首页

> 学术期刊知识库

首页 学术期刊知识库 问题

泰勒公式及其应用论文答辩稿

发布时间:

泰勒公式及其应用论文答辩稿

推荐到OA图书馆查询。输入相应的关键词的英语即可。

数学系毕业论文答辩陈述稿参考

尊敬的评委老师:

早上好!

我是师范学院数学系xx级2班的学生xxx,我的毕业论文题目是《运用化归与类比思想的解题策略》。本论文是在陈建州老师的悉心指点下完成的。在此,我十分感谢他长期以来对我的大力帮助,并对四年来教育、培养过我的老师表示深深的敬意。同时感谢百忙之中抽出宝贵的时间参与对我这篇论文审阅的老师们。

下面我将对我的学位论文的基本内容做一个简要的陈述:

我想从以下四个方面对这篇论文的写作进行介绍:首先是选题的研究现状和背景,其次是本题研究的目的和意义,再次是论文的主要内容,最后谈谈本论文的不足之处。

首先,选题的现状和北京

我国火电企业也已经进行政企分开,公司化改组,商业化运营,法制化管理的改革。这些改革归根结底就是使火电企业能够顺利进入市场,参与竞争,这对火电企业来说既是一种挑战,也是一次发展的机遇:厂网分开、竞价上网等改革为火电企业拓展电力市场提供了条件;国家对供电营业区的划分和对限制用电政策的取消或调整,为火电企业提供了生存空间和政策支持;全社会口益提高的环保意识、优化能源结构和人规模城乡电网改造又为火电企业拓展电力市场创造了良机。火电企业正在这次机遇中迅猛发展。虽然当前我国发电企业去的了不俗的成绩,但仍存在着电网安全隐患较大,电力交易不规范行为屡见不鲜,各方利益矛盾冲突难以解决等问题。同时,当前火力发电企业经营环境面临电力需求增速趋缓、资金矛盾凸现、煤炭持续涨价、电价调整不到位等压力。随着我国建设资源节约型和环境友好型社会理念的提出,各种社会收费项目如水资源费、环保收费逐年增加,发电企业的生存与发展仍然面临着严峻的考验。

技术经济学是现代管理科学中一门新兴的综合性学科,其主要任务是从经济角度对具体工程项目、技术方案进行分析评价,为决策者提供有关经济效益方面的科学依据,帮助决策者作出正确的抉择。改革开放以来,我国技术经济学科获得了巨大发展。技术经济分析方法及其应用作为技术经济学科的重要组成部分在整个技术经济体系中占据着越来越重要的地位。

其次,本题的研究目的和意义

当前火力发电企业经营环境面临电力需求增速趋缓、资金矛盾凸现、煤炭持续涨价、电价调整不到位等压力。随着我国建设资源节约型和环境友好型社会理念的提出,各种社会收费项目如水资源费、环保收费逐年增加,发电企业的生存与发展面临严峻的考验。技术经济分析方法对于整个发电企业来起着极为重要的意义。浙能乐清电厂作为浙能集团旗下的新兴电厂和浙江省电力工程的重要组成部分,各个重大项目的规划和设备的购置更需经过详细的计算和分析,从而在达到效益最大化的同时兼顾未来发展和周边环境。乐清电厂要想的到更好的发展必须依赖精准可靠的技术经济分析方法。

再次,论文的'主要内容,

本文共分成三个部分:

第一部分主要阐述了论文的研究背景现状及研究的目的意义

第二部分主要阐述了技术经济分析方法包括盈亏平衡分析、敏感性分析、风险分析这三项不确定性分析及综合分析法、层次分析法和模糊综合评价法三个重要的系统综合法的基本原理及优缺点介绍。

第三部分主要阐述了上诉集中重要技术经济分析方法在浙能乐清电厂中的实际应用

最后一点,想说说论文存在的一些不足。

第一,搜集材料的问题;虽然在校期间从事家教辅导,但是对中学教学的经验仍有待提高,因此,在写作的过程中,仅从几个问题上阐述了我肤浅的理解。

第二,由于实践研究不够,总结出的策略可操作性不强。论文对这些问题没有深入展开探讨,与导师期望达到的水平仍有一定的差距。

主要表现为:调研统计资料不够齐全,样本数量不足,合理性、全面性不够,技术经济分析方法选取代表性不足等。

经过本次论文写作,本人学到了许多有用的东西,也积累了不少经验,但由于本人才疏学浅,能力不足,加之时间和精力有限,在许多内容表述、论证上存在着不当之处,与老师的期望还相差甚远,许多问题还有待进行一步思考和探究,借此答辩机会,万分肯切的希望各位老师能够提出宝贵的意见,多指出我的错误和不足之处,本人将虚心接受,从而不断进一步深入学习研究,使该论文得到完善和提高。

以上是我对自己的论文简单介绍,请各位老师提问,谢谢。

我也在写论文 ,二元函数连续,偏导及可微的关系讨论

泰勒公式的证明及其应用论文答辩

推荐到OA图书馆查询。输入相应的关键词的英语即可。

最小公倍数和公因数

泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2,+f'''(x.)/3!•(x-x.)^3+……+f(n)(x.)/n!•(x-x.)^n+Rn 其中Rn=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。) 证明:我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式: P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2+……+f(n)(x.)/n!•(x-x.)^n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=Rn(x)-Rn(x.)/(x-x.)^(n+1)-0=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得Rn'(ξ1)-Rn'(x.)/(n+1)(ξ1-x.)^n-0=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1)。一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。 麦克劳林展开式:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和: f(x)=f(0)+f'(0)x+f''(0)/2!•x^2,+f'''(0)/3!•x^3+……+f(n)(0)/n!•x^n+Rn 其中Rn=f(n+1)(θx)/(n+1)!•x^(n+1),这里0<θ<1。 证明:如果我们要用一个多项式P(x)=A0+A1x+A2x^2+……+Anx^n来近似表示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单的形式即当x.=0时的特殊形式: f(x)=f(0)+f'(0)x+f''(0)/2!•x^2,+f'''(0)/3!•x^3+……+f(n)(0)/n!•x^n+f(n+1)(ξ)/(n+1)!•x^(n+1) 由于ξ在0到x之间,故可写作θx,0<θ<1。 麦克劳林展开式的应用: 1、展开三角函数y=sinx和y=cosx。 解:根据导数表得:f(x)=sinx , f'(x)=cosx , f''(x)=-sinx , f'''(x)=-cosx , f(4)(x)=sinx…… 于是得出了周期规律。分别算出f(0)=0,f'(0)=1, f''(x)=0, f'''(0)=-1, f(4)=0…… 最后可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-……(这里就写成无穷级数的形式了。) 类似地,可以展开y=cosx。 2、计算近似值e=lim x→∞ (1+1/x)^x。 解:对指数函数y=e^x运用麦克劳林展开式并舍弃余项: e^x≈1+x+x^2/2!+x^3/3!+……+x^n/n! 当x=1时,e≈1+1+1/2!+1/3!+……+1/n! 取n=10,即可算出近似值e≈。 3、欧拉公式:e^ix=cosx+isinx(i为-1的开方,即一个虚数单位) 证明:这个公式把复数写为了幂指数形式,其实它也是由麦克劳林展开式确切地说是麦克劳林级数证明的。过程具体不写了,就把思路讲一下:先展开指数函数e^z,然后把各项中的z写成ix。由于i的幂周期性,可已把系数中含有土i的项用乘法分配律写在一起,剩余的项写在一起,刚好是cosx,sinx的展开式。然后让sinx乘上提出的i,即可导出欧拉公式。有兴趣的话可自行证明一下。[编辑本段]泰勒展开式 e的发现始于微分,当 h 逐渐接近零时,计算 之值,其结果无限接近一定值 ...,这个定值就是 e,最早发现此值的人是瑞士著名数学家欧拉,他以自己姓名的字头小写 e 来命名此无理数. 计算对数函数 的导数,得 ,当 a=e 时, 的导数为 ,因而有理由使用以 e 为底的对数,这叫作自然对数. 若将指数函数 ex 作泰勒展开,则得 以 x=1 代入上式得 此级数收敛迅速,e 近似到小数点后 40 位的数值是 将指数函数 ex 扩大它的定义域到复数 z=x+yi 时,由 透过这个级数的计算,可得 由此,De Moivre 定理,三角函数的和差角公式等等都可以轻易地导出.譬如说,z1=x1+y1i, z2=x2+y2i, 另方面, 所以, 我们不仅可以证明 e 是无理数,而且它还是个超越数,即它不是任何一个整系数多项式的根,这个结果是 Hermite 在1873年得到的. 甲)差分. 考虑一个离散函数(即数列) R,它在 n 所取的值 u(n) 记成 un,通常我们就把这个函数书成 或 (un).数列 u 的差分 还是一个数列,它在 n 所取的值以定义为 以后我们干脆就把 简记为 (例):数列 1, 4, 8, 7, 6, -2, ... 的差分数列为 3, 4, -1, -1, -8 ... 注:我们说「数列」是「定义在离散点上的函数」如果在高中,这样的说法就很恶劣.但在此地,却很恰当,因为这样才跟连续型的函数具有完全平行的类推. 差分算子的性质 (i) [合称线性] (ii) (常数) [差分方程根本定理] (iii) 其中 ,而 (n(k) 叫做排列数列. (iv) 叫做自然等比数列. (iv)' 一般的指数数列(几何数列)rn 之差分数列(即「导函数」)为 rn(r-1) (乙).和分 给一个数列 (un).和分的问题就是要算和 . 怎么算呢 我们有下面重要的结果: 定理1 (差和分根本定理) 如果我们能够找到一个数列 (vn),使得 ,则 和分也具有线性的性质: 甲)微分 给一个函数 f,若牛顿商(或差分商) 的极限 存在,则我们就称此极限值为 f 为点 x0 的导数,记为 f'(x0) 或 Df(x),亦即 若 f 在定义区域上每一点导数都存在,则称 f 为可导微函数.我们称 为 f 的导函数,而 叫做微分算子. 微分算子的性质: (i) [合称线性] (ii) (常数) [差分方程根本定理] (iii) Dxn=nxn-1 (iv) Dex=ex (iv)' 一般的指数数列 ax 之导函数为 (乙)积分. 设 f 为定义在 [a,b] 上的函数,积分的问题就是要算阴影的面积.我们的办法是对 [a,b] 作分割: ;其次对每一小段 [xi-1,xi] 取一个样本点 ;再求近似和 ;最后再取极限 (让每一小段的长度都趋近于 0). 若这个极限值存在,我们就记为 的几何意义就是阴影的面积. (事实上,连续性也「差不多」是积分存在的必要条件.) 积分算子也具有线性的性质: 定理2 若 f 为一连续函数,则 存在.(事实上,连续性也「差不多」是积分存在的必要条件.) 定理3 (微积分根本定理) 设 f 为定义在闭区间 [a,b] 上的连续函数,我们欲求积分 如果我们可以找到另一个函数 g,使得 g'=f,则 注:(1)(2)两式虽是类推,但有一点点差异,即和分的上限要很小心! 上面定理1及定理3基本上都表述着差分与和分,微分与积分,是两个互逆的操作,就好像加法与减法,乘法与除法是互逆的操作一样. 我们都知道差分与微分的操作比和分与积分简单多了,而上面定理1及定理3告诉我们,要计算 (un) 的和分及 f 的积分,只要去找另一个 (vn) 及 g 满足 , g'=f (这是差分及微分的问题),那么对 vn 及 g 代入上下限就得到答案了.换句话说,我们可以用较简单的差分及微分操作来掌握较难的和分及积分操作,这就是"以简御繁"的精神.牛顿与莱布尼慈对微积分最大的贡献就在此. 甲)Taylor展开公式 这分别有离散与连续的类推.它是数学中「逼近」这个重要想法的一个特例.逼近想法的意思是这样的:给一个函数 f,我们要研究 f 的行为,但 f 本身可能很复杂而不易对付,于是我们就想法子去找一个较「简单」的函数 g,使其跟 f 很「靠近」,那么我们就用 g 来取代 f.这又是以简御繁的精神表现.由上述我们看出,要使用逼近想法,我们还需要澄清 两个问题:即如何选取简单函数及逼近的尺度. (一) 对于连续世界的情形,Taylor 展式的逼近想法是选取多项函数作为简单函数,并且用局部的「切近」作为逼近尺度.说得更明白一点,给一个直到到 n 阶都可导微的函数 f,我们要找一个 n 次多项函数 g,使其跟 f 在点 x0 具有 n 阶的「切近」,即 ,答案就是 此式就叫做 f 在点 x0 的 n 阶 Taylor 展式. g 在 x0 点附近跟 f 很靠近,于是我们就用 g 局部地来取代 f.从而用 g 来求得 f 的一些局部的定性行为.因此 Taylor 展式只是局部的逼近.当f是足够好的一个函数,即是所谓解析的函数时,则 f可展成 Taylor 级数,而且这个 Taylor 级数就等于 f 自身. 值得注意的是,一阶 Taylor 展式的特殊情形,此时 g(x)=f(x0+f'(x0)(x-x0)) 的图形正好是一条通过点 (x0,f(x0)) 而且切于 f 的图形之直线.因此 f 在点 x0 的一阶 Taylor 展式的意义就是,我们用过点 (x0,f(x0)) 的切线局部地来取代原来 f 曲线.这种局部化「用平直取代弯曲」的精神,是微分学的精义所在. 利用 Talor 展式,可以帮忙我们做很多事情,比如判别函数的极大值与极小值,求积分的近似值,作函数表(如三角函数表,对数表等),这些都是意料中事.事实上,我们可以用逼近的想法将微积分「一以贯之」. 复次我们注意到,我们选取多项函数作为逼近的简单函数,理由很简单:在众多初等函数中,如三角函数,指数函数,对数函数,多项函数等,从算术的观点来看,以多项函数最为简单,因为要计算多项函数的值,只牵涉到加减乘除四则运算,其它函数就没有这么简单. 当然,从别的解析观点来看,在某些情形下还另有更有用更重要的简单函数.例如,三角多项式,再配合上某种逼近尺度,我们就得到 Fourier 级数展开,这在应用数学上占有举足轻重的地位.(事实上,Fourier 级数展开是采用最小方差的逼近尺度,这在高等数学中经常出现,而且在统计学中也有应用.) 注:取 x0=0 的特例,此时 Taylor 展式又叫做 Maclaurin 展式.不过只要会做特例的展开,欲求一般的 Taylor 展式,作一下平移(或变数代换)就好了.因此我们大可从头就只对 x=0 点作 Taylor 展式. (二) 对于离散的情形,Taylor 展开就是: 给一个数列 ,我们要找一个 n 次多项式数列 (gt),使得 gt 与 ft 在 t=0 点具有 n 阶的「差近」.所谓在 0 点具有 n 阶差近是指: 答案是 此式就是离散情形的 Maclaurin 公式. 乙)分部积分公式与Abel分部和分公式的类推 (一) 分部积分公式: 设 u(x),v(x) 在 [a,b] 上连续,则 (二) Abel分部和分公式: 设(un),(v)为两个数列,令 sn=u1+......+un,则 上面两个公式分别是莱布尼慈导微公式 D(uv)=(Du)v+u(Dv),及莱布尼慈差分公式 的结论.注意到,这两个莱布尼慈公式,一个很对称,另一个则不然. (丁)复利与连续复利 (这也分别是离散与连续之间的类推) (一) 复利的问题是这样的:有本金 y0,年利率 r,每年复利一次,要问 n 年后的本利和 yn= 显然这个数列满足差分方程 yn+1=yn(1+r) 根据(丙)之(二)得知 yn=y0(1+r)n 这就是复利的公式. (二) 若考虑每年复利 m 次,则 t 年后的本利和应为 令 ,就得到连续复利的概念,此时本利和为y(t)=y0ert 换句话说,连续复利时,t 时刻的本利和 y(t)=y0ert 就是微分方程 y'=ry 的解答. 由上述我们看出离散复利问题由差分方程来描述,而连续复利的问题由微分方程来描述.对于常系数线性的差分方程及微分方程,解方程式的整个要点就是叠合原理,因此求解的办法具有完全平行的类推. (戊)Fubini 重和分定理与 Fubini 重积分定理(也是离散与连续之间的类推) (一) Fubini 重和分定理:给一个两重指标的数列 (ars),我们要从 r=1 到 m,s=1到 n, 对 (ars) 作和 ,则这个和可以这样求得:光对 r 作和再对 s 作和(反过来亦然).亦即我们有 (二)Fubini 重积分定理:设 f(x,y) 为定义在 上之可积分函数,则 当然,变数再多几个也都一样. (己)Lebesgue 积分的概念 (一) 离散的情形:给一个数列 (an),我们要估计和 ,Lebesgue 的想法是,不管这堆数据指标的顺序,我们只按数值的大小来分堆,相同的分在一堆,再从每一堆中取一个数值,乘以该堆的个数,整个作和起来,这就得到总和. (二)连续的情形:给一个函数 f,我们要定义曲线 y=f(x) 跟 X 轴从 a 到 b 所围出来的面积. Lebesgue 的想法是对 f 的影域 作分割: 函数值介 yi-1 到 yi 之间的 x 收集在一齐,令其为 , 于是 [a,b] 就相应分割成 ,取样本点 ,作近似和 让影域的分割加细,上述近似和的极限若存在的话,就叫做 f 在 [a,b] 上的 Lebesgue 积分. 泰勒公式的余项 f(x)=f(a) + f'(a)(x-a)/1! + f''(a)(x-a)^2/2! + …… + f(n)(a)(x-a)^n/n! + Rn(x) [其中f(n)是f的n阶导数] 泰勒余项可以写成以下几种不同的形式: 1.佩亚诺(Peano)余项: Rn(x) = o((x-a)^n) 2.施勒米尔希-罗什(Schlomilch-Roche)余项: Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^(n+1-p)(x-a)^(n+1)/(n!p) [f(n+1)是f的n+1阶导数,θ∈(0,1)] 3.拉格朗日(Lagrange)余项: Rn(x) = f(n+1)(a+θ(x-a))(x-a)^(n+1)/(n+1)! [f(n+1)是f的n+1阶导数,θ∈(0,1)] 4.柯西(Cauchy)余项: Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^n (x-a)^(n+1)/n! [f(n+1)是f的n+1阶导数,θ∈(0,1)] 5.积分余项: Rn(x) = [f(n+1)(t)(x-t)^n在a到x上的积分]/n! [f(n+1)是f的n+1阶导数]

泰勒级数及其应用毕业论文

主要是做近似用,一般近似到一阶项和二阶项。尤其是一阶项,很多物理定律都是一阶项下的线性近似结果。

1.采用VHDL语言设计系统具有哪些特点 VHDL系统设计的基本点:(1)与其他硬件描述语言相比,VHDL具有以下特点: (2)功能强大、设计灵活。 (3)强大的系统硬件描述能力。 (4)易于共享和复用。2.举例说明FPGA是如何通过查找表实现其逻辑功能的?参考答案:在计算机科学中,查找表是用简单的查询操作替换运行时计算的数组或者 associative array 这样的数据结构。由于从内存中提取数值经常要比复杂的计算速度快很多,所以这样得到的速度提升是很显著的。 一个经典的例子就是三角表。每次计算所需的正弦值在一些应用中可能会慢得无法忍受,为了避免这种情况,应用程序可以在刚开始的一段时间计算一定数量的角度的正弦值,譬如计算每个整数角度的正弦值,在后面的程序需要正弦值的时候,使用查找表从内存中提取临近角度的正弦值而不是使用数学公式进行计算。 在计算机出现之前,人们使用类似的表格来加快手工计算的速度。非常流行的表格有三角、对数、统计 density 函数。另外一种用来加快手工计算的工具是滑动计算尺。 一些折衷的方法是同时使用查找表和插值这样需要少许计算量的方法,这种方法对于两个预计算的值之间的部分能够提供更高的精度,这样稍微地增加了计算量但是大幅度地提高了应用程序所需的精度。根据预先计算的数值,这种方法在保持同样精度的前提下也减小了查找表的尺寸/ 在图像处理中,查找表经常称为LUT,它们将索引号与输出值建立联系。颜色表作为一种普通的 LUT 是用来确定特定图像所要显示的颜色和强度。 另外需要注意的一个问题是,尽管查找表经常效率很高,但是如果所替换的计算相当简单的话就会得不偿失,这不仅仅因为从内存中提取结果需要更多的时间,而且因为它增大了所需的内存并且破坏了高速缓存。如果查找表太大,那么几乎每次访问查找表都回倒置 cache miss,这在处理器速度超过内存速度的时候愈发成为一个问题。在编译器优化的 rematerialization 过程中也会出现类似的问题。在一些环境如Java 编程语言中,由于强制性的边界检查带来的每次查找的附加比较和分支过程,所以查找表可能开销更大。 何时构建查找表有两个基本的约束条件,一个是可用内存的数量;不能构建一个超过能用内存空间的表格,尽管可以构建一个以查找速度为代价的基于磁盘的查找表。另外一个约束条件是初始计算查找表的时间——尽管这项工作不需要经常做,但是如果耗费的时间不可接受,那么也不适合使用查找表。[编辑本段]例子 [编辑本段]计算正弦值 许多计算机只能执行基本的算术运算,而不能直接计算给定值的正弦值,它们使用如下面泰勒级数(en:Taylor series)这样的复杂公式计算相当高精度的正弦值: (x 接近 0) 然而,这样的计算费用可能是非常大的,尤其是在低速的处理器上。有许多的应用程序,尤其是传统的计算机图形每秒需要几千次的正弦值计算。一个常用的解决方案就是在刚开始计算许多均匀分布数值的正弦值,然后在表中查找最接近所需 x 的正弦值,这个值非常接近于正确的数值,这是因为正弦函数是一个有限变化率的连续函数。例如: real array sine_table[-1000..1000] for x from -1000 to 1000 sine_table[x] := sine(x/1000/pi) function lookup_sine(x) return sine_table[round(x/1000/pi)] Image:Interpolation example 部分正弦函数的线性插值不幸的是,查找表需要一定的空间:如果使用 IEEE 双精度浮点数的话,将会需要 16,000 字节。如果使用较少的采样点,那么精度将会大幅度地下降。一个较好的解决方案是线性插值,在表中待计算点左右两侧两个点的值之间连直线,这个点对应的直线上的值就是所计算点的正弦值。这种方法计算速度也很快,对于如正弦函数这样的平滑函数来说也有更高的精度。这里是使用线性插值的一个例子: function lookup_sine(x) x1 := floor(x/1000/pi) y1 := sine_table[x1] y2 := sine_table[x1+1] return y1 + (y2-y1)*(x/1000/pi-x1) 当使用插值的时候,可以得益于不均匀采样,也就是说在接近直线的地方,使用较少的采样点,在变化较快的地方使用较多的采样点以最大限度地接近实际的曲线。更多的信息请参考插值。[编辑本段]计算 1 的位数 population function。例如,数字 37 的二进制形式是 100101,所以它包含有三个设置成 1 的位。一个计算 32 位整数中 1 的位数的简单c语言程序是: int count_ones(unsigned int x) { int i, result = 0; for(i=0; i<32; i++) { result += x & 1; x = x >> 1; } return result; } 不幸的是,这个简单的算法在现代的架构上将需要数以百计的时钟周期才能完成,这是因为它造成了许多分支和循环,而分支的速度是很慢的。这可以使用 loop unrolling 和其它一些聪明的技巧进行改进,但是最简单快捷的解决方案是查找表:简单地构建一个 包含每个字节可能值包含的 1 的个数的256 个条目的表。然后使用这个表查找整数中每个字节包含的 1 的个数,并且将结果相加。没有分支、四次内存访问、几乎没有算术运算,这样与上面的算法相比就可以大幅度地提升速度。 int count_ones(unsigned int x) { return bits_set[x & 255] + bits_set[(x >> 8) & 255] + bits_set[(x >> 16) & 255] + bits_set[(x >> 24) & 255]; }[编辑本段]硬件查找表 在数字逻辑中,n位查找表可以使用多路复用器来实现,它的选择线是 LUT 的输入,它的输入是常数。n 位 LUT 通过将布尔逻辑函数建模为真值表从而可以编码任意 n 位输入,这是编码布尔逻辑函数的一个有效途径,4 位 LUT 实际上是现代 FPGAs 的主要元件。

稿子保证质量 保证原创全程负责修改

量子场论中的微扰论(pertubation theory)计算实际上可以看成泰勒展开的一种。如果将粒子之间相互作用的相对大小用耦合常数表示的话,微扰计算就是假设这个常数很小,也就是说粒子间相互作用比较小,然后通过对重整化后的作用量进行关于的泰勒展开,来计算所需的结论。由于泰勒展开在收敛半径内会收敛到原函数,所以只要取前几项就能得到所需物理性质的相对精确的值。在耦合常数的确很小时,微扰方法非常有效,比如说量子电动力学(Quantum Electrodynamics)就是一个很好的例子,它的计算与实验数据直到小数点后8位仍然符合。但对于耦合常数较大的情况,比如说关于强相互作用的量子色动力学 ,微扰论会遇到比较多的麻烦,需要用到更深刻的对称性。

泰勒公式的应用毕业论文

毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。

本科数学毕业论文题目

★浅谈奥数竟赛的利与弊

★浅谈中学数学中数形结合的思想

★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学

★中数教学研究

★XXX课程网上教学系统分析与设计

★数学CAI课件开发研究

★中等职业学校数学教学改革研究与探讨

★中等职业学校数学教学设计研究

★中等职业学校中外数学教学的比较研究

★中等职业学校数学教材研究

★关于数学学科案例教学法的探讨

★中外著名数学家学术思想探讨

★试论数学美

★数学中的研究性学习

★数字危机

★中学数学中的化归方法

★高斯分布的启示

★a二+b二≧二ab的变形推广及应用

★网络优化

★泰勒公式及其应用

★浅谈中学数学中的反证法

★数学选择题的利和弊

★浅谈计算机辅助数学教学

★论研究性学习

★浅谈发展数学思维的学习方法

★关于整系数多项式有理根的几个定理及求解方法

★数学教学中课堂提问的误区与对策

★怎样发掘数学题中的隐含条件

★数学概念探索式教学

★从一个实际问题谈概率统计教学

★教学媒体在数学教学中的作用

★数学问题解决及其教学

★数学概念课的特征及教学原则

★数学美与解题

★创造性思维能力的培养和数学教学

★教材顺序的教学过程设计创新

★排列组合问题的探讨

★浅谈初中数学教材的思考

★整除在数学应用中的探索

★浅谈协作机制在数学教学中的运用

★课堂标准与数学课堂教学的研究与实践

★浅谈研究性学习在数学教学中的渗透与实践

★关于现代中学数学教育的思考

★在中学数学教学中教材的使用

★情境教学的认识与实践

★浅谈初中代数中的二次函数

★略论数学教育创新与数学素质提高

★高中数学“分层教学”的初探与实践

★在中学数学课堂教学中如何培养学生的创新思维

★中小学数学的教学衔接与教法初探

★如何在初中数学教学中进行思想方法的渗透

★培养学生创新思维全面推进课程改革

★数学问题解决活动中的反思

★数学:让我们合理猜想

★如何优化数学课堂教学

★中学数学教学中的创造性思维的培养

★浅谈数学教学中的“问题情境”

★市场经济中的蛛网模型

★中学数学教学设计前期分析的研究

★数学课堂差异教学

★一种函数方程的解法

★浅析数学教学与创新教育

★数学文化的核心—数学思想与数学方法

★漫话探究性问题之解法

★浅论数学教学的策略

★当前初中数学教学存在的问题及其对策

★例谈用“构造法”证明不等式

★数学研究性学习的探索与实践

★数学教学中创新思维的培养

★数学教育中的科学人文精神

★教学媒体在数学教学中的应用

★“三角形的积化和差”课例大家评

★谈谈类比法

★直觉思维在解题中的应用

★数学几种课型的问题设计

★数学教学中的情境创设

★在探索中发展学生的创新思维

★精心设计习题提高教学质量

★对数学教育现状的分析与建议

★创设情景教学生猜想

★反思教学中的一题多解

★在不等式教学中培养学生的探究思维能力

★浅谈数学学法指导

★中学生数学能力的培养

★数学探究性活动的内容形式及教学设计

★浅谈数学学习兴趣的培养

★浅谈课堂教学的师生互动

★新世纪对初中数学的教材的思考

★数学教学的现代研究

★关于学生数学能力培养的几点设想

★在数学教学中培养学生创新能力的尝试

★积分中值定理的再讨论

★二阶变系数齐次微分方程的求解问题

★浅谈培养学生的空间想象能力

★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育

★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计

★培养学生学习数学的兴趣

★课堂教学与素质教育探讨

★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施

★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题

★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣

★数学教学中探究性学习策略

★论数学课堂教学的语言艺术

★数学概念的教与学

★优化课堂教学推进素质教育

★数学教学中的情商因素

★浅谈创新教育

★培养学生的数学兴趣的实施途径

★论数学学法指导

★学生能力在数学教学中的培养

★浅论数学直觉思维及培养

★论数学学法指导

★优化课堂教学焕发课堂活力

★浅谈高初中数学教学衔接

★如何搞好数学教育教学研究

★浅谈线性变换的对角化问题

本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。

1数学建模在煤矿安全生产中的意义

在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。

只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。

2煤矿生产计划的优化方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。

基于数学模型的方法

(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。

(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。

基于人工智能方法

(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。

(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。

3煤矿安全生产中数学模型的优化建立

根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。

建立简化模型

模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。

很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式

式中x2---B工作面瓦斯体积分数;

u2---B工作面采煤进度;

w1---B矿井所对应的空气流速;

w2---相邻A工作面的空气流速;

a2、b2、c2、d2---未知量系数。

CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】

式中x3、x4---C、D工作面的瓦斯体积分数;

e1、e2---A、B工作面的瓦斯体积分数;

a3、b3、c3、d3---未知量系数:

f1、f2---A、B工作面的瓦斯绝对涌出量。

系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。

模型的转型及其离散化

因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】

在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若表示通风口的开通程度是,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。

依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。

模型的应用效果及降低瓦斯体积分数的措施

以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。

综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。

4结语

应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。

参考文献:

[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.

[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.

[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.

泰勒 (2004-02-06) 18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor), 于1685 年8月18日在米德尔塞克斯的埃 德蒙顿出生。1709年后移居伦敦,获法学硕士学位。他在 1712年当选为英国皇家学 会会员,并于两年后获法学博士学位。同年(即1714年)出任 英国皇家学会秘书,四年 后因健康理由辞退职务。1717年,他以泰勒定理求解了数值方程。 最后在1731年1 2月29日于伦敦逝世。 泰勒的主要着作是1715年出版的《正 的和反的增量方法》,书内以下列形式陈述出他已于 1712年7月给其老师梅钦(数学家 、天文学家)信中首先提出的着名定理——泰勒定理:式内v为独立变量的增量, 及 为流数。他假定z随时间均匀变化,则 为常数。上述公式以现代 形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成 的,当x=0时便称作马克劳林定理。1772年 ,拉格朗日强调了此公式之重要性,而且 称之为微分学基本定理,但泰勒于证明当中并没有考虑 级数的收敛性,因而使证明不严谨, 这工作直至十九世纪二十年代才由柯西完成。 泰勒定理开创 了有限差分理论,使任何单变量 函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者 。 泰勒于书中还讨论了微积分对一系列物理 问题之应用,其中以有关弦的横向振动之结果尤为重要 。他透过求解方程 导出了基本频率公式,开创了研究弦振问题之先 河。此外,此书还包括了他于 数学上之其他创造性工作,如论述常微分方程的奇异解,曲率 问题之研究等。 1715年,他出版了另一名着《线性透 视论》,更发表了再版的《线性透视原理》(1719) 。他以极严密之形式展开其线性透 视学体系,其中最突出之贡献是提出和使用「没影点」概念, 这对摄影测量制图学之发展有 一定影响。另外,还撰有哲学遗作,发表于1793年。参考资料:

数学领域中的一些著名悖论及其产生背景

泰勒公式的应用毕业论文下载

泰勒公式高中数学应用如下:

在高等数学的理论研究及应用实践中,泰勒公式有着十分重要的应用,简单归纳如下  :

(1)应用泰勒中值定理(泰勒公式)可以证明中值等式或不等式命题。

(2)应用泰勒公式可以证明区间上的函数等式或不等式 。

(3)应用泰勒公式可以进行更加精密的近似计算 。

(4)应用泰勒公式可以求解一些极限  。

(5)应用泰勒公式可以计算高阶导数的数值 。

泰勒公式的几何意义是利用多项式函数来逼近原函数,由于多项式函数可以任意次求导,易于计算,且便于求解极值或者判断函数的性质,因此可以通过泰勒公式获取函数的信息,同时,对于这种近似,必须提供误差分析,来提供近似的可靠性。

泰勒公式的应用一般有三个方面:1、利用泰勒式做代换求函数的极限.这一点应用最广泛!一些等价无穷小也可以使用泰勒公式求出.2、利用泰勒式证明一些等式或者不等式.这一点应用的也非常多,在很多大型证明题中都使用过.泰勒公式可以灵活选择在某点,效果也很好.3、应用拉格朗日余项,可以估值,求近似值.当然还有挺多,你看看这篇文章吧,泰勒公式的应用讲的非常全面,这里地方太小,也无法全面描述:

泰勒 (2004-02-06) 18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor), 于1685 年8月18日在米德尔塞克斯的埃 德蒙顿出生。1709年后移居伦敦,获法学硕士学位。他在 1712年当选为英国皇家学 会会员,并于两年后获法学博士学位。同年(即1714年)出任 英国皇家学会秘书,四年 后因健康理由辞退职务。1717年,他以泰勒定理求解了数值方程。 最后在1731年1 2月29日于伦敦逝世。 泰勒的主要着作是1715年出版的《正 的和反的增量方法》,书内以下列形式陈述出他已于 1712年7月给其老师梅钦(数学家 、天文学家)信中首先提出的着名定理——泰勒定理:式内v为独立变量的增量, 及 为流数。他假定z随时间均匀变化,则 为常数。上述公式以现代 形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成 的,当x=0时便称作马克劳林定理。1772年 ,拉格朗日强调了此公式之重要性,而且 称之为微分学基本定理,但泰勒于证明当中并没有考虑 级数的收敛性,因而使证明不严谨, 这工作直至十九世纪二十年代才由柯西完成。 泰勒定理开创 了有限差分理论,使任何单变量 函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者 。 泰勒于书中还讨论了微积分对一系列物理 问题之应用,其中以有关弦的横向振动之结果尤为重要 。他透过求解方程 导出了基本频率公式,开创了研究弦振问题之先 河。此外,此书还包括了他于 数学上之其他创造性工作,如论述常微分方程的奇异解,曲率 问题之研究等。 1715年,他出版了另一名着《线性透 视论》,更发表了再版的《线性透视原理》(1719) 。他以极严密之形式展开其线性透 视学体系,其中最突出之贡献是提出和使用「没影点」概念, 这对摄影测量制图学之发展有 一定影响。另外,还撰有哲学遗作,发表于1793年。参考资料:

我只说自己的理解;你知道:(?)f(x)=f(x0)+f(x0)'(x-x0)+0(x-x0)在点x0用f(x0)+f('x0)(x-x0)逼近函数f(x)但是近似程度不够就是要用更高次去逼近函数当然还要满足误差是高阶无穷小所以对比上面的式子就有:pn(x)=a0+a1(x-x0)+a2(x-x0)^2+...+an(x-x0)^n这里an=pn^(n)(x0)/n!形式跟上面是一样的最后证明高阶无穷小!不知道这样怎么样呢??

相关百科

热门百科

首页
发表服务