
函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、直至对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。本文拟通过对函数概念的发展与比较的研究,对函数概念的教学进行一些探索。 1、函数概念的纵向发展 1.1 早期函数概念——几何观念下的函数 十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义,绝大部分函数是被当作曲线来研究的。 1.2 十八世纪函数概念——代数观念下的函数 1718年约翰·贝努利(BernoulliJohann,瑞,1667-1748)才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义:由任一变量和常数的任一形式所构成的量,贝努利把变量x和常量按任何方式构成的量叫“x的函数”,表示为,其在函数概念中所说的任一形式,包括代数式子和超越式子。 18世纪中叶欧拉(L.Euler,瑞,1707-1783)就给出了非常形象的,一直沿用至今的函数符号。欧拉给出的定义是:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数(只有自变量间的代数运算)和超越函数(三角函数、对数函数以及变量的无理数幂所表示的函数),还考虑了“随意函数”(表示任意画出曲线的函数),不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍、更具有广泛意义。 1.3 十九世纪函数概念——对应关系下的函数 1822年傅里叶(Fourier,法,1768-1830)发现某些函数可用曲线表示,也可用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新的层次。1823年柯西(Cauchy,法,1789-1857)从定义变量开始给出了函数的定义,同时指出,虽然无穷级数是规定函数的一种有效方法,但是对函数来说不一定要有解析表达式,不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限,突破这一局限的是杰出数学家狄利克雷。 1837年狄利克雷(Dirichlet,德,1805-1859)认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数。”狄利克雷的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,简明精确,以完全清晰的方式为所有数学家无条件地接受。至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义。 等到康托尔(Cantor,德,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象(点、线、面、体、向量、矩阵等)。 1.4 现代函数概念——集合论下的函数 1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用“序偶”来定义函数。其优点是避开了意义不明确的“变量”、“对应”概念,其不足之处是又引入了不明确的概念“序偶”。库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”,即序偶(a,b)为集合{{a},{b}},这样,就使豪斯道夫的定义很严谨了。1930年新的现代函数定义为,若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。 函数概念的定义经过三百多年的锤炼、变革,形成了函数的现代定义形式,但这并不意味着函数概念发展的历史终结,20世纪40年代,物理学研究的需要发现了一种叫做Dirac-δ函数,它只在一点处不为零,而它在全直线上的积分却等于1,这在原来的函数和积分的定义下是不可思议的,但由于广义函数概念的引入,把函数、测度及以上所述的Dirac-δ函数等概念统一了起来。因此,随着以数学为基础的其他学科的发展,函数的概念还会继续扩展。
函数教学论文【1】
摘 要:初中数学中的函数知识非常重要,搞好这部分内容的教学,必须要理解基本概念,理清知识结构,树立“运动变化”的理念,渗透数形结合的思想。
关键词:初中数学 函数教学 数形结合
初中数学中变量与函数概念的引入,标志着数学由常量数学向变量数学的迈进。
尽管初中函数内容只是讲述了函数的一些最基本、最初步的知识,但是其中蕴含的数学思想和方法,对培养学生观察、研究、解决问题的能力是十分有益的。
不仅如此,函数概念还是高中代数的核心部分,学好初中函数的有关知识,可以为研究高中数学中的各种初等函数奠定一定的基础。
因而,初中函数概念的基础性作用是显而易见的。
在教学中应从四个方面引导学生正确理解函数的概念,进而掌握函数的特征和性质。
一、正确理解三组关系,系统把握函数概念
点的坐标的定义与点与坐标的一一对应关系;函数定义中某一变化过程和自变量与函数的对应关系;函数图象定义中的自变量值。
函数值→有序数对→点的坐标→点→图象,加强这三组关系的理解,有利于把函数的解析式、点的坐标和函数图象结合起来,建立起较完整的函数概念。
二、理清知识结构,构建知识体系
用这样一个知识结构图,可以把平面直角坐标系、点、图象和解析式有机地结合起来,并从中可以找到相互之间的联系和问题的转化方式。
三、树立运动变化的观点
函数概念的核心意义是反映在某一变化过程中两个变量之间的依赖关系,即一个量的变化随着另一个量的变化而变化。
这就使得原本静止的数的概念之间产生了一种动感的联系。
在教学过程中,应引导学生通过寻找、发现身边的事例来体会这种变量关系。
例如,生长期的身高随着年龄的变化而变化;一天中的气温随着时间的变化而变化;工厂的收入随着产量的增加而增加;二元一次方程的无数解,在方程3x-2y=1中,当x的取值发生变化时,y的值随着x的变化而变化……
在阐述这种运动关系的同时,还应该用式子、表格、图示的方法来举例描述,以加深学生对这种抽象的运动关系的直观认识,这样就可以逐步地帮助学生树立一种“运动变化”的观点。
四、培养数形结合的思想
数学教学过程应该体现明暗两条线:一条是明线,即数学知识内容的教学;另一条是暗线,即数学思想方法的形成。
由于数学思想方法既是数学的基础知识,又是将知识转化成能力的桥梁,用好了数学思想就是发展了数学能力。
因此,在教学中老师要注重培养学生对数学思想方法的渗透、概括和总结、应用能力的提升。
数形结合的思想方法是初中数学中一种重要的思想方法。
何为数形结合的思想方法?我们知道,数学是研究现实世界的数量关系和空间形式的科学,数和形是数学知识体系中两大基础概念,把刻画数量关系的数和具体直观的图形有机结合,将抽象思维和形象思维有机结合,根据研讨问题的需要,把数量关系的比较转化为图象性质或其位置关系的讨论,或把图形间的待定关系转化为相关因素的数量计算,即数与形的灵活转换、相互作用,进而探求问题的解答,就是数形结合的思想方法。
在函数这部分内容中,蕴含着丰富的数学思想,如坐标的思想、数形结合的思想等,其中最重要的是数形结合的思想。
那么在函数的教学过程中如何渗透与应用数形结合的思想方法,就显得尤为重要。
例如,一次函数就是一条直线,这条直线上的点的坐标无论怎样变化都满足解析式。
直线是由点组成的,点可以用数来描述。
反过来,直线就反映了数的变化特征。
一个函数可以用图形来表示,而借助这个图形又可以直观地分析出函数的一些性质和特点,这为数学的研究与应用提供了很大的帮助,教学时老师若注重了数形结合思想方法的渗透,将会收到事半功倍的效果。
在初中数学教学中常见的体例有:(1)数与数轴的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)集合元素和几何条件为背景建立起来的概念;(5)所给的等式或代数式的结构有明显的几何意义。
当然,以上谈及的几点内容仅仅是本人在教学实践中的一点体会,事实上,初中函数部分的内容及要求是极其丰富的,培养学生的思维能力以及能够灵活地应用知识才是我们学习的最终目的,在讨论社会问题、经济问题、跨学科综合等问题时,越来越多的运用到了数学的思想、方法,其中函数的内容占有相当重要的地位。
因此,我们一定要在教与学的过程中认真钻研教材,深入挖掘教材中蕴含的思想、方法和观点,以达到提高学生的思维能力、应用能力和认知水平的目的。
初中函数教学【2】
【摘要】数学思想方法乃是数学规律与本质,学生掌握了数学思想方法,就能更快捷的获取知识,更透彻地理解知识。
初中函数教学应教给学生掌握学习函数的思想方法。
本文仅对初中函数教学作初步探索.
【关键词】函数教学
一、认识函数思想,引领教学方向
函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律,函数的思想方法就是提取问题的数学特征,用联系变化的观点提出数学对象,抽象其数学特征,建立函数关系,并利用函数的性质研究解决问题的一种数学思想方法。
尽管内容不多,但函数的思想已经有所体现,它仍占据着重要地位。
二、理清初中函数概念,系统掌握初等函数知识
1、理解概念的逻辑性。
数学概念可分为两个重要方面:一是概念的'质',也就是概念的内涵(概念的本质属性);二是概念的'量'也就是概念的外延(概念所有对象的和)概念的外延还有大小之分,外延大的概念叫做种概念,外延小的概念叫做属概念,一个属概念与其他属概念本质上的差别又称为属差,要想给某一个概念下定仪,首先应给学生指出被定义的概念最接近的概念是什么,再紧接着指出被定义概念的属差,既概念定义 = 种概念 + 属查。
2、明确概念的层次性。
一般的概念都是通过对实验现象或对某中具体事物分析经过抽象概括而导出的,他是一个形成过程,中学中的许多概念,是从几个原始概念和公理出发,通过一番的推理而扩展成为一系列的定义和公里,而每一个新出现的概念都依赖着旧的概念来表达,或是由旧概念推倒出来的。
3、掌握概念的抽象性。
初中学数学中的许多原始概念,都是对具体的数和形的感知而形成表象,再从表象经过抽象概括而形成的。
概念是人们对感性材料进行抽象的产物,感性认识是形成概念的基础。
如果学生没有感性认识或感性认识不怎么完备时,我们就应该借助与实物、模型、多媒体课件、或形象的语言进行较直观的教学,使学生从中获得感性认识。
三、绘制初等函数图象 ,理解初等函数性质
著名数学家华罗庚先生说:"数缺形时少直观,形缺数时难入微"。
因此要想绘制初等函数图象,理解其性质,首先要了解"数形结合"的思想。
数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。
我们要抽象复杂的数量关系,通过形的形象、直观揭示出来,以达到形帮数的目的。
四、运用函数同其他学科和实际的联系,培养学生学习函数的兴趣
函数是这样定义的,"设在某变化过程中的两个变量x和y,若对于x在某一范围内的每一确定的值,y都有唯一确定的值与它对应,那么,就把y称为x的函数 ,x是自变量,y是因变量"。
如图1⑴中,在矩形ABCD中,AB=10cm,BC=8cm。
点P从点A出发,沿路线A→B→C→D运动,到点D停止;点Q从点D出发,沿D→C→B→A路线运动,到点A停止。
若P、Q两点同时出发,点P的速度为1厘米/秒,点Q的速度为2厘米/秒。
a秒时,P、Q两点同时改变速度,点P的.速度变为b厘米/秒,点Q的速度变为d厘米/秒。
图1第2个图是点P出发x秒后△APD的面积S1(平方厘米)与x(秒)的函数关系图象。
图1第3个图是点Q出发x秒后△AQD的面积S2(平方厘米)与x(秒)的函数关系图象。
2、函数与市场经济
例2、某化工材料销售公司购进了一种化工原料共7000千克,购进价格为每千克30元。
物价部门规定其销售单价不得高于每千克70元,也不得低于30元。
市场调查发现:单价定为70元时日均销售60千克;单价每低1元日均多售出2千克。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算)。
设销售单价为x元,日均获利y元。
顶点坐标为(65,1950)。
二次函数的草图(如图2)所示。
观察草图可知,当单价定为65元时,日均获利最多,是1950元。
⑶、当日均获利最多时,单价为65元,日均销售60+2×(70-65)=70千克,那么总获利为1950×(7000÷70)=195000元
当销售单价最高时,单价为70元日均销售60千克,将这种化工原料全部售完需700÷60≈117天。
那么总获利为(70-30)×7000-117×500=221500元
∵ 221500>195000,且221500 - 195000 = 26500
∴销售单价最高时获总利最多,且多获利26500。
可见,函数的应用非常广泛,它与其它学科有着密切的联系,是解决实际问题的重要工具,因此可以提高和培养学生学习初等函数的兴趣。
当今世界科技发展一日千里,科学知识急剧增加,学生在今后的工作生活和进一步学习中有许多需要认识、探讨、分析和解决的纷繁复杂的问题,我们要把函数的思想方法作为一把金光闪闪的钥匙来交给学生,让他们运用这把金钥匙来开启知识的宝库,迎接新生活的挑战!
中学函数教学【3】
【摘要】从数学自身的发展过程来看,变量与函数概念的引入,标志着数学由常量数学向变量数学的迈进,尽管初中函数内容只是讲述了函数的一些最基本、最初步的知识,但是其中蕴含的数学思想和方法,对培养学生观察问题、研究问题和解决问题的能力都是十分有益的。
【关键词】学习兴趣 情境教学
函数是初中数学里重要的数学知识,函数学习的好坏对于学生的继续学习影响深远,特别是现在新的课程标准提出研究性学习,更多地注重学生识图能力的培养,并尝试用数形结合思想和函数思想解决问题。
笔者结合多年的中学数学教学,就如何搞好中学函数教学,浅谈如下思考。
一、明确学习函数的重要性,培养学生学习函数的兴趣
函数概念在初中数学关于式、方程、不等式等主要内容中起到了横向联系和纽带作用,从本质上看:代数式可看作函数的解析式或值;两个代数式A与B恒等等价于函数y=A-B恒等于零;方程的根可看作函数图像与x轴的交点的横坐标;在不等式的证明中,函数的性质经常是有力的工具。
由于函数应用十分广泛,而函数的概念的形成和发展是中学数学中从常量到变量的一个认识上的飞跃,理解和掌握函数的思想方法无疑会有助于实现这一飞跃。
在初中阶段我们学习的函数是比较简单的,属于函数启蒙,但是它是高中数学乃至整个数学体系的主要内容,所以初中阶段是函数概念和函数思想形成的关键阶段,这一阶段教学的成败,直接关系到学生进入高中、大学的数学学习乃至一生的数学造诣。
让学生充分认识到函数的重要性,有利于提高他们学习函数的兴趣。
二、进行情境教学
教师可以把数学知识点以问题的形式提出,激发学生的学习欲望,在思考的过程中加深对知识点的思考,同时创设情境为其提供思考空间,使其思维从形象过渡到抽象,完成思维的转换.进行课堂教学, 很多问题都是要靠学生自己想象出来的, 但是如果每个问题都让学生去室外感受也是不可能的,这就需要我们很好地加强学生的抽象思维能力. 尤其是在学习函数的时候,就更需要学生一定的理解能力与思维水平。
学习函数知识的最终目的是要能够用于实际生活中. 因此教师在进行函数教学时,将具体情境中的材料作为启发学生的思考的材料,通过相互交流、合作学习、独立思考等形式来讲,加强学生对知识点的理解.
当学生在一个问题情境中,则更能够把握问题的理解,在问题情境中,教师要给予一定的指导和帮助. 教师遵守循序渐进、逐渐理解的方式,为学生创设问题情境,创设学习的机会. 在问题情境中邀游,学生能够沐浴在数学活动中. 问题情境是一种加强数学理解与问题解决的有效方式.
三、坚持相互联系、运动发展的观点进行教学
函数表现出两个变量之间的相互依存关系,一个变量会随着另一个变量的变化而发生变化,两者处于相互牵制、共同变化发展的秩序之中,看似静止的数的概念之间存在着运动的联系。
在初中函数教学中,教师应带领学生在学习函数基础知识以及解题过程中,培育学生们树立相互联系、运动发展的数学理念,在动态的思维模式中掌握函数知识的基本要领。
两个变量间的相互影响关系,对于刚刚接触函数知识的学生来说不太容易理解。
初中函数教师可以根据“一个量随另一个量的变化而变化”这一关系,让学生结合熟悉的数学知识以及日常生活实际来举例,比如“汽车的汽油消耗量随着行车路程的变化而变化”,或者“圆形的面积随着半径长的变化而变化”等等。
这样,便使学生更迅速地理解自变量与变量的定义,并能在活跃的思维环境中锻炼分析、解决问题的能力。
函数中的变量关系,与数学知识体系中的很多领域都存在着融会贯通的关系,比如求路程问题“距离=速度*时间”等,体现出函数的重要性。
学习函数知识,实际上也打开了更多数学领域的视角。
另外,函数同其他学科的联系也十分紧密,是解决实际问题的重要工具。
初中数学教师可以利用函数的广泛联系性,在广征博引中激发学生的学习热情,从而达到真正的教学实效。
四、讲解中注意类比法的运用
在讲解一次函数的图像时,我们一般由特例导出。
例如:在同一直角坐标系中画出下列函数的图像:(1)y=2x+3(2)y=2x+5 (3)y=2x-3;(4)y=-2x+3(5)y=-2x-3
然后由学生归纳出一次函数的图像是一条直线,并让学生由上述图像得出:当(1)k>0,b>0 ;
(2)k>0, b<0;(3)k<0, b>0;(4)k<0, b<0时函数图像所经过的象限及单调性,最后老师总结,学生理解记忆。
这套程序很一般化,学生也难以记忆。
不如先让学生回忆正比例函数(1)y=2x;(2)y=-2x的图像与性质,再画出以上函数图像,借助类比的方法得出一次函数的图像及性质。
向学生演示正比例函数图像的平移变化即得到一次函数图像,这样可以避免学生把二者割裂开,把握它们的共性,区分正比例函数的特殊性。
通过类比,培养学生知识迁移能力。
五、加强学科之间的相互沟通,增强学生运用数学的意识
当前教育改革的方向之一是加强各学科知识间的综合运用。
数学作为一门基础学科,不仅服务于其他学科,而且在研究数学的应用时,若能结合别的学科特点,运用别的学科知识解释其基本原理,无疑对数学应用的理解也有很大的帮助,进而对学生的综合能力的培养也将有极大的好处。
例3、一根弹簧原长15cm,已知在20公斤内弹簧的长度与所挂的质量成一次函数关系。
现测得当挂重4公斤时,弹簧的长度为17cm,问当弹簧的长度为22cm时,挂重多少公斤?
分析:由已知条件弹簧的长度与挂重成一次函数关系,则可用待定系数法求出函数关系。
再通过计算即能求得问题的解答。
解:设挂重x(kg)(0≤x≤20)时,弹簧长度为y(cm),依题意可设,y=kx+b (k≠0)由条件:x=0时,y=15 即b=15
当 x=4时,y=17 即4k+15=17 所以K=
故函数解析式为:y= x+15 (0≤x≤20)
所以当y=22时,由 x+15=22,得x=14
答:当弹簧长为22cm时,挂重14公斤。
对于物理问题,必须根据物理概念,物理知识列出函数关系式,把它转化为数学问题,再运用数学方法进行运算,其它学科也如此。
总之,中学函数学得如何,将直接影响到学生今后数学学习兴趣和成绩的好坏,因此广大中学数学老师肩负着关键的职责,一定要引起我们的高度重视。
以上几点是笔者的拙见,希望能给同行一点帮助,并敬请同行斧正。
【参考文献】
[1]张凤林.浅谈初中函数教学[J].学问, 2009(15).
[2]徐德本.初中函数教学要把握好“四个一”[J].中学数学教学参考.2008,(18).
[3]王学海;探究初中生学习函数困难及教学策略[J];成功(教育);2011年18期
函数概念的发展历史1.早期函数概念——几何观念下的函数十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。1673年,莱布尼兹首次使用“function” (函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系。2.十八世纪函数概念──代数观念下的函数1718年约翰�6�1贝努利(Bernoulli Johann,瑞,1667-1748)在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。1755,欧拉(L.Euler,瑞士,1707-1783) 把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。”18世纪中叶欧拉(L.Euler,瑞,1707-1783)给出了定义:“一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。”他把约翰�6�1贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”。不难看出,欧拉给出的函数定义比约翰�6�1贝努利的定义更普遍、更具有广泛意义。3.十九世纪函数概念──对应关系下的函数1821年,柯西(Cauchy,法,1789-1857) 从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。”在柯西的定义中,首先出现了自变量一词,同时指出对函数来说不一定要有解析表达式。不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限。1822年傅里叶(Fourier,法国,1768——1830)发现某些函数也已用曲线表示,也可以用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新层次。1837年狄利克雷(Dirichlet,德,1805-1859) 突破了这一局限,认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数。”这个定义避免了函数定义中对依赖关系的描述,以清晰的方式被所有数学家接受。这就是人们常说的经典函数定义。等到康托(Cantor,德,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象。4.现代函数概念──集合论下的函数1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用不明确的概念“序偶”来定义函数,其避开了意义不明确的“变量”、“对应”概念。库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”使豪斯道夫的定义很严谨了。1930 年新的现代函数定义为“若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。”术语函数,映射,对应,变换通常都有同一个意思。但函数只表示数与数之间的对应关系,映射还可表示点与点之间,图形之间等的对应关系。可以说函数包含于映射。当然,映射也只是一部分。 [编辑本段]幂函数幂函数的一般形式为y=x^a。如果a取非零的有理数是比较容易理解的,不过初学者对于a取无理数,则不太容易理解,在我们的课程里,不要求掌握如何理解指数为无理数的问题,因为这涉及到实数连续统的极为深刻的知识。因此我们只要接受它作为一个已知事实即可。对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.可以看到:(1)所有的图形都通过(1,1)这点。(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。(4)当a小于0时,a越小,图形倾斜程度越大。(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。(6)显然幂函数无界。 [编辑本段]高斯函数设x∈R , 用 [x]或int(x)表示不超过x 的最大整数,并用表示x的非负纯小数,则 y= [x] 称为高斯(Guass)函数,也叫取整函数。任意一个实数都能写成整数与非负纯小数之和,即:x= [x] + (0≤<1) [编辑本段]复变函数复变函数是定义域为复数集合的函数。复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。复变函数论的发展简况复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。复变函数论的内容复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。 upcase 字符型 使小写英文字母变为大写 字符型 downcase 字符型 使大写英文字母变为小写 字符型 [编辑本段]阶梯函数形如阶梯的具有无穷多个跳跃间断点的函数. [编辑本段]反比例函数表达式为 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。反比例函数的其他形式:y=k/x=k·1/x=kx-1反比例函数的特点:y=k/x→xy=k自变量x的取值范围是不等于0的一切实数。反比例函数图像性质:反比例函数的图像为双曲线。反比例函数关于原点中心对称,关于坐标轴角平分线轴对称,另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣,即k的绝对值。如图,上面给出了k分别为正和负(2和-2)时的函数图像。当 k >0时,反比例函数图像经过一,三象限,因为在同一支反比例函数图像上,y随x的增大而减小所以又称为减函数当k <0时,反比例函数图像经过二,四象限,因为在同一支反比例函数图像上,y随x的增大而增大所以又称为增函数倘若不在同一象限,则刚好相反。由于反比例函数的自变量和因变量都不能为0,所以图像只能无限向坐标轴靠近,无法和坐标轴相交。 知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。2.对于双曲线y= k/x,若在分母上加减任意一个实数m (即 y=k/x(x±m)m为常数),就相当于将双曲线图象向左或右平移m个单位。(加一个数时向左平移,减一个数时向右平移) [编辑本段]程序设计中的函数许多程序设计语言中,可以将一段经常需要使用的代码封装起来,在需要使用时可以直接调用,这就是程序中的函数。比如在C语言中:int max(int x,int y){return(x>y?x:y;);}就是一段比较两数大小的函数,函数有参数与返回值。C++程序设计中的函数可以分为两类:带参数的函数和不带参数的函数。这两种参数的声明、定义也不一样。带有(一个)参数的函数的声明:类型名标示符+函数名+(类型标示符+参数){}不带参数的函数的声明:void+函数名(){}花括号内为函数体。带参数的函数有返回值,不带参数的没有返回值。C++中函数的调用:函数必须声明后才可以被调用。调用格式为:函数名(实参)调用时函数名后的小括号中的实参必须和声明函数时的函数括号中的形参个数相同。有返回值的函数可以进行计算,也可以做为右值进行赋值。#include
return x+y;
}void main(){cout<
247 浏览 2 回答
125 浏览 4 回答
140 浏览 2 回答
315 浏览 4 回答
258 浏览 4 回答
95 浏览 3 回答
356 浏览 4 回答
319 浏览 4 回答
102 浏览 4 回答
334 浏览 3 回答
228 浏览 5 回答
206 浏览 3 回答
357 浏览 4 回答
87 浏览 3 回答
273 浏览 4 回答