近年来机器人辅助外科手术的出现,引起了医学界乃至全世界的关注。什么是手术机器人呢?手术机器人不是机器人在做手术,而是手术机器人系统由经验丰富的外科医生操控机械手臂,来达到手术的目的。医生在机器人手术系统控制台上操作机械臂,被系统精确无误的实时传递,同时在患者体内微小的器械进行手术。医生采用手术机器人辅助手术,可以使手术更加精准、创伤更小、患者恢复更快。
远程手术机器人主要应用于远程手术,比如达芬奇机器人(da Vinci)。远程机器人手术系统主要由控制台和操作臂两部分组成。控制台是机器人手术系统的核心,由计算机系统、手术操作监视器。机器人控制监视器、操作手柄和输入输出设备等组成。术者坐在控制台前,通过机器人的控制监视设定器械动作幅度,张开角度的大小、器械闭合后锁定与否等,利用操作手柄进行操作。手术前需对操作臂活动范围进行设定。术者的手术操作转化为电信号,传导给机器人的操作臂,从而实现远程手术。
2001年7月《自然》 杂志报道了世界首例从美国纽约到法国Strasbourg的跨大西洋腹腔镜胆囊切除术也获得了成功,这是远程手术的一个里程碑,标志着外科手术跨时代的飞跃。现今远程手术机器人手术已应用于心脏外科、普通外科、泌尿外科、妇产科和骨科,具有普通腔镜或开放手术无法替代的优点:1、可进行精细操作,计算机系统可将术者在操作台上易于完成的大幅度动作通过缩小传输到机器人双臂手柄上,并可将术者的动作进行高频波过滤,消除器械的抖动和震颤,使操作更平稳准确。2、术者可坐在舒适的椅子上从容进行手术操作,不易疲劳3、手术通常由术者一人就可以完成。有时需1位洗手护士或助手医师,帮助安装、更换手术器械,协助止血,术后卸载器械装置等。
美国食品和药物监管局将远程手术机器人定为二类器械(那些被滥用或错用会造成亚种伤害的器械)来监管,因为它的控制信号都是依靠来自电脑的电磁脉冲。此外,远程手术的机器人操作手术时,术者使用的是机器人手柄或特制的器械,需要一段时间学习和训练,才能获得一种间接的触觉的反馈,否则压力过大会造成局部组织的损伤。在其他安全问题上,如黑客网络攻击造成互联网传输的中断、远程传输速度慢造成图像滞后,也会影响手术的精确性等等。由此可见,紧急应付措施及机器人操作的精确性和敏感性应该纳入术前考虑的问题。
对于特别脆弱的组织,医生在第一次远程 "触摸 "时可能已经施加了过大的压力。而正是考虑到这个问题,美国德克萨斯农工大学的一个团队创造了这个实验性的新系统。在其目前的形式下,它结合了光学距离传感器,应用于机器人抓取器的手指内侧,由人类操作者远程控制。当该设备闭上手指抓取物体时,传感器会测量自己和该物体之间的距离递减。这些数据会被传送到操作者佩戴的控制手套上,控制手套会向他们的指尖发出温和的电脉冲。这些脉冲的频率会随着操作者的手指越来越接近物体而增加。因此,操作者可以在实际接触物品之前,精细地调节他们即将施加到物品上的压力大小。
远程手术机器人的关键设备之一是互联网系统。互联网网速会影响图像的传输速度,进而影响手术的精确性。研究表明,600毫秒以内的滞后,在现实中对手术的影响是微乎其微。现在5G网络已经逐渐在普及,图像传输的滞后必将得到解决。
相比之下,互联网的稳定性则是关键的问题,如何保证互联网故障不会发生、服务器遭受黑客恶意攻击,是目前尚待解决的问题。加密在机器人和人类操作员之间流动的数据包将有助于防止某些类型的网络攻击。但是,对于使用无关数据阻碍系统的拒绝服务攻击,它无效。对于视频,加密还存在导致精细操作中不可接受的延迟的风险。为此,华盛顿大学(UW)电气工程团队开发“操作员签名”的概念,该概念利用特定外科医生或其他遥控操作员与机器人交互的方式来创建独特的生物识别签名。通过跟踪特定操作员应用于控制台仪器的力和扭矩以及他或她与机器人工具的相互作用,研究人员开发了一种新方法来验证该人的身份并验证操作员是他或她声称的人。
相信在不久的将来,随着机器人手术器械和手术技术的不断成熟和完善,信息网络技术的飞速发展,远程手术机器人必将越来越完善,能够帮助外科医生减少手术过程中的意外伤害,不断造福于人类。
“我们要消除众生的困苦和匮乏,带给他们愉悦和美丽。”——医疗机器人工程师
远程机器人系统已经允许外科医生在一个地方控制另一个地方的机器人手术工具,因此他们可以在远处进行手术。然而,一种新的近距离感应系统可以使这种手术比以往更安全、更精确。
在典型的远程机器人手术设置中,外科医生在视频屏幕上查看切口,移动手指在远程手术室中相应地移动机器人操纵器 "手指 "或其他器械。这种技术不仅可以让外科医生在一个城市给另一个城市的病人做手术,而且还可以在外科医生自己的位置上给病人做手术,帮助他们在做精细手术时,抚平手部的颤动。因此,这些系统通常都包含了触觉反馈功能,操作者可以通过指尖上的振动来感受到他们对病人身体组织施加的力的大小。
也就是说,对于特别脆弱的组织,医生在第一次远程 "触摸 "时可能已经施加了过大的压力。而正是考虑到这个问题,美国德克萨斯农工大学的一个团队创造了这个实验性的新系统。在其目前的形式下,它结合了光学距离传感器,应用于机器人抓取器的手指内侧,由人类操作者远程控制。当该设备闭上手指抓取物体时,传感器会测量自己和该物体之间的距离递减。
这些数据会被传送到操作者佩戴的控制手套上,控制手套会向他们的指尖发出温和的电脉冲。这些脉冲的频率会随着操作者的手指越来越接近物体而增加。因此,操作者可以在实际接触物品之前,精细地调节他们即将施加到物品上的压力大小。
在实验室测试中,11名志愿者使用该系统远程完成了一个物体抓取任务。每个人只在抓取器的视频引导下完成了两次,另外两次是在视频和触觉反馈的引导下完成的。当反馈被利用后,他们能够减少约70%的初始接触力。最终,研究人员希望这项技术能够在远程机器人手术中最大限度地降低患者的风险,并且以不分散注意力的方式进行。
“我们的目标是想出一种能够在不增加这项任务所需的主动思考负担的情况下,提高近距离估计的准确性的解决方案。”首席科学家Hangue Park说。“当我们的技术准备好在手术环境中使用后,医生将能够直观地知道他们的机器人手指离底层结构有多远,这意味着他们可以保持积极的专注于优化患者的手术结果。”
一篇关于这项研究的论文最近发表在《科学报告》杂志上。
从新型冠状病毒肺炎疫情开始到现在,中国是世界上疫情控制做得最好的国家。不过,关联境外输入的零星小规模偶发疫情持续不断,一旦疫情出现必然导致隔离发生,医院作为战疫主战场,影响许多需要医疗救助的病人。幸运的是,5G技术推动的远程医疗快速发展,尤其VR/AR技术立体呈现病人器官、组织病变形态,允许医生远程清晰诊断病人的病灶;手势识别精准定位医生的动作与病人身体的位置,远程控制医疗设备为病人诊疗、手术,为远程病人带来曙光。
一、远程医疗“VR/AR+手势识别”方案落地性强
自从5G诞生,云计算速度延迟的基础设施障碍没了,我们落地远程医疗就要考虑三方面因素:一是精度,医疗的精度必须高到离谱,有初 科技 手势控制精度能达到级别;二是立体,医生也是人,有正常的交互习惯,建立VR/AR病人器官、组织模型,最大化接近人体并看得更清楚;三是成本,类似一针药100多万的产品没有普及价值,这是一个软件算法配合硬件的方案,软件算法效率提升可以降低硬件成本,进而降低整体成本,实现“普通摄像头+深度学习”方案,大数据进一步训练,精准度越来越高。
首先来讲,基于计算机视觉的手势识别的技术方案优势明显,从医生动作信息输入到VR/AR模型做出反馈,这是一个动态过程,降低了硬件的束缚,为实时手术提供了可行性,而且,手势识别降低了硬件的依赖,让医生的手避免被其他物体遮挡,顺应医生视觉习惯,而且识别精度比医生手术刀微弱抖动还小,技术的落地基础有了。
其次,人体是一个三维立体结构,而手势识别也是三维立体识别,VR/AR模型呈现也是三维立体。这过程类似增强CT、MR或造影支持,从机器视觉获取人体三维模型信息到VR/AR模型立体呈现,呈现在医生眼前的就是一个立体的病人器官、组织,并清晰展示病灶情况,此时,医生远程诊断病人情况,需要手术的情况下,也可以借助远程专用VR/AR模型为基础的手术平台,实现两地病人与医生的链接,完成远程手术,为来不及远程运送的急重症病人提供新的希望。
最后,任何 科技 的产生都是为了造福大众,成本的高企无法适应市场需求,进行最优方案降低成本也是必须考虑的因素。目前来讲,基于机器视觉的手势识别方案分为两种“一种是用深度摄像头,一种是用一个或者多个普通摄像头实现。 而其中深度摄像头的方案又分为两种,TOF(Time of Flight,光飞时间)和结构光。”而不同方案的差别就像人的一只眼睛、两只眼睛看到景深层次不同,但是一只眼睛借助已有信息、关键提示等其他辅助软条件也可以达到预定效果,而普通摄像头信息延迟低于TOF数倍、拍摄角度大于TOF很多,虽然提高算法要求,但是降低综合成本,更及时、全面获取信息,也更适应医疗场景需求。
二、远程医疗VR/AR硬件低成本、高精度手势识别技术可行
在手势识别应用于VR/AR硬件方面,有初 科技 有落地项目进行实际验证,并把成本分成不同方案进行呈现,当然,包括最低成本的实现方案。
对于医疗来讲,高精度就是病人的生命,有初 科技 实现识别精度,为远程精准医疗提供技术可行性。实现手势识别依赖“摄像头+算法”的合理方案,得益于机器视觉和深度学习技术的发展,我们利用普通摄像头实现高精度的手势识别,对于应用的落地是一大利好。
而且,手势识别的高精度摆脱穿戴设备也是一大突破,一个穿戴设备套在手上,增加一层交互传感的误差,这个误差远远大于手术刀的误差,这一点无手套、无标记的手势识别也是有初 科技 的优势。
对于医疗来讲,延迟和视角是高精度的间接影响因素,却直接影响着医生对病人的治疗。利用现有SLAM摄像头实现手势识别,大部分用于SLAM的摄像头均为鱼眼或者广角灰度摄像头,在实现的精度上,用同样的计算资源或者用同样复杂度模型的话,基于深度的或者灰度的摄像头能够做到精度最高,RGB的精度反而相对会弱一些,因此,直接在SLAM的相机上实现手势识别的精度也能够达到比较满意的效果。
在成本、延迟、广角都占据优势的条件下,SLAM相机进一步加速“普通摄像头+深度学习”方案落地,也可能是未来的主流方案,等待临床数据去训练和验证。
三、远程医疗“最自然交互”手势识别成为VR/AR选择
最好的交互就是没有交互,当下的交互方式都是人适应机器,这样就容易导致用户的操作失误,医生的操作失误就会导致病人的生命危险,所以,交互方式适应人才是最佳方案。
人类诞生语言前,手势识最原始、最自然的交流方式,成为人的一种习惯、潜意识,出错率大大降低,而手势识别就是基于最自然的交互,适应医生的习惯,让医生全身心投入治疗,而不是分心于交互习惯。
而无论具有高度三维立体沉浸感的VR/AR,还是交互自然而生的手势控制,模仿人体日常生活中的行为方式,如挥手、握手、击掌、猜拳、抓取……动态追踪手势进行实时识别,保障动作识别的及时性、准确性。
为了提高真实手术场景的触感,基于VR/AR定制手术刀、镊子等设备,实现手势的触觉反馈体验,进一步感知手部复杂自由度的姿态和意图,未来手势识别成为VR/AR设备主流交互方式指日可待。