光谱有发射光谱和吸收光谱,发射光谱有连续光谱和明线光谱. 日光灯-明线光谱(气体电离撞击灯壁). 电灯泡-连续光谱(灯丝发光). 阳光-吸收光谱(炽热气体发出的光被大气层部分物质吸收).
1.LED日光灯由多颗超亮度小功率LED、透光性高的PC外罩、散热铝件及电源组成。2.LED日光灯采用的光源有草帽头和贴片灯珠两种型号。其中常用的贴片灯珠有3528、5050、1W大功率等 1)透明的PC外壳,透光性能高,可看到里面的灯珠;2)半透明的磨砂外壳,光线透出较柔和。4.LED日光灯内置电源,工作电压为宽电压,从85V到265V均可使用。5.LED日光灯可做成红、黄、蓝、绿、白、暖白颜色。 LED日光灯以质优、耐用、节能为主要特点,投射角度调节范围大,18W的亮度相当于普通40W日光灯,抗高温,防潮防水,防漏电。 使用电压有:110V、220V可选,外罩可选玻璃或PC材质。灯头与普通日光灯一样。LED日光灯采用最新的LED光源技术,数位化外观设计,节电高达70%以上,12W的LED日光灯光强相当于40W的日光灯管LED日光灯寿命为普通灯管的10倍以上,几乎免维护,无须经常更换灯管、镇流器、启辉器。绿色环保的半导体电光源,光线柔和,光谱纯,有利于使用者的视力保护及身体健康。6000K的冷光源给人视觉上清凉的感受,人性化的照度差异设计,更有助于集中精神,提高效率。1. 适用性强,在室内外各种恶劣环境下的适应性和可靠性都有提高2. 色彩丰富:由三基色(红、绿、蓝)显示单元箱体组成,使电子屏实现显示色彩丰富、高饱和度、高解析度、显示频率高的动态图像3. 亮度高:采用超高亮度的LED,太阳强光底下远距离仍清晰可见4. 效果好:采用非线性校正技术,图像更清晰,层次感更强5. 可靠性强:采用静态扫描技术和模块化设计技术,可靠性、稳定性更高6. 显示模式多样化:支持多种显示 模式缺点价格贵,能普遍做到的光效率和理论光效率还有很大差距,能做到的寿命和理论寿命还有很大差距,.还是有一定的发热量,光衰还可以大幅度缩小。优点1、环保灯具,保护地球2、高效转换,减少发热3、清静舒适,没有噪音4、光线柔和,保护眼睛5、无紫外线,没有蚊虫6、电压可调80V-245V7、节省能源,寿命更长8、坚固牢靠,长久使用.9. 与普通的荧光灯相比,LED日光灯无需镇流器,无需启辉器,无频闪。10 免维护,频繁开关不会导致任何损坏。11.安全且有稳定的质量 可以经受4kv高电压 散热量低 可以工作在低温-30℃ 高温55℃。12.抗振动性好,便于运输。13.节能,.寿命长,适用性好,因单颗LED的体积小,可以做成任何形状,回应时间短,环保,无有害金属,废弃物容易回收,色彩绚丽,发光色彩纯正,光谱范围窄,并能通过红绿蓝三基色混色成七彩或者白光。 一般称为组件的外部量子效率,其为组件的内部量子效率与组件的取出效率的乘积。所谓组件的内部量子效率,其实就是组件本身的电光转换效率,主要与组件本身的特性(如组件材料的能带、缺陷、杂质)、组件的垒晶组成及结构等相关。而组件的取出效率则指的是组件内部产生的光子,在经过组件本身的吸收、折射、反射后,实际在组件外部可测量到的光子数目。因此,关于取出效率的因素包括了组件材料本身的吸收、组件的几何结构、组件及封装材料的折射率差及组件结构的散射特性等。而组件的内部量子效率与组件的取出效率的乘积,就是整个组件的发光效果,也就是组件的外部量子效率。早期组件发展集中在提高其内部量子效率,主要方法是通过提高垒晶的质量及改变垒晶的结构,使电能不易转换成热能,进而间接提高LED的发光效率,从而可获得70%左右的理论内部量子效率,但是这样的内部量子效率几乎已经接近理论上的极限。在这样的状况下,光靠提高组件的内部量子效率是不可能提高组件的总光量的,因此提高组件的取出效率便成为重要的研究课题。方法主要是:晶粒外型的改变——TIP结构,表面粗化技术。暖光灯如今,佐治亚大学的科学家研宣布了据说是世界上首个运用单一萤光粉和单一发光单元的暖白光LED灯。有关这种资料详细情况的论文宣布在《天然》出书集团最新一期的《光科学与运用》期刊中。论文的首要作者、佐治亚大学副教授潘正威(音)说:“当前,白光LED灯首要用在闪光灯和汽车大灯上,但它们宣布的浅蓝色寒光不太招人喜爱,特别在室内照明范畴。咱们的资料到达了暖色温,一同又能完成逼真的色彩复原。此前运用单一萤光粉改善的LED灯都没能到达这种作用。”潘正威表明,衡量人工光的质量首要有两个目标。关联色温用来衡量光的冷暖。对室内照明来说,色温低于4000K(开尔文温度)是比拟抱负的,而关联色温高于5000K,发光器就会宣布白光LED灯那样的浅蓝色寒光。另一个重要目标是色彩复原度,即光源模仿天然光的才能。复原度到达80以上对室内照明来说是抱负的,低于此数值色彩就会显得失真。潘正威和其搭档研发的资料满意了这两个条件,关联色温被控制在了4000K以下,一同色彩复原度到达了85。潘正威说,给蓝光LED芯片外层涂上不一样色彩的萤光粉,就能宣布暖白光,这样便能做出以萤光粉为根底的白光LED灯。不过,将这些原资料依照准确份额配比起来吃力又耗钱,并且结尾发生的光色会有所区别,由于每一种原资料对温度改变的反响都不一样。该论文作者之一、佐治亚大学工程学院博士在读生李旭帆(音)说:“运用单一萤光粉能处理光色不稳定的难题,由于单一资料不会跟着温度的上升发生改变。”为了研发新的萤光粉,潘正威和他的团队选取了氧化铕、氧化铝、氧化钡和石墨粉,每种均取少数混到一同。然后,他们将这些粉末状资料放到管式炉中加热至1450摄氏度。炉内的真空状况使得被汽化的资料落到底盘上,沉积为黄色的发光化合物,再将它们装进灯泡里。研究结果尽管很有远景,但潘正威着重说,还需要处理几个难题才能将这种资料用于家庭、公司和校园的照明。新资料的光效比当前的浅蓝色白光LED灯要低得多。此外,规模化出产也会面对应战。 T5 :T8:适用范围随着环保意识的深入人心,LED日光灯、LED投光灯等LED灯具的使用越来越广泛,瑞思普照明专业生产LED日光灯、LED天花灯、LED筒等各类LED照明产品.(1)住宅或类似场所的楼梯间、走道装设节能自熄开关的灯,几乎都用白炽灯,最适宜用LED日光灯来代替,节能效果好,经济效益也比较显著。(2)还可以应用于商场作重点照明的射灯,博展馆类建筑的射灯,以及公共建筑的射灯等。(3)局部照明灯,采用安全特低电压(SELV)的检修灯。(4)宾馆使用白炽灯和卤素灯较多,这类场所使用LED日光灯也比较适合,可以用来取代白炽灯、卤素灯的有:客房需调光的床头灯、床头顶上阅读灯、夜灯、衣柜灯、吧台灯、开门灯、进门过道灯,以及卫生间洗浴灯等都可以使用LED日光灯来代替。(5)疏散照明灯、疏散标志灯,以及其他标志灯,还有部分备用照明灯(当正常照明采用HID灯时),适宜用LED日光灯。(6)用LED日光灯代替MR16、MR25(采用卤素灯)一类射灯;这些应要求LED日光灯有更高显色指数(Ra)和具有暖色表(<3300K)。(7)视觉条件要求不太高的一般建筑的辅助场所,如走道、卫生间,一般用途的库房,风机、水泵房等也可以使用LED日光灯代替。环保节能的观念已经被越来越多的人所认可,由此可见LED日光灯、LED电光源、LED投光灯的使用范围也必将越来越广阔。 1、大型工厂,生产车间、工作台、办公室室内照明;2、商场超市室内照明;3、地下停车场,24小时使用,省电很可观;4、医院室内照明;5、学校教室照明;6、家庭。电源LED日光灯电源是LED日光灯中最重要的部件,选择不当,LED日光灯不能发挥出性能,甚至不能正常使用。恒流LED半导体的特性决定其受环境影响较大。譬如温度变化升高,LED的电流增加,电压的增加,LED的电流也会增加。长期超过额定电流工作,会大大缩短LED的使用寿命。而LED恒流就是在温度和电压等环境因素变化时,确保其工作电流不变。电源灯板一些客户先设计灯板,再找电源,发现很难有合适的电源,要么电流太大,电压太小(如I>350mA,V<40V);要么电流太小,电压太高(如I<40mA,V>180V),造成的结果是发热严重,效率低,或者输入电压范围不够。其实,选择一个最优良的串并接方式,加在每个LED上的电压电流是一样的,而电源的效果却能发挥最好的性能。最好的方式是先和电源厂商沟通,量身定做。工作电流一般LED的额定工作电流20毫安,有的工厂一开始就用到尽,设计20毫安,实际上此电流下工作发热很严重,经多次对比试验,设计成16-18毫安是比较理想的。N路并联的总电流=17 * N;工作电压一般LED的推荐工作电压是,经测试,大部分工作在,所以按计算式比较合理的。M个灯珠串联的总电压=* M
1672年 英国 牛顿
复色光分解为单色光的现象叫光的色散.牛顿在1672年最先利用三棱镜观察到光的色散,把白光分解为彩色光带(光谱).色散现象说明光在媒质中的速度(或折射率n=c/v)随光的频率而变.光的色散可以用三棱镜,衍射光栅,干涉仪等来实现. 白光是由红、橙、黄、绿、蓝、靛、紫等各种色光组成的叫做复色光。红、橙、黄、绿等色光叫做单色光。 色散:复色光分解为单色光而形成光谱的现象叫做光的色散。色散可以利用棱镜或光栅等作为“色散系统”的仪器来实现。复色光进入棱镜后,由于它对各种频率的光具有不同折射率,各种色光的传播方向有不同程度的偏折,因而在离开棱镜时就各自分散,形成光谱。 1、光的色散 dispersion of light 介质折射率随光波频率或真空中的波长而变的现象。当复色光在介质界面上折射时,介质对不同波长的光有不同的折射率,各色光因折射角不同而彼此分离。1672年,I.牛顿利用三棱镜将太阳光分解成彩色光带,这是人们首次作的色散实验。通常用介质的折射率n或色散率dn/dλ与波长λ的关系来描述色散规律。任何介质的色散均可分正常色散和反常色散两种。 复色光分解为单色光而形成光谱的现象.让一束白光射到玻璃棱镜上,光线经过棱镜折射以后就在另一侧面的白纸屏上形成一条彩色的光带,其颜色的排列是靠近棱镜顶角端是红色,靠近底边的一端是紫色,中间依次是橙黄绿蓝靛,这样的光带叫光谱.光谱中每一种色光不能再分解出其他色光,称它为单色光.由单色光混合而成的光叫复色光.自然界中的太阳光、白炽电灯和日光灯发出的光都是复色光. 光波都有一定的频率,光的颜色是由光波的频率决定的,在可见光区域,红光频率最小,紫光的频率最大,各种频率的光在真空中传播的速度都相同,等于.但是不同频率的单色光,在介质中传播时由于受到介质的作用,传播速度都比在真空中的速度小,并且速度的大小互不相同.红光速度大,紫光的传播速度小,因此介质对红光的折射率小,对紫光的折率大.当不同色光以相同的入射角射到三棱镜上,红光发生的偏折最少,它在光谱中处在靠近顶角的一端.紫光的频率大,在介质中的折射率大,在光谱中也就排列在最靠近棱镜底边的一端. 夏天雨后,在朝着太阳那一边的天空上,常常会出现彩色的圆弧,这就是虹.形成虹的原因就是下雨以后,天上悬浮着很多极小的水滴,太阳光沿着一定角度射入这些水滴发生了色散,朝着小水滴看过去就会出现彩色的虹,虹的颜色是红色在外紫色在内依次排列. 2、光的色散 一、中国古代对光的色散现象 中国古代对光的色散现象的认识最早起源于对自然色散现象——虹的认识.虹,是太阳光沿着一定角度射入空气中的水滴所引起的比较复杂的由折射和反射造成的一种色散现象.中国早在殷代甲骨文里就有了关于虹的记载.当时把“虹”字写成“ ”.战国时期《楚辞》中有把虹的颜色分为“五色”的记载.东汉蔡邕(132—192)在《月令章句》中对虹的形成条件和所在方位作了描述.唐初孔颖达(574—648)在《礼记注疏》中粗略地揭示出虹的光学成因:“若云薄漏日,日照雨滴则生虹”说明虹是太阳光照射雨滴所产生的一种自然现象.公元八世纪中叶,张志和(744—773)在《玄真子·涛之灵》中第一次用实验方法研究了虹,而且是第一次有意识地进行的白光色散实验:“背日喷呼水成虹霓之状,而不可直也,齐乎影也”.唐代以后,不断有人重复类似的实验,如南宋朝蔡卞进行了一个模拟“日照雨滴”的实验,把虹和日月晕现象联系起来,有意说明虹的产生是一种色散过程,并指出了虹和阳光位置之间的关系.南宋程大昌(1123—1195)在《演繁露》中记述了露滴分光的现象,并指出,日光通过一个液滴也能化为多种颜色,实际是色散,而这种颜色不是水珠本身所具有,而是日光的颜色所著,这就明确指出了日光中包含有数种颜色,经过水珠的作用而显现出来,可以说,他已接触到色散的本质了. 在我国从晋代开始,许多典籍都记载了晶体的色散现象.如记载过孔雀毛及某种昆虫表皮在阳光下不断变色的现象,云母片向日举之可观察到各种颜色的光.李时珍也曾指出较大的六棱形水晶和较小的水晶珠,都能形成色散.到了明末,方以智(1611—1671)在所著《物理小识》中综合前人研究的成果,对色散现象作了极精彩的概括,他把带棱的自然晶体和人工烧制的三棱晶体将白光分成五色,与向日喷水而成的五色人造虹、日光照射飞泉产生的五色现象,以及虹霓之彩、日月之晕、五色之云等自然现象联系起来,认为“皆同此理”即都是白光的色散.所有这些都表明中国明代以前对色散现象的本质已有了较全面的认识,但也反映中国古代物理学知识大都是零散、经验性的知识. 二、西方牛顿以前对光的色散的认识 在光学发展的早期,对颜色的解释显得特别困难.在牛顿以前,欧洲人对颜色的认识流行着亚里士多德的观点.亚里士多德认为,颜色不是物体客观的性质,而是人们主观的感觉,一切颜色的形成都是光明与黑暗、白与黑按比例混合的结果.1663年波义耳也曾研究了物体的颜色问题,他认为物体的颜色并不是属于物体的带实质性的性质,而是由于光线在被照射的物体表面上发生变异所引起的.能完全反射光线的物体呈白色,完全吸收光线的物体呈黑色.另外还有不少科学家,如笛卡儿、胡克等也都讨论过白光分散或聚集成颜色的问题,但他们都主张红色是大大地浓缩了的光,紫光是大大地稀释了的光这样一个复杂紊乱的理论.所以在牛顿以前,由棱镜产生的折射被假定是实际上产生了色,而不是仅仅把已经存在的色分离开来. 三、牛顿对光的色散的实验探索与理论研究 (1)设计并进行三棱镜实验 当白光通过无色玻璃和各种宝石的碎片时,就会形成鲜艳的各种颜色的光,这一事实早在牛顿的几个世纪之前就已有了解,可是直到十七世纪中叶以后,才有牛顿通过实验研究了这个问题. 牛顿首先做了一个有名的三棱镜实验,他在著作中记载道:“1666年初,我做了一个三角形的玻璃棱柱镜,利用它来研究光的颜色.为此,我把房间里弄成漆墨的,在窗户上做一个小孔,让适量的日光射进来.我又把棱镜放在光的入口处,使折射的光能够射到对面的墙上去,当我第一次看到由此而产生的鲜明强烈的光色时,使我感到极大的愉快.”牛顿的实验设计如下图:通过这个实验,在墙上得到了一个彩色光斑,颜色的排列是红、橙、黄、绿、青、蓝、紫.牛顿把这个颜色光斑叫做光谱. (2)进一步设计实验,获得纯光谱 牛顿在上述实验中所得到的光谱是不纯的,他认为光谱之所以不纯是因为光谱是由一系列相互重叠的圆形色斑的像所组成.牛顿为了获得很纯的光谱,便设计了一套光学仪器进行实验,其实验设计如图所示: 用白光通过一透镜后照亮狭缝S,狭缝后放一会聚透镜以便形成狭缝S的像I.然后在透镜的光路上放一个棱镜.结果光通过棱镜因偏转角度不同而被分开,以至在白色光屏上形成一个由红到紫的光谱带.这个光谱带是由一系列彼此邻接的狭缝的彩色像组成的.若狭缝做得很窄,重叠现象就可以减小到最低限度,因而光谱也变得很纯. (3)牛顿提出解释光谱的理论 牛顿为了解释三棱镜实验中白光的分解现象,认为白光是由各种不同颜色光组成的,玻璃对各种色光的折射率不同,当白光通过棱镜时,各色光以不同角度折射,结果就被分开成颜色光谱.白光通过棱镜时,向棱镜的底边偏折,紫光偏折最大,红光偏折最小.棱镜使白光分开成各种色光的现象叫做色散.严格地说,光谱中有很多各种颜色的细线,它们都及平滑地融在相邻的细线里,以至使人觉察不到它的界限. (4)设计实验验证上述理论的正确性 为了进一步研究光的颜色,验证上述理论的正确性,牛顿又做了另一个实验.实验设计如图所示: 牛顿在观察光谱的屏幕DE上打一小孔,再在其后放一有小孔的屏幕de,让通过此小孔的光是具有某种颜色的单色光.牛顿在这个光束的路径上再放上第二个棱镜abc,它的后面再放一个新的观察屏V.实验表明,第二个棱镜abc只是把这个单色光束整个地偏转一个角度,而并不改变光的颜色.实验中,牛顿转动第一个棱镜ABC,使光谱中不同颜色的光通过DE和de屏上的小孔,在所有这些情况下,这些不同颜色的单色光都不能被第二个棱镜再次分解,它们各自通过第二个检镜后都只偏转一定的角度,而且发现,对于不同颜色的光偏转的角度不同. 通过这些实验,牛顿得出结论:白光能分解成不同颜色的光,这些光已是单色的了,棱镜不能再分解它们. (5)单色光复合为白光的实验 白光既然能分解为单色光,那么单色光是否也可复合为白光呢”为此牛顿进行实验.如图55所示,把光谱成在一排小的矩形平面镜上,就可使光谱的色光重新复合为白光.调节各平面镜与入射光的夹角,使各反射光都落在光屏的同一位置上,这样就得到一个白色光班. 牛顿指出,还可以用另一种方法把色光重新复合为白光.把光谱画在圆盘上成扇形,然后高速旋转这个圆盘,圆盘就呈现白色.这种实验效果一般称为“视觉暂留效应”.眼睛视网膜上所成的像消失后,大脑还可以把印象保留零点几秒种.从而,大脑可将迅速变化的色像复合在一起,就形成一个静止的白色像.在电视屏幕上或电影屏幕上,我们能够看到连续的图像,其原因也正在于利用了人的“视觉暂留效应”. (6)牛顿对光的色散研究成果. 牛顿通过一系列的色散实验和理论研究,把结果归纳为几条,其要点如下: ①光线随着它的折射率不同而颜色各异.颜色不是光的变样,而是光线本来就固有的性质. ②同一颜色属于同一折射率,反之亦然. ③颜色的种类和折射的程度为光线所固有,不因折射、反射和其它任何原因而变化. ④必须区别本来单纯的颜色和由它们复合而成的颜色. ⑤不存在自身为白色的光线.白色是由一切颜色的光线适当混合而产生的.事实上,可以进行把光谱的颜色重新合成而得到白光的实验. ⑥根据以上各条,可以解释三棱镜使光产生颜色原因以及虹的原理等. ⑦自然物的颜色是由于该物质对某种光线反射得多,而对其他光线反射得少的原因. ⑧由此可知,颜色是光(各种射线)的质,因而光线本身不可能是质.因为颜色这样的质起源于光之中,所以现在有充分的根据认为光是实体. (7)牛顿对于光的色散现象的研究方法的特点. 从以上可看出牛顿在对光的色散研究中,采用了实验归纳——假说理论——实验检验的典型的物理规律的研究方法,并渗透着分析的方法(把白光分解为单色光研究)和综合的方法(把单色光复合为白光)等物理学研究的方法.后来.拉曼 印度 研究光的散射并发现拉曼效应,并于1930年获得诺贝尔物理学奖。 【英文名称】 [编辑本段] 拉曼效应:Raman effect 【概述】 [编辑本段] 1930年诺贝尔物理学奖授予印度加尔各答大学的拉曼(SirChandrasekhara Venkata Raman,1888——1970年),以表彰他研究了光的散射和发现了以他的名字命名的定律。 在光的散射现象中有一特殊效应,和X射线散射的康普顿效应类似,光的频率在散射后会发生变化。频率的变化决定于散射物质的特性。这就是拉曼效应,是拉曼在研究光的散射过程中于1928年发现的。在拉曼和他的合作者宣布发现这一效应之后几个月,苏联的兰兹伯格()和曼德尔斯坦()也独立地发现了这一效应,他们称之为联合散射。拉曼光谱是入射光子和分子相碰撞时,分子的振动能量或转动能量和光子能量叠加的结果,利用拉曼光谱可以把处于红外区的分子能谱转移到可见光区来观测。因此拉曼光谱作为红外光谱的补充,是研究分子结构的有力武器。 1921年夏天,航行在地中海的客轮“纳昆达”号()上,有一位印度学者正在甲板上用简易的光学仪器俯身对海面进行观测。他对海水的深蓝色着了迷,一心要追究海水颜色的来源。这位印度学者就是拉曼。他正在去英国的途中,是代表了印度的最高学府——加尔各答大学,到牛津参加英联邦的大学会议,还准备去英国皇家学会发表演讲。这时他才33岁。对拉曼来说,海水的蓝色并没有什么稀罕。他上学的马德拉斯大学,面对本加尔(Bengal)海湾,每天都可以看到海湾里变幻的海水色彩。事实上,他早在16岁(1904年)时,就已熟悉著名物理学家瑞利用分子散射中散射光强与波长四次方成反比的定律(也叫瑞利定律)对蔚蓝色天空所作的解释。不知道是由于从小就养成的对自然奥秘刨根问底的个性,还是由于研究光散射问题时查阅文献中的深入思考,他注意到瑞利的一段话值得商榷,瑞利说:“深海的蓝色并不是海水的颜色,只不过是天空蓝色被海水反射所致。”瑞利对海水蓝色的论述一直是拉曼关心的问题。他决心进行实地考察。于是,拉曼在启程去英国时,行装里准备了一套实验装置:几个尼科尔棱镜、小望远镜、狭缝,甚至还有一片光栅。望远镜两头装上尼科尔棱镜当起偏器和检偏器,随时都可以进行实验。他用尼科尔棱镜观察沿布儒斯特角从海面反射的光线,即可消去来自天空的蓝光。这样看到的光应该就是海水自身的颜色。结果证实,由此看到的是比天空还更深的蓝色。他又用光栅分析海水的颜色,发现海水光谱的最大值比天空光谱的最大值更偏蓝。可见,海水的颜色并非由天空颜色引起的,而是海水本身的一种性质。拉曼认为这一定是起因于水分子对光的散射。他在回程的轮船上写了两篇论文,讨论这一现象,论文在中途停靠时先后寄往英国,发表在伦敦的两家杂志上。 【研究过程】 [编辑本段] 拉曼1888年11月7日出生于印度南部的特里奇诺波利。父亲是一位大学数学、物理教授,自幼对他进行科学启蒙教育,培养他对音乐和乐器的爱好。他天资出众,16岁大学毕业,以第一名获物理学金奖。19岁又以优异成绩获硕士学位。1906年,他仅18岁,就在英国著名科学杂志《自然》发表了论文,是关于光的衍射效应的。由于生病,拉曼失去了去英国某个著名大学作博士论文的机会。独立前的印度,如果没有取得英国的博士学位,就没有资格在科学文化界任职。但会计行业是唯一的例外,不需先到英国受训。于是拉曼就投考财政部以谋求职业,结果获得第一名,被授予总会计助理的职务。拉曼在财政部工作很出色,担负的责任也越来越重,但他并不想沉浸在官场之中。他念念不忘自己的科学目标,把业余时间全部用于继续研究声学和乐器理论。加尔各答有一所学术机构,叫印度科学教育协会,里面有实验室,拉曼就在这里开展他的声学和光学研究。经过十年的努力,拉曼在没有高级科研人员指导的条件下,靠自己的努力作出了一系列成果,也发表了许多论文。1917年加尔各答大学破例邀请他担任物理学教授,使他从此能专心致力于科学研究。他在加尔各答大学任教十六年期间,仍在印度科学教育协会进行实验,不断有学生、教师和访问学者到这里来向他学习、与他合作,逐渐形成了以他为核心的学术团体。许多人在他的榜样和成就的激励下,走上了科学研究的道路。其中有著名的物理学家沙哈()和玻色()。这时,加尔各答正在形成印度的科学研究中心,加尔各答大学和拉曼小组在这里面成了众望所归的核心。1921年,由拉曼代表加尔各答大学去英国讲学,说明了他们的成果已经得到了国际上的认同。 拉曼返回印度后,立即在科学教育协会开展一系列的实验和理论研究,探索各种透明媒质中光散射的规律。许多人参加了这些研究。这些人大多是学校的教师,他们在休假日来到科学教育协会,和拉曼一起或在拉曼的指导下进行光散射或其它实验,对拉曼的研究发挥了积极作用。七年间他们共发表了大约五六十篇论文。他们先是考察各种媒质分子散射时所遵循的规律,选取不同的分子结构、不同的物态、不同的压强和温度,甚至在临界点发生相变时进行散射实验。1922年,拉曼写了一本小册子总结了这项研究,题名《光的分子衍射》,书中系统地说明了自己的看法。在最后一章中,他提到用量子理论分析散射现象,认为进一步实验有可能鉴别经典电磁理论和光量子碰撞理论孰是孰非。 1923年4月,他的学生之一拉玛纳桑()第一次观察到了光散射中颜色改变的现象。实验是以太阳作光源,经紫色滤光片后照射盛有纯水或纯酒精的烧瓶,然后从侧面观察,却出乎意料地观察到了很弱的绿色成份。拉玛纳桑不理解这一现象,把它看成是由于杂质造成的二次辐射,和荧光类似。因此,在论文中称之为“弱荧光”。然而拉曼不相信这是杂质造成的现象。如果真是杂质的荧光,在仔细提纯的样品中,应该能消除这一效应。 在以后的两年中,拉曼的另一名学生克利希南()观测了经过提纯的65种液体的散射光,证明都有类似的“弱荧光”,而且他还发现,颜色改变了的散射光是部分偏振的。众所周知,荧光是一种自然光,不具偏振性。由此证明,这种波长变化的现象不是荧光效应。 拉曼和他的学生们想了许多办法研究这一现象。他们试图把散射光拍成照片,以便比较,可惜没有成功。他们用互补的滤光片,用大望远镜的目镜配短焦距透镜将太阳聚焦,试验样品由液体扩展到固体,坚持进行各种试验。 与此同时,拉曼也在追寻理论上的解释。1924年拉曼到美国访问,正值不久前.康普顿发现X射线散射后波长变长的效应,而怀疑者正在挑起一场争论。拉曼显然从康普顿的发现得到了重要启示,后来他把自己的发现看成是“康普顿效应的光学对应”。拉曼也经历了和康普顿类似的曲折,经过六七年的探索,才在1928年初作出明确的结论。拉曼这时已经认识到颜色有所改变、比较弱又带偏振性的散射光是一种普遍存在的现象。他参照康普顿效应中的命名“变线”,把这种新辐射称为:“变散射”(modified scattering)。拉曼又进一步改进了滤光的方法,在蓝紫滤光片前再加一道铀玻璃,使入射的太阳光只能通过更窄的波段,再用目测分光镜观察散射光,竟发现展现的光谱在变散射和不变的入射光之间,隔有一道暗区。 就在1928年2月28日下午,拉曼决定采用单色光作光源,做了一个非常漂亮的有判决意义的实验。他从目测分光镜看散射光,看到在蓝光和绿光的区域里,有两根以上的尖锐亮线。每一条入射谱线都有相应的变散射线。一般情况,变散射线的频率比入射线低,偶尔也观察到比入射线频率高的散射线,但强度更弱些。 不久,人们开始把这一种新发现的现象称为拉曼效应。1930年,美国光谱学家武德()对频率变低的变散射线取名为斯托克斯线;频率变高的为反斯托克斯线。 【拉曼贡献】 [编辑本段] 拉曼发现反常散射的消息传遍世界,引起了强烈反响,许多实验室相继重复,证实并发展了他的结果。1928年关于拉曼效应的论文就发表了57篇之多。科学界对他的发现给予很高的评价。拉曼是印度人民的骄傲,也为第三世界的科学家作出了榜样,他大半生处于独立前的印度,竟取得了如此突出的成就,实在令人钦佩。特别是拉曼是印度国内培养的科学家,他一直立足于印度国内,发愤图强,艰苦创业,建立了有特色的科学研究中心,走到了世界的前列。 1934年,拉曼和其他学者一起创建了印度科学院,并亲任院长。1947年,又创建拉曼研究所。他在发展印度的科学事业上立下了丰功伟绩。拉曼抓住分子散射这一课题是很有眼力的。在他持续多年的努力中,显然贯穿着一个思想,这就是:针对理论的薄弱环节,坚持不懈地进行基础研究。拉曼很重视发掘人才,从印度科学教育协会到拉曼研究所,在他的周围总是不断涌现着一批批赋有才华的学生和合作者。就以光散射这一课题统计,在三十年中间,前后就有66名学者从他的实验室发表了377篇论文。他对学生谆谆善诱,深受学生敬仰和爱戴。拉曼爱好音乐,也很爱鲜花异石。他研究金刚石的结构,耗去了他所得奖金的大部分。晚年致力于对花卉进行光谱分析。在他80寿辰时,出版了他的专集:《视觉生理学》。拉曼喜爱玫瑰胜于一切,他拥有一座玫瑰花园。拉曼1970年逝世,享年82岁,按照他生前的意愿火葬于他的花园里。
105 浏览 3 回答
292 浏览 2 回答
280 浏览 4 回答
356 浏览 6 回答
168 浏览 3 回答
141 浏览 2 回答
157 浏览 3 回答
239 浏览 4 回答
317 浏览 4 回答
329 浏览 6 回答
311 浏览 3 回答
331 浏览 3 回答
257 浏览 4 回答
97 浏览 4 回答
330 浏览 5 回答