不可以的.矩阵的对角化不是只用初等变换把它变成对角线形式就叫对角化了,而是对角线必须为特征值.如果把它变成对角线形式就叫对角化,那可以在任一行乘个数,结果就变了,而对角形式保持不变如矩阵0 -11 0 用初等变换交换2行就成对角式了,但对角化必须是特征值正负i.当然,用初等变换当然可以实现对角化,但是只能是你知道对角化矩阵后在用初等变换往上靠
这种老掉牙的课题写了干什么?前人已经研究的透彻不能再透彻了。既然写文章,搞研究就要真的做了点实质性的东西出来,否则只是浪费时间。
1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值
理论上看,意义是明显的。相似是一种等价关系,对角化相当于对一类矩阵在相似意义下给出了一种简单的等价形式,这对理论分析是方便的。相似的矩阵拥有很多相同的性质,比如特征多项式,特征根,行列式……如果只关心这类性质,那么相似的矩阵可以看作没有区别的,这时研究一个一般的可对角化的矩阵,只要研究它的标准形式——一个对角矩阵就可以了。而对角矩阵是最简单的一类矩阵,研究起来非常方便。这个过程相当于在一个等价类中选取最顺眼的元素研究。另外,对角化突出了矩阵的特征值,而过度矩阵T反映了特征向量的信息,对角化过程的直观意义还是很明显的。再结合正交矩阵的概念,可以得到一些不平凡的结论,例如实对称矩阵总可以对角化。实践中的矩阵对角化作用也很大。别的不说,比如要算一个一般的3阶实对称矩阵A的n次幂,n较大时,按矩阵乘法定义去计算是相当繁琐的,计算复杂度呈指数型增长。但是如果把A可以对角化(实对称矩阵总是可以对角化的),写为=T^(-1)PT,P是对角阵。那么A^n=T^(-1)P^nT,P^n的计算是很简单的,只要把各特征值^n即可,此时计算A^n的复杂度几乎与n无关。以上纯属个人见解,仅供LZ参考:)
我也是差不多这个课题啊,我的是 矩阵可对角化的条件及对角化方法,有资料互相参考啊,是写开题报告么 ,从别处拷过来的 矩阵对角化在国内外已有一定的研究。早在十九世纪末,人们在研究行列式的性质和计算时,提出了对角矩阵的概念,由于计算机的发展,更是为矩阵对角化的应用开辟了广阔的前景,它经常出现在诸如可用于求解微分方程组,用于研究数理统计量的分布,还有用于研究集合曲面的标准形等不同的科技领域中,这就使得对角矩阵成为计算数学中应用及其广泛的矩阵。
341 浏览 2 回答
285 浏览 4 回答
300 浏览 6 回答
324 浏览 4 回答
185 浏览 5 回答
251 浏览 4 回答
331 浏览 5 回答
302 浏览 3 回答
87 浏览 5 回答
337 浏览 3 回答
204 浏览 2 回答
276 浏览 5 回答
319 浏览 5 回答
277 浏览 5 回答
172 浏览 3 回答
97 浏览 4 回答
224 浏览 6 回答
332 浏览 2 回答
112 浏览 3 回答
189 浏览 3 回答
276 浏览 4 回答
81 浏览 4 回答
259 浏览 6 回答
280 浏览 4 回答
311 浏览 5 回答