首页

> 学术期刊知识库

首页 学术期刊知识库 问题

北大基础数学博士毕业论文

发布时间:

北大基础数学博士毕业论文

你好。博硕士论文一般在北大图书馆都有存档。你可以联系图书馆工作人员复印一下。

北京大学数学科学学院数学系本科生课程设置的七个模块

第一个模块: 数学学院四高课程7门

(1)数学分析I (5学分),数学分析I(实验班,5学分),每学年第1学期

(2)数学分析II( 5学分),数学分析II(实验班,5学分),每学年第2学期

(3)数学分析III(4学分), 数学分析III(实验班,4学分),每学年第1学期

(4)高等代数I(5学分),高等代数I(实验班,5学分),每学年第1学期

(5)高等代数II(4学分),高等代数II(实验班,4学分),每学年第2学期

(6)几何学(5学分),几何学(实验班,5学分),每学年第1学期

(7)概率论(3学分),概率论(实验班,3学分),每学年第2学期

第二个模块: 数学学院四高之外的核心课程4门

(1) 抽象代数(3学分),每学年第1学期

(2) 复变函数(3学分),每学年第2学期

(3) 常微分方程(3学分),每学年第2学期

(4) 数学模型(3学分),每学年第2学期

第三个模块: 数学系专业基础课9门, 其中代数类3门,几何类3门,分析类3门。

(1)数论基础(3学分),每学年第1学期

(2)群与表示(3学分),每学年第2学期

(3)基础代数几何(3学分),每学年第2学期

(4)拓扑学(3学分),每学年第1学期

(5)微分几何(3学分),每学年第1学期

(6)微分流形(3学分),每学年第2学期

(7)实变函数(3学分),每学年第1学期

(8)泛函分析(3学分),每学年第2学期

(9)偏微分方程(3学分),每学年第1学期

第四个模块:数学系小班课8门

(1)数学分析II选讲(2学分),每学年第2学期

(2)数学分析选讲III(2学分),每学年第1学期

(3)高等代数II 选讲(2学分),每学年第2学期

(4)代数讨论班(3学分),每学年第2学期

(5)几何讨论班(3学分),每学年第2学期

(6)分析讨论班(3学分),每学年第1学期

(7)核心数学选讲I(2学分),每学年第2学期

(8)核心数学选讲II(2学分),每学年第1学期

第五个模块:数学系本科第二类课, 其中包括

(1)几何学II(实验班,4学分),每学年第2学期

(2)数理逻辑(3学分),每学年第1学期

(3)组合数学(3学分),每学年第2学期

(4)密码学(3学分),每学年第2学期

(5)模形式(3学分),不定期

第六个模块:本科生可以选的数学系研究生第一类课15门

(1)(分析与方程类)实分析,调和分析,复分析,泛函分析II,常微分方程定性理论,二阶椭圆型方程,双曲方程 ; 动力系统,遍历论,非线性分析基础,变分学,多复变函数论等

(2)(代数与数论类) 抽象代数II,交换代数,群论,群表示论,数论I, 数论II,代数几何I, 代数几何II; 李群与李代数,同调代数,几何表示论,模形式,密码学,有限域等

(3)(几何与拓扑类) 黎曼几何引论,同调论,微分拓扑;  纤维丛与示性类,同伦论,黎曼曲面论,复几何,辛几何,双曲几何引论,低维流形,几何群论等

(4)(数学物理类)经典力学中的数学方法,Gromov-Witten理论等

第七个模块: 其他类课程

(1) 北大数学导引课 (1学分),每学年第1学期

(2) 公共与基础课程30-36学分

(3) 理学部的非数学学院课程8学分,其中4学分物理

(4) 毕业论文 (3学分)

(5) 通识与自主选修课程27学分,其中理学部课程12学分,通选课12学分,

全校课程3学分。

以上内容参考:北京大学数学学院数学系-课程设置

博士毕业论文参考文献格式

在书写论文的时候,大家知道参考文献怎么书写吗?以下是我精心准备的博士毕业论文参考文献格式,大家可以参考以下内容哦!

论文参考文献的格式要求

论文的参考文献是论文写作过程中参考过的文献著作,是对某一著作或论文的整体的参考或借鉴。参考文献要放在论文正文之后,不得放在各章之后。参考文献只列出作者直接阅读过、在正文中被引用过的文献资料。

参考文献的要求:

1.在正文写作完毕后,空两行(宋体小四号),居中书写“参考文献”四个字;“参考文献”使用宋体四号加粗,前后两个字之间不空格。“参考文献”书写完毕后空一行(宋体小四号)再书写参考文献的具体内容。参考文献按照其在正文中出现的先后以阿拉伯数字连续编码,参考文献的序号左顶格书写,并用数字加中括号表示,如[1],[2],[3],[4],[5]…,每一参考文献条目的最后均以英文句号“.”结束。

2.参考文献只列出作者已直接阅读、在撰写论文过程中主要参考过的文献资料,所列参考文献应按论文参考的先后顺序排列。参考文献与正文连续编排页码。参考文献不少于6篇。

3.参考文献格式

参考文献类型及文献类型,根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:

(1)专著:〔序号]作者.专著名[M].出版地:出版社,出版年.

(2)期刊中析出的文献:〔序号]作者.题(篇)名[J].刊名,出版年 (期号).

(3)论文集:〔序号]作者. 题(篇)名[C]. 出版地:出版社,出版年.

(4)学位论文:〔序号]作者.题(篇)名[D].授学位地:授学位单位,授学位年.

(5)专利文献:〔序号]专利申请者.专利题名[P].专利国别:专利号,出版日期.

(6)报纸文章:〔序号]作者.题(篇)名[N].报纸名,出版日期.

(7)电子文档:〔序号]作者.题(篇)名〔文献类型/载体类型〕.网址,发表日期.

关于参考文献的未尽事项可参见国家标准《文后参考文献著录规则》(GB/T7714-2005)。

4.常用参考文献范例

[1]李松庆,王炜.第三方物流的实证分析[M].北京:中国物资出版社,2005.

[2]祁之杰.我国物流资源优化配置问题探讨[J].管理现代化,2004(1).

[3]刘国钧,陈绍业,王凤翥. 图书馆目录[M]. 北京:高等教育出版社,.

[4]辛希孟. 信息技术和信息服务国际研讨会论文集:A集[C]. 北京:中国社会科学出版社,1994.

[5]张筑生. 微分半动力系统的不变集[D]. 北京:北京大学数学系数学研究所,1983.

[6]冯西桥. 核反应堆压力管道和压力容器的`LBB分析[R]. 北京:清华大学核能技术设计研究院,1997.

[7] Gill,R. Mastering English Literature[M] . London: Macmillan,1985. (责任编辑:admin)

【拓展阅读】

一、对博士毕业论文的基本要求

根据《中华人民共和国学位条例暂行实施办法》第十三条的规定,博士学位论文应能表明作者确已在本门学科上掌握了坚实宽广的基础理论和系统深入的专门知识,具有独立从事科学研究工作的能力,并在科学或专门技术工作上做出了创造性的成果。博士学位论文工作是攻读博士学位研究生培养的最重要环节,其工作时间一般应不少于2学年。博士生入学后在导师指导下明确科研方向,收集资料,阅读文献,进行调查研究,确定研究课题。一般在第二至第三学期通过开题报告并制定论文工作计划。博士生应根据论文工作计划分阶段在教研室、学术会议上报告科研和论文工作的进展情况。论文正文一般应不少于5万字。博士生用于论文研究和撰写学位论文的时间一般应不得少于2年。

特别应注意,学位论文应是本人的研究成果,在导师指导下独立完成,不得抄袭或剽窃他人成果。论文应反映作者较好地掌握了本学科、专业的研究方法和技能,学术观点必须言之有理、持之有据,论文内容应层次分明,数据可靠,文字简炼,推理严谨,立论正确。

二、对学位论文的格式要求

(一)编写要求

硕士、博士学位论文一般应由以下全部或某几部分组成,依次为:封面、中文摘要、英文摘要 、目录、符号说明、正文、参考文献、附录、附图表、致谢、攻读学位期间发表的学术论文目录。

具体要求如下:

1、封面

采用研究生院规定的统一封面,封面上填写论文题目、作者姓名、导师姓名、学科(专业) 、论文完成时间。上述内容也应在扉页上填写清楚。

2、论文摘要

学位论文的中文摘要应以最简洁的语言介绍论文的概要、作者的突出论点、新见解或创造性成果。硕士学位论文中文摘要一般应在500字左右,博士学位论文中文摘要一般在1500字左右。英文摘要(Abstract)内容应与中文摘要基本相对应,要语句通顺,语法正确,能正确概括文章的内容。

3、目录

目录应将文内的章节标题依次排列,标题应该简明扼要。

4、正文

正文是学位论文的主体和核心部分,它是将学习、研究和调查过程中筛选、观察和测试所获得的材料,经过加工整理和分析研究,由材料而形成论点。不同学科、专业有着不同的写作内容,但作为一般要求,论据、论点应力求准确、完备、清晰、通顺,实事求是,客观真切,简短精炼,合乎逻辑。其文体的格局和行文方式,研究生可根据自己研究课题的表达需要,灵活掌握。

绪论或引言是学位论文主体部分的开端,主要说明研究工作的缘起、沿革、目的、涉及范围 、国内外研究现状、相关领域的前人研究成果和知识空白、理论分析的依据、研究设想、研究方法和实际设计的概述,以及文中拟解决的问题、理论意义和实用价值等,应言简意赅,不要与摘要雷同或成为摘要的解释,也不是提要。

结论是学位论文最终和总体的结论,是整篇论文的归宿,应明确、精炼、完整、准确。要着重阐述作者研究的创造性成果、新见解、新发现和新发展,及其在本研究领域中的地位、作用、价值和意义,还可进一步提出需要讨论的问题和建议。学位论文中的计量单位、制图、制表、公式规范、缩略词和符号必须遵循国家规定的标准,如无标准可循,应采用本学科或专业有关权威性机构或学术团体所公布的规定。如不得已必需引用某些未公知公用的、不易为同行读者所理解的或系作者自行拟定的符合、记号、缩略词等,均应一一在第一次出现时加以说明,给以明确的定义。

5、参考文献

参考文献应按文中引用的顺序列出,可以分列在各章末尾,也可以列在正文的末尾。

本着以严谨求实的科学态度撰写论文,凡学位论文中有引用他人成果之处,均应详细列出有关文献的名称、作者、年份、出版单位等。具体格式按科技应用文写作的标准要求。

6、附录

主要列入正文内过分冗长的公式推导,供查读方便所需的辅助性数学工具或表格,重复性数据图表,论文使用的缩写,程序全文及说明等。

7、致谢

对给予各类资助、指导和协助完成研究工作以及提供各种对论文工作有利条件的单位及个人 表示感谢。致谢应实事求是,切忌浮夸与庸俗之词。

8、攻读学位期间发表的学术论文目录

按学术论文发表的时间顺序,列齐本人在攻读学位期间发表或已录用的学术论文清单(发表刊物名称、卷册号、页码、年月及论文署名、作者排序)。

(二)打印

按照有关规定,凡授予中华人民共和国学位者,学位论文必须用中文撰写,同时一律用A4标准纸打印输出,一般应有篇眉,以力求整洁、清晰、美观。

(三)装订

学位论文撰写完成后,用研究生院统一封面线装订成册。所需份数由研究生本人及导师掌握。

基础数学博士论文

发表论文很难。博士发表论文难度挺大的,整体比其他学科要难,现代数学的分支太多,首先是字数和页数的要求,通常要求不低于150页、10万字,再一个就是必须要有创新点,要有理论深度。总之比较困难。数学博士论文发表至少要发表两篇到三篇以上的SCI论文,所以难度是非常高的,作为数学博士,发表论文的难度是极高的,通常来说,数学博士都会延迟毕业第四年或者第五年才能够将所有的论文完成,作为数学博士,在发表前出来要完成相应的发表论文之外,最重要的就是要在SCI期刊上发表论文

数学是工具,而且有扎实的数学基础,可以使你有很强的逻辑性,各方面都要用到数学,既然已经达到博士论文的层面了,扎实的数学基础是免不了要具备的。

大学数学基础论文

经济数学是属于经济学的一个分支,大一的经济数学是经济学管理专业的基础知识。下面是我为大家推荐的大一经济数学论文,供大家参考。大一经济数学论文 范文 篇一:《经济类高等数学分层教学的实践研究》 摘要:高等数学是经济类本科生一门重要的基础课程,对掌握好其专业课程知识和从事本专业更高层次的研究起着关键作用。为使该专业学生学好这门课程,我校对高等数学的教学试行了分层教学的教学模式。本文从分层的必要性、分层方式以及取得的效果等方面分析阐述了实行分层教学的优势。 关键词:高等数学;分层教学;因材施教 一、分层教学实施的必要性 高等数学是大学本科经济类专业学生的一门重要的基础课程,其重要性体现在学好这门课程不仅是学好其专业课的基本保障,更是提高思维素质的方式和进行更高层次研究的不可缺少的工具。因此,一般的本科院校对经济类的学生从一年级开学就开始开设高等数学课程。然而,高等学校扩大招生后,我国的高等 教育 已经从精英教育发展到大众教育阶段,使得高校各专业入学人数在激增的同时,生源质量下降已是不争的事实。而且学生来自全国各个省市地区,入学的数学成绩、水平参差不齐;不同学生的兴趣、 爱好 及发展方向各不相同。而相同专业所使用的教材、教学计划、教学大纲都是一样的,学生和教师基本没有选择的余地。这种统一的教学模式严重阻碍了高等数学 教学质量的进一步提高。目前,这一课程的教学面临的最大问题是学生的学习兴趣和学习成绩的下降。而造成这一问题的因素是多方面的,其中一个重要的原因是忽视学生对 教学 方法 、教学内容的不同需求。因此,根据学生的数学成绩、 兴趣爱好 、发展志向在适当尊重个人意愿的前提下对学生实施不同要求,不同方式的教学方式,就势在必行。本文以科学理论为基础,结合本校的教学实践,分析论述了分层教学的实施方法和取得的成果。 二、分层教学的理论基础 分层教学的理论基础是美国心理学、教育学家布鲁姆 ()“掌握学习”理论。布鲁姆认为:“只要在提供恰当的材料和进行教学的同时,给每个学生提供适度的帮助和充分的时间,几乎所有的学生都能完成学习任务或达到规定的学习目 标。”“掌握学习”理论要求教师的教学“应根据学生的实际发展水平、学习方式和个性特点来进行”。而一般高校的生源来自全国各个省市地区,近年来的高校扩招也造成了生源质量的下降。这就造成了学生的数学水平参差不齐,差异较大,而分层教学可以较好得体现上述思想。分层教学法还以多元智力理论为基础,尊重学生的个性差异,重视个性发展,遵循因材施教的原则,以学生的发展作为教学的出发点和归宿,真正体现“以学生发展为中心,以社会需要为方向,以学科知识为基础”的教育改革要求,也能真正体现素质教育的精神内涵。另外,其实在我国古代,教育家、思想家孔子就已经提出育人要“深其深,浅其浅,益其益,尊其尊”,即主张“因材施教,因人而异”。也就是说,教师的“教”,一定要适合学生的“学”。 三、分层教学的实施 分层教学,就是针对学生不同的学习水平和能力,以及学生自身对数学的兴趣爱好程度和要求有区别地制定学习目标,设计课程内容,创设不同的教学情境和教授方式,从而进行有针对性的因材施教,促进学生得到全面的锻炼和发展,进而实现更高效率,更好效果的教学模式。从2008学年开始,在我校教务处的大力支持下,我们在经济类专业的高等数学教学中试行了分层教学模式,和以往的不分层相比,两年来教学效果取得了显著的提高。具体实施方法是,对于经济类专业的两个学院,经济贸易学院和工商管理学院,我们采取不打乱院系,但是分层也分班的方式。层次分为两层,即A层和B层。A层是基本知识掌握、理论灵活运用、理论联系实际等方面要求较高的层次,教学计划和内容以 考研 和在专业领域进行深入研究为目标;B层相应要求较低,但是以打下扎实基础,使数学成为后继专业课学习的有力工具为基本原则。同时,由于A层班级的较高要求不易把握,由具有多年教学 经验 的教师担任授课工作。分层的依据有客观依据和主观依据。客观依据是学生的数学成绩水平,一方面参考高考成绩,另一方面,在新生入学伊始,进行一次数学“摸底”考试。“摸底”考试的试题由教学经验丰富的教师来出,大部分是一般难度的题目,但有少数较难题,由此可看出学生的数学成绩高下。分层的主观依据即是学生自己对数学课程的兴趣深浅程度和要求高低。比如,有的学生虽然成绩一般,但是对数学很感兴趣,或者有考研等在本专业领域继续研究的意向,我们可以考虑将该生分A层班级听课。反之,有的学生考试成绩虽高,但是对数学兴趣不大,只是当做一门必修基础课程来修,那么,就可以征求该生的意见,将其分在B层班级上课。考虑到班级人数和授课效果,我们采取相当三个“自然班”的人数为一个授课班。分层教学的根本目的是因材施教,因此,第一学期期末考试结束后,一些学生的数学成绩、对数学的兴趣态度等可能已经不再适合原来的班级教学目标,这就需要对班级进行调整,也就是说,分层教学具有一定的流动性。调整时也遵循上述分层依据,因为调整也是再一次分层。一方面是学生的试卷成绩,另外兼顾学生的主观意愿。但是实践证明,波动不宜过大,以不超过5%为宜。 四、分层教学的成效与思考 分层教学取得了一定的成效,较之08级以前不实施分层教学的学生成绩,不及格率有了较大幅度的降低。60-69,70-79分数段的人数有显著增加,而90分以上的优秀率有小幅增加,平均分明显提高。成绩分布呈正态分布。由此可见,分层教学符合大多数学生的愿望和要求,应当坚持和完善。分层教学有的放矢,因材施教,可以提高学生的学习兴趣,降低因学科本身的抽象枯燥造成的负担。使一些对数学没有信心,失去学习兴趣的学生达到了大纲的要求,较好解决了大学生数学学习两级分化太大的矛盾。08级以后的学生对分层次教学的认可度越来越高,适应数学学习的能力和学习数学的信心也大大地增强。实践证明,分层教学保证了面向全体学生,因材施教,做到了“优等生吃得饱,中等生吃得好,差等生吃得了”,同时,减轻了学生的课业负担,是全面提高教学质量和实施素质教育的行之有效的途径。虽然分层教学的实施使高等数学教学各方面有了大的改进,但是还有一些问题亟待解决。比如不同“自然班”的学生在同一个授课班上数学课,这就给课堂和作业管理造成了一定的难度,对教师和辅导员提出了新的要求。另外,考试过后需要将学生成绩按“自然班”排名,也造成了一些麻烦。我们的工作还仅仅是一个开始,今后将在实践中不断完善分层教学的教学方式,比如,在考核学生成绩方面,可以考虑不仅依据笔试的卷面成绩,再兼顾 其它 形式的考核成绩;在教学过程中,可适当借助计算机进行多媒体教学,以提高学生的学习兴趣。 参考文献: [1]阳妮.大学数学分层教学的理性思考[J].高教论坛,2007. (5):87-89. [2]郑兆顺.新课程中学数学教学法的理论与实践[M].北京:国防工业出版社,2006. [3]郭德俊,李原.合作学习的理论与方法[J].高等师范教育研究,1994,(3):43-54. [4]付海峰.在层次教学中培养学生的思维能力[J].中学数学参考,1997,(10). 大一经济数学论文范文篇二:《经济数学课的教改》 摘要:本文从教学内容的改革、教学方法的改革、教学手段的改革、以及 考试方法的改革等几个方面论述了 经济数学课的教学改革思路。其主导思想是:经济数学教学应当以“用数学贯穿于整个教学的始终。”以应用实践为主线,加强知识点的理解、运用和补充,培养学生建立数学模型、解决实际问题的能力。 关键词:经济;数学课;教改 很多人都知道,数学非常重要,但却不知道它重要在哪里,只知道各类考试都要考数学,似乎这是应试 教育的代名词。究竟学了数学有何作用,究竟在数学教学中应当怎样培养适应社会主义市场经济 发展需要的应用型、创新型人才?一直以来,成为我们教学改革所探讨的问题。本文从高职经济数学的教学内容、教学方法、教学手段、以及考试方法等几个方面的改革进行了论述。其主导思想是以“用数学贯穿于整个经济数学教学的始终。”以应用实践为主线,加强知识点的理解、运用和补充,培养学生建立数学模型、解决实际问题的能力。 一、教学理念上以“应用”为目标贯穿整个教学过程 经济数学与一般的高等数学相比有其特殊性,应使学生正确认识经济与数学的关系,在经济学领域,数学分析必须为经济分析服务,而不能本末倒置,应坚持“数学为体,经济为用”的原则。因此,在教学中,将经济融于数学。每章开始,都用当前经济生活中的 热点 问题激发学生学习有关数学知识的兴趣,进入各节内容,尽可能的以经济为例,使数学与经济逐步结合,最后,又以所学有关数学知识,分析每章开始时提出的经济问题。例如:讲函数时,以商品的产量受什么影响、手机话费与什么有关等引入函数的概念,讲完函数概念之后,以数学表达式给出上面提到的函数关系式,最后再给出经济分析中常见的函数(成本函数、收入函数、利润函数、需求函数等)。讲导数与微分时,问学生,在日常生活中见到过某商品突然降价而利润增加的现象吗?当学生举了很多例子、学习兴趣被激发后,引入变化率的问题,也就是将要引入的导数。讲完这一章后,再给出为什么商品降价反而利润增加的答案,就是“富有弹性”。也就是说,适当降价会使需求量较大幅度上升,从而增加收入。这样的教学,既帮助学生理解有关的数学原理和方法,也帮助学生了解它们在经济管理中的应用。 二、教学内容上以“必需、够用”为原则 经济数学课是高职经济管理类专业重要的基础课和工具课,通过对微积分、线性代数、线性规划等内容的学习,使学生初步具有解决经济管理问题的能力,并为今后学习经济管理课程和从事经济管理工作打下必要的数学基础。如何在有限的学时内,完成这么多内容的教学呢?那就要紧紧结合专业培养目标,按“必需、够用”的原则取舍经济数学的内容。教学内容的增删,首要的就是去掉一些抽象的、理论性强的、纯数学语言的概念及定理的证明,代之以定性的、通俗的描述性定义及几何解释。例如,函数极限概念,对高职学生来说,有一种感性认识,确立一种极限概念、思想也就足够了。重点介绍函数极限的概念,然后对整标函数——数列的极限仅仅作为函数极限的一个特例,简而述之。这样处理,凸现了函数极限概念。比以往的先介绍数列极限概念、性质,然后再介绍函数极限,节省了大量时间,教学效果也很好。在教学中,把重点放在幂函数、指数函数、线性函数、矩阵代数、线性方程组等内容上,删除了曲线的凹凸、由参数方程确定的函数的导数、旋转体的体积、行列式的部分内容等等,而把时间花在与他们今后学习和工作中天天都要接触的单利、复利、产量、收益、成本、最小投入、最大利润、弹性函数等内容上,对他们来说更实用,更有价值。这样,有利于我们所培养的人才在今后的工作中能够胜任岗位。 三、积极进行教学方法改革 (一)改革教学方法,让学生成为授课的主角。我们积极贯彻行动导向教学思想,一改传统教学模式中教师讲学生听的教学形式,让学生参与到课堂讲授中来,教师针对某一内容和知识点,灵活运用行动导向多种互动式的教学方法,以此实现学习由“要我学”向“我要学”的方向转变。本课程归纳并可应用多种互动式教学形式和方法,如头脑风暴法、专题演讲法、课堂讨论法、情景模拟法、角色演练法等。这些方法不仅能提升教学质量和效果,而且可以极大地激发学生学习该课程的积极性和热情。 (二)实现课堂教学与具体实践的互动。本课程在教学过程中,采取了课内实践与课外实践相结合,阶段实践和课程实践相结合的实践教学方式,教师针对讲授内容,除进行必要的课堂实践训练外,还积极组织学生进行社会调研,数学建模,以此培养学生运用所学知识分析解决实际问题的能力。 (三)将案例教学贯穿课程始终。本课程在内容设计上精心挑选了大量案例,理论联系实际,学以致用,通过案例的分析和讲解,使学生由单纯地死记硬背知识转变应用知识增长技能。 四、实现教学手段和评价手段的更新 教师在教学中充分利用 现代 教育技术手段,开发制作、使用多媒体课件和课程 网络资源,增强教学的直观性,以利于学生对知识的理解和消化。 考试是教学的指挥棒,对于引导学生端正 学习态度 ,把握学习重点起着有着至关重要的作用。高等职业教育的主要任务是培养高技能人才,这类人才,既要能动脑,又要能动手,所以必须用的职业教育的人才质量观去考核学生,多方位、多角度全面评价学生的学习成绩。为此我们进行了考试改革,改变了一卷定结果的做法。在对学生的评价上,一是以方式方法的灵活性提高评价的全面性。将日常评价拓展到课题活动、 经济数学小 论文、经济数学作业、小组活动、 自我评价 、相互评价、面谈、提问、日常情境观察等内容;二是以“统一”的方式来提高评价的可参照性。以重新组卷的方式实行期末考试,统一阅卷、统一评分。 在这方面我们曾经做过考核能力的试题的征集工作,但还是在摸索之中,一些原则性的意见可以归纳为: 重视基础,突出重点。基础知识掌握情况仍然是考试中不可缺少的内容。 注重思想,淡化技巧。繁难的技巧要淡化,经济数学中有普遍意义的数学思想与方法应是考试的重点。 重视应用,考查能力。要着重测试学生的潜在能力。使素质高、能力强、潜力大的学生在考试中占优势。 形式多样,富有弹性。可以尝试“开放性”试题,测试创造性思维能力,也可以尝试笔试与口试相结合。 五、积极开展第二课堂活动 开展第二课堂活动,重视学生个性 发展和能力的培养。数学建模活动是一项把数学知识直接应用于解决实际问题的最佳快捷、有效途径,是提高学生分析问题解决问题的能力、灵活运用数学知识处理问题的能力、激发学习兴趣、主动查阅资料、增强协作意识、培养创新能力的最佳手段。因此,在学完微积分后,给出与经济专业有关的建模训练题:产品利润问题、连续复利问题、由边际函数求最优化问题、最优批量问题等。在建模训练的过程中,学生就会认真地看书、查资料,经常向老师请教,互相探讨,这样学生的综合素质就会有很大提高。当然,由于高职学生的基础较差,建模作业完成的不会很好,但这需要教师不断在教学中渗透用数学思想可以解决许多经济中的问题,拓展了学生的知识面。 目前我校经济数学课的教学取得了良好的效果,学生对学习经济数学的兴趣提高了,恳于钻研,勤于思考的学生越来越多。总之,我们紧扣培养目标,将基础理论、数学建模有机融合,以必须的数学理论为基础,以丰富的实际问题为背景,以数学建模为突破口,取得了较好的成效。通过以上的教学改革使我们深刻体会到,学生的学习潜力是无限的,关键是教师如何培养和挖掘,为他们提供展示才能和发展的空间,所以我们要树立创新的教育教学理念,要坚信别人能做到的,我们也一定能做到并且会做得更好。 参考 文献: [1]高纪文.高职院校学生高等数学学习现状及对策[J]. 中国职业技术教育,2005,(6). [2]刘建清.石化学院高职数学教学改革与实践[D].西北师范大学,2005:8-11. [3]张拓.高职数学课教学改革探讨[J].教育与职业?理论版,2008,(1). 大一经济数学论文范文篇三:《经济学中数学统计方法的应用》 1 经济学与数学统计方法之间的融合历程 数学统计在经济学研究中的应用已经非常普遍,两者之间的联系也越来越紧密。回顾历史,早在17世纪,经济学与统计学之间的融合就已经表现出了必然的趋势。在当时,英国古典经济学家威廉·配第在《政治算数》一书中第一次利用数学方法来解决经济问题,这是两者的首次融合。不过在那个时期的研究由于受到社会发展的限制,研究方法还是以定性分析为主,并没有对统计学进行充分的运用。到了19世纪20年代以后,经济学与统计学之间的结合得到了进一步的深入。在这一时期,德国经济学家于1854年在其发表的论文中提出了一个结论,指出可以通过数学统计方法推导出“戈森定律”,其中还重点阐述了统计学方法应用于经济学是非常必要且重要的[1]。之后,英国经济学家斯坦利·文杰斯也对经济学与数学统计方法两者之间的关系进行了深入的研究,并在他1871年发表的书籍中提出了一个新的思想,也就是采用统计学的方法建立经济数学模型[2]。此后,经济学中数学统计方法的运用开始得到推广和发展。20世纪40年代之后,由于受到第三次科技革命的影响,经济学与统计学在实践上和理论上都得到了突破性的发展,并且两者之间的融合也得到了创新性的进步,进入了一个新的阶段。1955年,由美国经济学家摩根斯坦和数学家伊诺曼共同创作了《对策论与经济行为》,这本书籍的出版成为经济学与数学开始全新合作的里程碑[3]。自此之后,无论是在微观经济学中,还是在宏观经济学中,统计方法都得到了大量的运用,其重要性变得更加凸显。由此可见,从17世纪开始经济学与统计学出现融合的趋势,经历了长期的发展历程,目前两者之间的融合已经非常的深入和成熟,对于推动经济学的科学化发展起到了非常重要的作用。 2 数学统计方法应用于经济学的作用分析 数学统计方法可用于解决经济学问题 严谨精密的分析过程以及清晰准确的分析结果是数学统计方法的优势所在,而经济学问题的分析和解决中则对结果精确度和科学性要求非常高。由此可见,数学统计方法应用于经济学中具有重要的实际意义。数学统计方法很早就开始在经济学领域中得到应用,随着两者之间的结合和发展,现在在相关的研究领域已经出现了很多数学专业化理论,例如经济计量学、数理经济学等,这又进一步为两者的融合和共同发展提供了理论基础[4]。在经济学问题的解决中,数学统计方法的应用模式主要是“经济一数学—经济”,这也就是说,首先,以现实经济问题为出发点来建立数学模型,然后,采用数学方法来分析这一数学模型并得到结果,最后,再利用经济学原理和理论来评估所得的结果,得出相应的结论,其结论不仅可以用于指导经济活动,同时还可以用于预测经济发展方向。特别是在现代企业经济决策中,通过数学统计方法可以对经济活动进行从定性到定量的全面分析,可以较为科学、准确地预测决策执行后的结果,并充分利用企业的现有条件来对结果进行控制和优化,通过这种方式可以有效提高经济决策的可靠性与科学性,避免企业财力、物力的损失[5-6]。 数学统计方法可作为工具展开经济理论分析 从经济学与数学统计方法融合的初期发展到现在,数学统计学已经开始应用于各种重大经济问题的研究和分析中。再加上现代数学与现代经济理论之间的融合也在不断的深入,很多经济现象理论都可以通过数学方法来进行科学、合理的解释。特别是在这几年来,数学统计方法应用于经济现象和经济关系分析中的研究在不断进行,通过这种方式不仅可以从量的角度来确定结果,同时还可以从质的角度来做出判定[7-8]。由此可见,如果没有数学统计方法,就难以有效解决经济学问题。 3 数学统计方法应用于经济学的实例分析 在GDP分析模型中,可以通过数量分析和统计学方法来找出其中的统计指标,设计相应的指标体系,并结合社会现状来研究GDP值的计算方法和影响因素。在下面的研究中我们以某市2001—2012年的GDP纵向分布数据模型为例,采用分析数量经济法中的回归分析来展开统计学研究,并初步预测2014年之后的某个阶段。 表1即为某市的GDP数据统计结果,采用回归分析的方法来处理数据,并建立一个关于GDP与实践序列间关系的F(y)模型,其数据处理结果散点图如下所示。从图中我们可以看出,GDP呈现明显的非平稳增长趋势,通过回归分析和数据处理作出一阶差分,可以看出散点图为二次函数形式,因此可得F(y)=ax2+bx+c,采用回归分析来处理年份可以得到回归统计结果见表2。由此可得回归方程为F(y)=,检验其规定系数可知R=,与1非常接近,由此可知,该回归方程与实际数据有很好的拟合度,可以采用该方程对未来的某个阶段进行预测。 一般来说,实际的GDP受多因素影响,其变化不稳定,因此预测值都会有一定的偏差,根据某市2013年实际GDP总值为亿元,与上述预测的理论误差为: w=()/×100%= 这一误差值较大程度的偏离了回归曲线,分析其原因可能是由于在建设模型的初始条件时消除的政府主观态度、人们的消费亿元以及汇率和进出口关税等部分影响因素有着一定的联系。由于2014年级之后的年份都还没有确切的数据,因此本文仅限于探讨对2013年的预测。就本次模型来说,虽然 没有从整体上来进行考虑和分析,但是其理论与实际的核实可以看出这次预测并不是没有任何依据的,具有可行性。 4 结 论 总的来说,数学统计学对于经济的预测和 总结 起着非常重要的作用,数学统计方法应用于经济学中,对各项经济指标预测与评估以及决策和改革都有着深刻的影响意义。本文选择某市为例来进行数学统计方法分析,在实际的经济预测中,数据的收集并不能仅仅局限于纵向,同时也要注重横向幅度的收集,对数据的收集要全面,筛选要科学,只有这样才能够使理论分析更加有依据,其结果也更加具有理论效应。经济学中数学统计方法的应用,有利于帮助其掌握数据内在的规律性和本质变化,提高数据分析的质量和经济预测的科学性、准确性。 猜你喜欢: 1. 大一经济学论文范文 2. 关于大学经济学论文范文 3. 大一微观经济学论文 4. 大一经济学论文 5. 大学经济数学论文

大学数学论文范文

导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。

论文题目: 大学代数知识在互联网络中的应用

摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。

关键词: 代数;对称;自同构

一、引言与基本概念

《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。

互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。

下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。

设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:

e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。

●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。

●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。

●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。

一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。

二、三类网络的对称性

先来看n维超立方体网络的对称性。

定理一:n维超立方体网络Qn是顶点和边对称的。

证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。

下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。

利用和定理一相似的办法,我们进一步可以得到如下定理。

定理二:n维折叠立方体网络FQn是顶点和边对称的。

最后,来决定n维交错群图网络的对称性。

定理三:n维交错群图网络AGn是顶点和边对称的。

证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。

下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。

因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。

至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:

1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?

2、完全决定这些网络的全自同构群。

实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。

三、小结

大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。

结束语

本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。

【摘要】

随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。

【关键词】

数学史;大学数学教育;作用

一、引言

数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:

第一,数学史研究方法论的相关问题;

第二,数学的发展史;

第三,数学史各个分科的历史;

第四,从国别、民族、区域的角度进行比较研究;

第五,不同时期的断代史;

第六、数学内在思想的流变与发展历史;

第七,数学家的相关传记;

第八,数学史研究之中的文献;

第九,数学教育史;

第十,数学在发展之中与其他学科之间的关系。

二、数学史是在大学数学教学之中的作用

数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。

笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。

从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。

再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。

三、数学史在大学数学教学之中的应用

第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。

第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

(一)教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一)在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

大学数学的论文范文,你可以在论文网上面可以找到的,找到很多个方面的论文都可以找到

2017大学数学论文范文

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。

几类特殊函数的性质及应用

【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。

【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分

1.引言

特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。

特殊函数定义及性质证明

特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。

特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。

2.伽马函数的性质及应用

伽马函数的定义:

伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。

Г函数在区间连续。

事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。

,伽马函数的递推公式

此关系可由原定义式换部积分法证明如下:

这说明在z为正整数n时,就是阶乘。

由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....

用Г函数求积分

贝塔函数的性质及应用

贝塔函数的定义:

函数称为B函数(贝塔函数)。

已知的定义域是区域,下面讨论的三个性质:

贝塔函数的性质

对称性:=。事实上,设有

递推公式:,有事实上,由分部积分公式,,有

由对称性,

特别地,逐次应用递推公式,有

而,即

当时,有

此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为

由上式得以下几个简单公式:

用贝塔函数求积分

解:设有

(因是偶函数)

例贝塔函数在重积分中的应用

计算,其中是由及这三条直线所围成的闭区域,

解:作变换且这个变换将区域映照成正方形:。于是

通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。

贝塞尔函数的性质及应用

贝塞尔函数的定义

贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。

贝塞尔函数的'递推公式

在式(5)、(6)中消去则得式3,消去则得式4

特别,当n为整数时,由式(3)和(4)得:

以此类推,可知当n为正整数时,可由和表示。

又因为

以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。

为半奇数贝塞尔函数是初等函数

证:由Г函数的性质知

由递推公式知

一般,有

其中表示n个算符的连续作用,例如

由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。

贝塞尔函数在物理学科的应用:

频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令

称为的Fourier变换。它的逆变换是

若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,

这就是Shannon取样定理。Shannon取样定理中的母函数是

由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:

以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。

首先建立取样定理

设:

其中是零阶贝塞尔函数。构造函数:

经计算:

利用分部积分法,并考虑到所以的Fourier变换。

通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:

类似地

经计算:

经计算得:

则有:设是的Fourier变换,

记则由离散取样值

因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。

例,利用

引理:当

因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式

首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:

(1)

其中

函数的幂级数展开式为:

则关于幂级数展开式为: (2)

由引理及(2)可得

(3)

由阶修正贝塞尔函数

其中函数,且当为正整数时,取,则(3)可化为

(4)

通过(1)(4)比较系数得

又由被积函数为偶函数,所以

公式得证。

3.结束语

本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。

参考文献:

[1] 王竹溪.特殊函数概论[M].北京大学出版社,,90-91.

[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)

[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.

[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.

[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.

[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.

[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,.

[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.

[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.

[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.

南开基础数学硕士毕业论文

《数学教学方法综合》

【摘要】文章在综述数学教学方法已有研究的基础上,分析了数学教学方法改革的趋势,探讨了已有研究存在的不足,对今后数学教学方法的研究进行了展望。

【关键词】数学教学方法研究综述

1. 引言

我国的数学教学方法是在继承传统,学习国外理论和经验中构建起来的。不但继承吸收了传统优秀的教学方法,而且在学习国外结合自己的实践的过程中产生了不少新的运用比较广泛的教学方法。

2. 教学方法界定的研究

中外对教学方法有不同的界定。由于时代、社会背景、文化氛围的不同,以及研究者研究问题的角度的差异,使得中外不同时期的教学理论研究者对“教学方法”概念的说法也不尽相同。

(1)教学方法要服务于教学目的和教学任务的要求。

(2)教学方法是师生双方共同完成教学活动内容的手段。

(3)教学方法是教学活动中师生双方行为体系。

3. 教学方法本质的研究

教学方法,如果我们从更高角度去理解的话,我们可以理解为教法。教法,在国内基本是围绕三个方面理解:一是指教学方法论,也包含教学原则;二是指教学模式;三是指教学技能。关于教学方法的本质,有以下几种说法。

教学法说

教学是双边活动,教为学提供有利条件,使学法更合理并不断科学化。教还可以使学在速度与质量上得以优化。因此,教与学,必然同在于一个法。

学法前提说

有学者认为,现代教学论不能只重视教学方法的研究,还得重视学习方法的研究,教学方法的本质要求我们在实施教学时必须要考虑到教法的要求和学法的要求,使教与学结合,做到既教知识又教方法。

教法学法统一说

持这种观点的学者认为,教学方法不仅仅理解为“教师在教学过程中为了完成教学任务所采用的方式和在教师指导下学生的学习方式”。教学方法的本质教法学法的辩证统一。

4. 教学方法分类的研究

人们在长期的教学实践中积累了很多的教学方法。而教学方法的分类就是把多种多样的教学方法,按照一定的规则或者标准,将它们有机地组织成为一个体系。

国外学者对教学方法的分类

巴班斯基根据对人的活动的认识,把教学活动分成三种,即知识信息活动的组织、个人活动的调整、活动过程的随机检查。从而把教学方法划分为三大类:①组织和自我组织学习认识活动的方法;②激发学习和形成学习动机的方法;③检查和自我检查教学效果的方法。

拉斯卡依据新行为主义的学习理论,即刺激——反应联结理论。教学方法——学习刺激——预期的学习结果。

5. 教学方法运用问题的研究

有了正确的教学思想的指导,理解了教学方法的特性与功能,在具体的教学当中如何科学的运用是广大老师关注的问题。综述已有的研究,关于如何运用的观点如下。

综合运用说

任何教学方法都有它的优点和缺点。回顾以往,往往是由一个极端走向另一个极端,片面、盲目、形而上学是造成教学效果严重低下的主要原因。因此,有人提出要把各种教学方法综合的运用。要想做到综合运用,必须有:①教法学法相统一;②讲习知识的的方法于训练智能的方法要统一;③常规教学方法与现代教学方法相统一。

发扬借鉴说

有这种观点的学者认为,在运用教学方法的时候,应该做到:①发扬国内教学方法中的优势;②有选择的学习国外的先进理论和方法;③借鉴教学控制论,掌握教学平衡,提高教学质量。尤其对新的教学方法,更要有选择的学习、吸收。

目的要求说

学者认为,不能抛开教学目的去选择教学方法,如果抛开教学目的,盲目的选择,教学必然不会成功。因此,选择教学方法应该考虑以下几点:①教学目的;②学生的素质和特点;③教材内容;④教师的素质和特点;⑤教学条件。教学目标以及教学任务的完成,最终取决于学生,并且通过学生表现出来。所以,教师选择的教学方法也是为学生服务的,教学方法的选择也是建立在对中学各类基本知识的逻辑推理上的模糊评价。

6. 数学教学方法改革的趋向

强调提高教学效率

所谓教学效率,就是单位时间内所完成的教学任务。20世纪美国全国数学教师协会(NCTM)拟定的八十年代《行动计划》中第四条,明确提出:“必须把既讲效果又讲效率的严格标准应用于数学教学”。

强调发挥学生的积极性,鼓励学生独立发现和探索

传统的教学法是灌输式,把学生看作容器,不注意发展学生的智力,不能适应时代发展的要求。因此一些教育学家、心理学家提出了新的教学理论。布鲁纳也认为,学习重要的不是记忆事实,而是获得知识的过程。他提出“发现法”,强调“教数学……要让学生自行思考数学,参与到掌握知识的过程中去。”

发现法有利于促进学生理解,学会发现的方法,培养探究能力,有利于知识的记忆,提高学习的积极性。

面向全体适应个别差异

近些年来我们现在的教育,已经开始注意面向全体学生,同时适应个别差异。近年来,国外在这方面进行了许多试验,提倡分组教学。

7. 以往教学方法研究中存在问题

近几十年来,我国数学教育工作者将国外先进的教育理论与我国数学教育实践相结合,摸索出许多具有中国特色的数学教学方法,如:讲授法、谈话法、演示法、读书指导法、参观法、实验法、实习作业法、练习法、问题法(或发现法),等等。

但随着社会的发展,知识的更新以及教育教学理论的发展,这些教学方法需要加以反思。传统的数学教学方法研究主要存在以下几个问题:

①方法及名称繁多,缺乏科学的教育实验。

②强调单一教学方法而忽视教学方法的选择与组合。

③理论总结不够,体系混乱。

④以教为中心。长期以来,数学教学方法的研究往往侧重于教材和教师,而忽视了学生学习的心理规律。

⑤重知识轻能力。

⑥重结果轻过程。

⑦忽视非智力因素的作用。

8. 展望

纵观近几年来国际数学教育发展的趋势和我国数学教育发展的现状,我国数学教学方法的发展有以下几种趋势:

第一,计算机辅助数学教学(CAI)将大面积开展。计算机是当今社会先进生产工具的代表,21世纪,计算机工业将是全球最大的工业之一。 CAI必将渗透到教育的各个领域。

第二,引入以“问题解决”为中心的教学模式。“问题解决”对数学教育有着重大的意义。

第三,引入体现数学应用意识的教学方法。数学应用是数学教育的根本目的之一。随着新技术革命的深入发展,数学应用也越来越被人们重视。

第四,“再创造”、“发现式”教学方法将得到重视。

参考文献

[1]李定仁,徐继存.教学论研究二十年[M].北京:人民教育出版社,2001.

[2] 林六十,高仕汉,李小平.数学教育改革的现状与发展[M].武汉:华中理工大学出版社,1997.

[3] 陈丽.浅析中学数学教学方法的继承与发展[J].理科教学探索,2007:19

[4] 杨骞.我国数学教育研究近20年回顾与思考[J].大连教育学报.1999.

登陆中国知网。硕士论文的话,它的文章不是优秀文章,就可能不会收录,博士文章一般都会进行收录。也有可能是学校提交的时间过慢,导致数据库还未编入。查找本校的硕博士学位论文,一般更快的方法是去图书馆直接查找,每个学校图书馆基本都有电子版和纸质版。

基础数学毕业论文答辩

数学专业毕业论文答辩问题范文

大学生活在不经意间即将结束,毕业生都要通过最后的毕业论文,毕业论文是一种的检验学生学习成果的形式,快来参考毕业论文是怎么写的吧!以下是我帮大家整理的数学专业毕业论文答辩问题范文,希望能够帮助到大家。

一、答辩自述

数学解题是数学教学与数学学习的重要组成部分

通过数学解题

可以深化对数学基础知识、基本技能的认识

逐渐体会数学知识的精髓--数学思想方法

培养严谨的逻辑思维能力、运算能力、空间想象能力、实践能力和创新意识

提高灵活运用数学知识去分析问题、解决问题的能力

研究中学数学解题的教与学

使学生认识中学数学解题在中学数学教学中的地位与作用

认识数学解题在培养思维与能力方面的意义

提高学生分析与解决数学问题的能力

充分发挥数学解题在数学教学中的积极作用

二、毕业论文答辩的一些问题

1、自己为什么选择这个课题?

由于自己对数学解题思想方面比较感兴趣也因为将来最有可能的工作是教师。所以希望在毕业论文的研究中能对今后有所帮助

加之数学解题技巧是初等数学中的一个非常重要的组成部分。所以选择了这个论问题

2、研究这个课题的意义和目的是什么?

答:数学解题是数学教学与学习的重要组成部分。通过数学解题,可以深化对数学基础知识、基本技能的认识,逐渐体会数学知识的精髓--数学思想方法。培养严谨的逻辑思维能力、运算能力、空间想象能力、实践能力和创新意识。提高灵活运用数学知识去分析问题、解决问题的能力。为了学生以后走上工作岗位不出现瘸腿现象。加强数学教育中的文化素质显得比较重要和具有现实意义。

3、全文的基本框架、基本结构是如何安排的?

答:第一部分:几种常见的数学解题思想;

第二部分:数学解题技巧的培养;

第三部分:如何将数学解题思想贯穿于解题技巧中;第四部分:解题技巧的误区;

第五部分:解题思想与解题技巧的体会;

第六部分:结束语

4、你这篇论文的侧重点在哪方面?为什么?

答:我这篇论文的侧重点在如何将数学解题思想融入到数学解题技巧当中。因为我觉得在所有掌握了各种解题思想后最重要的是懂得何用将这些思想运用到实际问题当中。只有这些才算真正理解了解题思想它的应用。

5、你觉得数学解题技巧在解决数学问题有什么优势?

答:数学问题的解决方法有很多种。但是万变不离其中,这就要求我们掌握一些常用的数学解题技巧,在解题中不用为了用哪种方式合适而浪费时间,在解数学题时可以做到条件反身,从而为你整个解题过程节省很多时间。

6、论文虽未论及

但与其较密切相关的问题还有哪些?

答:本文在撰写有关解题技巧的误区这一方面只是列举了两个技巧的误区,但我觉得这方面很重要。这一点与如何培养学生的解题能力密切相关,应该罗列出哪些问题最容易产生惯性思维。避免走入技巧的误区。

7、哪些问题自己还没搞清楚

在论文中论述得不够透彻?

答:有些数学题看起来哪种方法都可以用,但是实际上我们并不能直接反应出哪种方法最合适。这篇论文在有关哪些题型用哪些方法方面没有去罗列出来。

8、写作论文时立论的主要依据是什么? 答:主要依据是数学解题思想的技巧

根据你所掌握的各种数学解题思想 然后将这些思想融入到实际问题当中 也即将这些思想融入到解题技巧当中。

拓展:

毕业论文答辩问题归纳

1、你的毕业论文采用了哪些与本专业相关的研究方法?

本文通过学术论文的方式进行,主要是通过对书籍、报刊的阅览与浏览网站寻找大量相关材料及信息,综合整理,系统分析,并运用所学经济学原理以及分析手段,对如何结合自身优势,借鉴国内外先进模式以及经验,对平度市旅游产业发展进行了深入的探索分析,对其成功经验进行提炼,并结合所学知识对不足之处提出改进建议和提升方法。

2、论文中的核心概念是什么?用你自己的话高度概括。

旅游产业已成为平度地区新的经济增长点,其发展速度惊人,收益率高。但是在平度市旅游产业飞速发展的背后,我们需要看到在发展过程中的种种不足和限制因素。研究平度市旅游产业发展的思路和对策,能帮助我们认清平度市旅游产业发展的未来发展方向与发展对策,有利于我们充分发挥平度市的综合优势,更好的发展旅游产业。

3、你选题的缘由是什么?研究具有何种现实指导意义?

近年来,旅游产业成为平度地区新的经济增长点,其发展速度惊人,收益率高。但是在平度市旅游产业飞速发展的背后,我们需要看到在发展过程中的种种不足和限制因素。研究平度市旅游产业发展的思路和对策,能帮助我们认清平度市旅游产业发展的未来发展方向与发展对策,有利于我们充分发挥平度市的综合优势,更好的发展旅游产业。

4、论文中的'核心概念怎样在你的文中体现?

现状分析、提出问题并进行针对性的解决。

5、从反面的角度去思考:如果不按照你说的那样去做,结果又会怎样?

阻碍旅游产业的科学、健康、可持续发展,进而放缓地区的经济发展速度。

6、论文的理论基础与主体框架存在何种关联?最主要的理论基础是什么?

为论文的主体框架提供理论依据。框架直接反应理论的理论概念。

主要理论基础:现代旅游产业发展规律、区域旅游规划原理、第三产业经济学。

7、质性研究与访谈法、定性研究、定量研究、调查研究、实证研究的区别?

质性研究方法的基本问题,包括什么是质性数据,质性方法与量化方法的联系与区别,质性方法对研究现实问题和理论建构的作用与意义。

8、经过你的研究,你认为结果会是怎样?有何正面或负面效果?

首先我必须正面诠释我的论文性质,作为一篇本科学士毕业论文,我确实用心完成了我的学习任务,但如果一旦将论文的框架与概论进行实际运用,它还是浅显、不成熟的。其结果也就有可能成为理论性上的成功或实际运用上的短板,但也为相关理论研究提供了一份微薄的补充。

正面:通过社会调查和资料查阅,分析现状,针对性的提出问题并解决问题。

负面:理论性过强,实际运用性有待于商榷,实际操作需根据不同地点不同旅游产业点的实际情况循序渐进。

9、你的论文基础何种研究视角?是管理学、教育学、心理学还是社会学视角?

社会角度。社会素材与产业数据的收集来源社会。

10、论文研究的对象是个体还是群体?是点的研究还是面的研究?

在社会大产业面前属于旅游产业的个体研究,但在这个点的集合上又是面的研究,涉及旅游产业的各个方面,综合因素及利弊端。

11、论文中的结论、建议或策略是否具有可行性和操作性?

具有。虽然相对于专家性的研究、指导具有一定的不足,但根据资料查阅和社会调研,所得结论和提出的建议及策略在配合当地实际情况及各界力量努力的基础上还有具有一定的可行性和操作性。

1.在十分钟的陈述中,该生介绍了论文的主要观点、内容与结构,以及论文的写作过程,条理清晰,语言无大错,对老师的提问做出了基本正确的回答,体现了一定的专业素养。但设计过程有点小问题,流程图不很完善,希望及时纠正。 2.从答辩可以看出该生总体专业基础比较扎实,准备工作充分,对论文内容非常熟悉,能简洁明了的陈述设计思想和过程,系统展示流畅,回答问题有理有据,基本概念清楚,论文有一定创新。希望继续完善论文中的部分文字和符号,争取规范使用。 3.该生在规定时间内比较流利、清楚的阐述论文的主要内容,能恰当回答与论文有关的问题,态度谦虚,体现了比较扎实的计算机基础。建议把图像的打开功能用适当的文字表达出来,继续完善使论文格式规范化。 4.结合数学知识用计算机技术来处理地质问题,对方法原理掌握透彻,论文有比较好的创新。对快速傅里叶和小波变换图的结果分析到位,处理结果良好,计算机基础素养好。答辩中主要问题回答准确、深入。论文中变换的指标若有对比会更好。 5.论文陈述清楚,讲解简单明了,存在不足在于缺少自己的新观点、新方法,多为套用他人研究成果,论文格式方面应多规范。 6.答辩的准备工作充分,对老师的提问能详实回答,并对设计过程中所遇困境能反复探讨研究,找出更好的解决方法,专业技术比较好。若能结合专业改进使静态的网页成为动态的则更好,不足在于数据库中表的描述方式不太对,望改进。 7.论文陈述清晰明白,开门见山,直接入题。对老师的提问能流利作答,思路清晰,但对论文中的部分代码解释不楚,有少量语言错误,望今后的研究中多创新。 8.该生能在规定时间内陈述论文的主要内容,但答辩中回答问题不是很流畅,对设计的细节技术不太熟,回答问题不够切题。 9.从五部分对论文进行阐述,重点突出,答辩流畅、熟练,知识掌握基本到位,时间符合要求。不足是论文中有部分概念错误。 10.答辩过程中,该生能在规定时间内熟练、扼要的陈述论文的主要内容,条理清晰,创新点明显,回答问题时反映敏捷,表达准确,系统演示熟练,专业素养很高,经答辩委员会商议,一致同意其成绩为优秀。 11.在五分钟的陈述中,该生介绍了论文的`主要内容与结构,以及为此进行的研究,显示出对所研究的问题有一定的认识。视频设计很漂亮,但不太符合专业要求,若多从计算机专业的角度对实现过程进行设计则更好。 12.该生流利地陈述了写作该论文的目的、理论与实践意义,古玩网站设计过程很规范,但实体和概念之间联系少,整个设计应该尽量符合计算机方面的要求。 13.该生陈述清楚,回答问题流利。虽论文立意比较好,有一定的研究价值,但构架和内容都比较庞大,需要较强的独立研究能力,论文题目和客户端登陆服务器模块也需稍作修改。 14.该生准备工作充分,环节陈述完整,论文构思清晰,体现了较好的专业基础,时间把握也很好。就是论文中有需求但缺乏需求分析,对部分答辩问题回答不太清楚,图的表示方式不规范。 15.该生用dreamweave和access数据库等技术对甘孜旅游网站进行设计,设计清新美观,主要问题回答准确,基本概念清楚,望对论文中指正的数据库存放问题进行修改。 16.该生专业素养比较好,对所提问题回答流利,正确率高,对实现过程中遇到的难题认识到位,时间把握得当,若能用比较新的运行环境进行实现相对好。 17.该生对数据库的设计细节讲解详细,研究深入,论坛设计部分独立完成,有一定的科研能力,答辩中思路清晰,回答得简明扼要,语言流利。答辩组经过认真讨论,一致同意通过该生成绩为良好,但要求该生纠正论文中尚存的某些错误。

相关百科

热门百科

首页
发表服务