内生性三个来源是遗漏变量偏差,测量误差,反向因果
1、遗漏变量偏差,这是指模型中漏掉了一个或几个重要的解释变量,且这些被遗漏的解释变量与模型的解释变量相关。你可以这样理解,本来在一个回归中,有一个重要的解释变量,但你没有把这个解释变量放进模型,这意味着这个变量会自动被包含进扰动项中。
如果这个被遗漏的解释变量与模型已有的解释变量不相关,那估计依然是无偏的。但是如果被遗漏的变量与没有被遗漏的变量相关,这就会造成解释变量与扰动项相关,也就是内生性问题的定义。
2、测量误差。对于一个变量X,我们仅能观测到其中能够观测到的部分,比如X1,而对于X无法观测到的部分X2(X=X1+X2,这里的意思是X由可观测的X1和不可观测的X2两部分组成),就被自然地放到了误差项。那么X2是否与其他解释变量相关就不确定了,如果相关,就造成解释变量与误差项相关,也就是内生性问题。
3、反向因果。当至少一个解释变量倍确定为被解释变量的函数,反向因果就出现了。如果解释变量X被部分地确定为被解释变量Y的函数,这意味着X与Y相关,而Y与误差项相关,因此,X与误差项相关,回到内生性的定义。举个例子,公司的某项投资会影响公司绩效,但反过来,公司的绩效也会影响公司的该项投资,因为绩效好意味着公司有更多的钱来进行这种投资。