And the *** ( cocufezr ) z thin films with lower magocrystalpne anisotropy constant of cell boundary phase will have a higher coercivity 而较低的胞壁相磁晶各向异性常数k1 ,则有助于获得高的钉扎场。
The micromorphology and grain boundary microstructure of the material were studied with sem and tem ; the grain boundary phase position of the material were *** yzed with eds and x - ray 利用sem 、 tem研究了材料的微观形貌和晶界显微结构特点,用eds 、 x - ray分析了材料晶界的相组成。
Based on the micromagic model of the *** ( cocufezr ) z thin films presented in this thesis , the pining field has been puted with different physical parameters of the cell boundary phase 本文首先建立了 *** ( co , cu , fe , zr ) z薄膜畴壁钉扎的二维微磁学模型,研究了胞壁相的厚度和磁晶各向异性常数对畴壁钉扎的影响。
The results show that the pining field increases with the increasing of the thickness of the cell boundary phase and decrease with the further increasing of the thickness of the cell boundary phase . then high pinning field can be obtained with the appropriate thickness of the cell boundary phase 计算结果表明,随著胞壁相厚度的增加,薄膜的钉扎场先增加后降低,这说明胞壁相厚度与畴壁宽度相当时才会获得较大的钉扎。
The micromorpholgy and grain boundary microstructure of the material were studied with sem and tem and the grain boundary phase position were *** yzed with eds and x - ray the mechanical properties , micromorpholgy microstructure of grain boundary and phase position of al2o3 posite ceramics were systematically studied , the effect of additives , the relationship beeen microstructure and mechanical strength , the sintering mechani *** of the material and influence factors of the structure and properties of al2o3 posite ceramics were discussed respectively 系统研究了氧化铝陶瓷的力学性能、微观形貌、晶界显微结构,并讨论了各添加组分的作用、材料显微结构与力学性能的关系以及材料的烧结机理和影响材料结构与性能的影响因素。本论文探讨了氧化铝基复相陶瓷的强韧化机理,实验表明al _ 2o _ 3 - ti体系主要是微裂纹韧化。