首页

> 学术期刊知识库

首页 学术期刊知识库 问题

枯草杆菌的发酵生产研究型论文

发布时间:

枯草杆菌的发酵生产研究型论文

先进入了配料间,在配料间有许多设备,刚一进门右边是配料罐,就是把原物料按照比列配好装进料车,进行搅拌混匀。配料罐下边就有一个高压泵。该绷得功能就是把配好的物料通过管道压入储料罐,在配料罐旁边就有一个卧式的储水罐,该罐主要是和配好的干物料进行混合形成料浆,,在储料罐前面有一个维持罐,该罐主要是将干物料和水混合后灭菌。在储料罐下方也有一个高压泵,将干物料压入维持罐。在灭菌时过程要求比较严格,整个管路,包括通往发酵罐的管路,还有发酵罐都需要蒸汽灭菌,至于灭菌的时间随情况而定,一般至少需要一个小时。由于原料比较贵,而且投入量比较多,所以一般灭菌时间较实验室长。 从配料间出来看到一排很歪曲的管路,这就是喷淋降温管,因为灭过菌的培养基温度很高,在120度左右,将他送入发酵罐后降温过程比较慢,所以再送入发酵罐前进行降温。该降温管路设计巧妙,通过用冷水喷淋,可以在很快时间内将培养基降至80—90度。 在配料间外面还有一个空气过滤机,它通过好几重过滤,把空气变成无菌空气,并将之通过管路送入发酵罐。 发酵罐是几个比较大的罐子,高达十几米,容积达到上百吨。在我们参观过程中,发现他们的发酵罐和我们在实验室看到大体相同,只是他们的取样口在中间,而且,他们的放料口和排污口在同一管道,是通过阀门控制的。整个发酵罐通过电子检测,温度,压力,pH值等项。 在发酵罐旁边有种子罐,主要是培养种子菌,在种子长到对数期时通过管道被输送到发酵罐中。发酵罐中发酵周期一般是6到7天。 发酵后的发酵液通过管道输送到过滤车间中,该车间的设备是无机陶瓷膜过滤器,经过过滤后滤液中含有高浓度的肌苷。下一步就是把滤液进一步浓缩。所以我们又参观了浓缩车间。该车间的设备是一个三效浓缩机,是把滤液经过三重过滤,将水分通过真空抽掉,使之浓度升高。三效浓缩机是由三个罐子组成。浓缩车间产出的物料经管道输送到精制车间,主要工艺是经过降温,离心,洗涤等。降温过程是在短时间内将产品降到5度以下,经过离心使其结晶。经洗涤后在离心,最后将产品取出,这时的产品就是初肌苷。 初肌苷在另一车间被进一步精制,将之送入脱色罐中进行脱色,在罐中主要是通过活性炭吸附产品表面的色素和杂质。经过一段时间的脱色,在通过脱色罐下方的空气压滤机将活性炭滤去。 经过这些工艺后产出的产品就是肌苷了,经过检测,合格的可以出售或者用于加工其他药品。

枯草芽孢杆菌在发酵过程中产生乳酸,使PH值降低它在厌氧呼吸作用时释放能量,温度升高

枯草芽孢杆菌产生的对热、紫外线、电磁辐射和某些化学药品有强抗性的芽孢,可忍受各种不良环境,能防治多种植物病害,易定殖在植物表面。其芽孢可以制成粉剂、可湿性粉剂等各种剂型的生防制剂而应用于农业生产,此制剂具有与化学农药混用而不失活的特性。因此,有必要对芽孢杆菌的产孢特性进行研究,以期获得最佳产孢条件,最终获得商品化芽孢制剂。微生物发酵的生产水平不仅取决于生产菌种本身的性能,而且要提供合适的发酵条件,才能使它的生产能力充分发挥出来。优化发酵工艺可以充分发挥菌种的潜在能力,提高发酵过程的生产效率,降低生产成本。因此,工艺优化的研究尤其重要。

微生物 微生物(microorganism简称microbe)是包括细菌、病毒、真菌以及一些小型的原生动物等在内的一大类生物群体,它个体微小,却与人类生活密切相关。微生物在自然界中可谓“无处不在,无处不有”,涵盖了有益有害的众多种类,广泛涉及健康、医药、工农业、环保等诸多领域。 原核:细菌、放线菌、螺旋体、支原体、立克次氏体、衣原体。 真核:真菌、藻类、原生动物。 非细胞类:病毒和亚病毒。 微生物一般地,在中国大陆地区的教科书中,均将微生物划分为以下8大类:细菌、病毒、真菌、放线菌、立克次体、支原体、衣原体、螺旋体。 微生物的定义 一切肉眼看不见的或看不清的微小生物的总称 1 特点: 个体微小,一般<。 构造简单,有单细胞的,简单多细胞的,非细胞的 进化地位低。 2 分类 原核类: 三菌,三体 。 真核类: 真菌,原生动物,显微藻类。 非细胞类: 病毒,亚病毒 ( 类病毒,拟病毒,朊病毒) 3 五大共性: 体积小,面积大 吸收多,转化快 生长旺,繁殖快 适应强,易变异 分布广,种类多 二、微生物的类群 1 细菌: (1)定义:一类细胞细短,结构简单,胞壁坚韧,多以二分裂方式繁殖和水生性强的原核生物 (2)分布:温暖,潮湿和富含有机质的地方 (3)结构:主要是单细胞的原核生物,有球形,杆形,螺旋形 细胞壁 基本结构 细胞膜 细胞质 结构 拟核 鞭毛 特殊结构 荚膜 芽孢 (4)繁殖: 主要以二分裂方式进行繁殖的 (5)菌落: 单个细菌用肉眼是看不见的,当单个或少数细菌在固体培养基啊行大量繁殖时,便会形成一个肉眼可见的,具有一定形态结构的子细胞群落. 菌落是菌种鉴定的重要依据.不同种类的细菌菌落的大小,形状光泽度颜色硬度透明毒都不同. 2 放线菌 (1)定义:一类主要成菌丝状生长和以孢子繁殖的陆生性较强的原核生物 (2)分布:含水量较低,有机物较丰富的,呈微碱性的土壤中 (3)形态构造:主要由菌丝组成,包括基内菌丝和气生菌丝(部分气生菌丝可以成熟分化为孢子丝,产生孢子) (4)繁殖:通过形成无性孢子的形式进行无性繁殖 无性繁殖 有性繁殖 (5)菌落:在固体培养基上:干燥,不透明,表面呈致密的丝绒状,彩色干粉 3 病毒 (1) 定义:一类由核酸和蛋白质等少数几种成分组成的”非细胞生物”,但是它的生存必须依赖于活细胞. (2)结构: (3)大小: 一般直径在100nm左右 最大的病毒直径为200nm的牛痘病毒 最小的病毒直径为28nm的脊髓灰质炎病毒 (4)增殖:以 噬菌体为例: 吸附 侵入 增殖 装配 释放 第二节微生物的营养 一、微生物的化学组成 C,H,O,N,P,S以及其他元素 二、微生物的营养物质 1 水和无机盐 2 碳源:凡能为微生物提供生长繁殖所需碳元素的营养物质 来源 作用 3氮源:凡能为微生物提供所必需氮元素的营养物质 来源 作用:主要用于合成蛋白质,核酸以及含氮的代谢产物 4 能源:能为微生物生命活动提供最初能源来源的营养物质或辐射能 根据碳源和能源分类: 5生长因子:微生物生长不可缺少的微量有机物 能引起人和动物致病的微生物叫病源微生物有八大类: 1.真菌:引起皮肤病。深部组织上感染。 2放线菌:皮肤,伤口感染。 3螺旋体:皮肤病,血液感染 如梅毒,钩端螺旋体病。 4细菌:皮肤病化脓,上呼吸道感染 ,泌尿道感染,食物中毒,败血压症,急性传染病等。 5立克次氏体:斑疹伤寒等。 6衣原体:沙眼,泌尿生殖道感染。 7病毒:肝炎,乙型脑炎,麻疹,艾滋病等。 8支原体:肺炎,尿路感染。 生物界的微生物达几万种,大多数对人类有益,只有一少部份能致病。有些微生物通常不致病,在特定环境下能引起感染称条件致病菌。 能引起食品变质,腐败,正因为它们分解自然界的物体,才能完成大自然的物质循环。 有些人误将真菌当作细菌,是一种比较普遍的误解。尤其以80年代以前未受过系统生物学教育者。 微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。 微生物千姿百态,有些是腐败性的,即引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。微生物非常小,必须通过显微镜放大约1000 倍才能看到。比如中等大小的细菌,1000个叠加在一起只有句号那么大。想像一下一滴牛奶,每毫升腐败的牛奶中约有5千万个细菌,或者讲每夸脱牛奶中细菌总数约为50亿。也就是一滴牛奶中可有含有50 亿个细菌。 微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。 微生物间的相互作用机制也相当奥秘。例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。 随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。 以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,而微生物基因组研究又是其中的重要分支。世界权威性杂志《科学》曾将微生物基因组研究评为世界重大科学进展之一。通过基因组研究揭示微生物的遗传机制,发现重要的功能基因并在此基础上发展疫苗,开发新型抗病毒、抗细菌、真菌药物,将对有效地控制新老传染病的流行,促进医疗健康事业的迅速发展和壮大! 从分子水平上对微生物进行基因组研究为探索微生物个体以及群体间作用的奥秘提供了新的线索和思路。为了充分开发微生物(特别是细菌)资源,1994年美国发起了微生物基因组研究计划(MGP)。通过研究完整的基因组信息开发和利用微生物重要的功能基因,不仅能够加深对微生物的致病机制、重要代谢和调控机制的认识,更能在此基础上发展一系列与我们的生活密切相关的基因工程产品,包括:接种用的疫苗、治疗用的新药、诊断试剂和应用于工农业生产的各种酶制剂等等。通过基因工程方法的改造,促进新型菌株的构建和传统菌株的改造,全面促进微生物工业时代的来临。 工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。乳酸杆菌作为一种重要的微生态调节剂参与食品发酵过程,对其进行的基因组学研究将有利于找到关键的功能基因,然后对菌株加以改造,使其更适于工业化的生产过程。国内维生素C两步发酵法生产过程中的关键菌株氧化葡萄糖酸杆菌的基因组研究,将在基因组测序完成的前提下找到与维生素C生产相关的重要代谢功能基因,经基因工程改造,实现新的工程菌株的构建,简化生产步骤,降低生产成本,继而实现经济效益的大幅度提升。对工业微生物开展的基因组研究,不断发现新的特殊酶基因及重要代谢过程和代谢产物生成相关的功能基因,并将其应用于生产以及传统工业、工艺的改造,同时推动现代生物技术的迅速发展。 农业微生物基因组研究认清致病机制发展控制病害的新对策 据资料统计,全球每年因病害导致的农作物减产可高达20%,其中植物的细菌性病害最为严重。除了培植在遗传上对病害有抗性的品种以及加强园艺管理外,似乎没有更好的病害防治策略。因此积极开展某些植物致病微生物的基因组研究,认清其致病机制并由此发展控制病害的新对策显得十分紧迫。 经济作物柑橘的致病菌是国际上第一个发表了全序列的植物致病微生物。还有一些在分类学、生理学和经济价值上非常重要的农业微生物,例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及我国正在开展的黄单胞菌的研究等正在进行之中。日前植物固氮根瘤菌的全序列也刚刚测定完成。借鉴已经较为成熟的从人类病原微生物的基因组学信息筛选治疗性药物的方案,可以尝试性地应用到植物病原体上。特别像柑橘的致病菌这种需要昆虫媒介才能完成生活周期的种类,除了杀虫剂能阻断其生活周期以外,只能通过遗传学研究找到毒力相关因子,寻找抗性靶位以发展更有效的控制对策。固氮菌全部遗传信息的解析对于开发利用其固氮关键基因提高农作物的产量和质量也具有重要的意义。 环境保护微生物基因组研究找到关键基因降解不同污染物 在全面推进经济发展的同时,滥用资源、破坏环境的现象也日益严重。面对全球环境的一再恶化,提倡环保成为全世界人民的共同呼声。而生物除污在环境污染治理中潜力巨大,微生物参与治理则是生物除污的主流。微生物可降解塑料、甲苯等有机物;还能处理工业废水中的磷酸盐、含硫废气以及土壤的改良等。微生物能够分解纤维素等物质,并促进资源的再生利用。对这些微生物开展的基因组研究,在深入了解特殊代谢过程的遗传背景的前提下,有选择性的加以利用,例如找到不同污染物降解的关键基因,将其在某一菌株中组合,构建高效能的基因工程菌株,一菌多用,可同时降解不同的环境污染物质,极大发挥其改善环境、排除污染的潜力。美国基因组研究所结合生物芯片方法对微生物进行了特殊条件下的表达谱的研究,以期找到其降解有机物的关键基因,为开发及利用确定目标。 极端环境微生物基因组研究深入认识生命本质应用潜力极大 在极端环境下能够生长的微生物称为极端微生物,又称嗜极菌。嗜极菌对极端环境具有很强的适应性,极端微生物基因组的研究有助于从分子水平研究极限条件下微生物的适应性,加深对生命本质的认识。 有一种嗜极菌,它能够暴露于数千倍强度的辐射下仍能存活,而人类一个剂量强度就会死亡。该细菌的染色体在接受几百万拉德a射线后粉碎为数百个片段,但能在一天内将其恢复。研究其DNA修复机制对于发展在辐射污染区进行环境的生物治理非常有意义。开发利用嗜极菌的极限特性可以突破当前生物技术领域中的一些局限,建立新的技术手段,使环境、能源、农业、健康、轻化工等领域的生物技术能力发生革命。来自极端微生物的极端酶,可在极端环境下行使功能,将极大地拓展酶的应用空间,是建立高效率、低成本生物技术加工过程的基础,例如PCR技术中的TagDNA聚合酶、洗涤剂中的碱性酶等都具有代表意义。极端微生物的研究与应用将是取得现代生物技术优势的重要途径,其在新酶、新药开发及环境整治方面应用潜力极大。 微生物在整个生命世界中的地位! 当人类在发现和研究微生物之前,把一切生物分成截然不同的两大界-动物界和植物界。随着人们对微生物认识的逐步深化,从两界系统经历过三界系统、四界系统、五界系统甚至六界系统,直到70年代后期,美国人Woese等发现了地球上的第三生命形式-古菌,才导致了生命三域学说的诞生。该学说认为生命是由古菌域(Archaea)、细菌域(Bacteria)和真核生物域(Eucarya)所构成。在图示“生物的系统进化树”中,左侧的黄色分枝是细菌域;中间的褐色和紫色分枝是古菌域;右侧的绿色分枝是真核生物域。 古菌域包括嗜泉古菌界(Crenarchaeota)、广域古菌界(Euryarchaeota)和初生古菌界(Korarchaeota);细菌域包括细菌、放线菌、蓝细菌和各种除古菌以外的其它原核生物;真核生物域包括真菌、原生生物、动物和植物。除动物和植物以外,其它绝大多数生物都属微生物范畴。由此可见,微生物在生物界级分类中占有特殊重要的地位。 生命进化一直是人们关注的热点。Brown等依据平行同源基因构建的“Cenancestor”生命进化树,认为生命的共同祖先Cenancestor是一个原生物。原生物在进化过程中产生两个分支,一个是原核生物(细菌和古菌),一个是原真核生物,在之后的进化过程中细菌和古菌首先向不同的方向进化,然后原真核生物经吞食一个古菌,并由古菌的DNA取代寄主的RNA基因组而产生真核生物。 从进化的角度,微生物是一切生物的老前辈。如果把地球的年龄比喻为一年的话,则微生物约在3月20日诞生,而人类约在12月31日下午7时许出现在地球上。赞同92| 评论

枯草芽孢杆菌研究论文英文

枯草芽孢杆菌Bacillus subtilis

枯草芽孢杆菌 [词典] Bacillus subtilis; [例句]研究了枯草芽孢杆菌、假单孢菌和曲霉对低品位磷矿粉的分解作用。Decomposition of low-grade rock phosphate with three strains of Bacillus subtilis, Pseudomonas sp.

张西锋,李万芬. 枯草芽孢杆菌葡萄糖酸操纵子突变株的构建,江苏农业科学,2011.(已接受)张西锋,李万芬. 枯草芽孢杆菌核黄素操纵子rib operon的克隆与表达,生物技术,2011.(已接受)张西锋, 李万芬. 枯草芽孢杆菌GMP 还原酶基因(guaC)突变株的构建,安徽农业科学,2011,1,146-148.章寒琼,张西锋,潘博,孙晓凤,沈伟,李兰. BPA不影响卵母细胞减数分裂相关基因Dazl的甲基化,青岛农业大学学报,2011. (已接受)张西锋, 李万芬, 郭蔼光.透明颤菌vgb基因在枯草芽孢杆菌中的整合表达,西北农林科技大学学报,2009,37(9):199-203.张西锋,郭蔼光.同源重组法构建枯草芽孢杆菌核黄素操纵子突变株,武汉大学学报(理学版),2009,55(3):354-358.杨明明,杨朝霞,张西锋,王晶,刘锦妮,岑沛霖. 枯草芽孢杆菌bioW基因在大肠杆菌中的表达及其对宿主生长的抑制作用,西北农林科技大学学报:自然科学版, 2009:37(1):56-60.张西锋,李万芬,袁新宇,张炜炜,刘 波,王 俊,杨明明. 枯草芽孢杆菌生物素操纵子的初步改造,西北农林科技大学学报(自然科学版), 2007,35(7):169-174.张西锋, 张炜炜, 杨明明, 樊俊华. 生物素生物合成的研究,生物技术,2006,4:84-86.张西锋,李万芬,杨明明,张炜炜,樊俊华. 大肠杆菌、枯草杆菌穿梭表达载体的构建及改造,生物技术,2005,6:5-8.

溶菌酶发酵生产工艺研究论文

食品加工质量安全管理工作是保障企业产品质量安全符合质量标准的关键、是维护企业市场信誉的关键,是企业在现代激烈市场竞争中赢得市场竞争力的关键。下面是我为大家推荐的食品加工论文,供大家参考。

食品加工论文 范文 一:食品工业泡沫分离技术的应用

泡沫分离又称泡沫吸附分离技术,是以气泡为介质,以各组分之间的表面活性差为依据,从而达到分离或浓缩目的的一种分离 方法 [1].20世纪初,泡沫分离技术最早应用于矿物浮选,后来应用于回收工业废水中的表面活性剂.直到20世纪70年代,人们开始将泡沫分离技术应用于蛋白质与酶的分离提取[2-3].目前,在食品工业中,泡沫分离技术已经应用于蛋白质与酶、糖及皂苷类有效成分的分离提取.由于大部分食品料液都有起泡性,泡沫分离技术在食品工业中的应用将越来越广泛.

1泡沫分离技术的原理及特点

泡沫分离技术的原理

泡沫分离技术是依据表面吸附原理,基于液相中溶质或颗粒之间的表面活性差异性.表面活性强的物质先吸附于分散相与连续相的界面处,通过鼓泡形成泡沫层,使泡沫层与液相主体分离,表面活性物质集中在泡沫层内,从而达到浓缩溶质或净化液相主体的目的.

泡沫分离技术的特点

优点

(1)与传统分离稀浓度产品的方法相比,泡沫分离技术设备简单、易于操作,更加适合于稀浓度产品的分离.(2)泡沫分离技术分辨率高,对于组分之间表面活性差异大的物质,采用泡沫分离技术分离可以得到较高的富集比.(3)泡沫分离技术无需大量有机溶剂洗脱液和提取液,成本低、环境污染小,利于工业化生产.

缺点

表面活性物质大多数是高分子化合物,消化量比较大,同时比较难回收.此外,溶液中的表面活性物质浓度不易控制,泡沫塔内的返混现象会影响到分离效果[4].

2泡沫分离技术在食品工业中的应用

蛋白质的分离

在分离蛋白质的过程中,表面活性差异小的蛋白质,吸附效果受到气-液界面吸附结构的影响,因此蛋白质表面活性的强度是考察泡沫分离效果的主要指标.谭相伟等[5]研究了牛血清蛋白与酪蛋白在气-液界面的吸附,并发现酪蛋白对牛血清蛋白在气-液界面处的吸附有显著影响.此后,Hossain等[6]利用泡沫分离技术对β-乳球蛋白和牛血清蛋白进行分离富集,结果得到96%β-乳球蛋白和83%牛血清蛋白.Brown等[7]采用连续式泡沫分离技术从混合液中分离牛血清蛋白与酪蛋白,结果表明酪蛋白的回收率很高,而大部分的牛血清蛋白留在了溶液中.Saleh等[8]研究了利用泡沫分离法从乳铁传递蛋白、牛血清蛋白和α-乳白蛋白3种蛋白混合液中分离出乳铁传递蛋白,在牛血清蛋白和α-乳白蛋白的混合液中加入不同浓度的乳铁传递蛋白,并不断改变气速,优化了最佳工艺条件.结果得出:在最佳工艺条件下,87%的乳铁传递蛋白留在溶液中,98%牛血清蛋白和91%α-乳白蛋白存在于泡沫夹带液中.由此可见,利用泡沫分离法可以有效地从3种蛋白质混合液中分离出乳铁传递蛋白.Chen等[9]利用泡沫分离技术从牛奶中提取免疫球蛋白.考察了初始pH值、初始免疫球蛋白浓度、氮流量、柱的高度及发泡时间等因素对反应的影响,结果表明:采用泡沫分离方法可以有效地从牛奶中分离出免疫球蛋白.Liu等[10]从工业大豆废水浓缩富集大豆蛋白,最佳工艺条件:温度为50℃,pH值为,空气流量为100mL?min-1,装载液体高度为400mm,得到大豆蛋白富集比为等[11]为了提高泡沫析水性,研发了一种新型的利用铁丝网进行整装填料的泡沫分离塔,利用铁丝网整体填料塔泡沫分离法对牛血清蛋白进行分离.通过研究填料对气泡大小、持液量、富集比和在不同条件下以牛血清蛋白水溶液作为一个参考物的有效收集率的影响,评价填料的作用.结果表明,填料可以加速气泡破裂、减少持液量、提高泡沫析水性和牛血清蛋白的富集比.研究表明,在积液量为490mL,空气流速为300mL?min-1,牛血清蛋白初始浓度为,填料床高度为300mm和初始pH值为的条件下,最佳的牛血清蛋白富集比为,是控制塔条件下富集比的倍.刘海彬等[12]以桑叶为原料,采用泡沫分离法对桑叶蛋白进行分离,并分析了影响分离效果的主要因素,结果测得桑叶蛋白回收率为、富集比为.由此可见,利用泡沫分离法对桑叶进行分离可得到含量较高的桑叶蛋白.与传统的叶蛋白分离方法如酸(碱)热法、有机溶剂法相比较[13-14],泡沫分离法分离效果好,避免了加热导致蛋白质变性以及减少有机溶剂带来的环境污染等问题.李轩领等[15]以亚麻蛋白浓度、NaCl浓度、原料液pH值以及装液量为主要考察因素,用响应面法优化了从未脱胶亚麻籽饼粕中泡沫分离亚麻蛋白的工艺条件.在最佳工艺条件下,得到的亚麻蛋白质,而多糖的损失率仅为.可见,采用泡沫分离技术可以从未脱胶亚麻籽饼粕中有效分离出亚麻蛋白.

酶的分离

蛋白质属于生物表面活性剂,包含极性和非极性基团,在溶液中可选择性地吸附于气-液界面.因此,从低浓度溶液中可泡沫分离出酶和蛋白质等物质.Linke等[16]研究了从发酵液中泡沫分离胞外脂肪酶,考察了通气时间、pH值及气速等主要因素对回收率的影响,研究得出通气时间为50min、pH值为及气速为60mL/min时,酶蛋白回收率为95%.Mohan等[17]从啤酒中泡沫分离回收酵母和麦芽等,结果表明,分离酵母和麦芽所需的时间不同,而且低浓度时更加容易富集.Holmstr[18]从低浓度溶液中泡沫分离出淀粉酶,研究发现在等电点处鼓泡,泡沫夹带液中的淀粉酶活性是原溶液中的4倍.Lambert等[19]采用泡沫分离技术考察了β-葡糖苷酶的pH值与表面张力之间的关系,研究表明,纤维素二糖酶和纤维素酶的最佳起泡pH值分别为和6~等[7]利用泡沫分离技术对牛血清蛋白与溶菌酶以及酪蛋白与溶菌酶的混合体系分别进行了分离纯化的研究.结果表明,溶菌酶不管与牛血清蛋白混合还是与酪蛋白混合,回收率都很低,但是由于溶菌酶可提高泡沫的稳定性,从而提高了牛血清蛋白与溶菌酶的回收率.Samita等[20]对牛血清蛋白与酪蛋白、牛血清蛋白与溶菌酶两种二元体系分别进行了研究,发现在牛血清蛋白与酪蛋白的蛋白质二元体系中酪蛋白在气-液界面处的吸附占了大部分的气-液界面,从而阻止了牛血清蛋白在气-液界面处的吸附.而在牛血清蛋白与溶菌酶的二元体系中,研究表明溶菌酶提高了牛血清蛋白的回收率,同时提高了泡沫的稳定性.针对这种现象,Noble等[21]也采用泡沫分离法分离牛血清蛋白与溶菌酶的二元体系,研究发现泡沫夹带液中存在少量的溶菌酶,提高了泡沫的稳定性,牛血清蛋白溶液在低浓度下本来不能产生稳定泡沫,溶菌酶的存在使得其也能产生稳定的泡沫.这些研究表明,泡沫分离技术可以在较低的浓度下分离具有表面活性的蛋白质,为泡沫分离技术在蛋白质分离中的应用研究开辟了新的领域.国内泡沫分离技术已应用在酶类物质分离中,范明等[22]设计了泡沫分离装置,利用泡沫分离技术分离脂肪酶模拟液和实际生产生物柴油的水相脂肪酶溶液,对水相脂肪酶进行回收并富集.考察了通气速度、进料酶浓度及水相脂肪酶溶液中pH值等主要因素对分离效果的影响,当通气速度为10L/(LH)、进料酶浓度为、pH值为时,蛋白和酶活回收率接近于100%,富集比为.研究表明,初始脂肪酶浓度对泡沫分离的富集比和蛋白回收率有显著影响,pH值对富集比、蛋白和酶活回收率无显著影响,而气速是影响蛋白回收速率的一个重要因素.回收水相脂肪酶的过程中酶活性无损失.可见,泡沫分离是一个回收液体脂肪酶的有效方法[22].

糖的分离

糖一般存在于植物和微生物体内,可根据糖与蛋白质或者其他物质的表面活性差异性,利用泡沫分离技术对糖进行分离提取[23].Fu等[24]采用离心法从基隆产的甘薯块中分离提取可溶性糖和蛋白,得到的回收率分别为和;而采用泡沫分离法时,可溶性糖和蛋白的回收率分别为和等[25]采用泡沫分离法富集假单胞菌生产的鼠李糖脂,最佳工艺条件下得到鼠李糖脂97%,富集比为洲[26]利用间歇式泡沫分离法从美味牛肝菌水提物中分离牛肝菌多糖,考察了pH值、原料液浓度、空气流速、表面活性剂用量及浮选时间等主要因素对分离效果的影响,以回收率为指标评价分离的效果,并优化了分离牛肝菌多糖的工艺条件.在最佳工艺条件下,牛肝菌多糖回收率为.国内关于食用菌多糖的提取一般利用水提醇析法,但是该法需要消耗大量的乙醇,操作周期长,能耗大[27-28],而泡沫分离法具有快速分离、设备简单、操作连续、不需高温高压及适合分离低浓度组分等优势,因此间歇式泡沫分离法是提取食用菌多糖的一种有效方法.

皂苷类有效成分的分离

皂苷包含亲水性的糖体和疏水性的皂苷元,具有良好的起泡性,是一种优良的天然非离子型表面活性成分,因此可采用泡沫分离法从天然植物中分离皂苷[29].泡沫分离法已广泛用于大豆异黄酮苷元、人参皂苷、无患子皂苷、竹节参皂苷、文冠果果皮皂苷等有效成分的分离.

大豆异黄酮苷元的分离Liu等[10]

采用泡沫分离与酸解方法从大豆乳清废水中分离大豆异黄酮苷元,指出从工业大豆乳清废水中提取的异黄酮苷元主要以β-苷元的形式存在,并利用傅里叶变换红外光谱分析发现大豆异黄酮和大豆蛋白以复合物的形式存在.研究结果表明,利用泡沫分离技术可以从大豆乳清废水中有效地富集大豆异黄酮,分离出大豆异黄酮苷元和β-苷元.

无患子总皂苷的分离魏凤玉等[30]

分别采用间歇和连续泡沫分离法分离纯化无患子皂苷,利用正交试验,考察了原始料液浓度、气体流速、温度、pH值等因素对无患子皂苷回收率的影响,确定了泡沫分离最佳工艺条件.林清霞等[31]采用泡沫分离技术分离纯化无患子皂苷,利用紫外分光光度计测定无患子皂苷含量,通过富集比、纯度及回收率判断分离纯化的效果.在进料浓度为、进料量为150mL、气速为32L/h、温度为30℃、pH值为时,得到富集比为,纯度与回收率分别为和.研究结果表明:无患子皂苷的回收率随着进料浓度的增大而减小,随着气速、进料量的增大而增大;富集比随着进料浓度、气速及进料量的增大而减小,pH值对富集比的影响较小;纯度随着进料浓度、气速的增大而降低,进料量、pH值对纯度的影响较小.

竹节参总皂苷的分离

竹节参的主要成分皂苷是一种优良的天然表面活性剂,而竹节参中的竹节参多糖、无机盐及氨基酸等是非表面活性剂,因此可根据表面活性的差异,采用泡沫分离技术对竹节参皂苷进行分离纯化[32-34].张海滨等[35]考察了气泡大小、pH值、原料液温度及电解质物质的量浓度等主要因素对泡沫分离竹节参总皂苷的影响,以富集比、纯度比及回收率等为指标分析分离纯化的效果,得出最佳工艺条件:气泡直径为,pH值为,温度为65℃,电解质NaCl浓度为.在最佳工艺条件下,总皂苷富集比为,纯度比为,回收率为,能够得到较好的分离.张长城等[36]研究了利用泡沫分离技术对竹节参中皂苷进行分离纯化的方法与条件,指出泡沫分离技术分离纯化竹节参皂苷具有产品回收率高、工艺简单、能耗低及不使用有机溶剂等优点,为竹节参皂苷的开发利用提供了技术支持.

文冠果果皮皂苷的分离

文冠果籽油是优质的食用油,含油率达35%~40%[37],同时可作为生物柴油的原料.文冠果果皮含有皂苷~.研究表明,文冠果果皮皂苷具有抗肿瘤、抗氧化及抗疲劳等功效[38].文冠果果皮皂苷的开发利用带来的附加价值可以有效地降低生物柴油的生产成本.在生产生物柴油的过程中需要处理大量的果皮,因此需要寻求一种简单可行、成本低、收率高以及对环境污染小的皂苷分离方法.吴伟杰等[39]使用自制起泡装置,研究了泡沫分离技术分离文冠果果皮总皂苷的可行性及最佳反应条件.研究得出泡沫分离文冠果皂苷的最佳工艺条件为:料液气体流速为,初始浓度为2mg?mL-1,温度为20℃,pH值为5.与泡沫分离人参、三七等皂苷的气体流速相比较,文冠果果皮的气体流速较低,这样可以更大限度地降低能耗、节约成本.同时,泡沫分离文冠果果皮皂苷可在室温条件下进行,降低了加热所需的能耗.此外,由于文冠果果皮皂苷的水溶液pH值在5左右,泡沫分离时无需调节pH值.在最佳工艺条件下,得到富集比为,回收率为,纯度为.研究表明,泡沫分离文冠果果皮皂苷可以达到较高的富集比、回收率和纯度,对于大力开发利用生物能源、综合利用文冠果以及降低生物柴油的成本有着重要意义.

3展望

泡沫分离技术是一种很有发展前景的新型分离技术,在食品工业中的应用将会越来越广泛,今后在天然产物及稀有物质的分离提取等方面有着更加广泛的应用.同时,泡沫分离技术也存在一定的局限性,为促进泡沫分离技术在食品工业中的应用发展,应该在以下方面进行深入研究:(1)对泡沫分离复杂物料实际分离过程的泡沫形成情况建立理论模型,对标准表面活性剂的分离提取建立标准数据库,对标准表面活性剂和非表面活性物质间的分离建立指纹图谱;(2)如何减少泡沫分离非表面活性物质时的表面活性剂消耗量;(3)如何解决泡沫分离高浓度产品时回收率低的问题;(4)目前泡沫分离设备存在局限性,应研究开发新型的适合食品工业分离的泡沫分离设备,提高泡沫分离的效果[40].

食品加工论文范文二:食品工业废水处理节能研究

食品工业包括制糖、酿造、肉类、乳品加工等,食品工业的废水主要来源于原料的处理、洗涤、脱水、过滤、脱酸、脱臭和蒸煮过程中产生的,这些废水含有大量的有机物、蛋白质、有机酸和碳水化合物,具有很强的耗氧性,如果不经处理直接排入水体会大量消耗水中的溶解氧,从而造成水体缺氧,造成水生生物的死亡。食品工业废水油脂含量高,多伴随大量悬浮物随废水排出,其中动物性食品加工排出的废水还可能含有病菌,此外,这些废水还含有铜、锰、铬等金属离子。近年来,随着食品加工业的快速发展,每年由此产生的废水量也呈现快速增长态势,许多废水未经有效处理便被直接排放,给环境产生了十分严重的破坏。因此,探讨食品工业废水处理对于生态环境保护具有非常重要的现实意义。

1食品工业废水处理工艺现状

目前,国内外对于食品工业废水的处理过程中主要采用的是生物处理工艺,其中主要包括有好氧生物处理工艺、厌氧生物处理工艺,以及由好氧生物处理工艺与厌氧生物处理工艺相结合的处理工艺。在好氧生物处理工艺方面,主要有活性污泥法(目前实际应用较为广泛的主要有SBR法)和生物膜法(具有代表性的是曝气生物滤池法)。由于厌氧生物处理工艺相较于好氧生物处理工艺无论在后期的运行管理费用还是前期的基建投资方面的费用都有较大优势,其中比较具有典型的处理工艺有厌氧颗粒污泥膨胀床(EGSB)工艺、第三代厌氧处理工艺———厌氧内循环反应器(IC)被广泛应用到了食品工业废水处理中。此外,厌氧生物处理工艺在处理食品工业废水方面具有良好的处理效果[1]。

2各种工艺特点及应用效果分析

目前国内外,食品工业废水的处理以生物处理[2]为主。在实际中运用较广,技术较为成熟的主要有厌氧接触法、厌氧污泥床法、浅层曝气、延时曝气、曝气沉淀池法等等。

好氧生物处理工艺

好氧生物处理是在不断供氧的环境中,利用好氧微生物来氧化有机物。在好氧过程中,微生物对复杂的有机物进行分解,一部分被转化为稳定的无机物CO2、H2O和NH3,一部分则由微生物合成为新细胞,最后去除污水中的有机物。

法,即间歇式活性污泥系统(又叫序批式间歇活性污泥法)。SBR法目前在国内外应用较为广泛,生物反应池中集中了生物降解过程、沉淀过程以及污泥回流功能为一体,这种工艺比较简单,它是在以前间歇式活性污泥工艺基础上发展来的一种新工艺,采用SBR法处理废水的运行过程一般包括了进水、充氧曝气、静止沉淀、排水和排泥五个步骤。与连续性活性污泥工艺相比,该工艺具有的有点主要有:曝气池兼具二沉池的功能,不设二沉池,也没有污泥回流设备,系统结构简单,易于管理;耐冲击负荷,一般无需设置调节池;反应推动力大,较为简便的得到优质出水水质;污泥沉淀性能好,SVI值较低,便于自控运行,后期维护管理也较为简便。居华[3]通过SBR法在酱油、酱菜食品废水处理中的应用研究后得出,原废水CODcr在2000mg/L~4000mg/L范围内,经SBR法处理后出水水质得到了二级标准,去除率达96%以上,没有出现污泥膨胀现象,而且操作管理方便,占地面积小,运行的费用也低。

法,即曝气生物滤池法。这种工艺最早可以追溯上个世纪80年代,是由欧美等国家应用和发展起来的,大连马栏河污水处理厂是我国最早采用BAF工艺。该工艺是在生物接触工艺基础上,在滤池中填装陶粒、石英砂等粒状填料,以填料及其附着生产生物膜为介质,发挥生物的代谢功能,通过物理过滤功能,发挥膜和填料的截留吸附作用从而实现污染物的高效处理。廖艳[4]等采用混凝—ABR与曝气生物滤池(BAF)联合处理工艺,对某市肉联厂高浓度废水化学需氧量和氨氮的去除研究后发现,化学需氧量和氨氮的去除效果从原水时的1500mg/L~4500mg/L、30mg/L~85mg/L,经处理后出水COD<100mg/L,氨氮<50mg/L,达到了国家一、二级排放标准,取得良好的环境和社会效益。

法,即膜生物反应器法。是上个世纪90年代逐渐发展起来的一种废水处理技术,该工艺是将膜组件替代传统的二沉池,实现固相和液相分离。其实质是把细菌和微生物以生物膜的方式附着在固体表面上,以污水中的有机物为营养物进行新陈代谢和生长繁殖,从而达到实现净化污水的效果。该工艺具有较强的抗冲击力,对水质和水量变化具有较强适应性;污泥产量较低且沉降性能优,易于固液分离;对于低浓度污水也可以进行处理,在正常运行时可以把原水中的BOD5由20mg/L~30mg/L降至5mg/L~10mg/L;运行费用也不高,管理方便。张亮平,王峰[5]以MBR在湖北某食品厂废水处理中的应用为例进行研究后发现,采用MBR-活性炭-杀菌联合工艺,出水COD和BOD的去除率达到了99%以上,系统工艺能耗低,运行稳定。

厌氧生物处理工艺

在食品废水处理过程中,厌氧处理法与好氧处理法相比由于产生的污泥少,动力流耗小,管理简便,既能节能又能降低成本,逐渐在高浓度有机废水行业———食品工业广泛推崇。

法,即升流式厌氧污泥床法。该种工艺是由高活性厌氧菌体构成的粒状污泥,在UASB装置内随上升的气流呈向上流动的状态。处理效率高、性能可靠、能耗低,也不需要填料和载体,运行成本低等优点,既可以处理高负荷废水,也不会产生堵塞等优点。也是当前应用最为广泛的高速反应器之一。王炜,何好启[6]研究发现,食品废水经由UASB+接触氧化法工艺处置后,CODcr、BOD5、SS和植物油由原水浓度的1170mg/L、570mg/L、600mg/L、150mg/L,处置后的效果为、、40mg/L和3mg/L,出水水质达到了《污水综合排放标准》中的一级标准,且工程的经济运行效益也良好,总运行费用约为元/m3,工艺占地小,处理成本低,运行方式灵活,值得推广。

反应器,即膨胀颗粒污泥床反应器。该工艺是在UASB基础上发展起来的一种新厌氧工艺,与UASB工艺相比,EGSB增加了出水的回流,提升了反应器中水流的速度,其速度可以达到5m/h~10m/h,比UASB的~高出近10倍。李克勋[7]等以天津某淀粉厂采用EGSB处理淀粉废水为例,EGSB的厌氧反应器对COD的去除率超过了85%,出水水质达到了国家一级排放标准,大量有机物被去除,后续单元的处理压力被减轻,此外,厌氧反应器的介入使用,可以产生沼气作为能源进行二次利用,降低运行费用(总运转费用为元/m3?d),具有良好的环境效益和社会效益。

法,即厌氧序批式活性污泥法。ASBR厌氧序批式活性污泥法最早诞生于上世纪90年代的美国,是在SBR基础上发展起来的,该工艺的显著特点是以序批间歇运行,按次序分为进水、反应、沉淀和排水四个步骤,与连续流厌氧反应器相比,该工艺由于不需要大阻力的配水系统,因此极大地减少了系统的能耗,也不会产生断流和短流,运行灵活,抗击能力较强,实现厌氧功能,也同时兼有了SBR的优点。

3厌氧生物处理工艺优势分析

与好氧生物处理工艺相比,在食品工业废水处理方面,厌氧生物处理工艺具有很多优势:工艺运行时污泥的剩余量非常少,由于不需要附加氧源而降低运行管理费用;食品工业废水有机物浓度高,而厌氧生物处理工艺拥有良好的抗高浓度有机物的冲击负荷力优势,能够做到间接性排放;另外,厌氧生物处理工艺能够产生沼气,实现资源的二次利用,真正实现了 变废为宝 ,降低能耗,因此,厌氧处理工艺在食品工业废水处理中是一种节能型废水处理工艺。作为低能耗而且能够产生二次能源的厌氧生物处理工艺必将成为食品工业废水处理的主流方向[8]。

róng jūn méi

lysozyme

溶菌酶是一种低分子量(14700道尔顿)的、不耐热的堿性蛋白质,其中富含精氨酸。溶菌酶为正常机体免疫防御机制的组成部分。因具有溶解细菌细胞壁的作用而得名,是能溶解某些细菌的一种糖水解酶。溶菌酶主要存在于动植物的组织液和某些微生物体内,如鼻粘液、眼泪、唾液、卵蛋白、枯草杆菌培养物和某些蔬菜中。该酶能水解细菌的细胞壁中N乙酰氨基葡萄糖和N乙酰胞壁酸之间的β1,4糖苷键,故又称胞壁质酶,即N乙酰胞壁质糖苷聚糖水解酶。现从鸡蛋清提取溶菌酶以及从霉菌中提取溶菌酶均已达工业化生产水平。对鸡蛋清溶菌酶的研究较详细,它是由129个氨基酸残基构成的一种堿性蛋白,分子量从~万,对热稳定,对堿不稳定,对革兰氏阳性细菌有较强的杀菌作用。

在人体内,溶菌酶存在于中性粒细胞、单核细胞和巨噬细胞内;也存在于黏膜分泌液中,成为体表防御因素之一。体内多数器官含有一定浓度的溶菌酶。以乳汁、唾液、肠道以及吞噬细胞溶酶体颗粒中含量较多,组织中含量较少。正但肾脏和脾脏的含量较多。单核细胞与巨噬细胞的溶菌酶位于细胞表面,故其释放活跃。而中性粒细胞的溶菌酶位于胞质深层,只在细胞裂解时才释放出来。正常的尿液、汗液及脑脊液中不含溶菌酶。某些疾病患者血清或体液内的溶菌酶活性值有显著差别,故测定溶菌酶活性日益受到临床重视。

溶菌酶能直接水解革兰氏阳性菌细胞壁中乙酰葡糖胺与乙酰胞壁酸分子间的连接,使细胞壁破坏,水分进入,细胞崩解。而革兰氏阴性菌细胞壁粘肽层外有一层脂多糖和脂蛋白,故不受溶菌酶的影响。在抗体存在下,脂多糖及脂蛋白受到破坏时,溶菌酶才能发挥作用;在有抗体、补体、溶菌酶共同存在时,其溶菌作用更为明显。

溶菌酶也存在于鸡蛋清和某些细菌中,可用工业生产的方法将其提纯并加工制成各种制剂,用来治疗中耳炎、咽喉炎、副鼻窦炎等慢性疾病。

溶菌酶可药用,具抗菌、清除局部坏死组织、止血、消肿、消炎等作用。在食品工业上可用作防腐剂,还可添加在牙膏中作为防治龋齿的药用牙膏。在发酵工业上是一种重要的溶菌剂,用于存作细胞壁,制备无菌体提取液。

球蛋白G ,溶菌酶

Lysozyme,Globulin G

有抗菌、抗病毒、止血、消肿及加快组织恢复功能等作用,故临床用于慢性鼻炎、急慢性咽喉炎、口腔溃疡、水痘、带状疱疹和扁平疣等。

口服:每次3~5片(肠溶片),1日3次。口含:每次1片,1日4~6次。外用:用等渗盐水或注射用水或甘油配成1%~2%溶液外搽。治水痘时,每日每千克体重10mg,分3~4次服。

片剂(肠溶片):每片10mg。口含片:每片20mg。

正常人尿中无溶菌酶。某些疾病患者血清或体液内的溶菌酶活性值有显著差别,故测定溶菌酶活性日益受到临床重视。常用的方法有琼脂平板法、比浊法。

Lysozyme

血液生化检查 > 酶类测定

血液

(1)琼脂平板法:根据溶菌酶能使革兰阳性菌细胞壁溶解,尤以对腐生菌。如溶壁微球菌(M.lysodeikticus)最为敏感,故常以溶解溶壁微球菌为指标,可对溶菌酶的活性进行测定。溶壁微球菌与琼脂混合,被检物(含溶菌酶)与该菌作用后,细菌因细胞壁破坏而溶解。致使加样孔周围出现溶菌环。溶菌环直径与样品中溶菌酶含量的对数成直线关系。

(2)比浊测定法:一定浓度的混浊细菌溶液中,由于溶菌酶水解细菌细胞壁黏多肽使细菌裂解,浓度降低,透明度增强,根据浊度变化来推测溶菌酶的含量。

同琼脂平板法和比浊法测定。

同琼脂平板法和比浊法测定。

血清:5~30mg/L(琼脂平板法);~14mg/L(比浊测定法)。脑脊液:0mg/L(琼脂平板法)。唾液:30~70mg/L(比浊测定法)。尿液:0mg/L(琼脂平板法);1~3mg/L(比浊测定法)。

由于方法与实验条件不同,测定结果有所差别,故各实验室应建立自己的正常值标准。

血清溶菌酶测定对鉴别各型急性白血病有一定意义,急粒与急单血清溶菌酶升高;而急淋、急性红白血病降低或正常;经化疗奏效病情缓解后,溶菌酶水平可恢复。血清溶菌酶测定可作为判断局限性肠炎活动性的一个有用的指标,并且有助于判断临床过程的严重程度和对治疗的反应。

尿液溶菌酶含量增高的原因有:①肾小管损害;②高溶菌酶血症;③肾组织破坏。临床上测定尿液溶菌酶主要是作为肾小管损害的一个指标,各种原因的肾小管损害都可引起尿溶菌酶含量增高。肾移植患者定期检查尿溶菌酶活性十分必要。如移植肾接受良好,则溶菌酶活性在7天内恢复正常;若尿中过多的溶菌酶持续存在,必须疑及排斥反应的发生。

细菌性脑膜炎患者脑脊液(CSF)溶菌酶含量远较病毒性脑膜炎患者的含量高。因此,用溶菌酶测定对二者的鉴别有重要意义。此外。CSF溶菌酶测定对中枢神经系统的原发性或继发性肿瘤有一定辅助诊断价值。

慢性支气管炎患者痰液中溶菌酶含量降低;重症肺结核、泌尿系统感染患者血清或尿液中溶菌酶活性均可显著升高。此外,溶菌酶含量测定亦可作为判断局限性肠炎活动性指标。并有助于对临床过程的严重程度和治疗反应进行评价。

有关标本保存期限、溶菌酶标准液的保存时间,文献资料众说不一。一般地说,标本应新鲜,溶菌酶标准液应在临用时准确配制,测定检样中溶菌酶活性。目前已有用抗人溶菌酶抗体建立的溶菌酶免疫测定法。由测酶活性改为测酶含量,初步认为此法具有特异、灵敏、准确等优点。

发酵生产大豆酸奶研究的论文

准备材料:1、任意品牌酸奶一杯/袋/盒(第一次作“引子”)2、白砂糖两大勺(冰糖、蜂蜜、不加糖都可以)3、牛奶一大袋(500g,据说含抗生素的牛奶作不出酸奶,不知真伪)4、另备干净容器一个(饭盒啦,无油、无水、密封,透明漂亮者为上选)制作过程:1、5勺酸奶(引子)放入容器2、2勺糖放入容器(爱吃甜的多放,想减肥、不怕酸的不放),后加也可以,不过我是先放,主要是舍不得酸奶“破相”3、到入牛奶,搅拌均匀4、加盖,放到温度高一点的地方(原参考值:摄氏30度需12小时,我家18度时,早上做晚上吃,晚上做早上吃,真的是“吃”而不是“喝”,目前我家牛奶消耗量成倍增长)5、耐心地等上12个小时左右,打开盖子(中间不许偷看!)…凝固得象豆腐脑似的,就成功了,应该用平湖如镜来形容6、先别着急品尝,先留出5大勺酸奶做引子呵呵,其实简单地说就是:5勺酸奶+2勺糖+1袋牛奶搅拌均匀,静置12小时左右即可加上应市的水果再冰镇一下味道会更好,不过一定要先留下“白”酸奶做引子

二、研究背景 随着人们生活水平的不断提高,酸奶作为一种营养保健食品受到了越来越多的人的青睐。面对市场上种类繁多的乳酸制品,既追求营养又讲求口味的我们对酸奶知道多少呢?为了深入了解酸奶 ,我们化学研究性小组对酸奶的由来、制作、营养价值,进行了一次研究。 三、研究主要内容与分析 (一)、酸奶的起源 酸奶源于保加利亚。很久以前,以游牧为主的色雷斯人常常背着灌满羊奶的皮囊随畜群在大草原上游荡。由于气温、体温及其他原因的作用,皮囊中的奶常变馊而成渣状。取少量变馊的奶倒入煮过的鲜奶中,一段时间后,鲜奶就变成了色雷斯人很喜欢的带有酸味的饮品。这即是最早的酸奶。 20世纪初,俄国科学家伊·缅奇尼科夫在研究人类长寿问题时,到保加利亚去作调查,发现每千名死者中有4名是百岁以上去世的。这些高龄人生前都爱喝酸奶。他断定喝酸奶是使人长寿的一个重要原因。经进一步研究,伊·缅奇尼科夫在酸奶中发现了一种能有效消灭大肠内腐败细菌的杆菌,并命名为“保加利亚乳酸杆菌”。伊·缅奇尼科夫对酸奶的研究成果使西班牙商人伊萨克·卡拉所受到启发,开始生产酸奶。第二次世界大战爆发后,伊萨克·卡拉索在美国建立了一家酸奶厂,很快酸奶便风靡世界。 (二)、制作酸奶使用菌种 型 号 菌种(中文名) 学 名 第一型(发泡型) Type I, Foamy Kefir Cultures 乳酸链球菌 凝乳链球菌 乳酪乳酸杆菌 高加索乳酸杆菌 嗜酸乳酸杆菌 积福圆酵母菌 脆性糖化酵母菌 Streptococcus lactis S. cremori Lactobacillus casei L. caucasicus L. acidophilus Torulopsis kefir Saccharomyces fragilis 2 第二型(乳酸型) Type II, Lactic Kefir Cultures 乳酸链球菌 凝乳链球菌 双乙醯乳酸杆菌 凝乳念珠球菌 植物乳酸杆菌 乳酪乳酸杆菌 嗜酸乳酸杆菌 佛罗伦糖化酵母菌 Streptococcus lactis S. cremori S. diacetylactis Leuconostoc cremoris Lactobacillus plantarum L. casei Saccharomyces florentinus (三)、酸奶的制作方法 酸奶一般是由牛奶做成的。牛奶是一种复杂的胶体混合物,是不透明的液体。奶里含有蛋白质、乳糖、钙质等物质。当在消毒的奶中加入发酵剂——乳酸菌时,乳酸菌就会在适宜的温度(30℃~40℃)中,大量生长繁殖,将牛奶中的乳糖分解成乳酸。因为乳酸中通报马奶中酷蛋白钙离子被夺走,这样一来,酷蛋白化合物就变得不稳定了,随着乳酸的酸度不断地增加,牛奶的性质逐渐发生了变化,当乳酸的PH值为时,酷蛋白就开始沉淀,凝结成酸牛奶。但这时的酸牛奶还很嫩,主要是产酸,这叫做前酵。这时可放入4℃~6℃的冷库中,由于奶的温度和酸度一时还降不下来,酸牛奶还在继续发酵,这叫做后发酵,主要是产芳香味。当后发酵完成后,便是我们饮用的酸牛奶了。 为了进一步了解酸奶的制作过程,我们实验组进行了酸奶的自制实验,方法如下: 1、取250毫升到1000升牛奶(约1—4袋市售鲜奶),也可以用奶粉调制牛奶。加热煮开,加糖。(也可不加糖)。冷却至40℃左右。(与体温相似,不烫手为合适)。倒入合适的干净的容器中或酸奶器中。 2、从冰箱取出1 袋发酵剂放在室温下15分钟至1小时,使其与室温平衡,(与煮奶同时进行,可以节省时间)撕开小袋,将发酵剂倒入牛奶中搅匀(注意:不要剧烈搅拌和不要搅出大量气泡)。放置40℃左右下发酵4-6小时。在发酵时不要摇动、震动和搅拌。以牛奶刚好凝固并出现少量乳清为发酵完成。喜欢吃酸一点的酸奶可以适当延长发酵时间。 3、将发酵好的酸奶取出,放入冰箱数小时或过夜。使乳酸菌停止生长并继续产生风味物质,使酸奶更醇厚、凝固的更完全。 4、从冰箱中取出后搅拌一下即可食用。在食用前可按个人的口味添加糖,也可加入果汁和果料。不能吃糖的人可加甜味剂或不加。怕冷的人可将酸奶放至室温后食用。 注意:发酵用的器具都应是干净的。并且用开水煮过或烫过。在操作是一定要注意卫生。以防止制作酸奶不洁。 在制作的过程中或多或少的会遇到许多的问题,我们为此列举了一些在制作的过程中常见的可能发生的问题和解决的办法: 1.牛奶不凝固 a.加入发酵剂时牛奶太烫,将菌种烫死。解决办法:下次将牛奶放凉。 b.牛奶或奶粉中含有抗菌素等抑菌物质,将菌种抑制。解决办法:更换牛奶或奶粉。 c.菌种因保存不当已经失活或过期。解决办法:更换发酵剂 2.牛奶凝固不完全 a.发酵时间不够。解决办法:延长发酵时间。 b.发酵时受到震动。解决办法:放在一个安静和稳定的地方发酵。 3.牛奶凝固后出水(乳清)过多 a. 牛奶太稀。解决办法:添加占原牛奶约2%的奶粉。 3 b.发酵时间太长。解决办法:注意发酵时间。 注意:1、当菌种选择不当或菌种单一,发酵温度不适合,发酵时间不够等原因致使酸奶的风味与香味不足。 2、菌种不纯或制作设备管道等被气菌污染,造成酸奶有气泡,口感发辣,如果被酵母菌污染则有馊味。 发酵时间与温度对酸奶也有很大的影响。我们对在不同的发酵时间与温度情况下制得的酸奶进行了实验,结果如下: 酸奶的营养含量是人们最注重的。我国新酸奶成分标准: 项目 纯酸奶 调味酸奶 果料酸奶 脂肪含量 全脂 部分 脱脂 ≤ 蛋白质含量 全脂、部分脱脂及脱脂 ≥ 非脂乳固体含量 全脂、部分脱脂 通过对酸奶的研究和相关资料的查寻了解到饮用酸奶具有以下优点: (1) 酸奶的营养价值颇高,比鲜奶更易于消化吸收,这是因为发酵乳中有活力强的乳酸菌,能增强消化.促进食欲.加强肠的蠕动和机体的物质代谢.因此经常饮用酸奶可以起到食疗兼收的作用、大大有利于增强人体的健康。 (2)饮用酸奶可克服乳糖不适应症。有一部分人对鲜奶中的乳糖有过敏症,进食鲜奶后发生腹泻、腹呜、消化不良症。新鲜的酸奶中存在乳糖酶活性,促进乳糖的分解,防止乳糖不耐症。因此,乳糖酶不充足的人,可以安心食用。 (3)酸奶可以降低胆固醇。酸奶中含有3-3羟一3甲基戊二酸和乳酸。常饮酸奶,可明显降低胆固醇,从而可预防老年人心血管疾病。 (4)酸奶对便秘和细菌性腹泻有预防作用。酸奶中产生的有机酸可增加肠蠕动,刺激胃液分泌,并抑制肠内有害病菌。 (5)酸奶能抑制癌。癌的发生主要是细胞的突变,即异常增殖。如何防止增殖就是对癌症预防的方法,许多动物试验证明,酸奶具有抑制癌细胞增殖作用,对治癌有一定的效果。 (6)酸奶具有美容作用。常饮酸奶能够润肤、明目、固齿、健发。其原囚是酸奶中含有丰富的钙,更易于消化吸收,利用率高。有益于牙齿,骨骼;酸奶中还有多种维生素,其中维生素A 和维生素B2都有益于眼睛;酸奶中丰富的氨基酸有益于头发;同时,由于酸奶能够改善消化功能,防止便秘,抑制有害物质如酚吲哚及胺类化合物在肠道内产生和积累,因而能防止细胞老化,使皮肤白晰而健美。 四、小结 发酵温度(℃) 培养时间及酸度(°T) 后酸化24h凝乳状态 8h 9h 30 80 89 凝乳质地良好,无乳清析出 40 74 78 87 凝乳质地良好,无乳清析出 42 78 87 凝乳质地良好,无乳清析出 45 80 89 凝乳质地较软,乳清析出较多 50 67 89 凝乳质地较软,乳清析出较严重。 4 以上调查研究报告,只是我们五位同学在课余时间内所做的一点粗浅的研究,这是我们进入高中阶段在综合实践活动课上的第一次尝试,其中有很多不足之处,希望老师和同学们给予指正。在此要感谢老师对我们精心指导和大力帮助,也对曾经帮助过我们的同学、老师、领导和社会上的热心人表示由衷的感谢!

中国人提起日本菜的时候,想起的就是生鱼片、寿司之类的食物,可是实际上日本人并不会天天吃这样的食物。真正每天的饭食当中不可缺少的东西是味噌汤、泡菜,在东日本一带的地区不可缺少的还有由黄豆发酵而成的纳豆。可以说,真正的日本食文化就是发酵文化,而日本人的长寿,也和每天吃发酵食品息息相关。近年来,日本的科研人员经对发酵食品的长期研究及实验得知,它的真正魅力在于其有与药品媲美的奇特功效。故日本的保健医师们建议:现代人应该提醒自己每天摄取一种发酵食品,这样可以维持健康、促进长寿。食品发酵后热量会变低发酵食品是人类巧妙地利用有益微生物加工制造的一类食品,通过发酵使食品中原有的营养成分发生改变并产生独特的风味———简单来说,加入的微生物就像一台台小小的加工机,对食物的每个细胞挨个进行处理,增加一些有营养的物质、去除一些没营养的物质,顺便改变味道和质地。那发酵又有哪些好处呢?发酵时微生物分泌的酶能裂解细胞壁,提高营养素的利用程度。肉和奶等动物性食品,在发酵过程中可将原有的蛋白质进行分解,易于消化吸收。微生物还能合成一些B族维生素,特别是维生素B12,动物和植物自身都无法合成这一维生素,只有微生物能“生产”。发酵食品一般脂肪含量较低,因为发酵过程中要消耗碳水化合物的能量,是减肥人士的首选健康食品。在发酵过程中,微生物保留了原来食物中的一些活性成分,如多糖、膳食纤维、生物类黄酮等对机体有益的物质,还能分解某些对人体不利的因子,如豆类中的低聚糖、胀气因子等。微生物新陈代谢时产生的不少代谢产物,多数有调节机体生物功能的作用,能抑制体内有害物的产生。三类食品该多吃我们现在常吃的发酵食品主要分为谷物发酵制品、豆类发酵品、乳类发酵品。谷物制品主要有甜面酱及米醋等食品,它们当中富含苏氨酸等成分,它可以防止记忆力减退。另外,醋的主要成分是多种氨基酸及矿物质,它们也能达到降低血压、血糖及胆固醇之效果。豆类发酵制品包括豆瓣酱、酱油、豆豉、腐乳等。发酵的大豆含有丰富的抗血栓成分,它可以有效地溶解血液中的血栓等物,起到预防动脉硬化、降低血压之功效。豆类发酵之后,能参与维生素K合成,这样可使骨骼强壮,防止骨质疏松症的发生。酸牛奶、奶酪含有乳酸菌等成分,能抑制肠道腐败菌的生长,还含有可抑制体内合成胆固醇还原酶的活性物质,又能刺激机体免疫系统,调动机体的积极因素,有效地预防癌症。所以,经常食用酸牛奶,可以增加营养,防治动脉硬化、冠心病及癌症,降低胆固醇。利用乳酸菌来发酵的食品,其任何一种东西均可调整肠腔内菌群的平衡,增加肠蠕动,使大便保持通畅,预防大肠癌等的发生。此外,酸牛奶都能有效地控制血压的“上扬”,防止动脉发生硬化,保护心脏,大家不妨多青睐这些食物。一般来说,每日选择性食用1—2种发酵食品即可。但须注意的是,腐乳豆豉含盐较高,高血压和心脏病人应控制食量。

夏枯草降三高研究论文

决明子茶、莲子心茶、葛根茶、首乌茶、荷叶茶可以降三高。

拓展资料:来自《茶经全集》

按照加工工艺的不同主要的有几下几种:红茶、绿茶、黄茶、黑茶、白茶、青茶。

2.绿茶。绿茶是采取茶树新叶或芽,没有经过发酵,经过烘干等典型工艺制作而成的茶品。成品泡出来的茶水更多的保留了鲜茶叶绿色的本性。

3.黄茶。黄茶的特点是“叶黄茶黄”,原因是在由于杀青、揉捻后干燥不足,叶色即变黄。

4.黑茶。黑茶制茶工艺一般包括杀青、揉捻、渥堆和干燥四道工序,因为其选用的原料均为较粗老的茶原料,所以成品从色泽上就可看出明显的黑色。

5.白茶。白茶属微发酵茶,在制作工艺中基本流程包括萎凋、烘焙(或阴干)、拣剔、复火等工序,其中萎凋是形成白茶的重要工艺,因为成平白茶具有满身披毫,针针如银雪。茶水黄绿清澈,口味清淡甘冽。成品茶的外观呈白色,故名白茶。主要产区在福建福鼎、政和、松溪、建阳以及浙江安吉等地。

6.青茶。青茶是经杀青、萎凋、摇青、半发酵、烘焙等工序后制出茶品种,品质有益。

下面为大家介绍的几款茶,都有一定的降三高作用,作法简单,实用性强。降三高茶1、夏枯草蜜茶 适于高血压病患者.尤其对伴头痛眩晕、口苦咽干、面红目赤者效果更好。食材:夏枯草1 5克,蜂蜜5克夏枯草蜜茶的做法:夏枯草去杂洗净.放茶壶中,文火煎20分钟.滤除药渣,待温凉后调入蜂蜜调味即可。服用方法:代茶饮。温馨提示:夏枯草药性偏凉.身俸虚弱或脾胃虚寒者不宜服用。伴糖尿病者不宜加蜂蜜。夏枯草味辛苦,性微寒,可清肝明目,散结止痛,降低血压。蜂蜜调味并缓和药性。故此茶适于肝热及肝阳上亢弄高血压。

三高患者可以选择的茶有菊花茶,绞股蓝,决明子。菊花茶价格低.廉。但是作用也是没多大的决明子短期喝可以,长期喝伤身体,作用在于降血压,对降血糖降血脂没多少作用绞股蓝。绞股蓝含有的黄酮类,多糖类,皂苷,植物淄醇都是可以降三高的。也能长期喝。三高患者注意饮食,按时吃药。祝身体健康,早日康复。

三高一般是指的高血压、高血脂、高血糖等,在平时可以喝些普洱茶、龙井、铁观音、菊花茶等,对疾病的治疗是有一定辅助作用的。对于三高,需根据严重程度来针对性的使用合适的药物治疗,需先控制血糖,需用些口服降糖药物或胰岛素治疗,对于高血压、高血脂平时需控制在正常水平。

相关百科

热门百科

首页
发表服务