浅谈小学生的课堂自制能力
在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。关于数学方面的论文我们可以写哪些呢?下面我给大家带来关于数学方向的优秀论文题目有哪些,希望能帮助到大家!
最全组合数学论文题目
1、并行组合数学模型方式研究及初步应用
2、数学规划在非系统风险投资组合中的应用
3、金融经济学中的组合数学问题
4、竞赛数学中的组合恒等式
5、概率 方法 在组合数学中的应用
6、组合数学中的代数方法
7、组合电器局部放电超高频信号数学模型构建和模式识别研究
8、概率方法在组合数学中的某些应用
9、组合投资数学模型发展的研究
10、高炉炉温组合预报和十字测温数学建模
11、证券组合的风险度量及其数学模型
12、组合数学中的Hopf方法
13、PAR方法在组合数学问题中的应用研究
14、概率方法在组合数学及混合超图染色理论中的应用
15、一些算子在组合数学中的应用
16、陀螺/磁强计组合定姿方法的相关数学问题研究
17、高中数学人教版新旧教材排列组合内容的比较研究
18、生物絮凝吸附-曝气生物滤池组合工艺处理生活污水的数学模拟研究
19、基于数学形态学-小波分析组合算法的牵引网故障判定方法
20、证券组合投资的灰色优化数学模型的研究
21、一些算子在组合数学中的应用
22、概率方法在组合数学中的应用
23、组合数学中的Hopf方法
24、概率方法在组合数学中的某些应用
25、概率方法在组合数学及混合超图染色理论中的应用
26、竞赛数学中的组合恒等式
27、Stern-Lov醩z定理及在组合结构中的应用
28、几类特殊图形的渐近估计及数值解
29、Fine格路和有禁错排
30、基于DFL的Agent自主学习模型及其应用研究
31、基于DFL的多Agent自动推理平台设计
32、预应力混凝土斜拉桥施工监控概率方法研究
33、最大概率方法与最近邻准则下的图像标注
34、亚式期权定价的偏微分方程方法和概率方法
35、编目空间碎片的碰撞概率方法研究及应用
36、基于概率方法的机器人定位
37、民用建筑内部给水设计秒流量的概率方法研究
38、图论中的组合方法和概率方法
39、物理概率方法预估贮存寿命研究
40、静载下结构参数识别的误差分析和概率方法
41、概率方法在组合计数证明中的应用
42、基于非概率方法的结构全寿命总费用评估
43、概率方法在组合数学中的应用
44、概率方法与邻点可区别全染色的色数上界
45、既有钢筋混凝土结构耐久性评定的概率方法
46、概率方法在多任务EEG脑机接口中的应用研究
47、应用概率方法对居住小区给水设计秒流量的推求
48、概率方法与图的染色问题
49、概率方法对居住小区设计秒流量的推求
50、概率方法在组合数学中的某些应用
51、概率方法在组合恒等式证明中的应用
52、遗传算法的研究与应用
53、基于空间算子代数理论的链式多体系统递推动力学研究
54、关于Weidmann猜想及具有转移条件微分算子的研究
55、实数编码遗传算法杂交算子组合研究
56、基于OWA算子理论的混合型多属性群决策研究
57、序列算子与灰色预测模型研究
58、具有转移条件的Sturm-Liouville算子和具有点作用的Schrodinger算子谱分析的研究
59、高精度径向基函数拟插值算子的构造及其应用
60、多线性算子加权Hardy算子与次线性算子的相关研究
数学建模论文题目
1、高中数学核心素养之数学建模能力培养的研究
2、小学数学建模数字化教学的设计与实施策略——以“自行车里的数学问题”为例
3、培养低年段学生数学建模意识的微课教学
4、信息化背景下数学建模教学策略研究
5、数学建模思想融入解析几何的实际应用探讨
6、以数学建模为平台培养大学生创新能力的SWOT分析──以内蒙古农业大学为例
7、基于高等数学建模思维的经济学应用
8、以数学建模促进应用型本科院校数学专业的发展
9、高等代数在数学建模中的应用探讨
10、融入数学建模思想的线性代数案例教学研究
11、以“勾股定理的应用”为例谈初中数学的建模教学
12、经管概率统计中的数学建模思想研究——评《经管与 财税 基础》
13、数学建模实例——河西学院校内充电站最佳选址问题
14、基于数学建模探讨高职数学的改革途径
15、大数据时代大学生数学建模应用能力的提升研究
16、“数学写作之初见建模”教学设计及思考
17、大学数学教学过程中数学建模意识与方法的培养简析
18、基于建模思想的高等数学应用研究
19、小学数学建模教学实践
20、依托对口支援平台培养大学生的数学建模能力
21、跨界研究在数学建模教与学中的应用
22、基于结构参数的机织物等效导热率数学建模
23、数学建模对大学生综合素质影响的调查研究
24、计算机数学建模中改进遗传算法与最小二乘法应用
25、数学建模在高中数学课堂的教学策略分析
26、发动机特性数字化处理与数学建模
27、数学建模中的数据处理——以大型百货商场会员画像描绘为例
28、数学建模竞赛对医学生 学习态度 和自学能力的影响
29、数学建模思想与高等数学教学的融会贯通
30、试论数学建模思想在小学数学教学中的应用
31、浅析飞机地面空调车风量测控系统数学建模及工程实施
32、高中数学教学中数学建模能力的培养——基于核心素养的视角
33、注重数学建模 提炼解题思路——对中考最值问题的探究
34、在数学建模教学中培养思维的洞察力
35、刍议数学建模思想如何渗透于大学数学教学中
36、数学建模竞赛背景下对高校数学教学的思考
37、数学建模课程对高职学生创新能力的培养探究
38、高等数学教学中数学建模思想方法探究
39、初中数学教学中数学建模思想的渗透
40、无线激光通信网络海量信息快速调度数学建模
41、基于多元线性回归模型的空气质量数据校准——2019年大学生数学建模竞赛D题解析
42、中学数学建模教学行为探究
43、数学建模竞赛成果诊断倒逼教学资源库优化的机制研究
44、基于数学建模活动的高校数学教学改革
45、数学建模与应用数学的结合研究
46、谈初中数学建模能力的培养
47、数学建模在初中数学应用题解答中的运用
48、基于数学建模思想的高等数学 教学方法 研究
49、数学建模融入高等数学翻转课堂模式研究
50、数学软件融入数学建模课程教学的探讨
最新小学数学教学论文题目
小学数学教材问题探析
小学数学生活化教学研究
小学数学___教学方法有效性分析
小学数学多媒体课件设计研究
小学生数学思维培养探究
小学数学中创新意识的培养
数学作业批改中巧用评语
新课标下小学数学教学改革研究
数学游戏在小学数学教学中的应用
《9和几的进位加法》教学设计
小学数学教学中素质 教育 研究
小学数学学困生的转化策略
小学数学教学中的情感教育
《六的乘法口诀》教学 反思
浅谈数学课堂中学生问题意识的培养
问答式学习课堂教学怎样转向小组合作学习
浅谈农村课堂的有效交流
浅谈在实践活动中提高学生解决实际问题的能力
浅谈小学应用题教学
浅谈学生合作意识的培养
“层次性体验”在数学课堂中的应用
数学课堂教学中学生探索能力的培养
小学数学低段学生阅读能力培养点滴
“观察、 品味、 顿悟” 我谈小学数学空间与图形教学
浅谈小学数学课堂教学中的“留白”
润物细无声--小班化数学作业面批有效策略的尝试
“我的妈妈体重 50 千克” 对培养良好数感的思考
“圆的面积” 教学一得
利用图解法解决逆推题
我教《24 时计时法》
《解简易方程》 教学反思
“可能性” 的反思
折线统计图折射出的“光芒”
《平均数》 教学反思
数学课堂上的“失误“也是一种资源
幽默语言在教学中的应用
“圆的认识” 教学片断与反思
计算机多媒体与小学数学教学的整
充分发挥学生的主体作用
“圆柱的体积” 教学反思
“平行四边形的面积” 听课反思
听“逆向求和应用题” 有感
小学低年级教学策略的实践与反思
“相遇问题” 建立“数学模型”
如何提高课堂语言评价的有效性
“20 以内退位减法” 教学反思
关于数学方向的优秀论文题目相关 文章 :
★ 关于数学专业毕业论文题目
★ 数学方面毕业论文题目参考大全
★ 关于数学专业毕业论文题目参考
★ 数学的优秀论文
★ 数学优秀论文范文
★ 数学学术论文的题目
★ 数学教育论文题目
★ 数学教育方向的论文范文
★ 数学教育方向相关论文(2)
新颖的数学论文题目有:
1、数学模型在解决实际问题中的作用。
2、中学数学中不等式的证明。
3、组合数学与中学数学。
4、构造方法在数学解题中的应用。
5、高中新教材中数学教学方法探讨。
6、组合数学恒等式的证明方法。
7、浅谈中学数学教育。
8、浅谈中学不等式的几何证明方法。
9、数学教育中学生创造性思维能力的培养。
10、高等数学在初等数学中的应用。
11、向量在几何中的应用。
12、情境认识在数学教学中的应用。
13、高中数学应用题的编制和一些解题方法。
14、浅谈反证法在中学教学中的应用。
15、探索证明线段相等的方法。
16、几个带参数的二阶边界值问题的正解的存在性研究。
17、关于丢番图方程1+x+y=z的一类特殊情况的研究。
18、变限积分函数的性质及应用。
19、有限集上函数的迭代及其应用。
20、小学课堂环境改着的行动研究。
21、网络环境下小学数学主题教学模式应用研究。
22、培养小学生数学学习兴趣的教学策略研究。
23、小学五年级儿童数学学习策略干预对改善其执行功能的研究。
24、小学生数学创新思维的培养。
25、促进小学生数学课堂参与的数学策略研究。
26、使学生真正成为学习的主人。
27、改革课堂教学的着力点。
28、谈素质教育在小学数学教学中的实施。
29、素质教育与小学数学教育改革。
30、浅谈学生数学思维能力的培养。
数学专业毕业论文选题方向
1动态规划及其应用问题。
2计算方法中关于误差的分析。
3微分中值定理的应用。
4模糊聚类分析在学生素质评定中的应用。
5关于古典概型的几点思考。
6浅谈数形结合在数学解题中的应用。
7高校毕业生就业竞争力分析。
8最大模原理及其推广和应用。
9 最大公因式求解算法。
10行列式的计算。
在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!数学教育论文题目(一) 1、浅谈中学数学中的反证法 2、数学选择题的利和弊 3、浅谈计算机辅助数学教学 4、数学研究性学习 5、谈发展数学思维的 学习 方法 6、关于整系数多项式有理根的几个定理及求解方法 7、数学教学中课堂提问的误区与对策 8、中学数学教学中的创造性思维的培养 9、浅谈数学教学中的“问题情境” 0、市场经济中的蛛网模型 11、中学数学教学设计前期分析的研究 12、数学课堂差异教学 13、浅谈线性变换的对角化问题 14、圆锥曲线的性质及推广应用 15、经济问题中的概率统计模型及应用 数学教育论文题目(二) 1、二阶变系数齐次微分方程的求解问题 2、一种函数方程的解法 3、微分中值定理的再讨论 4、学生数学学习的障碍研究; 5、中学数学教育中的素质教育的内涵; 6、数学中的美; 7、数学的和谐和统一----谈论数学中的美; 8、推测和猜想在数学中的应用; 9、款买房问题的决策; 10、线性回归在经济中的应用; 11、数学规划在管理中的应用; 12、初等数学解题策略; 13、浅谈数学CAI中的不足与对策; 14、数学创新教育的课堂设计; 15、中学数学教学与学生应用意识培养; 16、关于培养和提高中学生数学学习能力的探究; 17、运用多媒体培养学生 18、高等数学课件的开发 19、 广告 效益预测模型; 数学教育论文题目(三) 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的 反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 猜你喜欢: 1. 数学教育教学论文参考范文 2. 关于数学专业毕业论文题目参考 3. 数学教育专业毕业论文 4. 有关数学教育的论文范文 5. 数学教育专业毕业论文参考
数学专业毕业论文选题方向如下:
1、并行组合数学模型方式研究及初步应用。
2、数学规划在非系统风险投资组合中的应用。
3、金融经济学中的组合数学问题。
4、竞赛数学中的组合恒等式。
5、概率方法在组合数学中的应用。
6、组合数学中的代数方法。
7、组合电器局部放电超高频信号数学模型构建和模式识别研究。
8、概率方法在组合数学中的某些应用。
9、组合投资数学模型发展的研究。
10、高炉炉温组合预报和十字测温数学建模。
11、基于数学形态学-小波分析组合算法的牵引网故障判定方法。
12、证券组合投资的灰色优化数学模型的研究。
13、一些算子在组合数学中的应用。
14、概率方法在组合数学及混合超图染色理论中的应用。
15、竞赛数学中的组合恒等式。
毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。
数学是知识的工具,亦是 其它 知识工具的泉源。所有研究顺序和度量的科学均和数学有关。下文是我为大家搜集整理的关于数学小论文3000字的内容,欢迎大家阅读参考! 数学小论文3000字篇1 浅析小学数学中创设有效情境教学 新课程标准中明确规定了情境教学法在小学数学中的地位,倡导教师通过创建情境,引导学生展开学习。情境教学法的优势在于能够将抽象、难懂的数学知识更加直观地展现出来,符合小学阶段学生的学习特点以及因材施教的原则,针对小学数学教学中情境教学法的应用进行几点研究。 生活情境小学数学 高效课堂 情境教学法是倾向于学生的 教学 方法 ,而不是单纯地追求教学效果,为何要创建生活情境?它是以小学生实际能力为基础,在它们所能理解消化知识的最大范围内,运用更加便于学生理解的方式,来进行教学,从这一点可以看出生活情境完全符合因材施教,以生为本的原则,是非常值得在小学数学教学中应用和推广的。 一、小学数学课堂中情境教学法的优势 数学学科的特点是逻辑性强,要求学生具有一定的推理能力、分析能力以及理论联系实际的能力。小学阶段的数学,虽然在难度上有所控制,但是数学学科原本的性质并没有改变,它依旧具有抽象性、逻辑性以及实用性的特点,小学课本中一些图形、定义,教师如果单抽说教,学生很难理解和掌握。为了达到教有所成的目的,教师需要借助一定的教学方法,来简化这些数学知识,使学生能够更加轻松、快速地理解和掌握,情境教学法恰恰能够满足小学数学的有需求,借助情境教学法,能够将抽象知识点直观化的呈现出来,激发学生的学习欲望。教师通过构建一个个生动的情境,为学生营造更加生动、活泼的学习气氛,鼓励学生参与教学活动、学生的学习兴趣和热情被调动起来,教师的教学效率必然会得到提升。举例说明,进行“中心对称图形”这部分知识的讲解,采用传统的教学工具以及单一的口头讲述,学生很难理解其中的内涵和意义,而采用创建情境教学法,将学生带入到一个直观化的思维空间中,并通过多媒体技术将概念、关键知识点制作成动态的课件,学生很快就会投入学习状态,学习成效显著,教学效率得以提升。 二、合理创设情境,提升小学数学课堂教学效率 1.结合学生能力特点,创建教学情境 小学阶段,学生的学习能力不完善,学生第一次系统化的接触数学知识,学习起来难免会有些吃力,教师在教学情境创建的时候,应该尽量使用简单易懂、富有趣味性的语言,确保学生能够了解教师说什么,这是开展教学的第一步,在这个基础之上构建情境,才能够真正发挥情境教学的优势和作用。 比如,进行“分数的基本性质”这个知识点教学的时候,教师可以创建这样的情境:白兔子妈妈将一个苹果分成4块,准备分给白兔3兄弟吃,她将1块苹果分给了大哥,而二哥却嚷着要吃2块,妈妈没有办法就切了第2个苹果,分成了8块,给了二哥2块,可是这个时候,三弟又不开心了,他想吃3块,猴妈妈就把第3个苹果平均分成12块,给了三弟3块。那么问题来了,白兔三兄弟,谁分到的苹果最多呢?这个情境不仅富有趣味性,容易理解,同时也蕴含了把“单位1”平均分成几份,取出不同的分数,但是却表示相同的大小这个含义。 2.从学生兴趣出发,创建教学情境 首先教师要明确兴趣对于学习的重要性。激趣是学生主动学习数学的关键,激趣过程中运用运用学生熟悉并且感兴趣的话题创建情境,满足学生对于学习的各种需求,这样才能够达到提升教学效率与质量的目的,同时也培养了学生主动学习的习惯,激发了他们的学习欲望。 比如,在进行“用乘法口诀进行表内乘除法的口算”这个知识点的时候,教师可以将学生最喜欢的动画形象“熊大、熊儿”编成 故事 :有20个桃子,5个小动物,这个时候熊大和熊儿可为难了,它们要怎么分,才能够让每个小动物都获得一样多的桃子呢?这个时候学生的兴趣高涨,都会纷纷举手回答,这个导入成功的激发了学生的学习欲望和好奇心,也活跃了课堂气氛,在这样环境下,学生的学习效果会更好。教师在创建教学情境的时候,不能拘泥于一个方法,或者一种形式,根据不同的教学内容和目标,故事可以随时进行改编,即便是在课堂上,教师也可以灵活改变情境的设计,目的就是更好的带动学生学习,帮助学生更加轻松的领会数学知识和魅力。 3.结合学生心理特点,创建教学情境 创建教学情境,要注意结合小学生的心理发育特点。这个阶段游戏和动画是最能够吸引学生的手段,教师利用这一点进行情境创建,既能够寓教于乐,又做到了因材施教。在情境教学基础上,鼓励学会独立思考,强化学生数学应用意识,提升 逻辑思维 能力。 比如,“克与千克”知识点的讲解,教师可以采用小组合作做游戏的方式,游戏的规则是“比比谁最快、比比谁最准”。教师先将学会分成若干小组,每个小组都发一包黄豆,一瓶矿泉水,一本新华字典。然后先让这些小组自行估算这些物品的重量,然后将其填入表格中。然后教师再带领大家用称来测量,看看哪个小组估算最准确,并给予这个小组的成员一定的奖励,通过这样的游戏方法,锻炼学生的观察、估算以及验证意识。 三、结束语 教师应该基于教材基础,结合学生的自身的学习特点、兴趣等各方面因素,合理创建教学情境,丰富课堂教学内容,增加课堂教学趣味性。通过大量的实践教学分析发现,在小学数学教学中引入情境教学法,不仅有效提升了学生学习数学的兴趣,也培养了学生独立思维的能力,提升了小学数学课堂教学效率。 数学小论文3000字篇2 浅析中学数学的兴趣教学 中学数学在难度上和内容上都比小学阶段的数学要深广,因此学生在学习的时候经常出现畏难情绪,一开始产生学习困难而没有得到正确的解决,因此便一步步丧失对自己的信心。例如不少学生觉得自己学不好数学就是因为自己不够聪明,从而丧失学习的兴趣,上课心不在焉,很难集中注意力,这都需要教师给予高度的重视。如何有效解决这些负面现象的影响是教师应该着手的方面之一,我认为,要想真正使学生主动喜欢学习数学就必须要有兴趣的支撑,中学阶段学生自我的意识和约束力相对较弱,学习目的性不强,因此更加需要兴趣的辅助作用,有了兴趣之后,学生就会积极主动参与到学习活动中来,认真学习课本内容甚至还会对于一些拓展思考题有兴趣,自己进行研究探求。以下我结合自身的教学 经验 针对中学数学的兴趣教学谈几点看法。 一、建立和谐的师生关系 帮助学生培养兴趣,教师必须关注师生关系的建构。在中学阶段教师和学生相处的时间较长,因此教师自身对于学生的态度会对学生产生较大影响。尤其是中学时期,学生的个性和 兴趣 爱好 、人格、情感、意志等都在发展的过程中,教师的行为和语言都会对学生产生持久的影响,教师可以充分利用这一点,通过自身对学生的数学学习兴趣产生有效的引导作用。 第一,数学教师无论是否担任班主任都应该对学生十分用心。关注学生整体的发展,不仅仅是要求学生一定要把数学学好,占有学生课下的时间,实践证明数学教师如果要求过分苛刻会令学生产生逆反心理。例如,在每个阶段性考试进行完之后,询问学生整体的学习情况,并且及时给出建设性意见。学生都希望能够得到老师的关注和鼓励,这对于学生兴趣的建立有莫大的好处,良好的师生关系能够推动学生兴趣的培养进度。 第二,教师要关注学生非智力因素的发展。作为数学教师仍然有义务帮助学生建立积极乐观的价值观,教师应该以正确的价值引导,使学生对数学形成正确的认识,在心理上真正接受这门学科。例如,教师在课上讲到一些数学定理的时候,教师可以引导学生对数学家进行学习了解,继承和发扬数学家的精神。这需要教师明确自身的教学任务和作为 教育 者的责任,全面推动学生品质和能力的发展,当学生感到教师的用心和关注之后自然会产生亲切感,这无疑会对课堂教学效果和师生和谐关系的构建起到推动作用。 总之,师生关系的建立需要教师充分调动一切积极因素,帮助学生建立对教师的正确态度和认识,促进他们对数学学科的关注和学习,这是兴趣建立的重要步骤。 二、注重学生在教学中的主体性 主体性是建立兴趣的重要支撑,有了主体性,学生就会自觉产生对数学学习的认识,并且积极进行知识的学习,甚至会主动发现问题、解决问题,进行预习和主动复习等。中学阶段的数学教学内容多且课时紧,教师在课堂上都是紧赶慢赶,一节课下来以自己为中心,灌输式的学习方式严重压抑学生此阶段继续发展的主体性,导致学生无法获得相应的自由空间来发展自己,从而致使兴趣的失落。因此,教师应该充分尊重学生的主体性,在教学的过程中帮助学生建构主体性特征和能力,从而推动兴趣的发展。那么如何在教学形式和内容方面全方位建构学生的主体性呢?我认为从以下几点出发效果明显。 第一,在课堂教学中,教师应该减小功利性,不要总是告诉学生什么考什么不考,要让学生真正对于数学形成自己的认知感受,而不是为了应付考试才学数学。那么,教师就应该加大拓展思考题的训练和学习,打开学生的思维,形成开放性思维模式和创造性思维能力,这是建立主体性的主要内容之一。 第二,教师要采取启发式的教学方法,在课堂授课的过程中,很多教师发现虽然让学生主动预习,但是由于中学阶段学业压力较大,学生没有养成习惯进行预习,也没有时间和精力去提前预习准备,而这一过程实际上是很重要的,尤其对于学生主体性的发展很关键。因此,教师应该提前为每个阶段的学生设置合适的预习目标,并且给学生充分的时间进行预习讲解,学生之间相互检查和学习可以增强他们自我表现的意识,在自己预习的过程中,逐步养成积极主动的学习习惯,继而对今后的发展奠定良好的基础。 总之,主体性的建立是培养学生学习兴趣的必要过程,教师应该结合该阶段学生的发展特征进行主体性的建构和教学过程中的设置,充分尊重学生的发展需求和方向,满足其自我表达和个性发展的欲求,从而产生良好的教学影响。 三、加强合作 合作是开展兴趣教学的推动力和组成部分之一。合作教学和合作学习本身作为一种教学方法就是中学数学教育的重要内容,但是合作又可以作为兴趣教学的重要组成部分而开展,提高学生之间的互帮互助,有效帮助学困生的提升和困难克服,同时帮助学生在自由轻松的学习氛围中感受数学学习的乐趣,从而建立持久的兴趣。 第一,合作是学生之间的合作,教师要对学生进行有效的分组,并不是随机进行分组,小组的构成合理可以提高学生的参与兴趣。例如,有的小组构成差距过大,学困生产生自卑心理,几乎很少参与到合作中来,只会产生负面作用,因此教师要根据学生的性格发展和学习水平进行合理划分。 第二,合作不仅仅是学生之间的合作,也需要教师的参与,学生自由合作讨论可能会降低效率,学生自控力差,很难高效完成学习任务,因此教师要充分发挥引导和监督的作用,帮助学生快速完成任务,从而建立自信,在自豪感的形成过程中,学生逐步产生对数学的喜爱之情。 第三,教师也要充分利用多媒体来激发学生的兴趣,多媒体是符合时代发展的教学手段,学生对于电脑和高科技充满好奇和兴趣,教师应该及时学习最新教学技术,应用到数学课堂教学中来,作为激发因素帮助学生建立学习兴趣。总之,开展兴趣教学形式多样,需要广大教师群体不断进行探索和完善。 通过以上论述,我发现中学阶段数学的兴趣教学必须以学生的发展特征和需求为立足点,充分发挥教师的能动作用,围绕建立主体性为中心,关注学生全方面的发展情况和趋势,从而实现兴趣的有效建立。 猜你喜欢: 1. 数学文化论文3000字 2. 初中数学论文3000字 3. 数学论文范文3000字 4. 数学文化的论文范文参考 5. 物理学术论文3000字
无论是身处学校还是步入社会,大家都接触过论文吧,论文是描述学术研究成果进行学术交流的一种工具。你知道论文怎样写才规范吗?以下是我为大家收集的数学小论文作文,仅供参考,大家一起来看看吧。
星期天,全家人在一起讨论清明节回老家扫墓的事。谈着谈着,我心里忽然冒出了一个疑问:这里离老家有多远呢?”我问妈妈,妈妈笑了,说:你说呢?你上了这么多年学,一定会有办法知道的,对吧?”
我想了想,灵光一闪,对了,可以用我们最近学的比例尺的知识来算。我立即拿来地图,找到了泰州市,却怎么也找不到老家所在地顾高镇。怎么办呢?我冥思苦想,突然灵机一动:我可以先找到离老家顾高镇最近的乡镇黄桥镇,量出地图上泰州到黄桥的距离,再减去一些,就是地图上泰州到老家的大约的距离了!说干就干,我立即量出地图上泰州到黄桥的距离,它是0。6cm。因为老家比黄桥离泰州更近些,我便把减去了,变成了。因为这份地图的比例尺是1:6000000,我便用0。5×6000000=3000000cm,3000000cm=30km。
我立即向妈妈报出了我的答案:大约30千米,本以为会得到妈妈的表扬,可谁知妈妈却疑惑地说:好像没这么近吧?”听了妈妈的话,我也疑惑不解:怎么会这样?”我又来到地图前,重新量起来。量着量着,我突然发现了其中的奥秘:我量的是地图上两点间的直线距离,而实际的道路不是直线的,是绕来绕去的,所以实际路程一定比依据地图计算出来的远。
我把我的发现告诉了妈妈,妈妈也恍然大悟:对!就是这样!你真聪明!”
在学校里,学了如何算体积的,急忙想算一下周围用品的体积。突然,我的目光集中在我的未开封清风面巾纸上,有了,就只算单张面巾纸的体积。
既然算单张的,就要先算整包的。我拿出尺子,分别量出了长,宽,高。
长:7。4厘米 体积为:7·4×5。6×2。5=103。6立方厘米
宽:5,6厘米 但是,我突然想到,面巾纸是可以压的扁一点的,这不
高:2。5厘米 就减少了体积吗?我思考了几分钟,想到既然是测量未开封的的,就应该是未压扁的。想到这,我又看到了我的数据。可能是量的是压得。最后仔仔细细量重新变动数据。
长:7。5厘米 体积为:7·5×5。5×2。5=立方厘米
宽:5,5厘米 眼看就要成功了,可我猛地发现,包装塑料纸也是有体
高:2。5厘米 积的,可是又有什么办法。思考许久,忽然,我想到了一个很原始的办法。我抽出里面的面巾纸,把塑料包装纸对折4着,这成了一个小正方体。
长:2。1厘米 体积为:2。1×1。8×0。3=1。134立方厘米
宽:1,8厘米 虽然可能有误,但是我也想不出其他办法了。
高:0。3厘米
最后算式:(103,125—1。134)÷10(一包面巾纸里有10张)=10。1991立方厘米
经过这次,我终于享受到写数学小论文的快乐。
今天,我无意间发现里一个有趣的测试,这是一个由印第安人发明的水晶球心理测试。
我打开页面,看了看规则,是这样的:随便从10—99之间选一个数字,把十位数和个位数相加,再把原数减去相加的数,最后记住得出数字的图案,点一下水晶球,就会出现那个你记住的图案了(水晶球旁边有10——99的数字,数字旁有一种图案)。如:23 2+3=5 23——5=18。
我看好后,就选了78 7+8=15 78——15=63。我又看了看63旁的图案,便点了点水晶球,发现出现的图还真的是我记下的图。我又选了一些数字,算了算,水晶球都可以准确的出现我记下的图案。好神奇啊!
我心想:水晶球为什么知道我记下的图案啊?
于是,我做了一个很笨的小实验:从10——99的数字都算一遍。结果发现得出来的数都是9的倍数:9。18。27。36。45。54。63。72。我又看了看这些数字边的图案,都是一样的。我说:”哦,所以水晶球会知道我记下的图案啊!哈哈哈!“
我发现数学其实无处不在。只要我们善于发现,善于观察,善于思考,数学的海洋将任我们翱翔!
西瓜是夏天中最爱欢迎的水果。今天,妈妈买回了一个又大又圆的`西瓜。于是,我们准备吃西瓜了!
小妹妹问我:”嘉嘉姐姐,你要吃多少呀!“我想了想说,”我吃这个西瓜的1/2吧。“”1/2是什么?“她问。”1/2是分数,是把一个东西平均分成2份,取其中的1份。“我说。”哦。“小妹妹似懂非懂地说。”我吃这个西瓜剩下的1/2。“妈妈插话道。小妹妹问:”剩下的1/2是不是嘉嘉姐姐留下的全部吃掉啊?那我没得吃了?“”哈哈!“我和妈妈哈哈大笑。”不是这样的。“妈妈笑着说。我接话道:”剩下的1/2就是把我吃剩的那部分看作一个整体,再把这部分平均分成2份,取其中的1份。“”是这样啊!那我还是有西瓜吃的了!“小妹妹恍然大悟。小妹妹调皮地说:”以后我要先吃1/2,这样我的1/2比你的多,这次不划算!“”你的,我哪吃得了这么多?你想吃多少就吃多少!“我们都笑了!
你现在认识分数了吗?分数还有很多哦!等着你去发现。让我们一起踏上寻找数学的旅程吧!
一年一度的双11“剁手节”来了。
今天下午,妈妈坐在沙发上,翻看着天猫里面的商品准备在明天双十一抢购。我一直想买一个做奶茶的工具,妈妈是一个实用主意者,没有用的东西一般都不会买回来。我很担心提出需求后妈妈不给买,又说我乱花钱。忍不住内心的想要还是说了出来。
“妈妈可以给我买个玩具吗”?我轻声细语的问。妈妈说,只要我能回答她一个数学问题可以买,我爽快的答应了。我们搜了做奶茶的工具,出现了许多的旗舰店,其中有两家销量最好的都各有各的优惠。它们一套都是68。5元,但是甲店是买两套送一套,乙店是打七折。我要买三套,妈妈问我哪一家便宜,我说甲店是68。5×2=137元(3套),乙店是68。5×3=205。5元,205。5×0。7=143。85元(3套)。143。85大于137,所以甲店划算。当我准确算出答案时,妈妈很爽快的我买了做奶茶的工具。
数学知识在生活中无处不在,我要找到数学的乐趣,遨游在数字的海洋里。
关于速度一向学习成绩不好的我,在无意中发现了一道题,并且给做出来了,下面我给大家分享一下吧!在20xx年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电。该地供电局组织电工进行抢修供电局距离抢修工地15千米。抢修车装载着所需材料先从供电局出发,15分钟后电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地,已知吉普车速度是抢修车速度的1。5倍,求这两种车的速度。
解:1。设抢修车的速度为x千米/时,则吉普车的速度为1。5x千米/时.由题意走相同路程15千米,吉普车比抢修车快15分钟(即0。25小时)得方程15/X-15/1。5X=0。25解得X=20千米/小时,则1。5X=30千米/小时
答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.
2。因为走的路程(S=15KM)一样,人用的时间是X。材料用的时间是X+15,即(15÷X)÷(15÷(X+15))=1。5,一元一次方程,得X=30分钟,即0。5小时,那么吉普车的速度就是30KM/H,抢修车20KM/H
答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.
3。设吉普车用的时间为x小时。
根据题意得:x+15=1。5x
一天,数学老师提出了一个问题:1+2+3+4+5+6……一直加到100的得数是多少?那么,一直加到1000和10000呢?用简便方法计算。
算式:1+2+3+4+5+6+7……+100=5050 5050×10=50500 50500×10=505000
答:1一直加到100的得数是5050,一直加到1000和10000各是50500和505000.
简便算法:或许有些同学会觉得这个算是太长,需要计算器!no,那就错了。只要仔细看看就可以发现1和99可以凑成100,2和98可以凑成100,3和97也可以凑成100,4和96,5和95,6和94 ,7和93,8和92,9和91,10和90,11和89……一直这样凑成100,结果可以得到能凑成50个100,就是5000,但是还剩下一个50单独一个数字,就可以拿5000 + 50 =5050,得出1一直加到100的得数。但有人会问了,1一直加到1000和10000为什么不着要算呢?因为100和1000的进率是10倍,1000和10000的进率也是10倍,所以可以拿1一直加到100的得数5050乘10倍等于50500,再拿50500乘10倍等于5050000。行对应的,1一直加到100000、1000000、10000000......以此类推,都可以这样算,当然,你也可以更深的理解这道题的规律哦!
今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。
妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?”
我思索了一会儿,不慌不忙地说:“可以这样算:
5/1=5
30*5=150(小时)200小时>150小时
还可以这样算:
5/1=5
200/5=40(小时)30小时<40小时
由这几步可得出结论,节能灯泡省钱。”
妈妈又问我:“很好。再想想看,还有没有别的办法来算?”
我又想了一会儿,一个字一个字地说:“可以用我这学期才学的?百分数?来算。也可以这样算:
5/200*100=*100=
1/30*100≈*100=
>
或者这样算:
200/5*100=40*100=4000
30/1*100=30*100=3000
4000>3000
因此,也是节能灯泡便宜。。”
我和妈妈买了比较划算的节能灯泡回去了。
经过这件事,我明白了:“生活处处有数学”这个道理。
今天,老师给我们讲了一道三级训练上的重点难题:一个长100米,宽80米的广场中间留了宽4米的人行道,把广场平均分成4块,求每块的面积是多少?
看到题目后,有的人开动脑筋,寻找方法;有的人望着天花板干瞪眼;我绞尽脑汁使劲地想,终于思考出一种方法,于是赶紧举起小手,老师便叫我起来回答,我大声地说:“100-4=96米;96÷2=48米;80-4=76米;76÷2=38米;38×48=1824平方米”。
“你能说说你的思考方法吗?”沈老师问。“先把长减去4,算出两块的长,再除以2就得出一块小广场的长;宽也用同样的方法,最后长和宽相乘便得出一块的面积了。”
沈老师又问“还有其他的方法吗?”
夏雨航站起来回答,他连说了好几个算式,可我们却不懂。
老师又让大家想其他方法,大家看起来信心十足,但又害怕不对又都低下了头。
于是沈老师就带着我们一起理解了各个算式,这困难就迎刃而解了.
通过这节课我明白了一个道理:世上无难事,只怕有心人,只要你肯想,就一定能想出解决问题的办法来!
有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”
这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。
比如,在我爸爸给我买的一本数学拓展题中,有一题思考题是这样说的:”一辆客车从东城开向西城,每小时行45千米,行了2。5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?“ 这时,我就在数学草稿纸上这样写: 45×2。5=112。5(千米),112。5+18=130。5(千米),130。5×2=261(千米),答:东西两城相距261千米。
但我又看了看,发现有点不对劲。原来,我忽略了一个重要的东西,就是:这时刚好离东西两城的中点18千米,其中的”离“,这到底是没到中点呢?还是过了中点呢?如果是还没到中点,离中点还差18千米的话,就是我刚刚这么写。但如果是到了中点多了18千米,那就应该这么写:45×2。5=112。5(千米),112。5——18=94。5(千米),94。5×2=189(千米)。
那到底是怎么写呢?我便向爸爸求助,我跟爸爸讲了这件事后,又给爸爸看了看式子,结果,爸爸却说:”嗯……你写的这两个式子都对。都可以写。“
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,根据生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案。
今天早上一起来,妈妈就宣布:由于家里停水,今天全家到欧尚那边去吃早餐,顺便到超市买东西。
到了那边,我们准备先去吃早餐,先来到了珅府捞面。可是,这里一碗面就要3、40块钱,好贵,而且更加“惊悚”的是,这里的一个鸡爪要5块钱。我们觉得太贵不合算,就来到了“丸来丸趣”,没想到,仅仅一墙之隔,价钱差距就这么大:这里一碗面只要9块钱。吃完早餐,我们就开始逛超市啦!我们先买了一袋我和爸爸最喜欢吃的青桔子,总共数量是11个,价钱是元,差不多一个5毛钱左右。我们又去买了5个鸡爪,一共元。这个鸡爪的价格简直与珅府捞面的价格有着“天壤之别”,一边是不到1元/个,一边是5元/个。来到水果区,我们买了一袋青蛇果,3个共元,这么小的一个青蛇果差不多一个要6元,好贵!接下来,我们又去买了一个哈密瓜,元,没想到,3个小小的青蛇果比一个大大的哈密瓜整整还贵出了元。由于我在邻居桃桃家里尝过黄桃很好吃,我们又去买了3个大大的黄桃,一共元,平均下来每个黄桃是元。我们买完所有需要的东西去结帐,算上这里没有提到的东西,一共是500元。
这次,我从买东西里面学到了很多数学知识,今天真是太开心了!
今天是中秋节,我们一家人可高兴了。爸爸妈妈说:“今天是个好日子,我们来玩一个抓纸的游戏怎么样?”我点了点头,爸爸拿了4个形状相等,大小相同的纸,分别把2张红纸和2张蓝纸放进这个袋子里说:“这个不是透明袋子,里有2张红和2张蓝纸,如果你摸到2张都是红纸或2张都是蓝纸的话,我就给你5块钱,否则你给我5块钱,好不好?”我说:“那我可不干。
”爸爸问:“这是为什么呀?你不是也有机会挣钱吗?”我有说:“虽然我也能挣钱,可是机会并没有你多呀!你想,一共有4张纸,如果我第一张摸到的是红色,袋子里还剩下2张蓝色纸和一张红色纸,那么再摸到红色的机会只有1/3,而摸到蓝色的机会却是2/3;如果我第一张摸到的是蓝色,那么再摸到蓝色的机会只有1/3,而摸到过红色的机会却是2/3,所以你当然比我更容易挣钱喽。”爸爸说:“不错吗,小子,看你也挺聪明的嘛,这样也迷不到你,好吧,看你今天表现得还不错,奖励你五块钱吧!”我高兴极了,今天真是个好日子。
爸爸是一个的十足的数学迷,平时最爱出些数学题来考我了。这不,今天闲来无事又向我出题了,我问道“:爸爸今儿要出啥题?我奉陪到底:”爸爸看我自信满满,满脸笑意说:“输了可别哭鼻子,请听题:有一师徒二人共同加工26个零件,徒弟先到车间,就先拿了一些零件放在自己的机床边。师傅”来了,一看徒弟要拿去加工的零件太多了,他除了拿了留给他的零件外,又从徒弟那里拿了一半零件。徒弟觉得自己应该多干一点,又从师傅那里拿来一半。师傅不肯,徒弟只好再给师傅5个零件,最后还是师傅比徒弟多加工2个零件。请问,徒弟最初准备加工零件是多少个?“我不禁想:可以先求出徒弟最后加工零件(26÷2)÷2=12个。徒弟没给师傅5个零件时,徒弟有零件12+5=17个,徒弟没从师傅那里拿走一半之前,师傅有9×2=18个,而这时徒弟只有零件26——18=8个,因此师傅没拿走徒弟手中零件的一半之前徒弟有零件8×2=16个。这时,爸爸拍了我的肩,说:”想出来了没。“我这才恍过神来,答道:”徒弟最初准备加工零件16个。“
爸爸故弄玄虚地问:”你确定吗,还要改吗?“我胸有成竹的摇了摇脑袋,说:”不用改了 。“”恭喜你……答对了!“
我高兴的一蹦三尺高,心里乐滋滋的,像吃了蜜一样甜。
我和妈妈去金鸡湖玩。途中看到很多交通指示牌。有的写着离前方1000米,有的500米,也有3公里等等。我就好奇的问妈妈:”妈妈,10公里有多少米啊?“妈妈笑着对我说就是10000米啊!”啊?我以为10米呢!“我对妈妈说。
”哦,儿子你知道一公里等于多少米么?“妈妈问
”100米?“我试着回答
”错了,一公里等于1000米!“妈妈说
”那为什么人们不说一公里是1000米,而以公里计算呢?“我问道
”那样太麻烦啦,如果是几百几千甚至几万公里,以米计算的话那得写多少个0啊,人们为了便于记录,就以公里代替,1000米,10000米,100000米等等,只要把后面的3个0去掉,就是公里数啦!“妈妈说。
”我懂了,妈妈,1000米去了3个0就是1公里,10000米去了3个0就是10公里,100000米去了3个0就是100公里!“我兴奋地告诉妈妈
”儿子,你真棒!“妈妈赞许的说道。
哈哈,原来计算公里数是有窍门的呀!
可以自己删减删减。 数学论文 一、数学技能的含义及作用 技能是顺利完成某种任务的一种动作或心智活动方式。它是一种接近自动化的、复杂而较为完善的动作系统,是通过有目的、有计划的练习而形成的。数学技能是顺利完成某种数学任务的动作或心智活动方式。它通常表现为完成某一数学任务时所必需的一系列动作的协调和活动方式的自动化。这种协调的动作和自动化的活动方式是在已有数学知识经验基础上经过反复练习而形成的。如学习有关乘数是两位数的乘法计算技能,就是在掌握其运算法则的基础上通过多次的实际计算而形成的。数学技能与数学知识和数学能力既有密切的联系,又有本质上的区别。它们的区别主要表现为:技能是对动作和动作方式的概括,它反映的是动作本身和活动方式的熟练程度;知识是对经验的概括,它反映的是人们对事物和事物之间相互联系的规律性的认识;能力是对保证活动顺利完成的某些稳定的心理特征的概括,它所体现的是学习者在数学学习活动中反映出来的个体特征。三者之间的联系,可以比较清楚地从数学技能的作用中反映出来。 数学技能在数学学习中的作用可概括为以下几个方面: 第一,数学技能的形成有助于数学知识的理解和掌握; 第二,数学技能的形成可以进一步巩固数学知识; 第三,数学技能的形成有助于数学问题的解决; 第四,数学技能的形成可以促进数学能力的发展; 第五,数学技能的形成有助于激发学生的学习兴趣; 第六,调动他们的学习积极性。 二、数学技能的分类 小学生的数学技能,按照其本身的性质和特点,可以分为操作技能(又叫做动作技能)和心智技能(也叫做智力技能)两种类型。 l.数学操作技能。操作技能是指实现数学任务活动方式的动作主要是通过外部机体运动或操作去完成的技能。它是一种由各个局部动作按照一定的程序连贯而成的外部操作活动方式。如学生在利用测量工具测量角的度数、测量物体的长度,用作图工具画几何图形等活动中所形成的技能就是这种外部操作技能。操作技能具有有别于心智技能的一些比较明显的特点:一是外显性,即操作技能是一种外显的活动方式;二是客观性,是指操作技能活动的对象是物质性的客体或肌肉;王是非简约性,就动作的结构而言,操作技能的每个动作都必须实施,不能省略和合并,是一种展开性的活动程序。如用圆规画圆,确定半径、确定圆心、圆规一脚绕圆心旋转一周等步骤,既不能省略也不能合并,必须详尽地展开才能完成的任务。 2.数学心智技能。数学心智技能是指顺利完成数学任务的心智活动方式。它是一种借助于内部言语进行的认知活动,包括感知、记忆、思维和想象等心理成分,并且以思维为其主要活动成分。如小学生在口算、笔算、解方程和解答应用题等活动中形成的技能更多地是一些数学心智技能。数学心智技能同样是经过后天的学习和训练而形成的,它不同于人的本能。另外,数学心智技能是一种合乎法则的心智活动方式,“所谓合乎法则的活动方式是指活动的动作构成要素及其次序应体现活动本身的客观法则的要求,而不是任意的”。这些特性,反映了数学心智技能和数学操作技能的共性。数学心智技能作为一种以思维为主要活动成分的认知活动方式,它也有着区别于数学操作技能的个性特征,这些特征主要反映在以下三个方面。 第一,动作对象的观念性。数学心智技能的直接对象不是具有物质形式的客体本身,而是这种客体在人们头脑里的主观映象。如20以内退位减法的口算,其心智活动的直接对象是“想加法算减法”或其他计算方法的观念,而非某种物质化的客体。 第二,动作实施过程的内隐性。数学心智技能的动作是借助内部言语完成的,其动作的执行是在头脑内部进行的,主体的变化具有很强的内隐性,很难从外部直接观测到。如口算,我们能够直接了解到的是通过学生的外部语言所反映出来的计算结果,学生计算时的内部心智活动动作是无法看到的。 第三,动作结构的简缩性。数学心智技能的动作不像操作活动那样必须把每一个动作都完整地做出来,也不像外部言语那样对每一个动作都完整地说出来,它的活动过程是一种高度压缩和简化的自动化过程。因此,数学心智技能中的动作成分是可以合并、省略和简化的。如20以内进位加法的口算,学生熟练以后计算时根本没有去意识“看大数”、“想凑数”、“分小数”、“凑十”等动作,整个计算过程被压缩成一种脱口而出的简略性过程。 三、数学技能的形成过程 1.数学操作技能的形成过程。 数学操作技能作为一种外显的操作活动方式,它的形成大致要经过以下四个基本阶段。 (1)动作的定向阶段。这是操作技能形成的起始阶段,主要是学习者在头脑里建立起完成某项数学任务的操作活动的定向映象。包括明确学习目标,激起学习动机,了解与数学技能有关的知识,知道技能的操作程序和动作要领以及活动的最后结果等内容。概括起来讲,这一阶段主要是了解“做什么”和“怎样做”两方面的内容。如画角,这一阶段主要是了解需画一个多少度的角(即知道做什么)和画角的步骤(即怎么做),以此给画角的操作活动作出具体的定向。动作定向的作用是在头脑里初步建立起操作的自我调节机制;通过对“做什么”和“怎么做”的了解而明确实施数学活动的程序与步骤,从而保证在操作中更好地掌握其动作的活动方式。 (2)动作的分解阶段。这是操作技能进入实际学习的最初阶段,其作法是把某项数学技能的全套动作分解成若干个单项动作,在老师的示范下学生依次模仿练习,从而掌握局部动作的活动方式。如用圆规按照给定的半径画圆,在这一阶段就可把整个操作程序分解成三个局部动作:①把圆规的两脚张开,按照给定的半径定好两脚间的距离;②把有针尖的一脚固定在一点上,确定出圆心;③将有铅笔尖的一脚绕圆心旋转一周,画出圆。通过对这三个具有连续性的局部动作的依次练习,即可掌握画圆的要领。学生在这一阶段学习的方式主要是模仿,一方面根据老师的示范进行模仿;另一方面也可以根据有关操作规则的文字描述进行模仿,如根据几何作图规则对各个动作活动方式的表述进行模仿。模仿不一定都是被动的和机械的,“模仿可以是有意的和无意的;可以是再造性的,也可以是创造性的。”②模仿是数学操作技能形成的一个不可缺少的条件。 (3)动作的整合阶段。在这一阶段,把前面所掌握的各个局部动作按照一定的顺序连接起来,使其形成一个连贯而协调的操作程序,并固定下来。如画圆,在这一阶段就可将三个步骤综合起来形成一体化的操作系统。这时由于局部动作之间尚处在衔接阶段,所以动作还难以维持稳定性和精确性,动作系统中的某些环节在衔接时甚至还会出现停顿现象。不过,总的来讲这一阶段动作之间的相互干扰逐步得到排除,操作过程中的多余动作也明显减少,已形成完整而有序的动作系统。 (4)动作的熟练阶段。这是操作技能形成的最后阶段,在这一阶段通过练习而形成的数学活动方式能适应各种变化情况,其操作表现出高度完善化的特点。动作之间相互干扰和不协调的现象完全消除,动作具有高度的正确性和稳定性,并且不管在什么条件下全套动作都能流畅地完成。如这时的画圆,不需要意志控制就能顺利地完成全套动作,并且能充分保证其正确性。上述分析表明,数学操作技能的形成要经过“定向→分解→整合→熟练”的发展过程。在这一过程中每一个发展阶段都有自己的任务:定向阶段的主要任务是掌握操作的结构系统和每一个步骤操作的要领;分解阶段的主要任务是对活动的操作系列进行分解,并逐一模仿练习;整合阶段的主要任务是在动作之间建立联系,使活动协调一体化;熟练阶段的任务则主要是使整个操作过程高度完善化和自动化。 2.数学心智技能的形成过程。 关于数学心智技能形成过程的研究,人们比较普遍地采用了原苏联心理学家加里培林的研究成果。加里培林认为,心智活动是一个从外部的物质活动到内部心智活动的转化过程,既内化的过程。据此,在这里我们把小学生数学心智技能的形成过程概括为以下四个阶段。 (1)活动的认知阶段。这是数学心智活动的认知准备阶段,主要是让学生了解并记住与活动任务有关的知识,明确活动的过程和结果,在头脑里形成活动本身及其结果的表象。如学习除数是小数的除法计算技能,在这一步就是让学生回忆并记住除法商不变性质和除数是整数的小数除法法则等知识,在此基础上明确计算的程序和每一步计算的具体方法,以此在头脑里形成除数是小数除法计算过程的表象。认知阶段实际上也是一种心智活动的定向阶段,通过这一阶段,学习者可以建立起进行数学心智活动的初步自我调节机制,为后面顺利进行认知活动提供内部控制条件。这一阶段的主要任务是在头脑里确定心智技能的活动程序,并让这种程序的动作结构在头脑里得到清晰的反映。 (2)示范模仿阶段。这是数学心智活动方式进入具体执行过程的开始,这一阶段学生把在头脑里已初步建立起来的活动程序计划以外显的操作方式付诸执行。不过,这种执行通常是在老师指导示范下进行的,老师的示范通常是采用语言指导和操作提示相结合的方式进行的,即在言语指导的同时呈现活动过程中的某些步骤。如计算乘数是两位数的乘法时,一方面根据运算法则指导运算步骤;另一方面在表述运算规定的同时重点示范用乘数十位上的数去乘被乘数所得的部分积的对位,以此让学生在老师的帮助、指导下顺利地掌握两位数乘多位数计算的活动方式。在这一阶段,学生活动的执行水平还比较低,通常停留在物质活动和物质化活动的水平上。“所谓物质活动是指动作的客体是实际事物,所谓物质化活动是指活动不是借助于实际事物本身,而是以它的代替物如模拟的教具、学具,乃至图画、图解、言语等进行的”。③如解答复合应用题,在这一步学生通常就是借助线段图进行分析题中数量关系的智力活动的。 (3)有意识的言语阶段。这一阶段的智力活动离开了活动的物质和物质化的客体而逐步转向头脑内部,学生通过自己的言语指导而进行智力活动,通常表现为一边操作一边口中念念有词。如两位数加两位数的笔算,在这一步学生往往是一边计算,口中一边念:相同数位对位,从个位加起,个位满十向十位进1。很明显,这时的计算过程是伴随着对法则运算规定的复述进行的。在这一阶段,学生出声的外部言语活动还会逐步向不出声的外部言语活动过渡,如两位数加两位数的笔算,在本阶段的后期学生往往是通过默想法则规定的运算步骤进行计算的。这一活动水平的出现,标志着学生的活动已开始向智力活动水平转化。 (4)无意识的内部言语阶段。这是数学心智技能形成的最后的一个阶段,在这一阶段学生的智力活动过程有了高度的压缩和简化,整个活动过程达到了完全自动化的水平,无需去注意活动的操作规则就能比较流畅地完成其操作程序。如用简便方法计算45+99×99+54,在这一阶段学生无需去回忆加法交换律和结合律、乘法分配律等运算定律,就能直接先合并45和54两个加数,然后利用乘法分配律进行计算,即原式=(45+54)+99×99=99×(1+99)=99×100=9900,整个计算过程完全是一种流畅的自动化演算过程。在这一阶段,学生的活动完全是根据自己的内部言语进行思考的,并且总是用非常简缩的形式进行思考的,活动的中间过程往往简约得连自己也察觉不到了,整个活动过程基本上是一种自动化的过程。 四、数学技能的学习方法 1.数学操作技能的学习方法。学习数学操作技能的基本方法是模仿练习法和程序练习法。前者是指学生在学习中根据老师的示范动作或教材中的示意图进行模仿练习,以掌握操作的基本要领,在头脑里形成操作过程的动作表象的一种学习方法。用工具度量角的大小、测量物体的长短、几何图形的作图、几何图形面积和体积计算公式推导过程中的图形转化等技能一般都可以通过模仿练习法去掌握。如推导平行四边形面积计算公式时,把平行四边形转化成长方形的操作技能就可模仿(人教版)教材插图(如图所示)的操作过程去练习和掌握。小学生的学习更多的是模仿老师的示范动作,所以老师的示范对小学生数学动作技能的形成尤为重要。教师要充分运用示范与讲解相结合、整体示范与分步示范相结合等措施,让学生准确无误地掌握操作要领,形成正确的动作表象。所谓程序练习法,就是运用程序教学的原理将所要学习的数学动作技能按活动程序分解成若干局部的动作先逐一练习,最后将这些局部的动作综合成整体形成程序化的活动过程。如用量角器量角的度数、用三角板画垂线和平行线、画长方形等技能的学习都可以采用这种方法。用这种方法学习数学动作技能,分解动作时注意突出重点,重点解决那些难以掌握的局部动作,这样可以有效地提高学习效率。 2.数学心智技能的学习方法。学生的心智技能主要是通过范例学习法和尝试学习法去获得的。范例学习法是指学习时按照课本提供的范例,将数学技能的思维操作程序一步一步地展现出来,然后根据这种程序逐步掌握技能的心智活动方式。整数、小数、分数的四则计算,课本几乎都提供了计算的范例,学习时只需要根据范例有序地进行计算即可掌握计算方法。如被除数和除数末尾都有0的除法的简便算法,课本安排了如下范例,学习时只需要明确范例所反映的计算程序和方法,并按照这种程序和方法进行计算即可掌握被除数和除数末尾都有0的除法简便计算的技能。尝试学习法是指在学习中主要由学生自己去尝试探索问题解决的方法和途径,并在不断修正错误的过程中找出解决问题的操作程序,进而获得数学技能。这是一种探究式的发现学习法,总结运算规律和性质并运用它们进行简便计算、解答复合应用题、求某些比较复杂的组合图形的面积或体积等技能都可以运用这种学习方法去掌握。这种方法较多地运用于题目本身具有较强探究性的变式问题解决的学习,如用简便方法计算1001÷,由于学生在前面已经掌握除法商不变性质,练习时就可通过将除数和被除数部乘以8使除数变成100的途径去实现计算的简便。尝试学习法虽然有利于培养学生的探索精神和解决问题的能力,但耗时太多,学习时最好是将它和范例学习法结合起来,两种学习方法互为补充,这样数学技能的学习就会更加富有成效
【容易忽略的答案】大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
这里搜集了一些小学数学教学论文题目,仅供参考。1、课堂有效提问的初步探究2、小学数学数与计算教学的回顾与思考3、小学数学教材结构的研究与探讨4、小学数学应用题的研究5、改进教学方法培养创新技能6、使学生真正成为学习的主人7、改革课堂教学的着力点8、谈素质教育在小学数学教学中的实施9、素质教育与小学数学教育改革10、浅谈学生数学思维能力的培养11、实施创新教学策略,培养学生创新意识12、10以内加法整理和复习13、改良“有余数除法计算”教法14、给学生创新的时间和空间15、谈谈计算教学的改革16、面向21世纪的数学素质及其培养17、能被3整除的数的特征18、年、月、日19、培养自学能力,推进素质教育20、浅谈小学数学总复习的“步步反馈,逐层提高”法21、入情才能入理 激情方能启思22、实施“生活数学”教育,培养自主创新能力23、数学作业批改中巧用评语24、提高认知水平,培养自学能力25、圆的面积”的教案26、圆柱的认识27、运用多媒体辅助教学,优化数学教学方法28、组织课堂讨论 优化课堂教学29、重视学生获取知识的思维过程30、小论文巧算圆的面积31、联系生活实际提高课堂效率32、数学教学中如何调动学生的学习积极性33、根据心理学的理论进行计算法则教学34、简单应用题教学再探35、创设情境,培养学生创造个性36、学生“四会”能力的培养37、营造探究氛围一例38、实施创新教育 培养创新人格39、《9和几的进位加法》教学设计40、信息技术与小学数学41、合理运用学具 提高数学课堂教学效率42、略谈“问题解决”与小学数学教学43、渗透数学思想方法 提高学生思维素质44、引导学生参与教学过程 发挥学生的主体作用45、培养学生的创新意识要处理好的几个关系46、浅谈“数形结合”在小学低段数学教学中的应用47、借助学具,提高数学课堂效率48、对数学新课程理念下练习课教学的几点思考48、多通道促进数学课堂公平50、上“活”概念课,灵动新课堂51、对学生数学作业订正现状调查分析及对策52、对小学数学动态生成式课堂结构的认识53、对新课程中估算教学的几点想法54、谈小学应用题教学如何为学生自主探索创造条件55、小学数学课堂中的口头评价56、让新理念成为把握教材的支撑点57、立足现实起点,提高课堂效率58、谈课堂教学中有效情境的创设59、提高数学课堂教学效率之我见60、为学生营造一片探究学习的天地
为您奉上一部分,请参考:谈谈计算教学的改革小学数学数与计算教学的回顾与思考小学数学教材结构的研究与探讨小学数学应用题的研究(一)改进教学方法培养创新技能21世纪我国小学数学教育改革展望面向21世纪的小学数学课程改革与发展不拘一格育“鸣凤”使学生真正成为学习的主人改革课堂教学的着力点谈素质教育在小学数学教学中的实施素质教育与小学数学教育改革浅谈学生数学思维能力的培养浅议表象积累与培养学生的思维能力也谈学生创新意识培养实施创新教学策略 培养学生创新意识10以内加法整理和复习改良“有余数除法计算”教法给学生创新的时间和空间和谐愉悦 主动探索——一年级《统计》教学片断评析小学数学教育--教师之家--教师培训教学策略A、B、C面向21世纪的数学素质及其培养能被3整除的数的特征年、月、日培养自学能力 推进素质教育浅谈小学数学总复习的“步步反馈,逐层提高”法入情才能入理 激情方能启思实施“生活数学”教育 培养自主创新能力数学作业批改中巧用评语提高元认知水平 培养自学能力“圆的面积”的教案圆柱的认识运用多媒体辅助教学 优化数学教学方法组织课堂讨论 优化课堂教学
小学教育类的论文有很多可以选择的方向,我们 可以把相关主题分为几个类别,例如:
一、关于教育内容的论文题目
1、外语应该成为学校的必修课吗?
2、应该教学生打字而不是写字吗?
3、教师是否应该对民族英雄的负面性格、行为或习惯保持沉默?
二、关于国家教育政策的论文题目
1、家庭教育应该由国家控制吗?
2、是否应该定期测试教师的水平?
3、学校应该为学生的不良行为负责吗?
三、关于学校法律和政策的论文题目
1、是否应该对网络欺凌进行监管?
2、教师或保安人员应该带武器吗?
3、学校应该禁止公开祈祷或讨论宗教吗?
浅谈小学生的课堂自制能力
篮球教会我的不只是篮球NBA教会我的不只是篮球阐述篮球带来的快乐。。最主要的是篮球的某种精神例如:有个镜头我永远都忘不了2001年总决赛第三场球完了后,小艾和科比在快进更衣室门口相遇,当时小艾的眼神足以杀死人,科比抬着高傲的头颅看都不看小艾一眼,小艾主动上去和科比握手,科比装作没看见,头也不回地走了,那一刻小艾显得多么无奈。—— 从那一刻起,科比已经输了,不是输在球技上,而是输在做人上. 。科比可以拿着三枚总冠军戒指 81分记录向小艾炫耀, 但是,小艾的精神境界是科比一世都无法企及的。他教会我一件事:“只要认为是对的,即便是对抗全世界,不要被那些舆论所影响、击倒,要有勇气战斗下去。他教会我只要坚持做自己,即便是被人认为是「叛逆」,也要战斗下去。你说他是我的神也好,佛也好,我服膺的是他这种精神,这是一种信仰。有个人站在你面前,他就是这麼做著,他始终忠於他的信念。所谓「武士精神」,亦不过如此,而这正是我所信奉的。我看NBA十多年,不曾带给我这种感动。这种「我要打十个」的气魄,不是只有「英雄主义」而已,而是战斗到底的决心。那些酸AI的人们,他们不懂,因为他们不会、也不敢有这种体验,他们更不会了解,许许多多喜欢.的人,到底为什麼喜欢他?这不是靠长得帅就可以得到的拥护。”2004年 一个18岁的男孩(凯文 约翰逊)在街上被一群16-20岁的人围住 抢劫 他们抢走凯文身上财务 然后命令凯文脱掉身上穿的艾弗森3号球衣 凯文誓死不从紧紧保护着球衣不让他们抢走 那群歹徒拿出手枪 凯文依旧不让他们把艾的球衣从身上抢走 一声枪响 凯文被后面一个歹徒击中脖子 球衣还是让那伙歹徒抢走 两年过去 一天报纸披露 一个孩子的妈妈让医院使用安乐死 结束她孩子的生命 那个孩子就凯文约翰逊 就这样 这件事被媒体报道出来 艾弗森也知道这件事 他很震惊 他亲自去那座医院 随后艾给凯文安排葬礼 后来凯文母亲说 凯文下葬的时候是穿着艾弗森送的崭新球衣入土的 别人问 你儿子这样做不值得 凯文妈妈说 这是我儿子的选择 你们不知道凯文多么爱艾弗森 我不反对我儿子去追艾弗森 在艾弗森身上 我儿子学到的比我们教的更多
数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。
这也来问,太离谱了把
- =什么大学,还篮球论文