这是07年数模比赛获奖的:乘公交 看奥运二 符号说明 :第i条公汽线路标号,i=1,2 …10400,当 时, 表示上行公汽路线, 当 时, 表示与上行路线 相对应的下行公汽路线; :经过第i条公汽路线的第g个公汽站点标号; :第j条地铁路线标号, j=1,2; :经过第j条地铁线路的第h个地铁站点标号; :转乘n次的路线; :选择第k种路线的总时间; :选择第k种路线公汽换乘公汽的换乘次数; :选择第k种路线地铁换乘地铁的换乘次数; :选择第k种路线地铁换乘公汽的换乘次数; :选择第k种路线公汽换乘地铁的换乘次数; :第k种路线、乘坐第m辆公汽的计费方式,其中: 表示实行单一票价, 表示实行分段计价; :第k种路线,乘坐第m辆公汽的费用; :选择第k种路线的总费用; :选择第k种路线,乘坐第m辆公汽需要经过的公汽站个点数; :选择第k种路线,乘坐第n路地铁需要经过的地铁站个点数; :表示对于第k种路线的第m路公汽的路线是否选择步行, 为0-1变量, 表示不选择步行, 表示选择步行; :对于第k种路线的第n路地铁的路线是否选择步行, 为0-1变量, 表示不选择步行, 表示选择步行;三 模型假设基本假设1、相邻公汽站平均行驶时间(包括停站时间): 3分钟2、相邻地铁站平均行驶时间(包括停站时间): 分钟3、公汽换乘公汽平均耗时:5分钟(其中步行时间2分钟)4、地铁换乘地铁平均耗时:4分钟(其中步行时间2分钟)5、地铁换乘公汽平均耗时:7分钟(其中步行时间4分钟)6、公汽换乘地铁平均耗时:6分钟(其中步行时间4分钟)7、公汽票价:分为单一票价与分段计价两种;单一票价:1元其中分段计价的票价为:0 ~20站:1元21~40站:2元40站以上:3元8、地铁票价:3元(无论地铁线路间是否换乘)9、假设同一地铁站对应的任意两个公汽站之间可以通过地铁站换乘,且无需支付地铁费 其它假设10、查询者转乘公交的次数不超过两次;11、所有环行公交线路都是双向的;12、地铁线T2也是双向环行的;13、各公交车都运行正常,不会发生堵车现象;14、公交、列车均到站停车四 问题的分析在北京举行奥运会期间,公众如何在众多的交通路线中选择最优乘车路线或转乘路线去看奥运,这是我们要解决的核心问题。针对此问题,我们考虑从公交线路的角度来寻求最优线路。首先找出过任意两站点(公众所在地与奥运场地)的所有路线,将其存储起来,形成数据文件。这些路线可能包含有直达公交线路,也有可能是两条公交线路通过交汇而形成的(此时需要转乘公交一次),甚至更多公交线路交汇而成。然后在这些可行路线中搜寻最优路线。对于路线的评价,我们可以分别以总行程时间,总转乘次数,总费用为指标,也可以将三种指标标准化后赋以不同权值形成一个综合指标。而最优路线则应是总行程时间最短,总费用最少或总转乘次数最少,或者三者皆有之。之所以这样考虑目标,是因为对于不同年龄阶段的查询者,他们追求的目标会有所不同,比如青年人比较热衷于比赛,因而他们会选择最短时间内到达奥运赛场观看比赛。而中年人则可能较倾向于综合指标最小,即较快、较省,转乘次数又不多。老年人总愿意以最省的方式看到奥运比赛。而对于残疾人士则总转乘次数最少为好。不同的路线查询需求用图表示如下: 图 公交线路查询目标图经分析,本问题的解决归结为一个求最短路径的问题,但是传统的Dijkstra最短路径算法并不适用于本问题,因为Dijkstra算法采用的存储结构和计算方法难以应付公交线路网络拓扑的复杂性,而且由于执行效率的问题,其很难满足实时系统对时间的严格要求。为此我们在实际求解的过程中,采用了效率高效得广度优先算法,其基本思路是每次搜索指定点,并将其所有未访问过的近邻点加入搜索队列,循环搜索过程直到队列为空。此方法在后文中有详细说明。五 建模前的准备为了后面建模与程序设计的方便,在建立此模型前,我们有必要做一些准备工作。5.1数据的存储由于所给的数据格式不是很规范,我们需要将其处理成我们需要的数据存储格式。从所给文件中读出线路上的站点信息,存入txt文档中,其存储格式为:两行数据,第一行表示上行线上的站点信息,第二行表示下行线的站点信息,其中下行路线标号需要在原标号的基础上加上520,用以区分上行线和下行线。如果上行线与下行线的站点名不完全相同,那么存储的两行数据相应的不完全相同,以公交线L009为例:L009: L529: L529为L009所对应的下行线路。如果下行线是上行线原路返回,那么存储的两行数据中的站点信息刚好顺序颠倒,以公交线路L001为例:L001: 3914 0128 0710L521: 如果是环线的情况(如图所示),则可以等效为两条线路:顺时针方向:S1→S2→S3→S4→S1→S2→S3→S4;逆时针方向:S1→S4→S3→S2→S1→S4→S3→S2。 经过分析,此两条”单行路线”线路的作用等同于原环形路线 图 环行线路示意图以环形公交线L158为例,此环形路线存储数据如下:L153: 1212 812 171 172 1585 1215 2606 1212 812 171 172 1585 1215 2606L673: 3513 172 2600 811 170 2355 649 534 2606 1215 3513 172 2600 811 170 2355 649在这里,L153被看作成上行路线,L673被当成下行路线。这样对于每条公交线路都可以得到两行线路存储信息。5.2搜寻经过每个站点的公交路线处理所得信息,找出通过每个站点的所有公交路线,并将它们存入数据文件中。例如,通过搜寻得出经过站点S0001的线路和经过站点S0002的线路如下:经过S0001的线路有:L421经过S0002的线路有:L027 L152 L365 L395 L4855.3统计任意两条公交线路的相交(相近)站点依次统计出任意两条公交线路之间相交(相近)的站点,将其存入1040×1040的矩阵A中,但是这个矩阵的元素是维数不确定的向量,具体实现的时候可以将用队列表示。例如:公交线路L001与公交线路L025相交的站点为A[1][25]={S0619,S1914,S0388,S0348}。六 模型的建立与求解6.1模型一的建立 该模型针对问题一,仅考虑公汽线路,先找出经过任意两个公汽站点 与 最多转乘两次公汽的路线,然后再根据不同查询者的需求搜寻出最优路线。6.1.1 公汽路线的数学表示任意两个站点间的路线有多种情况,如果最多允许换乘两次,则换乘路线分别对应图的四种情况。该图中的A、B为出发站和终点站,C、D、E、F为转乘站点。 图 公汽路线图对于任意两个公汽站点 与 ,经过 的公汽线路表示为 ,有 ;经过 的公汽线路表示为 ,有 ;1)直达的路线 (如图(a)所示)表示为: 2)转乘一次的路线 (如图(b)所示)表示为: 其中:SC为 , 的一个交点;3)转乘两次的路线 (如图(c)所示)表示为: 通过以上转乘路线的建模过程,可以看出不同转乘次数间可作成迭代关系,进而对更多转乘次数的路线进行求寻。不过考虑到实际情况,转乘次数以不超过2次为佳,所以本文未对转乘三次及三次以上的情形做讨论。6.1.2最优路线模型的建立 找出了任意两个公汽站点间的可行路线,就可以对这些路线按不同需求进行选择,找出最优路线了:1)以时间最短作为最优路线的模型:行程时间 等于乘车时间与转车时间之和。 (式)其中,第k路线是以上转乘路线中的一种或几种。2)以转乘次数最少作为最优路线的模型: (式)此模型等效为以上转乘路线按直达、转乘一次、两次的优先次序来考虑。3)以费用最少作为最优路线的模型: (式)其中, (式)6.1.3模型的算法描述针对该问题的优化模型,我们采用广度优先算法找出任意两个站点间的可行路线,然后搜索出最优路线。现将此算法运用到该问题中,结合图叙述如下:(该图中的 、 、 、 、 表示公汽站点, 、 、 、 、 、 表示公汽线路。其中(a)、(b)、(c)图分别表示了从点 到点 直达、转乘一次、转乘两次的情况) 图 公交直达、转乘图(1)首先输入需要查询的两个站点 与 (假设 为起始站, 为终点站);(2)搜索出经过 的公汽线路 (i=1,2,…,m)和经过 的公汽线路 ( =1,2, …,n),存入数据文件;判断是 与 是否存在相同路线,若有则站点 与 之间有直达路线(如图中的 ),则该路线是换乘次数最少(换乘次数等于0)的路线,若有多条直达路线,则可以在此基础上找出时间最省的路线;这样可以找出所有直达路线,存入数据文件;(3)找出经过 的公汽线路 (如图中的 )中的另一站点 和经过 的公汽线路 中的另一站点 。判断 与 中是否存在相同的点,若存在(如图中的 )则站点 与 间有一次换乘的路线(如图中的 与 ),该相同点即为换乘站点;这样又找出了一次换乘路线,存入数据文件;(4)再搜索出经过 (如图中的 )线路上除了站点 的另一站点 (如图中的 )的公汽线路 (如图中的 ),找出公汽线路 上的其他站点 ;判断,如果 与经过 的公汽线路 中的其他站点 存在相同的点(如图中的 ),则 与 间有二次换乘的路线(如图中的 、 、 ),该相同点和点 是换乘站点;将此二次换乘的路线存入数据文件中;(5)对上述存储的经过两个站点 与 的不同路线,根据不同模型进行最优路线进行搜索,得出查询者满意的最优路线。6. 1. 4模型一的求解根据以上算法和前面建立的模型一,用VC++进行编程(程序见附录)就可以得出不同目标下的最优路线。1) 以耗时最少为目标的最优路线起始站S3359到终到站S1828耗时最少为64 min,耗时最少的最优路线(转乘次数较少,费用较省的路线)有28条(注:表选择了其中的10条表示);起始站S1557到终到站S0481耗时最少为106 min,耗时最少的最优路线有2条;起始站S0971到终到站S0485耗时最少为106 min,耗时最少的最优路线有2条;起始站S0008到终到站S0073耗时最少为67 min,耗时最少的最优路线有2条;起始站S0148到终到站S0485耗时最少为106 min,耗时最少的最优路线有3条;起始站S0087到终到站S3676耗时最少为46 min,耗时最少的最优路线有12条;其耗时最少的最优路线如表所示。表 耗时最少的最优路线表起始站 公汽线路 中转站 公汽线路 中转站 公汽线路 终到站 转乘次数 所需费用S3359 L0535 S2903 L1005 S1784 L0687 S1828 2 3S3359 L0535 S2903 L1005 S1784 L0737 S1828 2 3S3359 L0123 S2903 L1005 S1784 L0687 S1828 2 3S3359 L0123 S2903 L1005 S1784 L0737 S1828 2 3S3359 L0652 S2903 L1005 S1784 L0687 S1828 2 3S3359 L0652 S2903 L1005 S1784 L0737 S1828 2 3S3359 L0844 S2027 L1005 S1784 L0687 S1828 2 3S3359 L0844 S2027 L1005 S1784 L0737 S1828 2 3S3359 L0844 S1746 L1005 S1784 L0687 S1828 2 3S3359 L0844 S1746 L1005 S1784 L0737 S1828 2 3S1557 L0604 S1919 L0709 S3186 L0980 S0481 2 3S1557 L0883 S1919 L0709 S3186 L0980 S0481 2 3S0971 L0533 S2517 L0810 S2480 L0937 S0485 2 3S0971 L0533 S2517 L0296 S2480 L0937 S0485 2 3S0008 L0198 S3766 L0296 S2184 L0345 S0073 2 3S0008 L0198 S3766 L0296 S2184 L0345 S0073 2 3S0148 L0308 S0036 L0156 S2210 L0937 S0485 2 3S0148 L0308 S0036 L0156 S3332 L0937 S0485 2 3S0148 L0308 S0036 L0156 S3351 L0937 S0485 2 3S0087 L0541 S0088 L0231 S0427 L0097 S3676 2 3S0087 L0541 S0088 L0231 S0427 L0982 S3676 2 3S0087 L0541 S0088 L0901 S0427 L0097 S3676 2 3S0087 L0541 S0088 L0901 S0427 L0982 S3676 2 3S0087 L0206 S0088 L0231 S0427 L0097 S3676 2 3S0087 L0206 S0088 L0231 S0427 L0982 S3676 2 3S0087 L0206 S0088 L0901 S0427 L0097 S3676 2 3S0087 L0206 S0088 L0901 S0427 L0982 S3676 2 3S0087 L0974 S0088 L0231 S0427 L0097 S3676 2 3S0087 L0974 S0088 L0231 S0427 L0982 S3676 2 3S0087 L0974 S0088 L0901 S0427 L0097 S3676 2 3S0087 L0974 S0088 L0901 S0427 L0982 S3676 2 32) 以转乘次数最少为目标的最优路线起始站S3359到终到站S1828的最少转乘次数为1次,转乘次数最少的最优路线(所需时间较短,费用较省的路线)有2条;起始站S1557到终到站S0481的最少转乘次数为2次,转乘次数最少的最优路线有2条与耗时最少的最优路线相同(表示在表中,下同);起始站S0971到终到站S0485的最少转乘次数为1次,转乘次数最少的最优路线有1条;起始站S0008到终到站S0073的最少转乘次数为1次,转乘次数最少的最优路线有9条;起始站S0148到终到站S0485的最少转乘次数为2次,转乘次数最少的最优路线有3条与耗时最少的最优路线相同;起始站S0087到终到站S3676的最少转乘次数为2次,转乘次数最少的最优路线有6条与耗时最少的最优路线相同;其余转乘次数最少的最优路线路线如表所示。表 转乘次数最少的最优路线表起始站 公汽线路 中转站 公汽线路 终到站 耗时 所需费用S3359 L0956 S1784 L0687 S1828 101 3S3359 L0956 S1784 L0737 S1828 101 3S0971 L0533 S2184 L0937 S0485 128 3S0008 L0679 S0291 L0578 S0073 83 2S0008 L0679 S0491 L0578 S0073 83 2S0008 L0679 S2559 L0578 S0073 83 2S0008 L0679 S2683 L0578 S0073 83 2S0008 L0679 S3614 L0578 S0073 83 2S0008 L0875 S2263 L0345 S0073 83 2S0008 L0875 S2303 L0345 S0073 83 2S0008 L0875 S3917 L0345 S0073 83 2S0008 L0983 S2083 L0057 S0073 83 23)以费用最少为目标的最优路线起始站S3359到终到站S1828的最少费用为3元,最少费用的最优路线(所需时间较短,转乘次数较少的路线)有30条,其中28条路线所需时间为64 min,转乘次数为2次,另外两条路线所需时间为101 min,转乘次数为1次;起始站S1557到终到站S0481的最少费用为3元,最少费用的最优路线有2条,所需时间为106 min,转乘次数为2次;起始站S0971到终到站S0485的最少费用为3元,最少费用的最优路线有3条,其中两条所需时间为106 min,转乘次数为2次,另外一条所需时间为128 min,转乘次数为1次;起始站S0008到终到站S0073的最少费用为2元,最少费用的最优路线有9条,所需时间为83 min,转乘次数为1次;起始站S0148到终到站S0485的最少费用为3元,最少费用的最优路线有3条,所需时间为106min,转乘次数为2次;起始站S0087到终到站S3676的最少费用为3元,最少费用的最优路线有12条,所需时间为46 min,转乘次数为2次;最少费用的最优路线表示在表和表中。 6.2.1模型二的建立 该模型针对问题二,将公汽与地铁同时考虑,找出可行路线,然后寻找最优路线。对于地铁线路,也可以将其作为公交线路,本质上没有什么区别,只不过乘车费用、时间,换乘时间不一样罢了。因此地铁站可等效为公交站,地铁和公交的转乘站即可作为两者的交汇点。因此该模型的公交换乘路线模型与模型一中的基本相同。现建立模型二下的最优路线模型。1)以时间最短的路线作为最优路线的模型:可行路线的总时间为乘公交(公汽和地铁)时间与公汽与地铁换乘、公汽间、地铁间换乘时间之和。 (式)其中,第k路线为同时考虑公汽与地铁的转乘路线中的一种或几种。2)以转乘次数最少的路线作为最优路线的模型: (式)此模型等效为以上转乘路线按直达、转乘一次、两次(包括公交与地铁间的转乘)的优先次序来考虑。3)以费用最少的路线作为最优路线的模型:可行路线的费用为乘公交和地铁费用的总和。 (式)其中, 仍满足(式)。6.2.2模型二的求解 不难发现,问题一是问题二解的一部分。在问题二中,新产生的最优解主要源于在通过换乘地铁、换乘附近相近站点的路线上,如下图所示: 从点A到B,图(a)表示的是通过两公交线路上相邻公汽站S1,S2进行一次转乘;图(b)表示利用地铁站进行二次转乘;图(c)表示利用另一条公汽路线为中介进行二次转乘。铁路线路引入给题目的求解增加了难度,为了形象了解为数不多的两条铁路间的交叉关系,我们通过matlab编程(程序见附录)作出了两条铁路的位置关系图,如图所示。 图 T1与T2铁路位置关系图注:图四中的直线表示T1铁路线,圆表示T2铁路线,数值表示站点,例如1表示T1铁路线上的D1铁路站,26表示T2铁路线上的D26铁路站。此图与网上查询到的北京地铁示意图(如图所示)相吻合。 图 北京地铁示意图同样将地铁线路等效为公交线路得出任意两个站点间的可行线路,再将目标函数分别用模型二建立的模型表达式表达,用VC++进行编程(程序见附录)求得出考虑地铁情况的最优路线。1)以转乘次数最少为目标的最优路线起始站S0008到终到站S0073的最少转乘次数为1次,转乘次数最少的最优路线有1条;起始站S0087到终到站S3676的最少转乘次数为0次,即有直达路线,直达下的最优路线有1条;起始站S0148到终到站S0485的最少转乘次数为2次,转乘次数最少的最优路线有10条;起始站S0971到终到站S0485的最少转乘次数为2次,转乘次数最少的最优路线有20条(注表中罗列其中10条);起始站S1557到终到站S0481的最少转乘次数为2次,转乘次数最少的最优路线有17条(注表中罗列其中10条);起始站S3359到终到站S1828的最少转乘次数为2次,转乘次数最少的最优路线有2条。2)以耗时最少为目标的最优路线起始站S3359到终到站S1828耗时最少为64 min,耗时最少的最优路线(转乘次数较少,费用较省的路线)有28条(注:表选择了其中的10条表示);起始站S1557到终到站S0481耗时最少为109 min,耗时最少的最优路线有17条与转乘次数最少的最优路线相同;起始站S0971到终到站S0485耗时最少为96 min,耗时最少的最优路线有20条与转乘次数最少的最优路线相同;起始站S0008到终到站S0073耗时最少为55 min,耗时最少的最优路线有3条;起始站S0148到终到站S0485耗时最少为 min,耗时最少的最优路线有10条与转乘次数最少的最优路线相同;起始站S0087到终到站S3676耗时最少为33 min,耗时最少的最优路线有1条与转乘次数最少的最优路线相同;3) 最少费用的最优路线起始站S3359到终到站S1828的最少费用为3元,最少费用的最优路线(所需时间较短,转乘次数较少的路线)有2条;起始站S1557到终到站S0481的最少费用为3元,最少费用的最优路线有17条;起始站S0971到终到站S0485的最少费用为5元,最少费用的最优路线有20条;起始站S0008到终到站S0073的最少费用为2元,最少费用的最优路线有1条;起始站S0148到终到站S0485的最少费用为5元,最少费用的最优路线有10条;起始站S0087到终到站S3676的最少费用为2元,最少费用的最优路线有1条;在此种情况下,我们就只考虑可以通过地铁站换乘的情况,不通过地铁站的情况即为模型1的求解结果。模型2的求解结果见附件1。6.3.1模型三的建立 该模型针对问题三,将步行方式考虑在了出行方式当中,更符合实际。因为当出发点与换乘点、终点站或转乘站与转乘站之间只相隔几个站时,当然该段选择步行方式更优。因此作出如下假设:一、如果存在某段路线,其两端点站之间相隔站点数小等于2(即至多经过4个站点),则该段线路选择步行方式到达目的地。其他的情况用模型二来处理。其中路线的两端点站之间相隔站点数是根据公交直达换乘路线来确定的。二、相邻公交站点(包括地铁站)间平均步行时间为5分钟。三、如果在公汽线路上选择步行,则公汽间换乘次数减少1;如果在地铁线路上选择步行,则地铁间换乘次数减少1,直达线路除外。直达和转乘一次、两次的路线需要步行的路段示意图如图所示。图中(a)表示出发点A与终点站B间能直达,相隔的站点数等于2所以选择步行;图中(b)表示出发点A与终点站B间通过一次换乘能到达,其中路段AC的站点数等于2所以选择步行,同样如果CB路段的站点数小等于2,则也采取步行的方式;图中(c)选择步行方式的依据类似。 图 步行示意图是否选择步行方式的函数: (式)其中 表示第m路公交路线是否步行, 表示第n路地铁线路是否步行; 对于直达路线,如果出发点与终点站之间相隔站点数小等于2则步行,否则乘车。对于需要转乘的路线的最优路线模型讨论如下:1)以时间最短的路线作为最优路线的模型:路线总时间等于乘车时间加上步行时间,再加上转乘时间。 (式)其中,第k路线为同时考虑公汽与地铁的转乘路线中的一种或几种。2)以转乘次数最少的路线作为最优路线的模型:每步行一次就少换乘一次车。 (式)此模型等效为以上转乘路线按直达、转乘一次、两次、三次(包括公交与地铁间的转乘)的优先次序来考虑。3)以费用最少的路线作为最优路线的模型: (式)其中, 仍满足(式)。七 模型的优缺点及改进模型的评价 模型优点1、模型是由简单到复杂一步步建立的,使得更贴近实际。2、本文的模型简单,其算法直观,容易编程实现。3、本文模型比较注重数据的处理和存储方式,大大提高了查询效率。4、本文模型注重效率的提高,通过大量的特征信息的提取,并结合有效的算法,使其完全可以满足实时系统的要求。 模型缺点在建模与编程过程中,使用的数据只是现实数据的一种近似,因而得出的结果可能与现实情况有一定的差距。 模型的改进以上模型主要是从公交线路出发,寻找公交线路的交叉站作为换乘站点,进而找出经过任意两个站点的可能乘车路线。我们也可以从公交站点的角度出发,用图论的方法建立有向赋权图(如图所示),此向赋权图是针对问题三建立的图论模型,问题一、问题二只是此模型的简化。图中 表示公汽线路标号,该线路是公汽线路 的上行线或下行线, 、 、 、 、 、 是公汽线路 上的站点标号; 表示地铁线路标号,该地铁线路是双向行驶的, 、 、 、 、 是地铁线路 上的站点标号;公汽 与地铁 可以在公汽站 和地铁站 间换乘。如果图中的地铁线路替换成公汽线路,为了表示公汽间换乘所需的时间或者费用,应将同一个换乘站点用两个站点来表示。 图 公交线路的有向赋权图根据不同的目标,给不同的站点间的边赋上不同的权值。然后利用图论的相关算法,找出相应的最短路径。1)当以时间最短为目标时,给每条边赋上时间的权值。给同一线路上任意两个站点间的边赋值时,其权值等于站点间的公交线路段数与平均时间的乘积。当某段线路的两段点间间隔站点数小等于3时,选择步行,该线路的权值等于步行时间。不同公汽和地铁间进行换乘时需要赋给不同的权值,以表示换乘时间。例如(如图):当j>4时, 到 的边权值 ;, 从 到 不需要的转车,但根据假设应选择步行,其边权值 ;,从 到 要么乘公交,然后转车,要么步行,根据步行的假设条件, 到 的站点间隔数小于2,因此选择步行,其边权值 ;,当g>4时, 与 之间的边权值 ;, 到 的边权值 ; 到 的边权值 ;当j>4、g>4时, 到 的路径长度为: ;当 、g>4时,则从 到 选择步行,再乘地铁到 ,其路径长度为; ;找出任意两点间可行路线的路径长度后,再搜索出其中的最短路径的的可行路线作为时间的最优路线。2)当以费用最省为目标时,则给每条边赋上费用的权值。公汽站点间的边权按(式)赋值。当公汽线路 按单一票价计费,对于 上任意两个公汽站点 和 间,若 ,则选择步行 ;若 ,则 ;当公汽线路 按分段计价,若 ,则 ;若 ,则 ;若 ,则 ;若 ,则 ;地铁线路 上任意两个站点 和 间,若 ,则选择步行 ;若 ,则 ;换乘站点 与 间的边权值均为0,即 ;则从 通过站点 换乘 到 的一条可行路线的路径长度为:若 , ,则从 到 选择步行, ;若 , ,则 ;同样可以找出任意两点间可行路线的路径长度,然后再搜索出最短路径作为费用的最优路线。
数学建模--教学楼人员疏散--获校数学建模二等 数学建模人员疏散本题是由我和我的好哥们张勇还有我们区队的学委谢菲菲经过数个日夜的精心准备而完成的,指导老师沈聪.摘要 文章分析了大型建筑物内人员疏散的特点,结合我校1号教学楼的设定火灾场景人员的安全疏散,对该建筑物火灾中人员疏散的设计方案做出了初步评价,得出了一种在人流密度较大的建筑物内,火灾中人员疏散时间的计算方法和疏散过程中瓶颈现象的处理方法,并提出了采用距离控制疏散过程和瓶颈控制疏散过程来分析和计算建筑物的人员疏散。 关键字 人员疏散 流体模型 距离控制疏散过程 问题的提出教学楼人员疏散时间预测学校的教学楼是一种人员非常集中的场所,而且具有较大的火灾荷载和较多的起火因素,一旦发生火灾,火灾及其烟气蔓延很快,容易造成严重的人员伤亡。对于不同类型的建筑物,人员疏散问题的处理办法有较大的区别,结合1号教学楼的结构形式,对教学楼的典型的火灾场景作了分析,分析该建筑物中人员疏散设计的现状,提出一种人员疏散的基础,并对学校领导提出有益的见解建议。 前言建筑物发生火灾后,人员安全疏散与人员的生命安全直接相关,疏散保证其中的人员及时疏散到安全地带具有重要意义。火灾中人员能否安全疏散主要取决于疏散到安全区域所用时间的长短,火灾中的人员安全疏散指的是在火灾烟气尚未达到对人员构成危险的状态之前,将建筑物内的所有人员安全地疏散到安全区域的行动。人员疏散时间在考虑建筑物结构和人员距离安全区域的远近等环境因素的同时,还必须综合考虑处于火灾的紧急情况下,人员自然状况和人员心理这是一个涉及建筑物结构、火灾发展过程和人员行为三种基本因素的复杂问题。随着性能化安全疏散设计技术的发展,世界各国都相继开展了疏散安全评估技术的开发及研究工作,并取得了一定的成果(模型和程序),如英国的CRISP、EXODUS、STEPS、Simulex,美国的ELVAC、EVACNET4、EXIT89,HAZARDI,澳大利亚的EGRESSPRO、FIREWIND,加拿大的FIERA system和日本的EVACS等,我国建筑、消防科研及教学单位也已开展了此项研究工作,并且相关的研究列入了国家“九五”及“十五”科技攻关课题。一般地,疏散评估方法由火灾中烟气的性状预测和疏散预测两部分组成,烟气性状预测就是预测烟气对疏散人员会造成影响的时间。众多火灾案例表明,火灾烟气毒性、缺氧使人窒息以及辐射热是致人伤亡的主要因素。其中烟气毒性是火灾中影响人员安全疏散和造成人员死亡的最主要因素,也就是造成火灾危险的主要因素。研究表明:人员在CO浓度为4X10-3浓度下暴露30分钟会致死。此外,缺氧窒息和辐射热也是致人死亡的主要因素,研究表明:空气中氧气的正常值为21%,当氧气含量降低到12%~15%时,便会造成呼吸急促、头痛、眩晕和困乏,当氧气含量低到6%~8%时,便会使人虚脱甚至死亡;人体在短时间可承受的最大辐射热为/m2(烟气层温度约为200℃)。 图1 疏散影响因素 预测烟气对安全疏散的影响成为安全疏散评估的一部分,该部分应考虑烟气控制设备的性能以及墙和开口部对烟的影响等;通过危险来临时间和疏散所需时间的对比来评估疏散设计方案的合理性和疏散的安全性。疏散所需时间小于危险来临时间,则疏散是安全的,疏散设计方案可行;反之,疏散是不安全的,疏散设计应加以修改,并再评估。 图2 人员疏散与烟层下降关系(两层区域模型)示意图 疏散所需时间包括了疏散开始时间和疏散行动时间。疏散开始时间即从起火到开始疏散的时间,它大体可分为感知时间(从起火至人感知火的时间)和疏散准备时间(从感知火至开始疏散时间)两阶段。一般地,疏散开始时间与火灾探测系统、报警系统,起火场所、人员相对位置,疏散人员状态及状况、建筑物形状及管理状况,疏散诱导手段等因素有关。 疏散行动时间即从疏散开始至疏散结束的时间,它由步行时间(从最远疏散点至安全出口步行所需的时间)和出口通过排队时间(计算区域人员全部从出口通过所需的时间)构成。与疏散行动时间预测相关的参数及其关系见图3。 图3 与疏散行动时间预测相关的参数及其关系模型的分析与建立 我们将人群在1号教学楼内的走动模拟成水在管道内的流动,对人员的个体特性没有考虑,而是将人群的疏散作为一个整体运动处理,并对人员疏散过程作了如下保守假设: u 疏散人员具有相同的特征,且均具有足够的身体条件疏散到安全地点;u 疏散人员是清醒状态,在疏散开始的时刻同时井然有序地进行疏散,且在疏散过程中不会出现中途返回选择其它疏散路径;u 在疏散过程中,人流的流量与疏散通道的宽度成正比分配,即从某一个出口疏散的人数按其宽度占出口的总宽度的比例进行分配u 人员从每个可用出口疏散且所有人的疏散速度一致并保持不变。 以上假设是人员疏散的一种理想状态,与人员疏散的实际过程可能存在一定的差别,为了弥补疏散过程中的一些不确定性因素的影响,在采用该模型进行人员疏散的计算时,通常保守地考虑一个安全系数,一般取1.5~2,即实际疏散时间为计算疏散时间乘以安全系数后的数值。 1号教学楼平面图 教学楼模型的简化与计算假设 我校1号教学楼为一幢分为A、B两座,中间连接着C座的建筑(如上图),A、B两座为五层,C座为两层。A、B座每层有若干教室,除A座四楼和B座五楼,其它每层都有两个大教室。C座一层即为大厅,C座二层为几个办公室,人员极少故忽略不考虑,只作为一条人员通道。为了重点分析人员疏散情况,现将A、B座每层楼的10个小教室(40人)、一个中教室(100)和一个大教室(240人)简化为6个教室。 图4 原教室平面简图在走廊通道的1/2处,将1、2、3、4、5号教室简化为13、14号教室,将6、7、8、9、10号教室简化为15、16号教室。此时,13、14、15、16号教室所容纳的人数均为100人,教室的出口为距走廊通道两边的1/4处,且11、13、15号教室的出口距左楼梯的距离相等,12、14、16号教室的出口距右楼梯的距离相等。我们设大教室靠近大教室出口的100人走左楼梯,其余的140人从大教室楼外的楼梯疏散,这样让每一个通道的出口都得到了利用。由于1号教学楼的A、B两座楼的对称性,所以此简图的建立同时适用于1号教学楼A、B两座楼的任意楼层。 图5 简化后教室平面简图 经测量,走廊的总长度为44米,走廊宽为米,单级楼梯的宽度为米,每级楼梯共有26级,楼梯口宽米,每间教室的面积为125平方米. 则简化后走廊的1/4处即为教室的出口,距楼梯的距离应为44/4=11米。对火灾场景做出如下假设:u 火灾发生在第二层的15号教室;u 发生火灾是每个教室都为满人,这样这层楼共有600人;u 教学楼内安装有集中火灾报警系统,但没有应急广播系统;u 从起火时刻起,在10分钟内还没有撤离起火楼层为逃生失败; 对于这种场景下的火灾发展与烟气蔓延过程可用一些模拟程序进行计算,并据此确定楼内危险状况到来的时间.但是为了突出重点,这里不详细讨论计算细节.人员的整个疏散时间可分为疏散前的滞后时间,疏散中通过某距离的时间及在某些重要出口的等待时间三部分,根据建筑物的结构特点,可将人们的疏散通道分成若干个小段。在某些小段的出口处,人群通过时可能需要一定的排队时间。于是第i 个人的疏散时间ti 可表示为:式中, ti,delay为疏散前的滞后时间,包括觉察火灾和确认火灾所用的时间; di,n为第n 段的长度; vi,n 为该人在第n 段的平均行走速度;Δtm,queue 为第n 段出口处的排队等候时间。最后一个离开教学楼的人员所有用的时间就是教学楼人员疏散所需的疏散时间。假设二层的15号教室是起火房间,其中的人员直接获得火灾迹象进而马上疏散,设其反应的滞后时间为60s;教学内的人员大部分是学生,火灾信息将传播的很快,因而同楼层的其他教室的人员会得到15号教室人员的警告,开始决定疏散行动.设这种信息传播的时间为120s,即这批人的总的滞后时间为120+60=180秒;因为左右两侧为对称状态,所以在这里我们就计算一面的.一、三、四、五层的人员将通过火灾报警系统的警告而开始进行疏散,他们得到火灾信息的时间又比二层内的其他教室的人员晚了60秒.因此其总反应延迟为240秒.由于火灾发生在二楼,其对一层人员构成的危险相对较小,故下面重点讨论二,三,四,五楼的人员疏散.为了实际了解教学楼内人员行走的状况,本组专门进行了几次现场观察,具体记录了学生通过一些典型路段的时间。参考一些其它资料[1、2、3] ,提出人员疏散的主要参数可用图6 表示。在开始疏散时算起,某人在教室内的逗留时间视为其排队时间。人的行走速度应根据不同的人流密度选取。当人流密度大于1 人/ m2时,采用0. 6m/ s 的疏散速度,通过走廊所需时间为60s ,通过大厅所需时间为12s ;当人流密度小于1 人/m2 时,疏散速度取为1. 2m/ s ,通过走廊所需时间为30s ,通过大厅所需时间为6s。 图6 人员疏散的若干主要参数 Pauls[4]提出,下楼梯的人员流量f 与楼梯的有效宽度w 和使用楼梯的人数p 有关,其计算公式为: 式中,流量f 的单位为人/ s , w 的单位为mm。此公式的应用范围为0. 1 < p/ w < 0. 55 。 这样便可以通过流量和室内人数来计算出疏散所用时间。出口的有效宽度是从通道的实际宽度里减去其两侧边界层而得到的净宽度,通常通道一侧的边界层被设定为150mm。 3 结果与讨论 在整个疏散过程中会出现如下几种情况: (1) 起火教室的人员刚开始进行疏散时,人流密度比较小,疏散空间相对于正在进行疏散的人群来说是比较宽敞的,此时决定疏散的关键因素是疏散路径的长度。现将这种类型的疏散过程定义为是距离控制疏散过程; (2) 起火楼层中其它教室的人员可较快获得火灾信息,并决定进行疏散,他们的整个疏散过程可能会分成两个阶段来进行计算: 当f进入2层楼梯口流出2层楼梯口时, 这时的疏散就属于距离控制疏散过程;当f进入2层楼梯口> f流出2层楼梯口时, 二楼楼梯间的宽度便成为疏散过程中控制因素。现将这种过程定义为瓶颈控制疏散过程; (3) 三、四层人员开始疏散以后,可能会使三楼楼梯间和二楼楼梯间成为瓶颈控制疏散过程; (4) 一楼教室人员开始疏散时,可能引起一楼大厅出口的瓶颈控制疏散过程; (5) 在疏散后期,等待疏散的人员相对于疏散通道来说,将会满足距离控制疏散过程的条件,即又会出现距离控制疏散过程。 起火教室内的人员密度为100/ 125 = 人/m2 。然而教室里还有很多的桌椅,因此人员行动不是十分方便,参考表1 给出的数据,将室内人员的行走速度为 s。设教室的门宽为1. 80m。而在疏散过程中,这个宽度不可能完全利用,它的等效宽度,等于此宽度上减去0. 30m。则从教室中出来的人员流量f0为: f0=v0×s0×w0=××(人/ s) (3)式中, v0 和s0 分别为人员在教室中行走速度和人员密度, w0 为教室出口的有效宽度。按此速度计算,起火教室里的人员要在 内才能完全疏散完毕。 设人员按照 人/ s 的流量进入走廊。由于走廊里的人流密度不到1 人/ m2 ,因此采用1. 2m/s的速度进行计算。可得人员到达二楼楼梯口的时间为。在此阶段, 将要使用二楼楼梯的人数为100人。此时p/ w=100/1700= < 0. 1 , 因而不能使用公式2 来计算楼梯的流量。采用Fruin[5]提出的人均占用楼梯面积来计算通过楼梯的流量。根据进入楼梯间的人数,取楼梯中单位宽度的人流量为人 /(m. s) ,人的平均速度为0. 6m/ s ,则下一层楼的楼梯的时间为13s。这样从着火时刻算起,在第(60+)时,着火的15号教室人员疏散成功。以上这些数据都是在距离控制疏散过程范围之内得出的。 起火后120s ,起火楼层其它两个教室(即11和13号教室)里的人员开始疏散。在进入该层楼梯间之前,疏散的主要参数和起火教室中的人员的情况基本一致。在他们中有人到达二层楼梯口,起火教室里的人员已经全部撤离二楼大厅。因此,即将使用二楼楼梯间的人数p1 为: p1 = 100 ×2 = 200 (人) (4)此时f进入2层楼梯口>f流出2层楼梯口,从该时刻起,疏散过程由距离控制疏散过渡到由二楼楼梯间瓶颈控制疏散阶段。由于p/ w =200/1700= ,可以使用公式2 计算二楼楼梯口的疏散流量f1 , 即:?/P> f1 = (3400/ 8040) × 200 = 人/ s) (5) 式中的3400 为两个楼梯口的总有效宽度,单位是mm。而三、四层的人员在起火后180s 时才开始疏散。三层人员在(180+)时到达二层楼梯口,与此同时四层人员到达三层楼梯口,第五层到达第四层楼梯口。此时刻二层楼梯前尚等待疏散人员数p′1: p′1 = 200 - ( – ) × = (人) <0 (6) 所以,二层楼的人员已经全部到达一层此后,需要使用二层楼梯间的人数p2 : p2 = 100×3=300 (人) (7)相应此阶段通过二楼楼梯间的流量f 2 : f2 = (3400/8040) × 200 = (人/ s) (8) 这┤送ü楼楼梯的疏散时间t1 : t1 = 300÷ = 120 ( s) (9) 因为教学楼三、四、五层的结构相同,所以五层到四层,四层到三层和三层到二层所用的时间相等,因此人员的疏散在楼梯口不会出现瓶颈现象所以,通过二楼楼梯的总体疏散时间T : T = 120×3 = ( s) (10) 最终根据安全系数得出实际疏散时间为T实际: T实际 =×(~2)=~1293( s) (11)图7 二楼楼梯口流量随时间的变化曲线图 关于几点补充说明:以上是我们只对B座二楼的15号教室起火进行的假设分析和计算,此时当人员到达一楼即视为疏散成功。同理,当三楼起火的时候,人员到达二楼即视为疏散成功,四楼、五楼以此类推。因为1号教学楼A、B座结构的对称性所以楼层的其他教室起火与此是同一个道理。所以本文上述的分析与计算同时适用于A、B两座楼。另外当三层以上(包括三楼)起火的时候,便体现出C座二楼的作用。当B座的三楼起火的时候,B座二楼的人员肯定是在B座三楼人员后对起火做出应对反应,所以会出现当三楼人员疏散到二楼的时候,二楼的人员也开始疏散的情况,势必造成二楼楼梯口出现瓶颈现象。因为A、B座的三、四、五楼并没有连接,都是独立的结构,出现火灾不会直接从B座的三楼威胁到A座三楼及其他楼层人员的安全,所以为了避免上述二楼楼梯口出现瓶颈现象的发生,我们让二楼的所有人员向A座的二楼转移,这样就会让起火楼层的人员能够更快的疏散到安全区域。当B座的四、五楼起火的时候也同样让二楼的人员向A座的二楼转移,为二楼以上的人员疏散创造条件。同理,A座也是如此。 在对火灾假设分析和计算的时候,我们并没有对大教室的后门楼梯的疏散做出计算,由于1号教学楼的特殊性,A座的四楼和B座的五楼没有大教室,所以大教室的后门楼梯疏散人员的速度是很快的,不会在大教室后门的楼梯出现瓶颈现象。 关于1号教学楼的几个出口:u 大厅有一个大门u A座一楼靠近正厅有一个门u A座大教室旁边有一个门u B座中教室靠近大厅正门侧面的窗户可以作为一个应急出口u A、B座的底层都有一个地下室(当烟气蔓延太快来不及疏散,受烟气威胁的时候可以作为一个逃生去向)u A、B座大教室各有一个后门 合计: 8个出口致校领导的一封信尊敬的校领导,你们好。针对我校1号教学楼,我们数学建模小组通过实际测量、建立模型、模型分析,得出如下结论:一旦1号教学楼发生火灾,人员有可能不能全部安全疏散。以上的分析是按一种很理想的条件进行的,并没有进行任何修正。实际上人在火灾中的行为是很复杂的,尤其是没有经过火灾安全训练的人,可能会出现盲目乱跑、逆向行走等现象,而这也会延长总的疏散时间。 该模型在现阶段是一个人员疏散分析模型的基础,目前属于理论上的模型,以上的计算结果都是通过手算或文曲星计算得到的。模型中的人员行走速度是通过多次观察该教学楼内下课时人员的行走速度和参照Fru2in 给出的疏散时人员行走速度、NFPA 中给出的人员行走速度以及目前人员疏散模型中通用的计算速度等修正而得到的,具有较为广泛的通用性。而预测的疏散时间是根据建筑物的结构特点和人员行走速度而得到的,在计算疏散所用时间的时候在剔除疏散前人员的滞后时间(或称预移动时间) 外,所得到的时间是合理的。对于疏散前人员的滞后时间,参考T. J . Shields 等试验结论:75 %人员在听到火灾警报后的15~40 s 才开始移动,而整个疏散所用的时间为 s。在该例中起火教室的反应滞后时间为60 s ,这是从开始着火时刻算起的。预移动时间与不同类型的建筑物、建筑物中人员的自身特点和建筑物中的报警系统有着很大的关系,它是一个很不确定的数值。本文中所用的预移动时间不到整个疏散过程中所用的时间的 10 %。二楼楼梯口流量随时间的变化曲线如图7所示。由上可知,二层以上的所有人通过二楼楼梯所需的时间为 s ,这比前面设定的可用安全疏散时间要长,因而不能保证有关人员全部安全疏散出去。楼梯的宽度和大厅的正门显然是制约人员疏散的一个瓶颈。造成这种情况的基本原因是该教学楼的疏散通道安排不当,楼梯通道的宽度不够,对此可以适当增大楼梯的总宽度;或者在教学楼的每个分支上再修一个楼梯,则人员的疏散会更加的畅通;最好是分别在A座和B座新建一个象正门一样的出口,这样将大大的缓解了大厅正门疏散人员的压力,不至于造成大厅人员堵塞而影响楼上人员的疏散。另一方面,学校还应多增加一些消防设施,每个教室都该配备灭火器;学校还应加强学生消防意识的培养和教育,形式可以多样化、新颖化,比如做报告,上实践课,做消防演习等等。让他们了解一些消防逃生的常识,学会一些消防器材的使用,并让他们对自己所使用的教学楼有充分发认识和了解,一旦发生火灾好知道采取何种疏散方法才能在最短的时间内到达安全区域。如果学校经费有限,也可以不花一分钱就可以消除这个消防隐患,就是合理安排上课的教室,避免每个楼层的所有教室都被用于上课。每层至少可以空出几个,这样就会大大的缓解人员疏散不利带来的危险。但是这样也有弊端,就是没有充分利用教室的使用价值,浪费资源。
你可以去赛才网上去看看,那里有1992-2008的优秀论文,很不错
已发送···
数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。
数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用
一、高等数学教学的现状
(一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二) 教学 方法 传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体 措施
(一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献
[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.
[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.
[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.
数学建模论文范文二:数学建模教学中数学素养和创新意识的培养
前言
创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.
因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].
在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.
而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.
近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].
所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.
因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].
因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.
1掌握数学语言独有的特点和表达形式
准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.
用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.
现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.
2借助数学建模教学使学生学会使用数学语言构建数学模型
根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.
而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.
对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.
3借助数学实验教学,展示高度抽象
的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.
因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.
配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.
选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.
教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.
教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.
数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.
4突出学生的主体作用,循序渐进培养学生学习、实践到创新
实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.
在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.
再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.
同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.
通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.
5具体的教学策略和途径
数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:
1)注重背景的阐述
让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.
2)注重模型建立与求解过程中的数学语言的使用
在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.
3)注重经典算法的数学软件的实现和改进
由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.
参考文献:
[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.
[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。
[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.
[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.
[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.
[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.
[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.
预测的类型灰色预测一般有四种类型:1、数列预测。对某现象随时间的顺延而发生的变化所做的预测定义为数列预测。例如对消费物价指数的预测,需要确定两个变量,一个是消费物价指数的水平。另一个是这一水平所发生的时间。2、灾变预测。对发生灾害或异常突变时间可能发生的时间预测称为灾变预测。例如对地震时间的预测。3、系统预测。对系统中众多变量间相互协调关系的发展变化所进行的预测称为系统预测。例如市场中替代商品、相互关联商品销售量互相制约的预测。4、拓扑预测。将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测未来该定值所发生的时点
319 浏览 5 回答
355 浏览 5 回答
116 浏览 5 回答
259 浏览 5 回答
147 浏览 6 回答
81 浏览 3 回答
138 浏览 6 回答
321 浏览 3 回答
149 浏览 3 回答
279 浏览 3 回答
93 浏览 3 回答
169 浏览 3 回答
251 浏览 3 回答
87 浏览 3 回答
311 浏览 4 回答