矩阵对角化方法探讨摘 要: 本文利用矩阵的相关知识,研究了矩阵可对角化的若干方法.关键词: 可对角化;对角化方法;特征值;特征向量1 引言 形式最简单的矩阵就是对角阵.矩阵对角化使矩阵论的重要组成部分,在矩阵论中占有重要的作用,研究矩阵对角化问题很有实用价值,矩阵对角化是线性变换和化二次型到主轴上问题中经常遇到并需要解决的一个关键问题,然而并非任何一个 阶矩阵都可以对角化.本文利用矩阵的相关知识,如矩阵秩的知识,矩阵乘法原理,对一些理论进行应用和举例,介绍了矩阵对角化的四种方法,分别是一般方法;用矩阵初等变换将矩阵对角化的方法;利用矩阵乘法运算,探讨矩阵对角化的方法;利用循环矩阵的性质寻找矩阵对角化的方法.2 基本定义定义1 设 是 阶方阵,如果存在数 和 维非零向量 ,使得 则称 是矩阵 的一个特征值, 是 的属于 的一个特征向量. 定义2 设 为 阶方阵,称行列式 为 的特征多项式,记为 ,而称 为 的特征方程. 定义3 阶方阵 称为可逆的,如果存在 阶方阵 ,使得 ,其中 是 阶单位矩阵.定义 4 设 , 是 阶方阵,若存在 阶可逆矩阵 ,使得 ,则称 与 相似, 称为 的相似矩阵. 定义 5 如果数域 上,对 级矩阵 存在一个可逆矩阵 使 为对角形矩阵,则称矩阵 在数域 上可对角化;当 可对角化时,我们说将 对角化,即指求可逆矩阵 使 为对角形矩阵. 3 矩阵对角化的几种方法 一般方法 几个定理定理 阶方阵 相似于对角矩阵的充分必要条件是 由 个线性无关的特征向量,且当 相似于对角矩阵 时, 的主对角线元素就是 的全部特征值.推论1 方阵 相似于对角矩阵的充分必要条件是 的属于每个特征值的线性无关的特征向量个数正好等于该特征值的重数.定理 如果 阶方阵 有 个互不相同的特征值(即 的特征值都是单特征值),则 必相似于对角矩阵. 求 阶方阵的特征值与特征向量的一般步骤.第一步:计算特征多项式 第二步:求出特征方程 的全部根 (重根按重数计算),则 就是 的全部特征值. 如果 为特征方程的单根,则称 为 的单特征根;如果 为特征方程的 重根,则称 为 的 重特征值,并称 为 的重数. 第三步:对 的相异特征值中的每个特征值 ,求出齐次线性方程 的一个基础解系 ,则 就是对应于特征值 的特征空间的一个基,而 的属于 的全部特征向量为 (其中 为不全为 的任意常数) 如果 阶方阵 相似于对角矩阵,则 的相似对角化的一般步骤如下: 第一步:求出 的全部特征值 ;第二步:对 的相异特征值中的每个特征值 ,求出齐次线性方程组 的一个基础解系,将所有这样的基础解系中的向量合在一起,假定这样的向量共有 个,它们就是 的 个线性无关的特征向量 ;第三步:令矩阵 = ,则有 ,其中 是属于特征值 的特征向量 .注意 的列向量的排列次序于与对角矩阵的主对角线元素的排列次序相一致.如图1所示: 图1 阶方阵 的相似对角化过程 应用实例例1 设矩阵 = 当 取何值时, 相似于对角矩阵?在 可对角化时,求可逆矩阵 ,使 成对角矩阵.解 先求 的特征值,由 = = = ,得 的全部特征值为 . 只有一个重特征值-1,故由定理1的推论, 可对角化 属于2重特征值-1的线性无关特征向量正好有2个 齐次线性方程组 的基础解系含2个解向量 而矩阵 的秩为1当且仅当 ,故当且仅当 时 可对角化.当 时,矩阵 为 = .计算可得 的对应于特征值 的线性无关特征向量可取为 ,对应于 的特征值的特征向量可取为 .故所求的可逆矩阵可取为 ,它使得 .注 当 有 个互不相同的特征值时, 必可对角化;当 有重特征值时, 可对角化 的属于每个重特征值的线性无关特征向量的个数正好等于该特征值的重数 对于 的每个重特征值 (设 的重数为 ),矩阵 的秩为 .3 用矩阵初等变换将矩阵对角化的方法 理论依据若矩阵 在数域 上可对角化,则有 上可逆矩阵 使 为对角形矩阵.于是 的主对角线上的元素为 的全体特征值,并且可表示为 ,其中 为初等矩阵, .于是, ,又 也是初等矩阵,由初等矩阵与矩阵的初等变换的关系,即知 相当于对 施行了一次初等行变换与一次初等列变换.这里,我们称此种初等变换为对 施行了一次相似变换. 显然,可对 施行一系列的相似变换化为 . 又由 (注:此处 表单位矩阵)可如下进行初等变换,则可将 化为对角形矩阵 ,且可求得 ,对 只施行相应的初等列变换. 当 不可对角化时,也可经相似变换化简 后,求得其特征值,判定它可否对角化. 类似地,可由 ,做如下初等变换,则可将 化为对角形矩阵 ,且可求得 或由 求 的特征值,判定 可否对角化: ,对 只施行相应的初等行变换.并且在施行相似变换时,不必施行一次行变换后接着施行一次列变换这样进行,可施行若干次行(或列)变换后再施行若干次相应的列(或行)变换,只要保持变换后,最后所得矩阵与 相似即可. 用初等变换将矩阵对角化的方法 有 个特征单根的 阶可对角化矩阵的对角化方法引理1 设 是秩为 的 阶矩阵,且 其中 是秩为 的列满秩矩阵,则矩阵 所含的 个列向量就是齐次线性方程组 的一个基础解系.证明 设 ,对 施以列的初等变换相当于右乘一 阶初等矩阵. 设 其中 是一个 阶可逆矩阵, 是一个 阶矩阵,令 是矩阵 的列向量.由 线性无关,且 所以, 是方程 的 个线性无关的解向量.又 的秩为 ,则上述的 个向量正是该齐次线性方程组的一个基础解系.引理 -矩阵 经列的初等变换可化为下三角的 -矩阵 ,且 的主对角线上元素乘积的 多项式的根恰为 的所有特征根.引理 令 是数域 上一个 阶矩阵,如果 的特征多项式在 内有 个单根,那么由特征列向量构成的 阶可逆矩阵 ,使 .定理1 如果数域 上的 阶矩阵 的特征多项式 在 内有 个单根,则 可通过如下步骤对角化:设 ,且 .其中 为下三角矩阵,则 主对角线上全部元素乘积的 多项式的全部特征根为 的全部特征根,对 的每一特征根 , 中零向量所对应的 中的列向量是属于 的全部线性无关的特征向量.把属于 的特征向量作为列向量组合构成矩阵 ,使 .证明 易知 中非零向量的列构成列满秩矩阵,由引理1,2及引理3知结论成立.例1 设 = .问 是否可对角化?若 可以对角化,求可逆矩阵 ,使得 成对角形.解 .由 解得 的特征值 ,此时3阶矩阵 有3个不同的单根,故可对角化.当 时, 的零向量对应 中的列向量 是属于 的特征向量.同理可知 的属于 的特征向量分别是 和 ,可得 ,使得 . 有重特征根的可对角化矩阵的对角化方法对存在重特征根的矩阵同样可用上述方法,只是此时 中非零向量可能不构成列满秩矩阵,需将上述方法加以改进.我们先看引理4 设 是数域 上一个 阶矩阵, 可对角化的充要条件是 的特征根都在 内; 对于 的每一特征根 ,秩 ,这里 是 的重数.再由引理2,可知要判断 是否可对角化只需考察 的秩,并可得对角化步骤如下:定理 2 设 ( 是数域 一个 阶矩阵),则 ,其中 是下三角矩阵,且 主对角线元素乘积而得的 多项式的根恰为 的特征根. 若 的特征根都在 内, 可对角化的充要条件是:对 的每一特征根 ,秩 ,这里 是 的重数; 若 可对角化,对 的每一特征根 ,若 中非零向量构成列满秩矩阵,则 的零向量对应的 中的列向量是属于 的全部线性无关的特征向量,可组合而得 ,使 成对角形.否则继续施以列的初等变换: ,使 中非零向量构成列满秩矩阵,由 可得属于 的全部线性无关的特征向量. 证明由引理1,引理2的证明及引理4可得.例2 设(1) (2) 问 , 是否可对角化?若可以对角化,求可逆矩阵 ,使 成对角形.解 ,得 的特征根 (二重根), 由于秩 秩 ,秩 秩 ,故 可对角化.因 的非零向量不构成列满秩矩阵,需继续进行列的初等变换: .此时 的非零向量构成列满秩矩阵,可得 的全部线性无关的特征向量是 和 ,同理可得属于 的线性无关的特征向量是 从而 使 . .由 得 的特征根 (二重), 易判断 可对角化,属于 的特征向量是 和 ,属于 的特征向量是 ,从而 使 .上述方法与传统方法比较显然具有优越性,但对于结果较多的矩阵,计算量仍然很大,可利用计算机采用此方法求解. 利用矩阵的乘法运算,探讨矩阵对角化的方法.定理1 设 是 在数域 上的全部互不相同的特征值.作多项式 则 在 上可以对角化的充要条件是 注 对于阶数较低的矩阵是否可以对角化,可以先求得所有互异特征值 ,再验证是否有 若 则 可以对角化; 若 则 不可以对角化.定理2 设 是 在数域 上的全部互不相同的特征值.若 则 的属于 的 的特征子空间是 的列空间.推论1 设 是 在数域 上的全部互不相同的特征值,其重数分别为 且 若 可对角化.则矩阵 的列向量组中有对应于 的 个线性无关的特征向量 .定理 3 设 是 在数域 上的全部互不相同的特征值.如果对每个 都有 ,那么 这里记 的属于 的特征子空间为 ,而 的列空间为 .推论2 设 是 在数域 上的全部互不相同的特征值,其重数分别为 则 与对角矩阵相似的充要条件是 的秩 .推论3 若 阶可对角化矩阵 只有两个相异的特征值 ( 重)和 ( 重),则矩阵 (或 )的 (或 )个线性无关的列向量就是对应 (或 )的特征向量组的极大线性无关组.例1 判断下列矩阵是否可以对角化,若可以,求可逆矩阵 ,使 成对角形. 解 易知 的特征值是 (2重根), 它们都在数域 中,尽管如此, 不能对角化,因为 . 易求得 的特征值是 (2重根).由于 ,故 可以对角化.并且通过 ,可得 属于 的一个线性无关的特征向量 通过 ,可得 属于 的一个线性无关的特征向量 通过 ,可得 属于 的2个线性无关的特征向量 和 令 ,则 利用循环矩阵性质寻找矩阵对角化的方法 基本循回阵相似于对角阵 阶矩阵 称为基本循回阵.它满足于如下性质: 求出基本循回阵 的特征多项式: 因为特征多项式 有 个不同特征根: 所以,基本循回阵 相似于对角阵.下面求出特征向量:取 则有 (因 ), 从而 为特征根 对应的 的特征向量.作矩阵: ,因为 为 行列式, 所以 可逆,则: . 循回方阵相似于对角阵矩阵 称为循回阵, 可以由基本循回阵的多项式求出来: .设: ,所以循回阵可以对角化. 任意 阶矩阵 可以对角化的充要条件是 相似于一个 阶循回阵证明 充分性 若 相似于循回阵.即存在可逆阵 使 ,但 所以 即 相似于对角阵.必要性 若 可以对角化,即存在可逆方阵 使得 .用 次多项式 作一方程组如下: ,即 该方程组的系数行列式为 行列式, 从而由 法则知方程由唯一解.设阶为 则 次多项式为 ,取矩阵 ,其中 为基本循回矩阵,从而 为循回阵,且有 所以, 即 相似于循回阵 . 结束语综上所述,复数域上的 阶矩阵,如果按相似关系分类后,含有循回阵的类可以对角化.参考文献【1】 魏站线.线性代数要点与解题 陕西:西安交通大学出版社,2006.【2】 高吉全.矩阵特征根与特征向量的同步求解方法探讨 数学通报,. 【3】 张禾瑞,郝鈵新.高等代数 北京:高等教育出版社,1993.【4】 陈汉藻.矩阵可对角化的一个重要条件 数学通报,1990. 2.【5】 周伯.高等代数 北京:人民教育出版社,1978.【6】 王萼芳,石生明.高等代数 北京:高等教育出版社, The Method of The Diagonalization of MatrixZhao Shuang-ling(Mathematics & Statistics Industry School, Anyang Normal University, Anyang, Henan 455002)Abstract:In this paper, by the use of the matrix-related knowledge, three methods of the diagonalization of matrix were words: diagonalizable; the method of diagonalization ; eigenvalues; eigenvectorsI hope that it could help you a little!!!