在里面如果在塑料中使用,要先于母粒干混,再用挤出机。在橡胶中使用,要在开炼机中塑炼

这个的分散要用到白油 也就是石蜡油 这是比较经济的分散方法

层状双氢氧化物(简称LDHs)又称水滑石(HT),由于具有独特的层状结构和奇特的性能,添加到聚合物之中,具有环境友好、高效无毒、有效抑烟等优点,其相关研究已成了近几年研究的热点。稀土元素由于具有特殊的电子结构,使其在催化、发光、磁性等领域的应用具有很大的潜力,特别是作为耐火材料添加剂的相关领域的研究受到了广泛重视。从已报道的相关文献来看,一般是以螯合物形式将稀土元素负载到层状双氢氧化物的层间,而直接将稀土元素通过同晶取代置换到LDHs层板上的报道还很少。本论文将采用报道不多,制备简单的微波晶化低饱和共沉淀法,快速制备出一系列含稀土LDHs,考察了掺杂稀土量对LDHs结构的影响,并将其运用到聚合物中研究其对聚合物的阻燃性能、力学性能,抑烟性能等的影响,获得了以下具有创新性的结果。When layered double hydroxides (LDHs), also called hydrotalcites (HT) are added into polymers, they have the advantages of environmental friendly, highly efficient, nontoxic, smoke inhibiting and other properties due to their unique stratified structure and peculiar performance, and this relevant study has become the major focus of researchers in recent years. In view of rare earth elements’ special electronic structures, it has a great application potential in the fields of catalysis, luminescence and magnetism; particularly as an additive to refractory materials, studies in this related field has been attracting extensive attentions. From the perspective of published documentations, generally the rare earth elements are loaded in between the layers of LDHs in the form of chelate complex; there are limited reports on the method of directly replacing rare earth elements on the layers of LDHs by isomorphous substitution. This essay adopts the rarely reported and simple method of microwave crystallized low saturation co-precipitation to quickly prepare a series of LDhs with rare earth contents; as well as investigates the impact on LDHs’ structure by various different quantities of rare earth doping, and applies it to study its effects on polymers in terms of flame retardation, mechanical property, smoke inhibiting property and so on. The following are the creative results obtained: 通过低饱和态共沉淀法,辅助微波手段,制备了系列含稀土Ce和La的LDHs;并通过XRD和FT-IR等对其结构进行了表征,筛选出结晶度高,晶相单一的样品Zn-Al-Ce-LDHs(n(Zn2+)/n(Al3+)=x,n(Ce4+)/n(Al3+)=y),将其用于聚丙烯(PP)中,考察了复合材料的阻燃性能。当Zn-Al-Ce-LDHs添加量为10%时,将PP的极限氧指数由提高到42%,而且随着添加量的提高,极限氧指数也随之升高,与添加量呈线性关系。当Zn-Al-Ce-LDHs添加量为50%时,PP的极限氧指数可达到58%,说明Zn-Al-Ce-LDHs能有效地提高复合材料的阻燃性能。A series of LDHs with cerium and lanthanum were prepared by low saturation co-precipitation assisted by microwave means, and by characterizing their structures with X-ray diffraction and FT-Infrared spectroscopy, high crystalline, single crystal phase samples of Zn-Al-Ce-LDHs were selected. [(n(Zn2+)/n(Al3+)=x,n(Ce4+)/n(Al3+)=y)]. Then they were applied to Polypropylene (PP) and the flame retardant property of the composite materials was investigated. When the addition of Zn-Al-Ce-LDHs was 10%, the limited oxygen index of PP was elevated from to 42%, and the index kept on rising as the amount of addition was increased, indicating a linear relationship with the amount of addition. When the addition of Zn-Al-Ce-LDHs was 50%, the limited oxygen index of PP could reach 58%, this showed that Zn-Al-Ce-LDHs can effectively improve the flame retardant property of the composite materials.采用不同类型的LDHs、在复合材料中保持相同的添加量,研究了LDHs/PP复合材料的热稳定性,结果表明:在低温段,Zn-Al-Ce-LDHs能有效的延缓复合材料的热降解的反应的发生;在高温段,Zn-Al-Ce-LDHs/PP的残炭量明显高于Mg-Al-LDHs/PP、Mg-Al-Ce-LDHs/PP,说明Zn-Al-Ce-LDHs具有明显的促进复合材料成炭的效果。在采用相同Zn-Al-Ce-LDHs、不同LDHs添加量的复合材料中,复合材料的热稳定性和残炭率仅与添加量有关,且残炭量与添加量基本呈线性关系。The thermal stability of LDHs/PP composite materials was studied by adopting different types of LDHs with similar amount of addition to the composite materials; the result had shown that at the low temperature range, Zn-Al-Ce-LDHs could effectively delay the composite materials’ reaction to thermal degradation; while at the high temperature range, the char residue of Zn-Al-Ce-LDHs/PP was significantly more than that of Mg-Al-LDHs/PP and Mg-Al-Ce-LDHs/PP; this explained the distinct effect of Zn-Al-Ce-LDHs in promoting char formation of the composite materials. When adopting similar Zn-Al-Ce-LDHs with different amounts of addition, the thermal stability and char residue of the composite materials were only relative to the amounts of addition, and the char residue and the additions basically showed a linear relationship. 将Zn-Al-Ce-LDHs与EVA进行熔融混合制备成复合材料,对其进行极限氧指数以及锥形量热等燃烧性能测试,结果表明:当Zn-Al-Ce-LDHs的添加量少于40%时,对复合材料的阻燃性提高不明显,但是超过40%时,对复合材料的阻燃性有了大幅度的提高,同时,复合材料的热释放速率和烟释放速率随着Zn-Al-Ce-LDHs添加量的升高而降低,说明Zn-Al-Ce-LDHs对EVA材料的燃烧和发烟具有明显的抑制作用。对复合材料进行热重分析,结果表明:Zn-Al-Ce-LDHs可以有效延缓EVA材料的热分解,并可促进EVA材料的成炭作用,复合材料的热稳定性与Zn-Al-Ce-LDHs的添加量具有线性关系。A composite material was prepared by melt compounding Zn-Al-Ce-LDHs with EVA, and flammability testing such as limited oxygen index and cone calorimetry was conducted; the results had shown that when the amount of Zn-Al-Ce-LDHs addition was less than 40%, there was no obvious enhancement of flame retardant property of the composite material; but when exceeding 40%, the flame retardant property of the composite material increased remarkably; at the same time, the heat and smoke emission rates of the composite material decreased as the addition of Zn-Al-Ce-LDHs was increased; this explained that Zn-Al-Ce-LDHs had a significant inhibiting function on the combustion and fuming of EVA materials. The results of thermogravimetric analysis conducted on the composite material had shown that Zn-Al-Ce-LDHs could effectively delay the thermal degradation of EVA material and promote its char formation function; it was also noted that the thermal stability of composite materials and the amount of addition of Zn-Al-Ce-LDHs had a linear relationship. 【英语牛人团】

水滑石类层状化合物(LDHs)是一类具有广阔应用前景的阴离子型层状化合物,主要由水滑石(HT)、类水滑石(简称HTLC)和它们的插层化学产物柱撑水滑石(PillaredLDH)构成。由于水滑石类层状化合物层板间由两种不同价型的金属氧化物组成,所以又称层状双金属氧化物。

水滑石类化合物由于其独特的结构特征,具有层间离子的交换性和晶粒尺寸分布的可调控性等一些特征,使得其在催化、紫外阻隔材料、红外吸收阻隔材料、抑菌剂、医药、有机合成、离子交换和吸附、阻燃等方面具有广泛的应用,开发利用前景十分广阔。

1、水滑石类层状化合物的性能

(1)碱性

LDHs的层板上含有碱性位,具有碱催化能力。氢氧基团位于以Al为中心的正四面体顶端。

(2)层间阴离子的可交换性

LDHs层间阴离子可与各种阴离子如无机阴离子、有机阴离子、同多和杂多阴离子以及配位化合物阴离子进行交换,从而调变了层间距,同时使柱撑LDHs的择形催化性能更加显著。也可用体积较大的阴离子取代体积较小的阴离子,以得到更多的反应空间和暴露更多的活性中心。利用这一性质,可以将一些功能性离子引入层间。实现分子设计。

(3)热稳定性

LDHs加热到一定温度要发生分解,热分解过程包括脱层间水、羟基脱水(层状结构的破坏)和新相生成等步骤。在空气中低于200℃时,仅失去层间水,对其结构没有影响,当加热到250-450℃时,失去更多的水分,同时有CO 2 生成。加热到450-500℃后,脱水比较完全,CO 3 2- 消失,完全转变为CO 2 ,生成LDO。在加热过程中,表现为适当的表面积增加,孔体积增大以及形成酸碱中心。当加热温度超过600℃时。则分解后形成的金属氧化物的混合物开始烧结,致使表面积降低,孔体积减小,通常形成尖晶石和MgO。

(4)吸附性能

LDHs具有较大的内表面和层间空间,容易接受客体,有良好的吸附性能。

(5)结构记忆效应

LDHs在一定温度下焙烧改变结构后,可重新吸收水和阴离子,部分恢复为原有的层状结构。利用这一特点,可用作阴离子吸收剂。被吸收的阴离子离子半径越小,恢复后层状结构的层间距越小,所以阴离子价数越高,越容易进入层间。

(6)低表面能性

LDHs因其层状结构的特殊性,表现出较低的表面能,使得制备时无需昂贵的辅助试剂及高能耗的生产装备便可得到具有纳米尺寸的LDHs。另外,应用时易于均匀分散,不易聚集。

(7)几何结构效应

LDHs主体二维层板结构及纳米尺寸,使其在应用时表现出独特的性能。

2、水滑石类化合物在塑料工业中的应用

(1)用作PVC热稳定剂

聚氯乙烯(PVC)是5大通用塑料之一,但是存在着热稳定性差的突出缺点,因此在加工过程中必须加入热稳定剂。传统的PVC热稳定剂主要有无机铅盐、金属皂和有机锡三大类数十个品种。但是,其中性能较高的品种不是有毒(无机铅盐、钡-铬皂),就是价格昂贵(有机锡)。

水滑石热稳定剂是新近出现的无毒且性价格比较高的一种PVC热稳定剂,其原理是水滑石可中和吸收PVC降解时释放的HCl,首先是LDHs层间的CO 3 2- 与HCl反应产生CO 2 ,接下来是层板上的氢氧化物与HCl反应,直至结构完全被破坏,生成金属氯化物为止。

水滑石具有绝缘及耐候性好的优点。但单独用作PVC热稳定剂时不能有效抑制初期着色。因此,为了更好地提高产品性能,一般对其进行改性后再加以利用。日本的佐藤义等人通过用(ClO 4 ) 2 改性水滑石,并将改性产物约份与谷氨酸锌复配作热稳定剂时,可获得具有优异长期热稳定性的样品,并且可以提高制品的耐候性及其机械强度。研究发现,在PVC电缆材料中配合适量的金属盐、水滑石和CaO,产品具有特别优异的耐热性、透明性及防止变色的能力,而且加工成型时气泡明显减少,电绝缘性能也大大提高。很好地解决了以往存在的问题,提高了使用性能。

(2)用作阻燃剂

目前,电工行业使用的无卤阻燃填料主要是粒状氢氧化铝和氢氧化镁,LDHs结构中含有相当数量的结构水,控制合成条件可使层间具有CO 3 2- ,添加到聚合物中的镁铝水滑石阻燃剂受热分解时,放出的惰性气体二氧化碳和水汽能稀释可燃气体浓度,减弱火势,达到阻燃的目的,而分解产生的MgO和Al 2 O 3 可形成隔热层,同时受热分解时吸收大量的热量,降低燃烧体系的温度。

由此可见,LDHs不仅具有氢氧化铝和氢氧化镁阻燃剂的优点,而且还克服了其不足之处,具有阻燃、消烟、填充3种功能,是一种很有发展前景的高效、无毒、低烟的无卤阻燃剂新品种。

(3)用作光稳定剂

合成材料光老化是最常遇到的问题,也是塑料最重要的老化原因。LDHs是一种无机紫外阻隔材料,可以吸收紫外光,防止由紫外光引起树脂的链引发、链增长,使树脂得到保护。此外,层间可插入有机紫外吸收剂,以选择性地加强紫外吸收能力。

LDHs经煅烧后的产物含有特殊的化学键(如Zn-O键),表现出优异的紫外吸收和散射效果,可以作为紫外阻隔材料。同时表面呈碱性并且具有不饱和键力,具有表面接枝性能,可以与具有不同紫外吸收效果的有机物如肉桂酸、对一甲氧基肉桂酸盐、2-苯基苯咪唑、2-羟基-4-甲氧基苯磺酸等经反应接枝,进一步强化紫外吸收能力,使之兼备物理和化学双重功能。大量实践证明,以其作为光稳定剂,效果明显优于传统材料,在塑料、橡胶、纤维、化妆品、涂料以及油漆等领域具有广泛的用途。

北京化工大学对此作了较为系统的研究,通过成核,晶化方法合成镁铝和锌铝水滑石,再高温焙烧得到金属复合氧化物,综合考察其对紫外阻隔性能的影响。发现锌铝复合氧化物的紫外阻隔性能和可见光透过率均优于传统的ZnO、也优于镁铝复合氧化物和锌铝水滑石,在400-600℃之间,它的紫外阻隔性能随温度升高而上升。

东北师大通过对水滑石改性来研究HT的光学性质,利用共沉淀法或离子交换法将尺寸较大的有机紫外吸收剂以阴离子形式嵌入Zn 2 Al-LDH间,Zn 2 Al-LDH有很强的紫外遮蔽能力和高的可见光区透明性,嵌入后,紫外吸收能力明显增加。

随着对环保要求的提高和绿色化学的倡议,无毒、无害以及高效安全的无机紫外阻隔剂代替有机紫外阻隔剂是这一领域的发展趋势。

(4)作为红外吸收阻隔材料

LDHs的化学组成决定其具有优异的红外吸收能力和较宽的红外吸收范围,并且其吸收范围还可以通过调变其组成加以改变,是一种很好的红外阻隔无机填料。采用先进的复合技术,可以在不影响农膜原有光学性能的条件下,显著提高农膜的保温性能。

作为改善农膜保温性能填料的研究发现,在PVC和PE薄膜中加入LDHs类填料。在不影响其可见光透过率的同时,红外光的透过率可由原来的36%下降到6%,效果非常显著。在环境温度为℃,棚内温度可以达到℃以上,比与之对照的为未加填料的棚内温度高℃。

另外,LDHs组成和结构上的特点还使其兼备抗老化、改善力学、提高阻隔、抗静电性及防尘等性能。

(5)用作抑菌剂

因为LDHs特殊的化学组成,比如含锌或铜等活性组分的LDHs及CLDH,对多种微生物和菌类的生长有着特殊的抑制作用,而且几乎没有毒性。耐热性、耐气候性好,价格便宜,可作为抑菌剂使用,用于合成材料及涂料等后,能很快地分散到树脂、橡胶、纤维中,特别是在表面用表面处理剂处理后,可赋予其杀菌防霉功能,并获得性能优异的自洁材料。

另外,由于含银抗菌剂具有优越的杀菌性能,塑料中常加入含银抗菌剂,但是存在一个缺陷。就是容易引起塑料的褪色或变色。但是如果在其中加入的镁铝LDHs后,则可以防止塑料颜色的变化。

此外,由水滑石衍生的复合氧化物对多种微生物和菌类生长有抑制作用,可用于塑料、农膜以防止表面微生物的生成,而水滑石本身可用作添加载银无机抗菌剂的抗菌塑料的变色抑制剂。

LDHs结构及性能的可设计性、可调控性使其催化剂、吸附剂、离子交换剂、阻燃剂等行业具有巨大的应用潜力。今后LDHs的研究发展方向主要是:

①充分利用LDHs特殊的插层结构以及层板金属元素的种类及比例,插层阴离子的种类及数量,晶粒尺寸和分布的可调变性,提高其性能;

②利用LDHs与其它塑料的协同效应,进一步提高性能,降低成本;

③以提高性能,降低成本为目标,不断改进LDHs的生产工艺,使之更加环保化、高性能化和经济化。

编辑整理:粉体技术网

甲醇充分燃烧研究论文

节约、合理利用能源,保护环境气态燃料比液态燃料燃烧充分,液态燃料比固态燃烧充分,把固态变成液态可以燃烧的更充分,减少能源浪费煤燃烧不充分会产生CO,既浪费又有污染,而且煤中含有杂质,比如S燃烧后会产生SO2污染空气

燃烧是一种同时伴有放热和发光效应的激烈的化学反应。放热、发光、生成新物质(如木料燃烧后生成二氧化碳和水份并剩下碳和灰)是燃烧现象的三个特征。燃烧是一种氧化反应,其中氧气是最常见的氧化剂,但氧化剂并不限于氧气,氧化并不限于同氧的化合。 燃料燃烧放出的热量,至今仍是人们的主要能量来源,其目的不是制备生成物,而是获得能量。研究燃料充分燃烧的条件与方法不仅对节约能源、提高燃料的利用率至关重要,而且,对减少因不完全燃烧产生的CO等有害气体、烟尘等对空气的污染,也具有重要意义。一般说来,燃料在空气中的燃烧,是燃料和空气中氧气的氧化还原反应。为使燃料充分氧化,应保证有足够的空气。同时,为保证固体和液体燃料燃烧充分,增大燃料与空气的接触面(固体燃料粉碎、液体燃料以雾状喷出等)也是有效的措施。燃烧的条件:1.可燃物(不论固体,液体和气体,凡能与空气中氧或其它氧化剂起剧烈反应的物质,一般都是可燃物质,如木材,纸张,汽油,酒精,煤气等)2.充足的氧气3.达到物质的着火点灭火的基本原理及方法:燃烧必须同时具备三个条件,采取措施以至少破坏其中一个条件则可达到扑灭火灾的目的.,灭火的基本方法有三个:(1)冷却法: 将燃烧物质降温扑灭,如木材着火用水扑灭;(2)窒息法:将助燃物质稀释窒息到不能燃烧反应,如用氮气、二氧化碳等惰性气体灭火。(3)隔离法:切断可燃气体来源,移走可燃物质,施放阻燃剂,切断阻燃物质,如油类着火用泡沫灭火机。当今世界常用燃料:煤、石油和天然气是当今世界上最重要的三大矿物燃料,又是化学工业中极为重要的原料,它们又细分为(1)固体燃料:木柴、烟煤、揭煤、无烟煤、木炭、焦炭、煤粉等;(2)液体燃料;汽油、煤油、柴油、重油等;(3)气体燃料:天然气、人工煤气、液化石油气等清洁燃料:液氨、酒精、液氢(最清洁的燃料,燃烧产物是水)、甲醇等

人民教育出版社高一化学 第一册 第一章 第三节 化学反应中能量的变化及课后阅读材料很详细哦~~~

煤化工是指以煤为原料,经化学加工使煤转化为气体、液体和固体燃料以及化学品的过程。下面是我整理了煤化工生产技术论文,有兴趣的亲可以来阅读一下!

煤化工及甲醇生产技术探索

摘要:甲醇是一种有机化工原料,它的用途非常广泛,普遍运用于燃烧材料、合成金属、工程涂料、医学消毒、日常生火等多个方面,在甲醇的制造方面,一般都遵循着煤气化碳――变换气体物质――精细蒸馏三大工序,在化工厂生产活动中一般将生产甲醇的工序称为“工段”。难点在于如何去调控操作所需的参数,本文通过对煤化工作的特性解析来引申出甲醇生产的要点,同时对生产技术进行一个流程上的模拟,更全面地去了解甲醇生产中需要多加注意的关键。

关键词:煤化工;甲醇;温度;化学反应;化学式

中图分类号:Q946文献标识码: A

1煤气化原理

在甲醇生产的流程中,煤气化是第一步,它是一种化学反应,将气化剂和煤炭资源中的可燃物质放置在一个高位环境下,然后使其发生中和反应,产生一氧化碳、氢气等可燃气体。在煤气化工段里使用的气化剂包括水蒸气、氧气等,在加入这些气化剂后,煤炭就会发生一系列化学反应,从而生成所需的气体。煤炭在加入气化剂后,经历了干燥、热裂解等热力反应,该反应中生成的气体包括一氧化碳、二氧化碳、氢气、甲烷等,这些化学反应的速度取决于煤气化工段中的温度、热压、气化炉质量以及煤炭的种类,以下是煤气化过程中会出现的化学式:

吸收热量:C - H2O → C O + H2C + C O2→ 2C O

发散热量:C + O2→ C O2C +12O2→ C O

变换反应:C O + H2O → C O2+ H2

从大体上来说,煤气化反应是化学中的强吸热效应,如果以动力和热力的角度来解析这类中和现象,重点在于对温度的把握,温度过高会造成气体流失,温度过低则无法产生完整的化学反应,导致生成的气体数量少、质量差。同时在增压方面应该适当地增加对煤炭的压力值,这样可以使化学反应的速度提高,对甲醇的生产效率起积极作用。

2变换工段

甲醇产品在合成时,一般调整碳元素与氢元素的比例的方法是通过一氧化碳的变换反应来实现的,在甲醇生产的流程中,碳元素与氢元素的分离都在催化剂的影响下进行,在此需要注意的是,碳氧分离工序对水蒸气的需求量相当大,水蒸气的生产成本在这道工段中会激增不少,所以,如何最大限度地利用水蒸气,节约生产成本,这将直接考验生产部门的气体生产技术和操作人员的工作效率。在变换工段中,煤气化之后的煤气物质含有大量的一氧化碳和水蒸气,在催化剂的效果影响到位之后,就可以生成氢与二氧化碳,在此时还会有小部分的一氧化硫转化为氰化硫,此时化学式表现如下:

C O + H2O → C O2+ H2

这是一个主要反应式,但是在主反应进行的同时,还有一部分副反应也会产生,生成甲醇的副产品,这些化学反应包括:

2C O + 2H2→ C O2+ C H

2C O → C + C O2

C O + 3H2→ C H4+ H2O

C O + H2→ C + H2O

C O2+ 4H2→ C H4+ 2H2O

C O2+ 2H2→ C + 2H2O

化学反应在化工产业中要求平衡,在主要变换的化学反应中是一种发散热量反应的类型,这里的化学反应会使煤气化后的温度降低,温度适当降低有利于化学反应的平衡作用,但是如果温度太低,就会导致化学反应时间过长,效率越低,当煤气化工段的生成气体慢慢消耗殆尽时,就会浪费前一道工段的时间和成本,造成浪费。同时,温度还与催化剂的适应性挂钩,如果温度没有调整到位,催化剂的效力就无法发挥到最大值,这就会造成碳氧分离程度不足,必须加大催化剂的剂量,这也会增加生产成本。

3甲醇生产中的注意事项

1.)气化压力的大小在其他的生产条件没有变化的情况下,如果改变气化压力,就会产生非常细微但是关键的变化。通常气压定格在2M Pa以上的范围时,在煤气化工段里基本上不会产生影响,但是如果气压低于2M Pa就会使气化炉的气化效果变低。所以,在煤气化工段中,一定要保证气化压力控制在2M Pa以上,而且可以视实际情况适当提高,这样可以增加气体数量,提高生产效率。

2.)氧气与煤量的比例氧煤比例的提高,指的是在煤炭中氧气流量的增多,直观反映为在煤炭高温加热时,煤炭的燃烧反应量明显提升。同时因为氧气流量的增加,使气化炉的温度也得以升高,煤炭的气化反应会更加强烈,一氧化碳和氢气的数量会增加不少,但是生成的气化产物中,二氧化碳和水分的含量占了很大比例,而一氧化碳和氢气的含量会变少,所以,如果不仔细控制氧煤比例,就会使气化炉中的气化反应过强而导致生产甲醇所需的气体成分变少。

4 甲醇生产工艺模拟

传统的烧煤方式已经不能满足人们对甲醇的需求量,而且单纯的燃烧煤炭既是对资源的浪费,也会造成环境污染。所以,当务之急是要尽快找到新的甲醇提取方法和更快捷有效的甲醇生产技术,在这方面,煤气化生产流程已经被初步运用于各大化工厂中,作为目前提取甲醇的有效方式,煤气化工段还需要更多的模拟和分析来增强其效率,简化其工序。

在模拟中我们假设煤浆和高压后的氧气依照固定比例放置在气化炉中,然后在高温作用下因气温及气压生成各种气体,其中包括一氧化碳、氢气、二氧化碳等,其中高压后的氧气进入气化炉可以通过设置烧嘴的中心管道和外环管道,而煤浆可以通过烧嘴的中环管道进入气化炉。在模拟环境下,我们还设置了激冷室,位于气化炉下段,激冷室主要是处理煤炭中的灰份。在煤气化工段进行到末尾后,会残留一些灰份物质,这些物质会在气化炉的高温中熔融,熔渣和热量汇聚,合成了气体,然后结合离开气化炉的燃烧室部分,经由反应室,进入气化炉下段的激冷室。这些气体在激冷室中将被极寒温度降低到200摄氏度左右,熔渣会立即固体化,然后生成大量的水蒸气,经水蒸气饱和后带走了灰份,从激冷室的排出口派排

出。

需要进行变换的水煤气在预热器中加入一部分进行换气和换热步骤,然后进入模拟的变换炉,这部分水煤气在经过煤气化工段后,自身携带了不少的水蒸气,变换炉中的催化剂进行催化作用进行变换反应,在第一部分结束后,另一部分的水煤气也进入变换炉,变换炉这时就会需要新的高温气体,模拟的变换工段里加入了预热装置,提前储存并加热生成高温气体,然后连入变换炉中与另一部分的水煤气进行变换反应,然后进入气液分离器进行分离,分离成功后的气体将进入低压蒸汽室内降温,再次进入气液分离器进行分离,再喷入冷水来清洗掉气体中的三氢化氮,最后气体进入净化系统,生产气态甲醇。

精馏工段的流程为四塔工作方式,首先甲醇气态材料在预热器中进行高温加热,再传输进预塔中部,在这里去除粗甲醇里的残留溶解气体与二甲醚等,这些属于低沸点物质。在加热后,气体进入冷却器进行气体降温,形成甲醇蒸气后进入预塔的回流管道。甲醇蒸气在经过回流后进入换热器,加热后进入加压塔,甲醇在加压塔中进行冷凝化处理,其中小部分送回加压塔顶部作为回流液。剩余的甲醇气体进入精度甲醇管道,最后由加压塔提供压力与热量,将冷凝的高精度甲醇视需求定制成液态或固态储存,然后将杂质或者甲醇残留物通过排污口排入废水处理器进行净化提取处理。

参考文献:

[1] 韩雅楠. 煤制甲醇的研究进展与发展前景分析 [J]. 中国科技投资. 2013(17) :229.

[2]刘喜宏.浅谈煤制甲醇的前景与工艺流程[J]. 中国石油和化工标准与质量 . 2013(10) :22.

[3] 陈倩,李士雨,李金来. 甲醇合成及精馏单元的能效优化[J]. 化学工程. 2012(10) :1-5.

[4] 金建德. 煤制甲醇工业装置工艺改造措施[J]. 天然气化工2011 36(3):67-69.

[5] 李雅静,张述伟,管凤宝等. 煤制甲醇过程低温甲醇洗流程的模拟与改造 [J]. 化工设计通讯. 2013(2) :15-18.

点击下页还有更多>>>煤化工生产技术论文

pnb竹材阻燃剂研究论文

需要用质谱、原子吸收、红外光谱、液相色谱等仪器化验

想办法有机溶解

相关百科

热门百科

首页
发表服务