泰勒 (2004-02-06) 18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor), 于1685 年8月18日在米德尔塞克斯的埃 德蒙顿出生。1709年后移居伦敦,获法学硕士学位。他在 1712年当选为英国皇家学 会会员,并于两年后获法学博士学位。同年(即1714年)出任 英国皇家学会秘书,四年 后因健康理由辞退职务。1717年,他以泰勒定理求解了数值方程。 最后在1731年1 2月29日于伦敦逝世。 泰勒的主要着作是1715年出版的《正 的和反的增量方法》,书内以下列形式陈述出他已于 1712年7月给其老师梅钦(数学家 、天文学家)信中首先提出的着名定理——泰勒定理:式内v为独立变量的增量, 及 为流数。他假定z随时间均匀变化,则 为常数。上述公式以现代 形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成 的,当x=0时便称作马克劳林定理。1772年 ,拉格朗日强调了此公式之重要性,而且 称之为微分学基本定理,但泰勒于证明当中并没有考虑 级数的收敛性,因而使证明不严谨, 这工作直至十九世纪二十年代才由柯西完成。 泰勒定理开创 了有限差分理论,使任何单变量 函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者 。 泰勒于书中还讨论了微积分对一系列物理 问题之应用,其中以有关弦的横向振动之结果尤为重要 。他透过求解方程 导出了基本频率公式,开创了研究弦振问题之先 河。此外,此书还包括了他于 数学上之其他创造性工作,如论述常微分方程的奇异解,曲率 问题之研究等。 1715年,他出版了另一名着《线性透 视论》,更发表了再版的《线性透视原理》(1719) 。他以极严密之形式展开其线性透 视学体系,其中最突出之贡献是提出和使用「没影点」概念, 这对摄影测量制图学之发展有 一定影响。另外,还撰有哲学遗作,发表于1793年。参考资料: