首页

毕业论文

首页 毕业论文 问题

数学函数概念教学毕业论文

发布时间:

数学函数概念教学毕业论文

函数教学论文【1】

摘 要:初中数学中的函数知识非常重要,搞好这部分内容的教学,必须要理解基本概念,理清知识结构,树立“运动变化”的理念,渗透数形结合的思想。

关键词:初中数学 函数教学 数形结合

初中数学中变量与函数概念的引入,标志着数学由常量数学向变量数学的迈进。

尽管初中函数内容只是讲述了函数的一些最基本、最初步的知识,但是其中蕴含的数学思想和方法,对培养学生观察、研究、解决问题的能力是十分有益的。

不仅如此,函数概念还是高中代数的核心部分,学好初中函数的有关知识,可以为研究高中数学中的各种初等函数奠定一定的基础。

因而,初中函数概念的基础性作用是显而易见的。

在教学中应从四个方面引导学生正确理解函数的概念,进而掌握函数的特征和性质。

一、正确理解三组关系,系统把握函数概念

点的坐标的定义与点与坐标的一一对应关系;函数定义中某一变化过程和自变量与函数的对应关系;函数图象定义中的自变量值。

函数值→有序数对→点的坐标→点→图象,加强这三组关系的理解,有利于把函数的解析式、点的坐标和函数图象结合起来,建立起较完整的函数概念。

二、理清知识结构,构建知识体系

用这样一个知识结构图,可以把平面直角坐标系、点、图象和解析式有机地结合起来,并从中可以找到相互之间的联系和问题的转化方式。

三、树立运动变化的观点

函数概念的核心意义是反映在某一变化过程中两个变量之间的依赖关系,即一个量的变化随着另一个量的变化而变化。

这就使得原本静止的数的概念之间产生了一种动感的联系。

在教学过程中,应引导学生通过寻找、发现身边的事例来体会这种变量关系。

例如,生长期的身高随着年龄的变化而变化;一天中的气温随着时间的变化而变化;工厂的收入随着产量的增加而增加;二元一次方程的无数解,在方程3x-2y=1中,当x的取值发生变化时,y的值随着x的变化而变化……

在阐述这种运动关系的同时,还应该用式子、表格、图示的方法来举例描述,以加深学生对这种抽象的运动关系的直观认识,这样就可以逐步地帮助学生树立一种“运动变化”的观点。

四、培养数形结合的思想

数学教学过程应该体现明暗两条线:一条是明线,即数学知识内容的教学;另一条是暗线,即数学思想方法的形成。

由于数学思想方法既是数学的基础知识,又是将知识转化成能力的桥梁,用好了数学思想就是发展了数学能力。

因此,在教学中老师要注重培养学生对数学思想方法的渗透、概括和总结、应用能力的提升。

数形结合的思想方法是初中数学中一种重要的思想方法。

何为数形结合的思想方法?我们知道,数学是研究现实世界的数量关系和空间形式的科学,数和形是数学知识体系中两大基础概念,把刻画数量关系的数和具体直观的图形有机结合,将抽象思维和形象思维有机结合,根据研讨问题的需要,把数量关系的比较转化为图象性质或其位置关系的讨论,或把图形间的待定关系转化为相关因素的数量计算,即数与形的灵活转换、相互作用,进而探求问题的解答,就是数形结合的思想方法。

在函数这部分内容中,蕴含着丰富的数学思想,如坐标的思想、数形结合的思想等,其中最重要的是数形结合的思想。

那么在函数的教学过程中如何渗透与应用数形结合的思想方法,就显得尤为重要。

例如,一次函数就是一条直线,这条直线上的点的坐标无论怎样变化都满足解析式。

直线是由点组成的,点可以用数来描述。

反过来,直线就反映了数的变化特征。

一个函数可以用图形来表示,而借助这个图形又可以直观地分析出函数的一些性质和特点,这为数学的研究与应用提供了很大的帮助,教学时老师若注重了数形结合思想方法的渗透,将会收到事半功倍的效果。

在初中数学教学中常见的体例有:(1)数与数轴的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)集合元素和几何条件为背景建立起来的概念;(5)所给的等式或代数式的结构有明显的几何意义。

当然,以上谈及的几点内容仅仅是本人在教学实践中的一点体会,事实上,初中函数部分的内容及要求是极其丰富的,培养学生的思维能力以及能够灵活地应用知识才是我们学习的最终目的,在讨论社会问题、经济问题、跨学科综合等问题时,越来越多的运用到了数学的思想、方法,其中函数的内容占有相当重要的地位。

因此,我们一定要在教与学的过程中认真钻研教材,深入挖掘教材中蕴含的思想、方法和观点,以达到提高学生的思维能力、应用能力和认知水平的目的。

初中函数教学【2】

【摘要】数学思想方法乃是数学规律与本质,学生掌握了数学思想方法,就能更快捷的获取知识,更透彻地理解知识。

初中函数教学应教给学生掌握学习函数的思想方法。

本文仅对初中函数教学作初步探索.

【关键词】函数教学

一、认识函数思想,引领教学方向

函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律,函数的思想方法就是提取问题的数学特征,用联系变化的观点提出数学对象,抽象其数学特征,建立函数关系,并利用函数的性质研究解决问题的一种数学思想方法。

尽管内容不多,但函数的思想已经有所体现,它仍占据着重要地位。

二、理清初中函数概念,系统掌握初等函数知识

1、理解概念的逻辑性。

数学概念可分为两个重要方面:一是概念的'质',也就是概念的内涵(概念的本质属性);二是概念的'量'也就是概念的外延(概念所有对象的和)概念的外延还有大小之分,外延大的概念叫做种概念,外延小的概念叫做属概念,一个属概念与其他属概念本质上的差别又称为属差,要想给某一个概念下定仪,首先应给学生指出被定义的概念最接近的概念是什么,再紧接着指出被定义概念的属差,既概念定义 = 种概念 + 属查。

2、明确概念的层次性。

一般的概念都是通过对实验现象或对某中具体事物分析经过抽象概括而导出的,他是一个形成过程,中学中的许多概念,是从几个原始概念和公理出发,通过一番的推理而扩展成为一系列的定义和公里,而每一个新出现的概念都依赖着旧的概念来表达,或是由旧概念推倒出来的。

3、掌握概念的抽象性。

初中学数学中的许多原始概念,都是对具体的数和形的感知而形成表象,再从表象经过抽象概括而形成的。

概念是人们对感性材料进行抽象的产物,感性认识是形成概念的基础。

如果学生没有感性认识或感性认识不怎么完备时,我们就应该借助与实物、模型、多媒体课件、或形象的语言进行较直观的教学,使学生从中获得感性认识。

三、绘制初等函数图象 ,理解初等函数性质

著名数学家华罗庚先生说:"数缺形时少直观,形缺数时难入微"。

因此要想绘制初等函数图象,理解其性质,首先要了解"数形结合"的思想。

数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。

我们要抽象复杂的数量关系,通过形的形象、直观揭示出来,以达到形帮数的目的。

四、运用函数同其他学科和实际的联系,培养学生学习函数的兴趣

函数是这样定义的,"设在某变化过程中的两个变量x和y,若对于x在某一范围内的每一确定的值,y都有唯一确定的值与它对应,那么,就把y称为x的函数 ,x是自变量,y是因变量"。

如图1⑴中,在矩形ABCD中,AB=10cm,BC=8cm。

点P从点A出发,沿路线A→B→C→D运动,到点D停止;点Q从点D出发,沿D→C→B→A路线运动,到点A停止。

若P、Q两点同时出发,点P的速度为1厘米/秒,点Q的速度为2厘米/秒。

a秒时,P、Q两点同时改变速度,点P的.速度变为b厘米/秒,点Q的速度变为d厘米/秒。

图1第2个图是点P出发x秒后△APD的面积S1(平方厘米)与x(秒)的函数关系图象。

图1第3个图是点Q出发x秒后△AQD的面积S2(平方厘米)与x(秒)的函数关系图象。

2、函数与市场经济

例2、某化工材料销售公司购进了一种化工原料共7000千克,购进价格为每千克30元。

物价部门规定其销售单价不得高于每千克70元,也不得低于30元。

市场调查发现:单价定为70元时日均销售60千克;单价每低1元日均多售出2千克。

在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算)。

设销售单价为x元,日均获利y元。

顶点坐标为(65,1950)。

二次函数的草图(如图2)所示。

观察草图可知,当单价定为65元时,日均获利最多,是1950元。

⑶、当日均获利最多时,单价为65元,日均销售60+2×(70-65)=70千克,那么总获利为1950×(7000÷70)=195000元

当销售单价最高时,单价为70元日均销售60千克,将这种化工原料全部售完需700÷60≈117天。

那么总获利为(70-30)×7000-117×500=221500元

∵ 221500>195000,且221500 - 195000 = 26500

∴销售单价最高时获总利最多,且多获利26500。

可见,函数的应用非常广泛,它与其它学科有着密切的联系,是解决实际问题的重要工具,因此可以提高和培养学生学习初等函数的兴趣。

当今世界科技发展一日千里,科学知识急剧增加,学生在今后的工作生活和进一步学习中有许多需要认识、探讨、分析和解决的纷繁复杂的问题,我们要把函数的思想方法作为一把金光闪闪的钥匙来交给学生,让他们运用这把金钥匙来开启知识的宝库,迎接新生活的挑战!

中学函数教学【3】

【摘要】从数学自身的发展过程来看,变量与函数概念的引入,标志着数学由常量数学向变量数学的迈进,尽管初中函数内容只是讲述了函数的一些最基本、最初步的知识,但是其中蕴含的数学思想和方法,对培养学生观察问题、研究问题和解决问题的能力都是十分有益的。

【关键词】学习兴趣 情境教学

函数是初中数学里重要的数学知识,函数学习的好坏对于学生的继续学习影响深远,特别是现在新的课程标准提出研究性学习,更多地注重学生识图能力的培养,并尝试用数形结合思想和函数思想解决问题。

笔者结合多年的中学数学教学,就如何搞好中学函数教学,浅谈如下思考。

一、明确学习函数的重要性,培养学生学习函数的兴趣

函数概念在初中数学关于式、方程、不等式等主要内容中起到了横向联系和纽带作用,从本质上看:代数式可看作函数的解析式或值;两个代数式A与B恒等等价于函数y=A-B恒等于零;方程的根可看作函数图像与x轴的交点的横坐标;在不等式的证明中,函数的性质经常是有力的工具。

由于函数应用十分广泛,而函数的概念的形成和发展是中学数学中从常量到变量的一个认识上的飞跃,理解和掌握函数的思想方法无疑会有助于实现这一飞跃。

在初中阶段我们学习的函数是比较简单的,属于函数启蒙,但是它是高中数学乃至整个数学体系的主要内容,所以初中阶段是函数概念和函数思想形成的关键阶段,这一阶段教学的成败,直接关系到学生进入高中、大学的数学学习乃至一生的数学造诣。

让学生充分认识到函数的重要性,有利于提高他们学习函数的兴趣。

二、进行情境教学

教师可以把数学知识点以问题的形式提出,激发学生的学习欲望,在思考的过程中加深对知识点的思考,同时创设情境为其提供思考空间,使其思维从形象过渡到抽象,完成思维的转换.进行课堂教学, 很多问题都是要靠学生自己想象出来的, 但是如果每个问题都让学生去室外感受也是不可能的,这就需要我们很好地加强学生的抽象思维能力. 尤其是在学习函数的时候,就更需要学生一定的理解能力与思维水平。

学习函数知识的最终目的是要能够用于实际生活中. 因此教师在进行函数教学时,将具体情境中的材料作为启发学生的思考的材料,通过相互交流、合作学习、独立思考等形式来讲,加强学生对知识点的理解.

当学生在一个问题情境中,则更能够把握问题的理解,在问题情境中,教师要给予一定的指导和帮助. 教师遵守循序渐进、逐渐理解的方式,为学生创设问题情境,创设学习的机会. 在问题情境中邀游,学生能够沐浴在数学活动中. 问题情境是一种加强数学理解与问题解决的有效方式.

三、坚持相互联系、运动发展的观点进行教学

函数表现出两个变量之间的相互依存关系,一个变量会随着另一个变量的变化而发生变化,两者处于相互牵制、共同变化发展的秩序之中,看似静止的数的概念之间存在着运动的联系。

在初中函数教学中,教师应带领学生在学习函数基础知识以及解题过程中,培育学生们树立相互联系、运动发展的数学理念,在动态的思维模式中掌握函数知识的基本要领。

两个变量间的相互影响关系,对于刚刚接触函数知识的学生来说不太容易理解。

初中函数教师可以根据“一个量随另一个量的变化而变化”这一关系,让学生结合熟悉的数学知识以及日常生活实际来举例,比如“汽车的汽油消耗量随着行车路程的变化而变化”,或者“圆形的面积随着半径长的变化而变化”等等。

这样,便使学生更迅速地理解自变量与变量的定义,并能在活跃的思维环境中锻炼分析、解决问题的能力。

函数中的变量关系,与数学知识体系中的很多领域都存在着融会贯通的关系,比如求路程问题“距离=速度*时间”等,体现出函数的重要性。

学习函数知识,实际上也打开了更多数学领域的视角。

另外,函数同其他学科的联系也十分紧密,是解决实际问题的重要工具。

初中数学教师可以利用函数的广泛联系性,在广征博引中激发学生的学习热情,从而达到真正的教学实效。

四、讲解中注意类比法的运用

在讲解一次函数的图像时,我们一般由特例导出。

例如:在同一直角坐标系中画出下列函数的图像:(1)y=2x+3(2)y=2x+5 (3)y=2x-3;(4)y=-2x+3(5)y=-2x-3

然后由学生归纳出一次函数的图像是一条直线,并让学生由上述图像得出:当(1)k>0,b>0 ;

(2)k>0, b<0;(3)k<0, b>0;(4)k<0, b<0时函数图像所经过的象限及单调性,最后老师总结,学生理解记忆。

这套程序很一般化,学生也难以记忆。

不如先让学生回忆正比例函数(1)y=2x;(2)y=-2x的图像与性质,再画出以上函数图像,借助类比的方法得出一次函数的图像及性质。

向学生演示正比例函数图像的平移变化即得到一次函数图像,这样可以避免学生把二者割裂开,把握它们的共性,区分正比例函数的特殊性。

通过类比,培养学生知识迁移能力。

五、加强学科之间的相互沟通,增强学生运用数学的意识

当前教育改革的方向之一是加强各学科知识间的综合运用。

数学作为一门基础学科,不仅服务于其他学科,而且在研究数学的应用时,若能结合别的学科特点,运用别的学科知识解释其基本原理,无疑对数学应用的理解也有很大的帮助,进而对学生的综合能力的培养也将有极大的好处。

例3、一根弹簧原长15cm,已知在20公斤内弹簧的长度与所挂的质量成一次函数关系。

现测得当挂重4公斤时,弹簧的长度为17cm,问当弹簧的长度为22cm时,挂重多少公斤?

分析:由已知条件弹簧的长度与挂重成一次函数关系,则可用待定系数法求出函数关系。

再通过计算即能求得问题的解答。

解:设挂重x(kg)(0≤x≤20)时,弹簧长度为y(cm),依题意可设,y=kx+b (k≠0)由条件:x=0时,y=15 即b=15

当 x=4时,y=17 即4k+15=17 所以K=

故函数解析式为:y= x+15 (0≤x≤20)

所以当y=22时,由 x+15=22,得x=14

答:当弹簧长为22cm时,挂重14公斤。

对于物理问题,必须根据物理概念,物理知识列出函数关系式,把它转化为数学问题,再运用数学方法进行运算,其它学科也如此。

总之,中学函数学得如何,将直接影响到学生今后数学学习兴趣和成绩的好坏,因此广大中学数学老师肩负着关键的职责,一定要引起我们的高度重视。

以上几点是笔者的拙见,希望能给同行一点帮助,并敬请同行斧正。

【参考文献】

[1]张凤林.浅谈初中函数教学[J].学问, 2009(15).

[2]徐德本.初中函数教学要把握好“四个一”[J].中学数学教学参考.2008,(18).

[3]王学海;探究初中生学习函数困难及教学策略[J];成功(教育);2011年18期

浅谈初中函数教学方法论文

【摘要】 在初中数学中,二次函数占据了很大的比重.二次函数对学生来说既是难点又是重点.教学过程中的难点是学生对二次函数的很多概念并不理解,另外解题过程中出现的各种问题也会影响学生学习的积极性.针对教学中的这些问题,本文对二次函数的定义重新做了系统的注释,同时对教学过程中比较适合初中学生学习的教学方法进行讨论.

【关键词】 初中数学;二次函数;教学策略

初中数学在中考中占据了很大的比重,也是学生学习过程中的很重要的基础学科,在日常生活中,数学的运用也会带来很多的好处.二次函数的学习,不仅可以提升学生对数字的敏感度,也可以提升学生的逻辑思维,改善学生对于学习的态度以及方法,进而提高学习成绩.所以,要切实改进二次函数的教学方法.

一、二次函数的概念

二次函数的概念是一个“形式化”概念,在教学时教师不能直接给出概念,而是把教学重点放在二次函数概念的形成过程上.因此,我采用了几个问题情境将学生一步步引入到概念中来.

情境一:一粒石子投入到水中,激起的波纹不断向外扩展,扩大后的圆面积y与半径x有何关系?

情境二:用16米长的篱笆围成长方形的生物园饲养小兔.(1)如果长方形的长为y米、宽为x米,那么y和x之间有何关系?(2)如果长方形的面积为y平方米、宽为x米,那么y和x之间有何关系?

情境三:运动员进行5千米的比赛,甲每小时走x千米,乙比甲每小时多走1千米,比赛结束甲比乙多用y小时,则y和x之间的关系式是什么?

情境四:要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽米,那么总费用y为多少元?

以上的问题情境,都是函数的浓缩问题,尤其是最后两个问题就是从实际问题中找到两个变量,确定函数解析式,为形成二次函数概念做准备.所以,在二次函数的教学中,教师应该就二次函数的基础概念向学生进行详尽的阐述,使得学生对二次函数概念的理解达到较为深刻的层次.

二、二次函数的教学活动讨论

(一)课堂教学多样化

在实际教学中,单一的课堂会令学生的学习活动显露疲态,而多样化的课堂教学会提升学生的学习兴趣,同时加强学生对于知识点的掌握程度,尤其是对二次函数进行的教学活动,本来就需要学生有着很大的兴趣,不断地提出心中的疑惑,并且在教师的指导下展开验证并进行发散性的思考.所以,教师更应该在实际教学中不断地进行改进.比如,在学习二次函数的通式和其他变形形式时,可以就顶点式y=a(x+m)2+n与通式y=mx2+nx+c间的异同点展开教学.两种形式除了外在上的不同,在解题思路上也有着很大的差异.可以就二者的恒等变形进行推演,帮助学生更好地学习二次函数.

(二)数形结合,在图像中发现函数的规律

相比普通函数,二次函数的图像变化更为复杂.这里用顶点式作为例子,不同参数的变化都会对二次函数的图像产生很大的影响.而随着教学活动的日益繁重,初中数学教师现在很难有时间以及精力有机会领学生绘制二次函数的图像.这就使得学生很难对二次函数进行认真的学习,很难理解二次函数和其坐标之间的对应关系.所以,初中数学教学中二次函数图像的绘制是很有用的.同时,由于课时有限,为了保障教学质量,教师应使用坐标纸来带领学生进行图像的绘制,充分保障教学质量,并保障学生也可以熟练地画出相应二次函数的图像.比如,在教学活动中,教师可以先针对y=3x2,y=3x2+5,y=3x2-5,这三个二次函数的图像进行绘制,引导学生观察三个图像之间的位置变化,思考变化的原因.而后,带领学生绘制y=-x2,y=-(x-5)2,y=-(x+5)2的图像,然后让学生观察图像的变化,并找出规律.最后,引导学生对找到的规律进行归纳总结,使得学生做到数形结合,增强这方面的`意识,加强学生对于二次函数图像的认识,进而增加对二次函数性质的理解.

(三)激发学生兴趣,提高学习效率

相比其他学科的学习,数学学科的学习,尤其是二次函数的学习,是十分枯燥、抽象的.即使在进行图像绘制时,也需要大量的计算,这些机械性的学习都使得学生对数学学习、二次函数的学习提不起兴趣.为提高学生的学习兴趣,教师要主动进行趣味性的教学,如,利用现在日益普及的网络系统,借助多媒体设备进行教学,通过视频、图片进行趣味性教学.比如,通过FLASH动画技术来展现参数不同时图像的变化情况,使得学生对于二次函数的内在含义的掌握更加熟练.这些活动会使学生对二次函数的兴趣有着极大的改善.若教师在进行教学活动中发现学生已经有了厌学心理,要根据学生的实际情况,适当放宽对于学生的要求,以改善学生的厌学心理,避免进一步打击学生学习数学的积极性.初中阶段,学生正处于青春期,针对这一时期学生的特点,不要因为二次函数的学习受阻,进而影响学生对整个数学学科的学习热情.要充分引导学生进行学习,关注学生的心理变化,提升学生学习数学的积极性.

三、总结

因为二次函数在整个初中数学教学中扮演着很重要的角色,所以教师要充分重视在教学活动中加强学生对二次函数的理解.为了保障教学质量,教师要对教学活动进行详细的思考,根据所带学生的实际情况、二次函数的特性来进行有针对性的教学活动.通过数形结合的方法,加深学生对二次函数的图像的认知,减少学生因学习不到位而引发的厌学心理,充分保护好学生的求知欲,同时对学生不容易理解的部分以及容易混淆的部分加强教学.有效地改善教学质量,帮助学生在初中学习过程中可以开心有效地进行学习.

【参考文献】

[1]王正美.初中数学中“二次函数”的教学策略研究[J].学周刊,2014(22):47.

[2]贾靖林.信息化环境下初中数学函数教学的策略研究[J].中国教育技术装备,2011(5):85-86.

初中数学是为之后的数学学习打下基础的,学好初中的知识点很重要,下面我为你整理了几篇初中数学教学论文范文,希望对你有帮助。

数学教学论文篇一

一、引进有效的教学方法

科学有效的教学方法对提高整体教学的有效性有很大的帮助。以初中函数的教学为例,初中三年级就开始引入了函数的相关概念。一般而言,学生会根据教科书中给出的函数方程进行简单的计算,教师也只是把一些公式教给学生,让学生进行一味的数据计算。在这种情况中,学生只能认识到函数是一个抽象的概念,根本不知道函数到底是怎么来的,也不知道对称轴、截距到底是什么。所以,教师要改进方法,进行有效的初中数学教学。

而数形结合则是一种很好的、能实现有效教学的方法之一。数形结合也就是教师要根据函数题画出相应的函数图形,以便于学生能更加清晰、明了地理解数学函数的相关概念和性质,能快速理解那些抽象难懂的问题。当然,这也就能有效地为接下来的高中函数的学习打下坚实的基础,把抽象知识变为了具体的知识。综上所述,教师应在初中函数的教学过程中改进、并利用科学有效的教学方法,以不断提高初中数学的教学质量。

二、进行激励性教育

在学习的过程中,每个学生都会希望得到教师的表扬和称赞,因为在学生眼里,教师的嘉奖是教师对自己的肯定。在这种动力的驱使下,学生的学习热情得到了激发,就会将学习当做是一件幸福的事。这也就从侧面激发了学生学习的热情,是快乐学习的具体表现形式之一。“鼓励别人一句强于指责别人百句”,这是一句英国的谚语。

每个人都希望自己无时无刻不得到别人的肯定与认可,谁都不希望自己总是被别人指责。在初中数学教学过程中,每位教师也应该多鼓励自己的学生,提升学生的学习热情,增进师生之间的交流,使学生能够毫无顾虑地向教师提问,这样就不会出现因为畏惧而不敢提问的情况。反之,学生学习的热情降低,学生消极对抗教师,师生之间的距离也拉远了。这样的做法既不利于学生初中数学的学习,也对教师的工作产生了极大的威胁。

三、寓教于乐的教学

在平时的学习中,教师要采取寓教于乐的教学方式,在教学中适当地加入相对应的数学游戏,让学生劳逸结合,实现既在娱乐中学习,又在学习中娱乐的教学和学习效果。通过这种方式,学生认识到学习是一件有趣快乐的事,并不是一件枯燥无味的事情。例如,针对初中数学书中的几何问题,教师就可以举办一个叫做“辅助线”的游戏。

游戏大致内容是教师将学生分组,并且给出一个几何的图形,让小组思考该如何做辅助线,并且思考一下假若加入这条辅助线,会对解题有什么样的帮助,随后再继续深化,讨论一下加入一条辅助线后,会不会产生另一个新的问题,从而使所有学生都参与到这个活动中来。这种教学模式可以采取举手抢答的方式,抢答成功就会得到相应的分数,在游戏活动最后,累计分数,得分最高的小组会获得奖励。这种游戏的方式,能让学生在愉快的学习中加深对函数知识的理解,有利于调动学生学习的积极性。这也是提高初中教学有效性的方式方法之一。

四、总结

总体来说,初中数学的学习是学生逻辑思维开发的最初阶段,是高中数学教育的基础。所以,教师有必要加强初中数学教育的有效性研究。以上笔者针对如何提高初中数学教学有效性的方式方法做了初步探讨,希望能够给今后初中数学的有效性教学的发展做出一定的贡献。

数学教学论文篇二

一、差别性教学的作用

(一)通过差别性教学,学生更好地成长

由于学生处于不同的知识水平,他们对知识的运用并非相同,特别在数学领域,人们在应用推理、判断方面程度是不一样的,有较强推理、判断能力的学生常常不用花费太多的时间就掌握了,但是那些应用推理、判断能力较差的学生就要花费很久。因此,教师要是根据课本上的知识来教,那么好的学生没办法得到更长远的发展,而差的学生也没办法得到提高,显而易见,这样的教学办法是不可取的。所以差别性教学教学有利于改善这一点,从每个学生的突出点出发,根据他们的突出点来制定符合他们成长的教学手段与内容,学生才可以得到更好的发展。

(二)使学生更加自信

推理、判断能力比较强的学生常常热衷于深入地研究难以解决的方面,这些学生在深入研究时能得到自信,要是直接采取同一种教育方式去教育所有的学生,那样就很难使学生获得自信,会使学生不愿意深入探究难以解决的方面。另一方面,那些应用推理、判断的程度比较浅的学生就因为太多的失败而不再相信自己了,产生放弃的念头,从而使他们渐渐地落后于其他人。因此,通过依据学生水平不同进行教学的方式,能使好的学生深入研究难以解决的方面,使落后的学生从自身实际出发,一步一个脚印,踏踏实实地进步,这样所有的学生就可以更好地完成自己的学业,更加相信自己。

二、初中数学教学中差别性教学的实施办法

(一)从学生的水平出发,有序地分组

通常,学生可以分为三种层次:第一层次的学生是起点高,有好的方法和技巧,应用推理、判断程度高的;第二层次的学生是起点一般,但有较好的方法和技巧,应用推理、判断程度较高的;第三层次的学生是起点低的。我们应进行有序分组。有序分组的过程中应关注下面三个方面:首先,必须清楚地知道学生的突出点是什么,教师与学生,教师与家长,学生与家长应好好交流。其次,有序分组应理解学生的内在想法,不可只依据卷面测试结果来区分学生,分组应该是具有伸缩性的而不是硬性的。卷面测试结果属于有序分组的一部分,学生了解自身的状况,有自己的目标,所以我们应理解他们,不能忽略他们的内在想法,这样他们才会相信自己。待分组结束后,我们要进行差别性教学。最后,教师在看待不同组的学生时,应一视同仁,付出自己的最大努力。

(二)依据分组后学生的情况,采取不同的教学方式

我们要考虑到所有的学生,将差别性教学深入应用在课堂上。1.引入新的内容。数学的内在关系是紧密相连的,教师可以回忆学过的内容来引入新的内容,此时则通过第三水平学生去回忆学过的内容,使其加深印象。第二层次的学生则解决新的内容的引出,第一层次的学生则完善第二层次的学生的内容。2.解说新的内容。解说新的内容时要考虑到第三层次的学生,循序渐进。3.课上操练。结束新的内容时,教师要对学生进行操练,第一层次的学生比较得心应手,教师则让学生操练转变形式的习题,可以给第二层次的学生比较有难度的习题进行操练。另外教师要认真对待第三层次的学生,提供难度小的习题有助于他们加深记忆。

(三)依据分组后学生的情况,安排的任务有所不同

安排的任务要使学生可以在其力所能及的范围内,从而有助于他们的成长。第一层次的学生可以多安排统合性较高的习题,加强他们的处理数学问题的规则和程序,使他们挖掘习题中那些数学处理的规则和程序。第二层次的学生,主要学会普通的题目和一部分难题的思考方向。第三层次的学生则重复做题,做很多的习题来巩固基础。

(四)依据分组后学生的情况,评估的方面有所不同

因为学生的核心目的有所不同,所以要使用不同的评估方法。举个例子,教师依据水平不同的学生,应把考试题目进行区分,让不同水平的学生做不同的题目。第一层次的学生重点做难题;第二层次的学生重点则是中等题目,外加小部分难题;第三层次的学生重点放在基本的题目上,外加一小部分中等题目。那么,所有的学生都可以在自己的范围内得到进步。

三、总结

差别性教学是根据从实际出发来解决问题的哲学思路来进行的,该方式可以一对一地处理学生遇到的困境,让所有学生都可以发挥自己的优点,弥补自己的不足,鼓励学生学习,使学生对自己有信心,有助于学生的各个方面的协调与进步。

数学教学论文篇三

一、课堂上进行有针对性的有效提问

1.问题必须要有思维容量。

不能够激发学生思考的提问是失败的,只有促进了学生的思维发展,拓宽了他们的思路,才能够提升其探究能力,引起他们对数学的热情。即使学生回答问题偏颇,即便是并非尽善尽美,教师也要表扬其优点,给予赞美,加以挖掘。面积求出来之后,斜边AB上的高如何得出?此时教师利用多媒体,展示求直线y=2x+3、y=-2x-1及y轴围成的三角形的面积。这样就把问题由一条直线转化为两条直线与坐标轴围成的面积。

2.锻炼提问的技巧。

问题的提出也有优劣,掌握提问方式,提高问题的质量,抓住学生的兴趣,创造良好的学习氛围,学生的积极性能够充分地被调动起来,学生就会顺利地成为课堂的主体、学习的主人。

二、让学生“想学”,教学语言风趣

美国心理学家调查发现,学生都喜欢幽默的教师,这样学习氛围轻松愉快,这一点是促使学生“想学”的主要因素,什么学科概莫能外。这就要求教师具有很高的综合修养。其中一点,要语言幽默:幽默是伟大的智慧,是教学的润滑剂。比如,我向学生提出分析这个“数”字,由“米女攵”构成,什么意思呢?也就是说,你只有学好了数学,你毕业以后才可能找到好的工作,才可能有钱买米吃,才可能找到女朋友,那么这个“攵”是什么意思呢?这个更凸显数学的重要了,就是以手持杖或执鞭责打学不好数学的人……这些生动形象的解说,不胜枚举,当然还需要教师表情、语调等的配合。

三、对学生进行正确的思维训练

对学生进行正确的思维训练要充分唤起学生的主动性。讲例题,让学生自主审题,题目给了学生就可以,然后读题、审题、解题一系列的思维活动让学生自己完成;学生有了问题,反复推敲“个体参悟”,不行则“同伴互导”,再不行,“教师解难”,即使是“教师解难”,一样不要急于递给答案,教师应对学生逐步启发:问题里涉及什么概念?用什么公式才能表达这一规律?问题解决了,还有没有别的解题方法?学生养成思维训练的习惯,随着综合能力的提高,课堂上随时就会有智慧熠熠生辉了。

四、总结

总之,数学是培养人的创造性素质的最佳途径,成功非一日之功,我们教师要为教育竭尽微忱,为学生终生的数学学习奠定良好的发展基础。

函数概念发展史毕业论文

函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、直至对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。本文拟通过对函数概念的发展与比较的研究,对函数概念的教学进行一些探索。 1、函数概念的纵向发展 1.1 早期函数概念——几何观念下的函数 十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义,绝大部分函数是被当作曲线来研究的。 1.2 十八世纪函数概念——代数观念下的函数 1718年约翰·贝努利(BernoulliJohann,瑞,1667-1748)才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义:由任一变量和常数的任一形式所构成的量,贝努利把变量x和常量按任何方式构成的量叫“x的函数”,表示为,其在函数概念中所说的任一形式,包括代数式子和超越式子。 18世纪中叶欧拉(L.Euler,瑞,1707-1783)就给出了非常形象的,一直沿用至今的函数符号。欧拉给出的定义是:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数(只有自变量间的代数运算)和超越函数(三角函数、对数函数以及变量的无理数幂所表示的函数),还考虑了“随意函数”(表示任意画出曲线的函数),不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍、更具有广泛意义。 1.3 十九世纪函数概念——对应关系下的函数 1822年傅里叶(Fourier,法,1768-1830)发现某些函数可用曲线表示,也可用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新的层次。1823年柯西(Cauchy,法,1789-1857)从定义变量开始给出了函数的定义,同时指出,虽然无穷级数是规定函数的一种有效方法,但是对函数来说不一定要有解析表达式,不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限,突破这一局限的是杰出数学家狄利克雷。 1837年狄利克雷(Dirichlet,德,1805-1859)认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数。”狄利克雷的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,简明精确,以完全清晰的方式为所有数学家无条件地接受。至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义。 等到康托尔(Cantor,德,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象(点、线、面、体、向量、矩阵等)。 1.4 现代函数概念——集合论下的函数 1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用“序偶”来定义函数。其优点是避开了意义不明确的“变量”、“对应”概念,其不足之处是又引入了不明确的概念“序偶”。库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”,即序偶(a,b)为集合{{a},{b}},这样,就使豪斯道夫的定义很严谨了。1930年新的现代函数定义为,若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。 函数概念的定义经过三百多年的锤炼、变革,形成了函数的现代定义形式,但这并不意味着函数概念发展的历史终结,20世纪40年代,物理学研究的需要发现了一种叫做Dirac-δ函数,它只在一点处不为零,而它在全直线上的积分却等于1,这在原来的函数和积分的定义下是不可思议的,但由于广义函数概念的引入,把函数、测度及以上所述的Dirac-δ函数等概念统一了起来。因此,随着以数学为基础的其他学科的发展,函数的概念还会继续扩展。

函数教学论文【1】

摘 要:初中数学中的函数知识非常重要,搞好这部分内容的教学,必须要理解基本概念,理清知识结构,树立“运动变化”的理念,渗透数形结合的思想。

关键词:初中数学 函数教学 数形结合

初中数学中变量与函数概念的引入,标志着数学由常量数学向变量数学的迈进。

尽管初中函数内容只是讲述了函数的一些最基本、最初步的知识,但是其中蕴含的数学思想和方法,对培养学生观察、研究、解决问题的能力是十分有益的。

不仅如此,函数概念还是高中代数的核心部分,学好初中函数的有关知识,可以为研究高中数学中的各种初等函数奠定一定的基础。

因而,初中函数概念的基础性作用是显而易见的。

在教学中应从四个方面引导学生正确理解函数的概念,进而掌握函数的特征和性质。

一、正确理解三组关系,系统把握函数概念

点的坐标的定义与点与坐标的一一对应关系;函数定义中某一变化过程和自变量与函数的对应关系;函数图象定义中的自变量值。

函数值→有序数对→点的坐标→点→图象,加强这三组关系的理解,有利于把函数的解析式、点的坐标和函数图象结合起来,建立起较完整的函数概念。

二、理清知识结构,构建知识体系

用这样一个知识结构图,可以把平面直角坐标系、点、图象和解析式有机地结合起来,并从中可以找到相互之间的联系和问题的转化方式。

三、树立运动变化的观点

函数概念的核心意义是反映在某一变化过程中两个变量之间的依赖关系,即一个量的变化随着另一个量的变化而变化。

这就使得原本静止的数的概念之间产生了一种动感的联系。

在教学过程中,应引导学生通过寻找、发现身边的事例来体会这种变量关系。

例如,生长期的身高随着年龄的变化而变化;一天中的气温随着时间的变化而变化;工厂的收入随着产量的增加而增加;二元一次方程的无数解,在方程3x-2y=1中,当x的取值发生变化时,y的值随着x的变化而变化……

在阐述这种运动关系的同时,还应该用式子、表格、图示的方法来举例描述,以加深学生对这种抽象的运动关系的直观认识,这样就可以逐步地帮助学生树立一种“运动变化”的观点。

四、培养数形结合的思想

数学教学过程应该体现明暗两条线:一条是明线,即数学知识内容的教学;另一条是暗线,即数学思想方法的形成。

由于数学思想方法既是数学的基础知识,又是将知识转化成能力的桥梁,用好了数学思想就是发展了数学能力。

因此,在教学中老师要注重培养学生对数学思想方法的渗透、概括和总结、应用能力的提升。

数形结合的思想方法是初中数学中一种重要的思想方法。

何为数形结合的思想方法?我们知道,数学是研究现实世界的数量关系和空间形式的科学,数和形是数学知识体系中两大基础概念,把刻画数量关系的数和具体直观的图形有机结合,将抽象思维和形象思维有机结合,根据研讨问题的需要,把数量关系的比较转化为图象性质或其位置关系的讨论,或把图形间的待定关系转化为相关因素的数量计算,即数与形的灵活转换、相互作用,进而探求问题的解答,就是数形结合的思想方法。

在函数这部分内容中,蕴含着丰富的数学思想,如坐标的思想、数形结合的思想等,其中最重要的是数形结合的思想。

那么在函数的教学过程中如何渗透与应用数形结合的思想方法,就显得尤为重要。

例如,一次函数就是一条直线,这条直线上的点的坐标无论怎样变化都满足解析式。

直线是由点组成的,点可以用数来描述。

反过来,直线就反映了数的变化特征。

一个函数可以用图形来表示,而借助这个图形又可以直观地分析出函数的一些性质和特点,这为数学的研究与应用提供了很大的帮助,教学时老师若注重了数形结合思想方法的渗透,将会收到事半功倍的效果。

在初中数学教学中常见的体例有:(1)数与数轴的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)集合元素和几何条件为背景建立起来的概念;(5)所给的等式或代数式的结构有明显的几何意义。

当然,以上谈及的几点内容仅仅是本人在教学实践中的一点体会,事实上,初中函数部分的内容及要求是极其丰富的,培养学生的思维能力以及能够灵活地应用知识才是我们学习的最终目的,在讨论社会问题、经济问题、跨学科综合等问题时,越来越多的运用到了数学的思想、方法,其中函数的内容占有相当重要的地位。

因此,我们一定要在教与学的过程中认真钻研教材,深入挖掘教材中蕴含的思想、方法和观点,以达到提高学生的思维能力、应用能力和认知水平的目的。

初中函数教学【2】

【摘要】数学思想方法乃是数学规律与本质,学生掌握了数学思想方法,就能更快捷的获取知识,更透彻地理解知识。

初中函数教学应教给学生掌握学习函数的思想方法。

本文仅对初中函数教学作初步探索.

【关键词】函数教学

一、认识函数思想,引领教学方向

函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律,函数的思想方法就是提取问题的数学特征,用联系变化的观点提出数学对象,抽象其数学特征,建立函数关系,并利用函数的性质研究解决问题的一种数学思想方法。

尽管内容不多,但函数的思想已经有所体现,它仍占据着重要地位。

二、理清初中函数概念,系统掌握初等函数知识

1、理解概念的逻辑性。

数学概念可分为两个重要方面:一是概念的'质',也就是概念的内涵(概念的本质属性);二是概念的'量'也就是概念的外延(概念所有对象的和)概念的外延还有大小之分,外延大的概念叫做种概念,外延小的概念叫做属概念,一个属概念与其他属概念本质上的差别又称为属差,要想给某一个概念下定仪,首先应给学生指出被定义的概念最接近的概念是什么,再紧接着指出被定义概念的属差,既概念定义 = 种概念 + 属查。

2、明确概念的层次性。

一般的概念都是通过对实验现象或对某中具体事物分析经过抽象概括而导出的,他是一个形成过程,中学中的许多概念,是从几个原始概念和公理出发,通过一番的推理而扩展成为一系列的定义和公里,而每一个新出现的概念都依赖着旧的概念来表达,或是由旧概念推倒出来的。

3、掌握概念的抽象性。

初中学数学中的许多原始概念,都是对具体的数和形的感知而形成表象,再从表象经过抽象概括而形成的。

概念是人们对感性材料进行抽象的产物,感性认识是形成概念的基础。

如果学生没有感性认识或感性认识不怎么完备时,我们就应该借助与实物、模型、多媒体课件、或形象的语言进行较直观的教学,使学生从中获得感性认识。

三、绘制初等函数图象 ,理解初等函数性质

著名数学家华罗庚先生说:"数缺形时少直观,形缺数时难入微"。

因此要想绘制初等函数图象,理解其性质,首先要了解"数形结合"的思想。

数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。

我们要抽象复杂的数量关系,通过形的形象、直观揭示出来,以达到形帮数的目的。

四、运用函数同其他学科和实际的联系,培养学生学习函数的兴趣

函数是这样定义的,"设在某变化过程中的两个变量x和y,若对于x在某一范围内的每一确定的值,y都有唯一确定的值与它对应,那么,就把y称为x的函数 ,x是自变量,y是因变量"。

如图1⑴中,在矩形ABCD中,AB=10cm,BC=8cm。

点P从点A出发,沿路线A→B→C→D运动,到点D停止;点Q从点D出发,沿D→C→B→A路线运动,到点A停止。

若P、Q两点同时出发,点P的速度为1厘米/秒,点Q的速度为2厘米/秒。

a秒时,P、Q两点同时改变速度,点P的.速度变为b厘米/秒,点Q的速度变为d厘米/秒。

图1第2个图是点P出发x秒后△APD的面积S1(平方厘米)与x(秒)的函数关系图象。

图1第3个图是点Q出发x秒后△AQD的面积S2(平方厘米)与x(秒)的函数关系图象。

2、函数与市场经济

例2、某化工材料销售公司购进了一种化工原料共7000千克,购进价格为每千克30元。

物价部门规定其销售单价不得高于每千克70元,也不得低于30元。

市场调查发现:单价定为70元时日均销售60千克;单价每低1元日均多售出2千克。

在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算)。

设销售单价为x元,日均获利y元。

顶点坐标为(65,1950)。

二次函数的草图(如图2)所示。

观察草图可知,当单价定为65元时,日均获利最多,是1950元。

⑶、当日均获利最多时,单价为65元,日均销售60+2×(70-65)=70千克,那么总获利为1950×(7000÷70)=195000元

当销售单价最高时,单价为70元日均销售60千克,将这种化工原料全部售完需700÷60≈117天。

那么总获利为(70-30)×7000-117×500=221500元

∵ 221500>195000,且221500 - 195000 = 26500

∴销售单价最高时获总利最多,且多获利26500。

可见,函数的应用非常广泛,它与其它学科有着密切的联系,是解决实际问题的重要工具,因此可以提高和培养学生学习初等函数的兴趣。

当今世界科技发展一日千里,科学知识急剧增加,学生在今后的工作生活和进一步学习中有许多需要认识、探讨、分析和解决的纷繁复杂的问题,我们要把函数的思想方法作为一把金光闪闪的钥匙来交给学生,让他们运用这把金钥匙来开启知识的宝库,迎接新生活的挑战!

中学函数教学【3】

【摘要】从数学自身的发展过程来看,变量与函数概念的引入,标志着数学由常量数学向变量数学的迈进,尽管初中函数内容只是讲述了函数的一些最基本、最初步的知识,但是其中蕴含的数学思想和方法,对培养学生观察问题、研究问题和解决问题的能力都是十分有益的。

【关键词】学习兴趣 情境教学

函数是初中数学里重要的数学知识,函数学习的好坏对于学生的继续学习影响深远,特别是现在新的课程标准提出研究性学习,更多地注重学生识图能力的培养,并尝试用数形结合思想和函数思想解决问题。

笔者结合多年的中学数学教学,就如何搞好中学函数教学,浅谈如下思考。

一、明确学习函数的重要性,培养学生学习函数的兴趣

函数概念在初中数学关于式、方程、不等式等主要内容中起到了横向联系和纽带作用,从本质上看:代数式可看作函数的解析式或值;两个代数式A与B恒等等价于函数y=A-B恒等于零;方程的根可看作函数图像与x轴的交点的横坐标;在不等式的证明中,函数的性质经常是有力的工具。

由于函数应用十分广泛,而函数的概念的形成和发展是中学数学中从常量到变量的一个认识上的飞跃,理解和掌握函数的思想方法无疑会有助于实现这一飞跃。

在初中阶段我们学习的函数是比较简单的,属于函数启蒙,但是它是高中数学乃至整个数学体系的主要内容,所以初中阶段是函数概念和函数思想形成的关键阶段,这一阶段教学的成败,直接关系到学生进入高中、大学的数学学习乃至一生的数学造诣。

让学生充分认识到函数的重要性,有利于提高他们学习函数的兴趣。

二、进行情境教学

教师可以把数学知识点以问题的形式提出,激发学生的学习欲望,在思考的过程中加深对知识点的思考,同时创设情境为其提供思考空间,使其思维从形象过渡到抽象,完成思维的转换.进行课堂教学, 很多问题都是要靠学生自己想象出来的, 但是如果每个问题都让学生去室外感受也是不可能的,这就需要我们很好地加强学生的抽象思维能力. 尤其是在学习函数的时候,就更需要学生一定的理解能力与思维水平。

学习函数知识的最终目的是要能够用于实际生活中. 因此教师在进行函数教学时,将具体情境中的材料作为启发学生的思考的材料,通过相互交流、合作学习、独立思考等形式来讲,加强学生对知识点的理解.

当学生在一个问题情境中,则更能够把握问题的理解,在问题情境中,教师要给予一定的指导和帮助. 教师遵守循序渐进、逐渐理解的方式,为学生创设问题情境,创设学习的机会. 在问题情境中邀游,学生能够沐浴在数学活动中. 问题情境是一种加强数学理解与问题解决的有效方式.

三、坚持相互联系、运动发展的观点进行教学

函数表现出两个变量之间的相互依存关系,一个变量会随着另一个变量的变化而发生变化,两者处于相互牵制、共同变化发展的秩序之中,看似静止的数的概念之间存在着运动的联系。

在初中函数教学中,教师应带领学生在学习函数基础知识以及解题过程中,培育学生们树立相互联系、运动发展的数学理念,在动态的思维模式中掌握函数知识的基本要领。

两个变量间的相互影响关系,对于刚刚接触函数知识的学生来说不太容易理解。

初中函数教师可以根据“一个量随另一个量的变化而变化”这一关系,让学生结合熟悉的数学知识以及日常生活实际来举例,比如“汽车的汽油消耗量随着行车路程的变化而变化”,或者“圆形的面积随着半径长的变化而变化”等等。

这样,便使学生更迅速地理解自变量与变量的定义,并能在活跃的思维环境中锻炼分析、解决问题的能力。

函数中的变量关系,与数学知识体系中的很多领域都存在着融会贯通的关系,比如求路程问题“距离=速度*时间”等,体现出函数的重要性。

学习函数知识,实际上也打开了更多数学领域的视角。

另外,函数同其他学科的联系也十分紧密,是解决实际问题的重要工具。

初中数学教师可以利用函数的广泛联系性,在广征博引中激发学生的学习热情,从而达到真正的教学实效。

四、讲解中注意类比法的运用

在讲解一次函数的图像时,我们一般由特例导出。

例如:在同一直角坐标系中画出下列函数的图像:(1)y=2x+3(2)y=2x+5 (3)y=2x-3;(4)y=-2x+3(5)y=-2x-3

然后由学生归纳出一次函数的图像是一条直线,并让学生由上述图像得出:当(1)k>0,b>0 ;

(2)k>0, b<0;(3)k<0, b>0;(4)k<0, b<0时函数图像所经过的象限及单调性,最后老师总结,学生理解记忆。

这套程序很一般化,学生也难以记忆。

不如先让学生回忆正比例函数(1)y=2x;(2)y=-2x的图像与性质,再画出以上函数图像,借助类比的方法得出一次函数的图像及性质。

向学生演示正比例函数图像的平移变化即得到一次函数图像,这样可以避免学生把二者割裂开,把握它们的共性,区分正比例函数的特殊性。

通过类比,培养学生知识迁移能力。

五、加强学科之间的相互沟通,增强学生运用数学的意识

当前教育改革的方向之一是加强各学科知识间的综合运用。

数学作为一门基础学科,不仅服务于其他学科,而且在研究数学的应用时,若能结合别的学科特点,运用别的学科知识解释其基本原理,无疑对数学应用的理解也有很大的帮助,进而对学生的综合能力的培养也将有极大的好处。

例3、一根弹簧原长15cm,已知在20公斤内弹簧的长度与所挂的质量成一次函数关系。

现测得当挂重4公斤时,弹簧的长度为17cm,问当弹簧的长度为22cm时,挂重多少公斤?

分析:由已知条件弹簧的长度与挂重成一次函数关系,则可用待定系数法求出函数关系。

再通过计算即能求得问题的解答。

解:设挂重x(kg)(0≤x≤20)时,弹簧长度为y(cm),依题意可设,y=kx+b (k≠0)由条件:x=0时,y=15 即b=15

当 x=4时,y=17 即4k+15=17 所以K=

故函数解析式为:y= x+15 (0≤x≤20)

所以当y=22时,由 x+15=22,得x=14

答:当弹簧长为22cm时,挂重14公斤。

对于物理问题,必须根据物理概念,物理知识列出函数关系式,把它转化为数学问题,再运用数学方法进行运算,其它学科也如此。

总之,中学函数学得如何,将直接影响到学生今后数学学习兴趣和成绩的好坏,因此广大中学数学老师肩负着关键的职责,一定要引起我们的高度重视。

以上几点是笔者的拙见,希望能给同行一点帮助,并敬请同行斧正。

【参考文献】

[1]张凤林.浅谈初中函数教学[J].学问, 2009(15).

[2]徐德本.初中函数教学要把握好“四个一”[J].中学数学教学参考.2008,(18).

[3]王学海;探究初中生学习函数困难及教学策略[J];成功(教育);2011年18期

函数概念的发展历史1.早期函数概念——几何观念下的函数十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。1673年,莱布尼兹首次使用“function” (函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系。2.十八世纪函数概念──代数观念下的函数1718年约翰�6�1贝努利(Bernoulli Johann,瑞,1667-1748)在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。1755,欧拉(L.Euler,瑞士,1707-1783) 把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。”18世纪中叶欧拉(L.Euler,瑞,1707-1783)给出了定义:“一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。”他把约翰�6�1贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”。不难看出,欧拉给出的函数定义比约翰�6�1贝努利的定义更普遍、更具有广泛意义。3.十九世纪函数概念──对应关系下的函数1821年,柯西(Cauchy,法,1789-1857) 从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。”在柯西的定义中,首先出现了自变量一词,同时指出对函数来说不一定要有解析表达式。不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限。1822年傅里叶(Fourier,法国,1768——1830)发现某些函数也已用曲线表示,也可以用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新层次。1837年狄利克雷(Dirichlet,德,1805-1859) 突破了这一局限,认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数。”这个定义避免了函数定义中对依赖关系的描述,以清晰的方式被所有数学家接受。这就是人们常说的经典函数定义。等到康托(Cantor,德,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象。4.现代函数概念──集合论下的函数1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用不明确的概念“序偶”来定义函数,其避开了意义不明确的“变量”、“对应”概念。库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”使豪斯道夫的定义很严谨了。1930 年新的现代函数定义为“若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。”术语函数,映射,对应,变换通常都有同一个意思。但函数只表示数与数之间的对应关系,映射还可表示点与点之间,图形之间等的对应关系。可以说函数包含于映射。当然,映射也只是一部分。 [编辑本段]幂函数幂函数的一般形式为y=x^a。如果a取非零的有理数是比较容易理解的,不过初学者对于a取无理数,则不太容易理解,在我们的课程里,不要求掌握如何理解指数为无理数的问题,因为这涉及到实数连续统的极为深刻的知识。因此我们只要接受它作为一个已知事实即可。对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.可以看到:(1)所有的图形都通过(1,1)这点。(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。(4)当a小于0时,a越小,图形倾斜程度越大。(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。(6)显然幂函数无界。 [编辑本段]高斯函数设x∈R , 用 [x]或int(x)表示不超过x 的最大整数,并用表示x的非负纯小数,则 y= [x] 称为高斯(Guass)函数,也叫取整函数。任意一个实数都能写成整数与非负纯小数之和,即:x= [x] + (0≤<1) [编辑本段]复变函数复变函数是定义域为复数集合的函数。复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。复变函数论的发展简况复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。复变函数论的内容复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。 upcase 字符型 使小写英文字母变为大写 字符型 downcase 字符型 使大写英文字母变为小写 字符型 [编辑本段]阶梯函数形如阶梯的具有无穷多个跳跃间断点的函数. [编辑本段]反比例函数表达式为 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。反比例函数的其他形式:y=k/x=k·1/x=kx-1反比例函数的特点:y=k/x→xy=k自变量x的取值范围是不等于0的一切实数。反比例函数图像性质:反比例函数的图像为双曲线。反比例函数关于原点中心对称,关于坐标轴角平分线轴对称,另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣,即k的绝对值。如图,上面给出了k分别为正和负(2和-2)时的函数图像。当 k >0时,反比例函数图像经过一,三象限,因为在同一支反比例函数图像上,y随x的增大而减小所以又称为减函数当k <0时,反比例函数图像经过二,四象限,因为在同一支反比例函数图像上,y随x的增大而增大所以又称为增函数倘若不在同一象限,则刚好相反。由于反比例函数的自变量和因变量都不能为0,所以图像只能无限向坐标轴靠近,无法和坐标轴相交。 知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。2.对于双曲线y= k/x,若在分母上加减任意一个实数m (即 y=k/x(x±m)m为常数),就相当于将双曲线图象向左或右平移m个单位。(加一个数时向左平移,减一个数时向右平移) [编辑本段]程序设计中的函数许多程序设计语言中,可以将一段经常需要使用的代码封装起来,在需要使用时可以直接调用,这就是程序中的函数。比如在C语言中:int max(int x,int y){return(x>y?x:y;);}就是一段比较两数大小的函数,函数有参数与返回值。C++程序设计中的函数可以分为两类:带参数的函数和不带参数的函数。这两种参数的声明、定义也不一样。带有(一个)参数的函数的声明:类型名标示符+函数名+(类型标示符+参数){}不带参数的函数的声明:void+函数名(){}花括号内为函数体。带参数的函数有返回值,不带参数的没有返回值。C++中函数的调用:函数必须声明后才可以被调用。调用格式为:函数名(实参)调用时函数名后的小括号中的实参必须和声明函数时的函数括号中的形参个数相同。有返回值的函数可以进行计算,也可以做为右值进行赋值。#include using namespace std;int f1(int x, inty){int z;
return x+y;
}void main(){cout<}C语言中的部分函数main(主函数)max(求最大数的函数)scanf(输入函数)printf(输出函数)

概念教学本科毕业论文

101、教师(或学生)工作(或学习)动机的激发研究 102、教师(或学生)心理素质问题研究103、教师心理健康问题研究104、教师成长(发展)的途径、方式探索105、学习(或教学)策略研究106、教学活动中知识、技能与能力的转化研究107、网络环境下的德育有效性研究108、网络环境下的班主任工作研究109、网络环境下的师生关系建设研究110、网络教学中的教师角色转变与适应研究111、网络环境下的指导——自主学习研究112、新课改下的教师工作挑战及其适应研究113、新课改下的教师专业持续发展研究114、新课改下的教师观重建研究115、新课改下的学生观重树研究116、新课改下师生关系的更新及其教育对策研究117、新课改下不同教学模式的比较及其实践综合研究118、新课改中地方课程的实践与反思119、新课改中校本课程的实践与反思120、论校本课程开发中的教师地位与作用121、新课改中家长的教育影响力研究122、论现代化大潮下的学校管理战略设计123、论国际化大潮下的学校教育目标设计124、论人性化思潮下的教育规则修改125、论信息化趋势下的培养目标设计126、论科学化思潮下的科学主义教育127、流动人口子女教育的问题与解决研究128、城乡儿童教育机会均等的考察与反思129、义务教育阶段教育应试化倾向的观察与批判130、论网络教育质效的评价131、论网络教育的管理与考核132、系统的思想、理论和方法在教育领域中的应用133、教育管理系统中的决策及其特征134、系统评价及其教育中的应用135、课堂教学系统的系统分析136、中小学实行校长负责制的利弊探悉137、中小学实行校长负责制应处理好的几个关系138、试论教师资源的有效配置139、试论中小学教师聘任制的建立和建全140、当前中小学教师聘任工作的规范研究141、教师积极性调动的途径142、贫困地区教师队伍建设研究143、校长负责制与上级教育主管部门的权力关系研究144、实行校长负责制的学校党支部的功能和作用145、班级教育力量的形成146、网络时代德育工作新途径147、领导应变能力研究148、学校管理中良好工作态度的培养149、管理目标的功能研究150、学校管理中决策科学化(或民主化)研究151、现代学校管理中教代会职能研究152、期望理论在学生管理工作中的运用153、双因素理论与教师积极性的激励154、贫困地区教育经费筹措155、成就动机理论与教师成就感的培养156、公平理论与教师积极性的调动157、外国教育史与中国教育改革(这是论文方向,自己确定小标题)158、论知识经济背景下的教育先行战略159、柏拉图《理想国》的教育思想评述160、班主任工作研究(这是论文方向,自己确定小标题)162、学生自我管理能力培养的途径163、学校管理制度研究164、校本管理研究165、教师依法执教研究166、学生品德评价研究167、信息化时代课堂教学模式研究168、高校扩招对基础教育的影响169、教师教学科研和教学质量的关系研究170、后进生的成因和转化对策171、网络教育中的教师素质结构及其应对研究172、网络背景下学生学习的特征及其教育变革研究173、网络教育中的师生关系特征及其教育导向研究174、传统课堂教学与网络教学的比较研究175、网络下的教学过程特点研究176、基于网络开放性特征的教育变革研究177、大学生的择业观念与行为研究178、大众传播媒介对青少年的心理及行为方式影响的研究179、师生关系存在的问题及解决对策研究180、教育发展与就业需求的社会心理学研究181、书院的产生对中国当代教育的启示182、预防未成年人犯罪的社会心理学研究183、亲子关系存在的问题及解决对策研究184、培养青少年的健康人格研究185、青少年的心理健康研究186、贫困大学生的心理问题研究187、青少年的情感能力培养的研究188、青少年的智力开发研究189、青少年的创造力培养研究190、基础教育课程管理体制的创新191、适应新课程改革,加强学校教学管理192、新课程与教育评价的改革193、语言艺术在课堂教学管理中的应用(语言可包括口语、体态语和书面语)194、基础教育社区服务与社会实践活动的开发与实施研究195、大学生心理健康研究196、我国家庭教育的新情况,新问题及其对策197、独生子女心理特点及成因分析198、论离异家庭对儿童性格形成的消极影响199、初中生常见心理问题及学校教育对策200、中小学心理健康教育课程教学方法设想201、试论影响儿童心理发展的活动因素202、青少年人际心理异常与家庭教育203、中小学心理健康教育教学方法设想204、教师队伍现状和问题透视及改革对策205、新课程理念下的教学设计206、新课程理念下的教学评价207、新课程理念下的学校评价208、新课程理念下的教师角色转化209、数学发展性评价内容研究210、说课的艺术性与规范性

01最小的一位数是0还是1?这个问题在很长一段时间存在争论。先来看看《九年义务教育六年制小学数学第八册教师教学用书》第98页“关于几位数”的叙述:“通常在自然数里,含有几个数位的数,叫做几位数。例如“2”是含有一个数位的数,叫做一位数;“30”是含有两个数位的数,叫做两位数;“405”是含有三个数位的数,叫做三位数……但是要注意:一般不说0是几位数。再来听听专家的说明:在自然数的理论中,对“几位数”是这样定义的,“只用一个有效数字表示的数,叫做一位数;只用两个数字(其中左边第一个数字为有效数字)表示的数,叫做两位数……所以,在一个数中,数字的个数是几(其中最左边第一个数字为有效数字),这个数就叫几位数。于此,所谓最大的几位数,最小的几位数,通常是在非零自然数的范围研究。所以一位数共有九个,即:1、2、3、4、5、6、7、8、9。0不是最小的一位数。02为什么0也是自然数?课标教材对“0也是自然数”的规定,颠覆了人们对自然数的传统认识。于此,中央教科所教材编写组主编陈昌铸如是说:国际上对自然数的定义一直都有不同的说法,以法国为代表的多数国家都认为自然数从0开始,我国教材以前一直都是遵循前苏联的说法,认为0不是自然数。2000年教育部主持召开教材改编会议时,已明确提出将0归为自然数。这次改版也是与国际惯例接轨。从教学实践层面来说,将“0”规定为“自然数”也有着积极的现实意义。“0”作为自然数的“好处”众所周知,数学中的集合被分为有限集合和无限集合两类。有限集合是含有有限个元素的集合,像某班学生的集合。无限集合是含有的元素个数是非有限的集合,如分数的集合。因为自然数具有“基数”的性质,因此用自然数来描述有限集合中元素的个数是很自然的。但在有限集合中,有一个最主要也是最基本的集合,叫空集{},元素个数为0。如果不把0作为自然数,那么空集的元素的个数就无法用自然数来表示了。如果把“0”作为一个自然数,那么自然数就可以完成刻画“有限集合元素个数”的任务了。于此,从“自然数的基数性”这个角度,我们看到了把“0”作为自然数的好处。把“0”作为自然数,不会影响自然数的 “运算功能”“0”加入传统的自然数集合,所有的“运算规则”依旧保持,如新自然数集合{0,1,2,…,n,…}中的任何两个自然数都可以进行加法和乘法运算,而运算结果仍然是自然数。同时,加法、乘法运算的结合律和交换律,以及乘法的分配律也不会受到影响。所以,“0”加盟到自然数集合实属理所当然,而不仅仅是人为的“规定”。它让我们更好地理解自然数和它的功能,同时也让我们意识到教学时不仅要知道和记住数学的“定义”和“规定”,还应该思考“规定”背后的数学涵义。03什么是有效数字一无效数字?有效数字是对一个数的近似值的精确程度而提出的。同一个近似数如果在取舍时,保留的有效数字多,就比保留的有效数字少更精确。一般说,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。这时,从左边第一个非零的数字起,到那一位上的所有数字都叫做这个数的有效数字。如近似数0.00309有三个有效数字:3、0、9;0.520也有三个有效字:5、2、0。而0.00309中左边的三个零,0.520中左边的一个零,都叫做无效数字。04加法与减法、乘法与除法是否互为逆运算?“加法与减法互为逆运算、乘法与除法互为逆运算”这似乎成了许多老师的口头禅,这其实是一种误解。例如:加法“2+3=5”,其逆算为“5-2=3”,“5-3=2”。故此,加法的逆运算只有减法;减法“5-2=3”,其逆算有 “5-3=2”, “2+3=5”。故此,减法的逆运算有减法和加法两种运算。综上可知,只能说减法是加法的逆运算,而不能说加法与减法互为逆运算。同理,也只能说除法是乘法的逆运算,而不能说乘法与除法互为逆运算。05为什么不写“倍”?在学习“求一个数是另一个数的几倍”应用题时,很多小朋友会自然提出这样的疑问,如:“饲养小组养了12只小鸡,3只小鸭,小鸡的只数是小鸭的几倍?”为什么“12÷3=4”的后面不写“倍”呢?我们首先应该肯定学生的质疑(学生有较强的解题规范意识)。但同时又该对学生说明:在解答应用题时,得数后面一般要写上的是数的单位名称如:12只的“只”;8克的“克”。一个数只有带上单位名称,才能准确地表示出一个物体的多少、大小、长短、轻重等等。但是,“倍”不是单位名称,它表示两个数量之间的一种关系。例如,上面的计算结果“4”,表示12里面有4个3,就是12只小鸡是3只小鸭的4倍。所以,在算式里不写“倍”,以免“倍”与单位名称发生混淆。06“倍”和“倍数”的区别在第一学段我们学习了“倍的初步认识”,认识了概念“倍”,而在第二学段,我们又学习到“倍数”这个概念。那么,“倍”和“倍数”这两个词到底是不是一回事呢?这两个词之间有什么区别呢?“倍”指的是数量关系,它建立在乘除法概念的基础上。例如:男生有10人,女生有30人,因为“10×3=30”或者“30÷10=3”,我们就说,女生人数(30)是男生人数(10)的3倍,也可以说,男生人数(10)的3倍等于女生人数(30)。勿宁说,“倍”其实表示的是两个数的商(这个商可以是整数、小数、分数等各种表现形式)。“倍数”指的是数与数之间的联系,它建立在整除概念的基础上。例如,30能被6整除,30就是6的倍数。可见,“倍数”是不能独立存在的(具有特定的指向性),而且对数的形式有特别的要求(必须为整数)。同时我们又看到,30也是6的5倍,因为6×5=30,“6×5”表示6的5倍。所以从这个角度来说,“倍”的涵义应宽泛于“倍数”,后者可以视为前者在特定情形下的一种表现。07“时”和“小时”有什么不同?怎样使用“时”和“小时”?首先应该明确的是,〔小〕时并非国际时间单位。在1984年国务院发布的《关于我国统一法定计量单位的命令》中,把秒作为时间的基本单位,把非国际单位制的时间单位天(日)、〔小〕时、分作为辅助单位。(注:〔〕里的字,在不致混淆的情况下,可以省略)。这样,在我国范围内使用的法定时间单位就有:天(日)、〔小〕时、分、秒。由此,“时”既可以表示时间,又可以表示时刻。由于“时间”和“时刻”这两个不同的概念容易产生混淆,在实际应用时间单位“时”时,现行教材作了如下处理:当列式计算出时间的长短时,在得数的括号里写上时间的单位“时”。例如:超市营业时间:21-9=12(时)。(此处可省略“小”字)在用语言表述时间的长短时,为避免“时间”和“时刻”这两个概念产生混淆,则在“时”的前面加上一个“小”字。例如:超市营业时间12小时。 在用语言表示时刻时,一律不得出现“小时”字样。例如:公园每天早上7时30分开园(而非7小时30分)。08“改写”和“省略”是一样的吗?从形式上看,此例将“改写”与“省略”两种对数的变化置于了同一个要求之下(即改写成用“亿”作单位的数)。我们真希望编者不是有意而为之,因为“改写”与“省略”其本质是完全不同的。表现在:目的不同“改写”的目的是方便对大数的读写,而“省略”则是取数的近似值。方法不同此处的“改写”是去掉“亿”位后面的0,再写上一个“亿”字,而“省略”除了要找准“亿”位,还要考虑被省略的尾数的最高位是几,然后用四舍五入法求出近似数。符号不同“改写”只改变了数的表现形式,大小并未改变,所以用“=”号连接;而“省略”既改变了数的形式,又改变的数的大小,所以用“≈”连接。09“路程”就是“距离”吗?这两个词在许多老师的教学语言中是替代使用的,其实不然。“路程”是指从一个地点到另一个地点所经过路线的长度;而“距离”则指连接两个地点而成的直线段的长度。“路程”所经过的路线可以是曲形线,也可以是直形线,还可能是折形线。一般情况下,两个地点之间的“路程”要大于它们之间的“距离”,只有当两个地点之间的路线为直线时,路程和距离才相等。虽然老师们都知道这个等式是成立的,但我们的学生却没有相应的知识储备,怎样绕开”极限”寻找能为小学生所理解和接受的证明途径。10最大的分数单位是1/2还是1/1?先看看分数单位的含义:把单位“1”平均分成若干份,表示这样一份的数。显然,在分数意义中,关键是“分”,没有“分”,就没有“份”。因为把单位“1”平均分成的最少份数是2份(如果是1份,也就无所谓“分”),由此得到的分数单位是1/2,所以1/2是最大的分数单位。尽管就广义的分数来说,1/1也可视作分数,但它已不是我们通常意义上认识的与整数对立的那种分数(在平均分的基础上所产生),故此,最大的分数单位应以1/2为宜。11像 0/3、、3/这样的数是不是分数?分数的定义明确告诉我们:把单位“1”平均分成若干份,表示这样一份或几份的数,叫分数。其中,分成的份数叫做分数的分母,要表示的份数叫做分子。由此可知,分数的分子和分母都应该是非零自然数。从这个意义来说,以上这几个数徒具分数的形式,而不具分数的实质,因此都不应该视为分数。进而,在考查学生对“分数”涵义的理解时,应着眼于通常意义上的分数,将上述这些变异形式纳入思考的范围,其本身对训练学生的思维并无多大实际意义,而且会令诸如“分数都大于0”等命题的真与假陷入尴尬。12比6多1/2的数应该是“6+1/2”还是“6+(1+1/2)”要弄清这个问题,先得弄清“6”的性质。显然,此处的“6”其实质是一个“数”,而非一个“量”,求“比6多1/2的数”应属于“求比一个数多几的数”的范畴,问题中的“多几”都是确定的具体数,这里的“几”既可以是整数,也可以是小数或分数。所以,这里的“1/2”是指在6的基础上“多1/2”这个“1/2”数的本身,而非“6的1/2”。所以,“比6多1/2的数”应该是“6+1/2”。当然,如果题目确定为“比6多它的1/2的数”,那答案则属于后者。13计算出勤率可不可以不乘100%?先来看看新人教版、北师大版和苏教版三个不同版本的教材对类似问题的理解。同一课程标准下,不同的教材给出了不同的理解,这给执教者带来了困惑:到底可不可以不乘100%呢?笔者以为,求“××率”其结果必定为百分率。以出勤率为例,就是求实际出勤人数占应出勤人数的百分之几。如果公式只写成:出勤率=实际出勤人数/应出勤人数,我们说这只是分数形式(也即是求实际出勤人数占应出勤人数的“几分之几”),并不是百分数。因此,在公式后面乘上“100%”,既可以使计算数值大小不变,又能保证结果形式满足百分数的要求。因此,计算出勤率、发芽率、出粉率、合格率……的公式中,都应乘“100%”。同时建议各版本教材的编委统一思想,以免给一线教师造成认识上的混乱。14小于90度的角都是锐角吗?根据课标教材定义:小于90度的角叫做锐角。答案似乎是肯定的,但由此又产生一个新的问题:0度的角是什么角,也是锐角吗?事实是,锐角定义有一个隐含的前提,就是小学数学中所讨论的角都是正角。习惯上,我们把射线按逆时针方向旋转而得到的角叫做正角,射线按顺时针方向旋转而得到的角叫做负角,当一条射线没有做任何旋转时,就把它看成零角。如果将角的概念推广到任意大小的角,就应分为正角、负角、和零角。由此,严格意义上的锐角定义应是:大于0度而小于90度的角叫做锐角。15足球比赛记分牌上的“3︰2”是数学中的“比”吗?我们至少可以从两个方面来理解它们的差别。第一,球类比赛中的“3︰2”表示的是比赛双方的得分情况,是“差”比,即表示相差关系,一方得3分,另一方得2分,双方相差1分;数学中的“3︰2”表示的是“3÷2”,是“倍”比,商为。有鉴于此,球类比赛中的“比”(其实是比分),其后数可以为0的,而数学中的“比”,其后数(相当于除数)是不可以为0的。第二,数学中的“比”是可以化简的,如“4︰2=2︰1”;同样的“4︰2”放在球类比赛中,却不可以化简,如果化简就不能反映双方在比赛中的实际得分了。

教育 学作为一门学科,在中国教育学百年进程中,教育学中国化是一个永恒的主题。下面是我为大家整理的关于教育学的论文,供大家参考。教育学的论文篇一:《试谈学前教育学课程教学实践》 摘要:进入20世纪80年代以来,随着教师专业化运动的兴起,世界各国对教师教育研究的中心逐渐从注重教师教育的外部因素如教学环境、政策因素等转移到教师教育的内部因素,即教师本人自己的教育教学工作如何发展上,即自我专业成长上。基于建构主义理论的师范教学模式由于能够“通过集中精力对教学过程进行思考、分析、评估、或者改变教育意义、教育目的、教育信仰、教育决策、教育行动或者教育产品而提升教师课堂教学实践的合理性”,“解决理论与实践脱节的问题,充分利用教学的内部知识,提升 反思 能力,因而日益成为教师教学专业化运动中的一项基本教育原则。 关键词:反思能力;实践;参与式学习;建构主义 有关教师培养过程中存在的问题,当前研究者的分析主要从两个视角展开。一是教师教育机构转型视角,分析我国自中等师范院校升格后,在新的两级师范教育体系内教师培养的不足与缺陷;二是师范生职业生涯发展视角,将师范生培养与教育培养模式联系起来,探讨制约师范生胜任教学岗位的因素。 (一)教师教育机构的人才培养质量的研究 从教师教育机构转型视角出发,研究者认为当前教师培养中的问题主要表现在: 1.生源素质下滑严重; 2.课程体系和教学模式陈旧、封闭(李尚卫等,2009),没有地方特色,偏重学术性,实践环节偏弱(苏春景等,2010)。从教师培养的学段来看,小学与幼儿教师培养中出现的问题更为严峻。有研究者认为(彭小奇等2011),除生源质量下降之外,小学与幼儿教师培养还遇到了学生可塑性和培养潜质不足,培养模式不适应小学教育要求的突出问题,甚至于出现“高师 毕业 生站不稳三尺讲台”的情况。就其原因的分析而言,研究者认为(李尚卫,2009;阮成武,2008),随着我国传统的三级师范教育体系向现代教师教育体系的转型,原有的教师教育、特别是面向农村培养教师的职能被削弱的“去师范化”演进。并且,随着教师教育体系的升格,中等师范学校相对于普通高中教育的政策性优势并未转化到高等教育层次的教师培养当中,再加上教师职业的社会声望、福利收入等方面差强人意,部分地方师范院校或师范专业生源质量下降已成为不争的事实。其次,在转型过程中,受多种因素的影响,教师培养机构盲目追求综合化、研究型,缺乏服务于基础教育需求的意识,没有投入精力和资源去了解幼儿园教育需求,探索培养教师的有效模式和路径,导致课程陈旧,教学模式单一,毕业生不适应现代教育的要求。因此,面对此现状,笔者尝试在教学中采取了一些尝试来改进学前教育学课程教学模式。 (二)学前教育学教学模式改革尝试 1.突出实践性,实行模块化教学针对实践环节薄弱的状况,结合本课程的学习内容和大专生的知识结构特点,《学前教育学》课程构建了理论性与实践性并重的教学内容体系。教学内容体现为“正式学习+非正式学习”两大模块。两大部分指在每一个模块中均分为理论教学部分和实践教学部分内容。第一大模块指:专业理论学科教学模块。如理论学习内容包含学前教育历史、目标、任务、等内容,与其相对应的实践学习内容则为与之理论相对应的实践技能。模块二的内容主要指通过课外社团活动进行的非正式学习,如:通过组织与教学内容相关的实践活动评比,真正调动起学社国内参与学习的积极与主动性。 2.突出参与性,项目化教学教材部分共有十二章,由学生自己来确定将其分为六大主题13个项目,尤其强调合作学习的重要性与有效性。以项目为导向,以任务驱动的方式结合项目研讨,开展研究性学习,凸显理论与实际结合的教学模式.非正式学习以小组 报告 、小型研究的形式,重在提升合作能力和反思意识。探索实践———讨论———理论———实践的教学模式,激发学生学习兴趣,引导学生自主学习,注重培养学生发现问题、分析问题和创造性解决问题的能力。以《学前教育学》基本理论为依托,将周教育见习活动与课堂教学活动结合,将课外活动与学校教学技能大赛相结合,同时结合本专业周见习活动(20学时)或者隔周半天下园开展专题性研究,使学生对学前教育理论的学习更为扎实。另外学生思维模式僵化不具备一定的反思能力仍是需要着重解决的问题,教学反思是形成实践性知识的过程。舍恩主张实践在本质上是一系列的问题解决过程(赵明仁,2009)。教学反思以发现问题为起点,在分析解决问题过程中不断调试,不断交流的过程中,形成自己的实践性知识(陈向明,2010)。站在教师专业发展的主要 方法 的角度来讲,师范生通过教学反思将已有的理论运用于具体的实践,不断积累实践 经验 并在此基础上更新其思想观念、丰富其知识结构,从经验型教师转变为研究型教师,从而有助于其专业能力的提升(陈薇,2012)。因此,从实践与参与的角度去对教学模式进行重新组合,将有利于培养出具有一定反思意识和参与合作学习能力的师范生,这也就立于将实践性知识与显性知识融合,真正提高理论教学的效果。 参考文献: [1]陈向明.范式探索-实践———反思的教育质性研究[J].北京大学教育评论,2010(04):41-53. [2]陈薇.幼儿教师教学反思个案研究.硕士学位论文,西南大学,2012. [3]李尚卫.袁桂林.我国农村教师教育制度反思.教师教育研究,2009,21(3):34–38. [4]苏春景.张济洲.从农村教师教育现状调查看地方高师课程改革.课程•教材•教法,2010,30(8):84–87. [5]彭小奇.刘志敏.陈梦稀.蒋蓉.李茂平.创新师范教育培养模式,培育农村优秀小学教师.中国高等教育,2011(8):29-31. 教育学的论文篇二:《浅谈高等教育学专业认同影响因素分析》 摘要:高等教育学是教育学的一门分支学科,本文通过对近12年高等教育学硕士研究生的专业认同研究进行综述,了解当前现状、分析影响专业认同因素,为完善该专业培养模式、提高该专业学生的专业认同、使得该专业学生有效服务社会奠定理论基础。 关键词:高等教育学;专业认同;影响因素 1.概念的界定 在中国知网CNKI的“中国期刊全文数据库”上通过搜索关键词“我国教育学硕士研究生专业认同”可搜索到1678篇,然而以“我国高等教育学硕士研究生专业认同”为研究对象的 文章 只有3篇,时间是从2011年到2014年,其中两篇是同一人所写。最早学者开始发表高等教育学硕士研究生专业认同文章是在1993年,总体来讲从1993年到2014年学术界对“高等教育学硕士研究生的专业认同”的关注持上升趋势。关于“专业认同”的概念至今未有统一的定义,我个人更倾向王顶明的说法,将专业认同分为认知、情感和持续三个维度。首先是认知性专业认同,即学生对自己所学专业的了解,是产生其专业认同的基础。其次是情感性专业认同,指个人与专业的情感连结程度。再次,对所学专业的情感认同使个体获得心理上的安全与情感愉悦满足会直接导致积极的行为动机和外显的行为效果,从而形成可持续性的专业认同。 2.影响因素 找出专业认同的影响因素是提升硕士研究生专业认同水平关键。通过搜索的文献可以看出影响教育学硕士研究生专业认同水平主要受学校、社会、个人三个大方面因素的影响,高等教育学专业的硕士研究生的专业认同影响因素也是如此。一是学校方面,比如导师、专业认识、专业课程、人才培养模式等等。(1)学者袁长林通过个案访谈的方法得出,导师具有比较丰富的研究经历与比较高的专业水平,经常指导教育学硕士研究生开展研究工作,学生对导师的喜好影响学生的学习兴趣和专业认同水平。(2)刘旭指出因缺乏对该专业的专业属性的清晰认识导致高等教育学专业硕士研究生培养模式出现理论性与实践性并未相统一的问题,从而影响学生对该专业的认同。(3)学者萧琳指出现行的高等教育研究生培养模式实质上是一种“本科化”培养模式,专业课程设置不够合理,教学形式与本科雷同,科研训练不足和考核流于形式,阻碍着该专业教育质量的提高。(4)学者王艳表明“应试教育”在高等教育学硕士研究生的教育中依然存在,填鸭式的教学方式、纯理论的教授、就业竞争的加剧造成很多学生不愿意投入到专业课的学习中降低了其对专业认同度的水平。二是社会方面,主要社会人才需求的狭隘观念。当今社会需要全方位的创新型人才,然而高等教育学的专业课程培养注重理论忽略了实践能力培养,再加上高等教育学的就业方向与其他专业相比更为单一、社会上对此专业的认识较少,使得高等教育学这种看似“没有专业”的专业失去了与其他专业公正的就业竞争机会。此外,社会人才选拔机制存在缺陷。 比如看重学历而忽视能力,看重工作经验而忽视潜力,看重考试成绩而忽视素质,看重人才的录用而忽视人才的培养等等。高等教育学专业刚刚毕业的学生不是因为学历层次低而无法从事高校教育工作,就是因为经验缺乏而影响就业,还有的学生希望 考公务员 来改变命运,放弃专业课程的学习、以拿到学历为目的,专攻公务员考试等等,这些都使得高等教育学专业的学生降低了对其专业的认同度。三是学生个人方面,比如学生对专业的兴趣、专业了解、 自我评价 、 职业规划 等等。(1)学者袁长林通过访谈的方式了解到,一些教育学硕士研究生之所以对自己的专业不感兴趣或者学习热情不高在于他们认为自己专业的价值不高,学习到的专业知识对自己将来的工作帮助不大,更愿意把精力花在其他方面。(2)学者王艳表明,高等教育学专业的学生自身对所学专业的相关知识掌握匿乏,该专业成为了很多仅仅想要获得硕士学位又想短时间内投机取巧的学生的“避风港”,缺乏对专业学习的热情和兴趣,入校后也不积极去增加对专业的认识,这种不积极的态度让部分学生的专业认同度普遍低。(3)李俊表明,我国高等教育学专业的硕士研究生并没有对自己职业进行规划的习惯,因此多数该专业学生并没有较强的增强专业能力的倾向,而是以获得学历为目的,从而降低了该专业学生的专业认同度。综上,学校、社会、个人三个方面在不同的具体方面、不同的程度上影响着高等教育学专业硕士研究生的专业认同。相比较于 其它 两方面因素,个人认为高等教育学硕士研究生个人方面的因素对该专业的认同度有较大的影响,尤其是自我评价、职业生涯的规划。较低的自我评价不仅会影响专业认同度,还会造成个人自卑心理,最终导致自己一事无成;过高的自我评价可以提高专业认同,但是会形成自负心理,影响成败。合理的自我评价不仅可以提升专业兴趣,还可增强对专业的了解,从而自信满满处理相关专业问题,拥有较高的专业认同。再者,完整、合理的职业生涯规划是提升专业认同的关键。 学生做出一个符合自己的职业生涯规划,它将是一切前进的动力,不仅可以提高专业兴趣、提升专业能力,提高专业认同,明确合理的职业规划还可以丰富学习生活、获得较高的幸福感。 参考文献: [1]王顶明,刘永存.硕士研究生专业认同调查[J].中国高教研究,2007(8). [2]李俊.N大学高等教育学硕士研究生职业生涯规划现状的调查研究[D].南京师范大学,2013. [3]萧琳.高等教育学专业研究生培养模式探究[D].湖南农业大学,2006. [4]王艳.高等教育学专业硕士生专业认同度调查研究———以庆西省为例[D].西北大学,2011. [5]刘旭.高等教育学的专业属性及其对人才培养的规定性[J].高等教育研究,2009(30). [6]袁长林.教育学硕士研究生专业认同与社会支持、自我意识的关系研究[D].云南大学,2012. 教育学的论文篇三:《试谈教育会计集中核算制度若干问题》 前言:在长期的发展过程中,在一些地区已经全面实行了农村义务教育经费的保障制度改革,且对于改革工作来说,就是要将各级的责任落实到实际中,并由中央地方来共同承担,做好省级的统筹管理。 一、目前教育会计集中核算制度中存在的问题 作为农村中义务教育经费保障体制改革中的一条,从制定到实施,已经取得了显著的成效。它不仅可以提高会计监督效果,还能够有效提高共工作的效果,促进了财务上的监督。但是对于这一项监督管理制度来说,在实际运行的过程中还是存在着许多的问题。 (一)增加了会计监督中的难度。就其实际来讲,由于会计人员具有一定的独立性,因此只能从财务制度的角度上出发,对凭证与手续等方面的合法性与完整性等进行审核,这样也就不能掌握好业务的实际情况,只是采用了相关的规定与办法来进行判断,并进行机械式的财会核算,这样也就对一些被精心包装后的“支出”难以识别。 (二)收入不报账与体外循环。对于学校来说,所进行的财政拨款已经由财政部门直接划入到了教育会计核算中心中了。虽然控制好了这一源头,但是对于一些预算外的收入等却并没有纳入到会计核算中心核算中,出现了体外循环的现象。 (三)会计信息质量不高。就目前的会计中心来说,只能够进行核算、管理及对校产明细账的登记等方面,但是在实际中,一些单位中的固定资产明细账却存在存在着众多的问题,如账实不符以及资产流失等现象。对于经费的使用部门来说,过于重视财政资金的运作,这样也就没有进行科学的管理。尤其是对于资产的后期控制来说,也没有有效的进行,这样也就出现了只核算不清查的现象,最终也就出现了信息失真的现象[2]。 二、提高教育会计集中核算制度的 措施 (一)加大审查的力度。针对体外循环与虚假发票来说,核算人员要对所要进行的核算业务有一个充分的了解,同时还要参与到核算单位的管理工作中去,明确各项收支项目等。且在进行审计的过程中,还要对收入的来源进行重点审查,明确是否全部入账,避免发生不报账或是漏账等现象的发生。此外还要加强与相关部门之间的联系,以此来形成有效的管理方法,全面落实管理制度。 (二)做好内外中的监控工作。要做好对固定资产进行的管理,制定出严格的资产范围,同时还要制定出有效的固定资产入账标准,以此来完善资产的审批制度。对于预算单位来说,还应当要最好固定资产的管理工作,健全资产的保管制度,坚持做好固定资产的清查工作,以此来保证账面与实物上的一致性。此外还要制定出全面的资产清查制度,以此来及时对资产的变动情况进行跟踪与掌握。 (三)做好自身的管理工作,避免出现形式化的管理。首先对于核算中心来说,要做好定期岗位的轮换。对于核算中心会计人员来说,如果处于固定的工作状态,那么就很容易与单位中的报账人员产生出工作之间的感情,这样在进行报账审核时,也就不可避免会出现情面上的问题。所以针对这一现象,就可以采用岗位的轮换制度,以此来避免出现人情关系。且对于核算中心的人员来说,在面对全新的核算单位时,就可以严格按照相关的规范要求来进行报账,这样也就增大了会计上的监督管理效果。其次,是要做好内部中的审计工作。在实际中可以将学校与核算中心共同纳入到检查的范围中去,同时还里可以对会计资料进行定期或是不定期的审计,这样也就规范了财务上的管理工作,对收支的行为也起到了约束的作用。此外在进行内部审计工作的过程中,还要不断适应好会计核算形式的相关要求,在此基础上来对方式方法等进行调整,这样也就可以有效降低教育内部中的审计风险。最后,是要不断完善内部控制的制度。对于核算中心来说,在进行审计工作的过程中,要严格遵守相关的管理制度与要求,以此来保障会计核算的质量。此外还要不断健全相关的管理措施,对于出现错账等现象要严格追究其责任,通过以制度来对人的行为进行约束,可以有效保证资金的运转。 结语

小学教育函数毕业论文

我可以。帮您。弄 需要。的看昵。称。找我 专业。团队。等待。为您。服务

新课程背景下的农村中小学教育 摘要:由于农村中小学办学条件的限制,严重制约着农村教育的跨越式发展;同时由于农村中小学教师总体素质的偏低和观念的陈旧,不能很快适应新课程的教学,直接影响到农村地区课程改革的发展。重新定位农村中小学教师角色;构建农村中小学探究式课堂教学模块;确定学生的主体地位,拓宽农村中小学育人环境是农村新课改的重中之重。 关键词:新课程;农村;中小学;教与学;构建 目前,农村中小学分布相对零散,规模小,条件差,教育经费短缺严重制约着农村教育的跨越式发展;同时由于农村中小学教师总体素质的偏低和观念的陈旧,不能很快适应新课程的教学,直接影响到农村地区课程改革的发展。 一、重新定位农村中小学教师角色 农村中小学教师的特殊地位决定了其角色结构的复杂性。相对学生而言,主要有以下两种: (一)层面式的“师长、同志、朋友、父母”角色 面对市场经济、网络时代,面对激烈的社会变革和越来越高的社会期待,面对不同文化、不同价值观念的相互碰撞、相互融合的冲击,面对新一轮课程改革,我们的农村中小学教师,一定要正确处理“师长、同志、朋友、父母”这一层面式的角色问题,走出办公室,融入学生之中,了解学生,熟悉学生,努力创造与学生心灵沟通的条件,在和他们进行交流对话的过程中,提供双方交换思想信息的最有效、最充分的机会。教师只有真正掌握了学生在想些什么,做些什么;才能因势利导,有的放矢地对学生进行教育,以达“一切为了每一位学生的发展”之目的。 (二)三维式的“导演、导游、导师”角色 在新课程中,角色的转变不仅对教师的指导提出了更高的要求,也使指导作用变得更加重要,这就加大了指导的难度。树立“导师意识”;首先是相信学生。相信学生能在已有知识经验的基础上,靠创造性的劳动获得新知,并有所进步;其次是善于指导,中小学生的学习自觉性不够强,情绪不够稳定,方法还很欠缺,这就需要农村中小学教师及时有效的指导;再次,重视教学过程的设计,教学过程的设计。要以有利于激发兴趣、有利于发展思维、有利于培养创造能力为原则。“导演、导游、导师”三维角色三种境界,都体现了教师的主导作用,但后者更充分地显示了学生的主体地位,更有益学生的健康成长。 二、构建农村中小学探究式课堂教学模块 为了促进农村教育的跨越式发展,使新课改在农村中小学得到有效地实施,就要优化课堂教学。构建探究式课堂教学模块。 (一)探究准备 这是学习新知识的前提,其主要任务是为学生学习新知识准备良好的思维材料和学习兴趣,培养学生创新的意识。 1.创设情景 (1)迁移学习。复习与新知识有关的旧知识,为学习新知识做好知识、学法的铺垫。 (2)情景引入。通过复习与新知识有关的旧知识,用日常生活中的实物、实例、游戏、故事等引入。 2.提出问题 根据新知识的特点,引导学生提出要探究的问题。 (二)探究构建 这是课堂教学的中心环节。其主要任务就是教师引导学生准备多种探究性材料;指导学生运用好探究方法,充分调动学生的多种感官,主动参与探究的全过程,从而获取知识。发展学生智力,培养学生创新思维,提高学生整体素质。可分三步: 1.独立探究。采用尝试探究的方法。首先教师为学生准备尝试的材料(自学课文、操作演示、动笔练习等)和尝试思考题(教师根据教学目标,教材的重点、难点和学生的认知规律,在尝试中要解决的问题);然后让学生带着问题去尝试,做到边尝试、边思考,初步理解所学的内容。 通过学生尝试思考,发挥学生的自主性、主动性,激发学生的学习兴趣,调动学生的学习积极性,培养学生的尝试精神。 2.合作探究。采用讨论质疑的方法。在学生通过尝试初步感知的基础上,为了充分发挥他们的学习主动性,运用讨论的形式,让学生各自发表不同的意见,互相提问,互相帮助,共同研究,解决问题。 讨论;有同桌讨论,小组讨论全班讨论。讨论的问题是新课中的重点、难点以及启发思维的关键或在尝试中遇到的问题。让每个人发表自己的意见和不同的见解。小组讨论后,再进行全班交流。 质疑;学生在讨论中不能理解和未能解决的问题或在教学中重点、难点、关键的问题,鼓励学生质疑问难。通过学生讨论、质疑,使学生进一步理解新知识。充分发挥学生学习的主动性、积极性。培养学生的合作精神和创造能力。 3.发现知识。学生经过尝试、讨论试练后,教师引导学生回顾学习的过程,运用观察、分析、比较、综合、概括的方法,把感性认识上升到理性认识,把知识归纳构建;发现学习规律,概括学习方法,培养学生逻辑思维能力和综合概括能力。 (三)探究深化 这是检测巩固运用新知识,掌握运用学法、形成技能的环节。 1.尝试。这是检测新知识,运用新知识;掌握学法和运用学法的尝试;练习内容要面向全体学生,要有助于学生运用学法和迁移学法。 练习要环绕目标,突出重点,有基本练习、综合或专项练习、发展练习三个层次,练习要有开放性,形式要多样,使不同层次的学生的潜能都得到发展。 2.评价。在学生尝试的基础上,让学生互批、互评、互议,评出不同的思路和看法。通过师生互评,充分发挥学生协作的功能和自主学习的功能,培养学生创新的能力。 3.总结。一方面让学生谈这节课学习了什么?有什么收获?另一方面教师对这节课所学知识的深化作简明提示。 三、确定学生的主体地位,拓宽农村中小学育人环境 确定学生的主体地位,必须对传统教育的教学方法进行大胆改革与创新,在教学主体、教学形式、教学氛围等方面实现有机转换,确保教学内容的和谐统一。 (一)营造民主、平等、和谐的教育环境,培养学生尊重自己、尊重同学、尊重师长、尊重知识、尊重自然、尊重社会的意识和能力 祖国五千年的灿烂文明,960万平方千米的广袤地域,为我们提拱了丰富多彩的德育内容,我们实在没有理由不去挖掘它。针对农村中小学德育工作的多样性、复杂性和长期性,我们本着从大处着眼、小处着手、贴近实际和注重实效的原则开展德育工作。大处着眼就是对各年级学生应达到什么标准有一个十分明确的要求、小处着手就是从平时抓起,从一点一滴的小事做起。贴近实际、注重实效就是结合时代要求、社会环境和学生实际,扎扎实实工作,实实在在落实德育的各项措施。我们以“热爱家乡、热爱学校为主题,紧紧围绕发展创新的内容开展了,少先队、团队演讲比赛活动;以“养成习惯,收获命运”为主题开展了争创行为规范示范班活动;以“歌唱祖国,爱我中华”为主题连续举办了校园艺术节,开展了争创艺术教育特色班活动;以尊重自然,强化和谐”为主题,引导学生将爱护、保护环境与自,身文明修养相结合,开展了从我做起,从身边每件小事做起的活动;以“珍爱生命,遵守交规”为主题,开展了尊重社会,强化规则意识的话动;以”诚信、助人、尊师、兴教”为主题,开展了每学期四次的团队观摩话动。我们还特别重视新生人学、新队员宣誓、校园每日常规、毕业文明离校等一系列做人的教育。 (二)唤起学生的主体意识,发展学生的主动精神 学生是学习的主人,是课堂教学的主体.教师必须在教学中做好学生学习的组织者和指导者,相信学生的能力,真正把课堂还给学生,把创造机会还给学生,开放学生的心灵世界,以促进学生主体的发展。 1.给学生质疑的机会。“教学就是在没有问题的地方产生问题,在解决问题的过程中传授知识。”引导学生质疑问难是获取知识的重要途径,是培养学生自学能力的起点,也是提高学生思维能力的一项基本训练。因此,我们在课堂教学活动中,鼓励学生“敢问”,帮助学生“会问”引导学生“善问”。在问的形式上,可让学生课前提问,供教师备课、上课;课上提问,供师生讨论交流;课后提问,供大家学习探究.在问的内容上,指导学生”善问”,即把握何处问、怎么问? 2.给学生选择的权利。若要教学打动每个学生,就必须给学生充分的“自主选择”的权利,在更多的教学环节上,变教师的“指令性”为学生的“选择性”,寻求“在教师的指导下学生自主选择”的新机制,如果学生有了自己的意向性选择,就会自觉主动地参与教学活动,去寻求自己的发展和提高。 3.给学生尝试的空间。学生的知识能力不是教师给的,而是在自主尝试、实践探究中形成的。从模仿到探究到创造,逐步构建了以学生“自主学习;大胆尝试”为主的课堂教学模式:定向一自学—自探一交流一反思一内化。学生在教师的引导下,从不会尝试到敢于尝试到乐于尝试到善于尝试,形成了自主意识、强化了探究意识,提高了受挫意识,进发了成功意识。 4.给学生创造的天地。课堂对学生来说,应该是学习与成果的展示。但是学生中存在“三怕”:怕老师、怕提问、怕学生。应该培养“初生牛犊不怕虎”的精神,只有体现出这种“不怕”的精神,才能显示出孩子的求知欲,学生才能敢学、敢问、敢拼、敢和教师争辩,才能创造出一堂好课,才能实现孩子真正的发展目标。树立我能、我会、我棒的意识,鼓励学生自主尝试、自主实践、自主创造,这样才能培养出学生的探究能力和创造性。 (三)挖掘校本课程资源,加大学校教育合力 由于农村地域的差异,决定了农村经济、文化的不平衡,积极探索开发一切可利用的课程资源,是提高农村教育的最有效的途径。 1.校内资源。“一段校史、一位教师、一块奖牌、一件作品、一项工程……”,若将这些统计、整理,就是一个个活生生的教育资源。 2.乡土教材。“民俗民风、乡土文化、特色产业、人才人力……”,不仅是编写乡土教材的基本内容,也是最好的教育资源,它既可弥补国家课程、地方课程的不足,又能让受教育者看得见、摸得着,乐意接受。 3.家长交流。“每学期的家长开放日、专题讲座、家长学校咨询活动……”,深受广大家长的欢迎,增进了家长对学校工作的了解与交流,同时,学校也从家长那里得到了社会对学校教育的要求,从而不断改进学校的教育教学工作.难怪有人说家长是不可多得的教育资源。 4.学生活动。“红领巾广播站、国旗下的讲话、团徽下的宣誓、板报专栏、校规校训”以及参观、访问、调查、竞赛等有益活动,让学生了解多彩的大千世界,感受劳动之艰辛,亲历知识的需求,触动求知的欲望。实践活动寓教于乐,使学生从中得到了“崇真、尚美、启智、健体”的高尚品质教育。 (四)运用激励性评价,促进学生自主发展 很多农村学校、教师习惯于大考、小考后把成绩公布于众,然后仔细排出名次,甚至把分数精确到小数点后几位。这种做法偶尔为之,可能会给学生适度的压力,激发学习积极性。但频繁用这种手段,甚至将之作为控制、刺激学生的有力武器,后果必然是灾难性的。长期如此,将破坏学校教学环境,使学生始终生活在焦虑和压抑之中。最可怕的是,对排名靠后的学生在心理上造成毁灭性的打击。教育无小事,采取任何教育措施,都应首先考虑到学生的利益。我们在课堂上对不同的学生采取了不同的评价标准,在不同的场合使用了不同的评价形式;对学生提出的各种问题认真对待;对学生的认识和实践结果。正确的给予充分的肯定,有独到见解的大加表扬,错误的不直接否定,更不草率批评,而是鼓励学生积极思考,从阅读资料、师生交流诸多方面得到正确的答案。由此可见,运用激励性评价,可以调动学生的学习积极性,促进学生自主发展。 四、多种途径促进农村中小学教育发展 (一)调整农村学校布局,以信息化推动学校的发展 农村学校分布相对零散,规模小,条件差,在教育投资不足的情况下;如果把有限的资金均摊给各个学校;只能是杯水车薪。推进教育信息化,只有集中投资才能见效,而集中投资的前提必须是调整学校布局,撤并部分不足百名师生的“袖珍学校”,集中力量和资金建设示范化学校,因地制宜抓好“计算机、闭路电视、广播”三网合一的“乡镇网”及各个学校的信息网络建设,推动农村教育的跨越式发展。 (二)加强师资队伍建设,进一步提高教育教学质量 学校的发展离不开教师。农村“民转公”和代课教师偏多,素质偏低,观念相对落后,教法相对陈旧。因此,教育主管部门在建好农村学校卫星网这一“天网”和互联网这一“地网”的同时,还要加强“人网”的建设。一是在职称评定、工资待遇、培养培训等方面向农村教师倾斜,吸引优秀人才到农村学校任教;二是通过发达地区对贫困农村学校的支教、城镇和农村学校教师的轮流任教、城镇教师定期送教下乡等形式,共享“人网”资源;三是加强学校领导班子建设,提高农村学校办学水平;四是加强学历培训和继续教育,提高农村教师的学历层次和基本功素质;五是建立完善的教学资源体系,进一步提高教育教学质量。 (三)利用农村独特环境,逐步培养学生的创新思维 在农村进行新课程改革,环境、设施等并非课改教师所想象的那样——完美无缺。然而,没有活动场地、没有专业教室……,时刻困扰着课改的如期进行,作为课改先行者是否想到了农村那些平凡朴素的山川河流、田野村庄和浓郁的地方特色?诸如踢毽子、打沙包;荡秋千、促泥鳅、扭秧歌、舞龙灯等活动;都对学生的自主参与、群体合作、情趣爱好、创新思维有巨大的鼓舞作,用,只要教师在新课程背景下组织引导得当,并加以创新改进,将会收到事半功倍的成效。 (四)建立校本教研制度,为教师参与教改创造条件 大多数农村中小学忽视校本教研,盛行分数管理。为了扭转这种重分不重人,利益驱动代替事业追求的被动局面,必须建立健全校本教研制度,以“个人反思,同伴互助,集中交流”为主,通过教学反思、交流研讨、集体备课、协作尝试、说课评课、案例评选、探究创新等活动为教师参与教改创造条件。 (五)邀请家长走进课堂,强化家长与学校间的联系 家庭不仅是学生温暖的港湾,更是不可多得的教育资源,诚邀家长与课改同行。无论是实施课改年级的教师还是其他年级的教师,都要多与家长联系、沟通,做好宣传工作,取得家长的支持和配合。并举行家长开放日、开放周,邀请家长走进课堂,纵横了解孩子的学习情况。通过平等对话。在对话中互相理解,在理解中促进学生的和谐发展。 (六)健全教育评价机制,激发教师的积极性 教育评价有鉴定、改进、激励、管理与研究的功能,其目的在于提高教育质量,而提高教育质量的目的在于促进人的全面发展。建立教师教育教学综合量化管理办法,不“以分论赏”,抓管理、促教研、全面评估教师工作;在学生评价上注重学生的发展,建立学生成长记录袋,杜绝公布成绩和用成绩排名次的错误做法;鼓励学校、家长、社区共建有效、合理、科学的教育评价机制,激发教师进行新课改的积极性,在教育教学中呈现“百花齐放,百家争鸣”的新课改文化氛围。

一般要有这样几部分组成:提出问题,阐明基本概念和基本观念;分析问题,说明为什么要坚持你的观点;解决问题,拿出解决问题方案,至于顺序,你可根据你的文章去定。也就是说论文由论点、论据、引证、论证、结论等几个部分构成。1、题目题目应恰当、准确地反映本课题的研究内容。毕业设计(论文)的中文题目应不超过25字,并不设副标题。2、 摘要与关键词摘要:摘要是毕业设计(论文)内容的简要陈述,是一篇具有独立性和完整性的短文。摘要应包括本设计(论文)的创造性成果及其理论与实际意义。摘要中不宜使用公式、图表,不标注引用文献编号。避免将摘要写成目录式的内容介绍。关键词:关键词是供检索用的主题词条,应采用能覆盖毕业设计(论文)主要内容的通用技术词条(参照相应的技术术语标准)。关键词一般列3~5个,按词条的外延层次排列(外延大的排在前面)。3、毕业设计(论文)正文毕业设计(论文)正文包括绪论、论文主体及结论等部分。

函数教学毕业论文题目

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。关于数学方面的论文我们可以写哪些呢?下面我给大家带来关于数学方向的优秀论文题目有哪些,希望能帮助到大家!

最全组合数学论文题目

1、并行组合数学模型方式研究及初步应用

2、数学规划在非系统风险投资组合中的应用

3、金融经济学中的组合数学问题

4、竞赛数学中的组合恒等式

5、概率 方法 在组合数学中的应用

6、组合数学中的代数方法

7、组合电器局部放电超高频信号数学模型构建和模式识别研究

8、概率方法在组合数学中的某些应用

9、组合投资数学模型发展的研究

10、高炉炉温组合预报和十字测温数学建模

11、证券组合的风险度量及其数学模型

12、组合数学中的Hopf方法

13、PAR方法在组合数学问题中的应用研究

14、概率方法在组合数学及混合超图染色理论中的应用

15、一些算子在组合数学中的应用

16、陀螺/磁强计组合定姿方法的相关数学问题研究

17、高中数学人教版新旧教材排列组合内容的比较研究

18、生物絮凝吸附-曝气生物滤池组合工艺处理生活污水的数学模拟研究

19、基于数学形态学-小波分析组合算法的牵引网故障判定方法

20、证券组合投资的灰色优化数学模型的研究

21、一些算子在组合数学中的应用

22、概率方法在组合数学中的应用

23、组合数学中的Hopf方法

24、概率方法在组合数学中的某些应用

25、概率方法在组合数学及混合超图染色理论中的应用

26、竞赛数学中的组合恒等式

27、Stern-Lov醩z定理及在组合结构中的应用

28、几类特殊图形的渐近估计及数值解

29、Fine格路和有禁错排

30、基于DFL的Agent自主学习模型及其应用研究

31、基于DFL的多Agent自动推理平台设计

32、预应力混凝土斜拉桥施工监控概率方法研究

33、最大概率方法与最近邻准则下的图像标注

34、亚式期权定价的偏微分方程方法和概率方法

35、编目空间碎片的碰撞概率方法研究及应用

36、基于概率方法的机器人定位

37、民用建筑内部给水设计秒流量的概率方法研究

38、图论中的组合方法和概率方法

39、物理概率方法预估贮存寿命研究

40、静载下结构参数识别的误差分析和概率方法

41、概率方法在组合计数证明中的应用

42、基于非概率方法的结构全寿命总费用评估

43、概率方法在组合数学中的应用

44、概率方法与邻点可区别全染色的色数上界

45、既有钢筋混凝土结构耐久性评定的概率方法

46、概率方法在多任务EEG脑机接口中的应用研究

47、应用概率方法对居住小区给水设计秒流量的推求

48、概率方法与图的染色问题

49、概率方法对居住小区设计秒流量的推求

50、概率方法在组合数学中的某些应用

51、概率方法在组合恒等式证明中的应用

52、遗传算法的研究与应用

53、基于空间算子代数理论的链式多体系统递推动力学研究

54、关于Weidmann猜想及具有转移条件微分算子的研究

55、实数编码遗传算法杂交算子组合研究

56、基于OWA算子理论的混合型多属性群决策研究

57、序列算子与灰色预测模型研究

58、具有转移条件的Sturm-Liouville算子和具有点作用的Schrodinger算子谱分析的研究

59、高精度径向基函数拟插值算子的构造及其应用

60、多线性算子加权Hardy算子与次线性算子的相关研究

数学建模论文题目

1、高中数学核心素养之数学建模能力培养的研究

2、小学数学建模数字化教学的设计与实施策略——以“自行车里的数学问题”为例

3、培养低年段学生数学建模意识的微课教学

4、信息化背景下数学建模教学策略研究

5、数学建模思想融入解析几何的实际应用探讨

6、以数学建模为平台培养大学生创新能力的SWOT分析──以内蒙古农业大学为例

7、基于高等数学建模思维的经济学应用

8、以数学建模促进应用型本科院校数学专业的发展

9、高等代数在数学建模中的应用探讨

10、融入数学建模思想的线性代数案例教学研究

11、以“勾股定理的应用”为例谈初中数学的建模教学

12、经管概率统计中的数学建模思想研究——评《经管与 财税 基础》

13、数学建模实例——河西学院校内充电站最佳选址问题

14、基于数学建模探讨高职数学的改革途径

15、大数据时代大学生数学建模应用能力的提升研究

16、“数学写作之初见建模”教学设计及思考

17、大学数学教学过程中数学建模意识与方法的培养简析

18、基于建模思想的高等数学应用研究

19、小学数学建模教学实践

20、依托对口支援平台培养大学生的数学建模能力

21、跨界研究在数学建模教与学中的应用

22、基于结构参数的机织物等效导热率数学建模

23、数学建模对大学生综合素质影响的调查研究

24、计算机数学建模中改进遗传算法与最小二乘法应用

25、数学建模在高中数学课堂的教学策略分析

26、发动机特性数字化处理与数学建模

27、数学建模中的数据处理——以大型百货商场会员画像描绘为例

28、数学建模竞赛对医学生 学习态度 和自学能力的影响

29、数学建模思想与高等数学教学的融会贯通

30、试论数学建模思想在小学数学教学中的应用

31、浅析飞机地面空调车风量测控系统数学建模及工程实施

32、高中数学教学中数学建模能力的培养——基于核心素养的视角

33、注重数学建模 提炼解题思路——对中考最值问题的探究

34、在数学建模教学中培养思维的洞察力

35、刍议数学建模思想如何渗透于大学数学教学中

36、数学建模竞赛背景下对高校数学教学的思考

37、数学建模课程对高职学生创新能力的培养探究

38、高等数学教学中数学建模思想方法探究

39、初中数学教学中数学建模思想的渗透

40、无线激光通信网络海量信息快速调度数学建模

41、基于多元线性回归模型的空气质量数据校准——2019年大学生数学建模竞赛D题解析

42、中学数学建模教学行为探究

43、数学建模竞赛成果诊断倒逼教学资源库优化的机制研究

44、基于数学建模活动的高校数学教学改革

45、数学建模与应用数学的结合研究

46、谈初中数学建模能力的培养

47、数学建模在初中数学应用题解答中的运用

48、基于数学建模思想的高等数学 教学方法 研究

49、数学建模融入高等数学翻转课堂模式研究

50、数学软件融入数学建模课程教学的探讨

最新小学数学教学论文题目

小学数学教材问题探析

小学数学生活化教学研究

小学数学___教学方法有效性分析

小学数学多媒体课件设计研究

小学生数学思维培养探究

小学数学中创新意识的培养

数学作业批改中巧用评语

新课标下小学数学教学改革研究

数学游戏在小学数学教学中的应用

《9和几的进位加法》教学设计

小学数学教学中素质 教育 研究

小学数学学困生的转化策略

小学数学教学中的情感教育

《六的乘法口诀》教学 反思

浅谈数学课堂中学生问题意识的培养

问答式学习课堂教学怎样转向小组合作学习

浅谈农村课堂的有效交流

浅谈在实践活动中提高学生解决实际问题的能力

浅谈小学应用题教学

浅谈学生合作意识的培养

“层次性体验”在数学课堂中的应用

数学课堂教学中学生探索能力的培养

小学数学低段学生阅读能力培养点滴

“观察、 品味、 顿悟” 我谈小学数学空间与图形教学

浅谈小学数学课堂教学中的“留白”

润物细无声--小班化数学作业面批有效策略的尝试

“我的妈妈体重 50 千克” 对培养良好数感的思考

“圆的面积” 教学一得

利用图解法解决逆推题

我教《24 时计时法》

《解简易方程》 教学反思

“可能性” 的反思

折线统计图折射出的“光芒”

《平均数》 教学反思

数学课堂上的“失误“也是一种资源

幽默语言在教学中的应用

“圆的认识” 教学片断与反思

计算机多媒体与小学数学教学的整

充分发挥学生的主体作用

“圆柱的体积” 教学反思

“平行四边形的面积” 听课反思

听“逆向求和应用题” 有感

小学低年级教学策略的实践与反思

“相遇问题” 建立“数学模型”

如何提高课堂语言评价的有效性

“20 以内退位减法” 教学反思

关于数学方向的优秀论文题目相关 文章 :

★ 关于数学专业毕业论文题

★ 数学方面毕业论文题目参考大全

★ 关于数学专业毕业论文题目参考

★ 数学的优秀论文

★ 数学优秀论文范文

★ 数学学术论文的题目

★ 数学教育论文题目

★ 数学教育方向的论文范文

★ 数学教育方向相关论文(2)

在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!数学教育论文题目(一) 1、浅谈中学数学中的反证法 2、数学选择题的利和弊 3、浅谈计算机辅助数学教学 4、数学研究性学习 5、谈发展数学思维的 学习 方法 6、关于整系数多项式有理根的几个定理及求解方法 7、数学教学中课堂提问的误区与对策 8、中学数学教学中的创造性思维的培养 9、浅谈数学教学中的“问题情境” 0、市场经济中的蛛网模型 11、中学数学教学设计前期分析的研究 12、数学课堂差异教学 13、浅谈线性变换的对角化问题 14、圆锥曲线的性质及推广应用 15、经济问题中的概率统计模型及应用 数学教育论文题目(二) 1、二阶变系数齐次微分方程的求解问题 2、一种函数方程的解法 3、微分中值定理的再讨论 4、学生数学学习的障碍研究; 5、中学数学教育中的素质教育的内涵; 6、数学中的美; 7、数学的和谐和统一----谈论数学中的美; 8、推测和猜想在数学中的应用; 9、款买房问题的决策; 10、线性回归在经济中的应用; 11、数学规划在管理中的应用; 12、初等数学解题策略; 13、浅谈数学CAI中的不足与对策; 14、数学创新教育的课堂设计; 15、中学数学教学与学生应用意识培养; 16、关于培养和提高中学生数学学习能力的探究; 17、运用多媒体培养学生 18、高等数学课件的开发 19、 广告 效益预测模型; 数学教育论文题目(三) 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的 反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 猜你喜欢: 1. 数学教育教学论文参考范文 2. 关于数学专业毕业论文题目参考 3. 数学教育专业毕业论文 4. 有关数学教育的论文范文 5. 数学教育专业毕业论文参考

相关百科

热门百科

首页
发表服务