归结原则,又称为海涅(Heine)定理,即:设f(x)在x0的某空心邻域内有定义,那么在x趋于x0时f(x)的极限存在的充要条件是对任何以x0为极限且含于该空心邻域的 数列,当n趋于无穷大时,极限f(xn)都存在且相等。连接了数列与 函数,使两者的有关性质可以 灵活运用。设f(x)在x0的某空心邻域内有定义,那么在x趋于x0时f(x)的极限存在的充要条件是对任何以x0为极限且含于该空心邻域的数列,当n趋于无穷大时,极限f(xn)都存在且相等。当极限存在时,它的所有子列极限都存在且相等,当一般用归结原则的反面,归结原则说的是lim(x→X.)f(x)存在的充要条件是对于任何含于其邻域内且以X.为极限的数列xn,极限lim(n→∞)f(xn)存在且等于im(x→X.)f(x).因此在lim(x→X.)f(x)存在的情况下,xn的选取是很随意的,只要是以X.为极限就行.因此由于你问题中说的不是很清楚,所以我只能说若X.=0时,取Xn=1/n是可以的.