▲第一作者:宋丽娜、张伟、王颖;通讯作者:徐吉静教授 通讯单位:吉林大学
论文DOI:
针对锂氧气电池存在的反应动力学缓慢而导致能量转换效率低的问题,研究者通常开发高效、稳定的正极催化剂来降低电池的充电极化电压提高反应动力。该工作将Co单原子固定于掺杂N的碳球壳载体上,用于锂氧气电池的高效催化反应,实验发现Li2O2形成和分解路线与LiO2在单原子催化剂的吸附能有关。研究明确指出,在放电过程中,原子级分散的活性位点能够诱导放电产物的均匀成核和外延生长,最终形成有利的纳米花状放电产物。在充电过程中,CoN4活性中心对放电中间体LiO2弱的吸附能,诱导充电反应由两电子路径向单电子路径转变。 得益于高分散的Co-N单原子催化剂的能级结构和电子结构所发生的根本性变化,大幅提升了电池的充电效率和循环寿命。与同等含量的贵金属基催化剂相比,达到600 mV充放电极化电压的降低和218天的长寿命循环。
锂氧气电池具有锂离子电池10倍以上的理论容量密度,被誉为颠覆性和革命性电池技术 。然而该电池还处于研发的初级阶段,受限于ORR和OER电化学反应动力学缓慢,电池的实际容量、倍率性能、能量效率和循环寿命距产业化应用还有很大差距。因而开发高效稳定的催化剂,是提高电池反应动力和循环效率的迫切需要。原子级纳米晶具有最大化的原子利用效率和独特的结构特点,往往表现出不同于传统纳米催化剂的活性、选择性和稳定性,为调控电化学反应过程提供了多种可能。在锂氧电池中,电解液中可溶性LiO2中间体能够调控放电产物Li2O2的形成与分解路线。先前的研究结果表明[1],不同的生成路线与LiO2在催化剂的不同晶面上的吸附能有关。 因此,探究单原子催化剂的尺寸效应对LiO2吸附能的影响,可能是一种调整低供体数电解质中过氧化锂形成与分解路径的新思路。这一新发现将为高能量效率和长循环寿命的锂氧电池的设计提供更多的选择。
单原子催化剂(SACs)是一类非常重要的电催化剂,其独特的单分散结构集均相催化和多相催化剂的优点于一身,拥有最大的金属利用率、优异的催化活性和稳定性。同时,SACs的活性位点相对简单确定且易于调控,因而这种独特的结构和性能使得单原子催化剂成为了一个非常理想的催化机理研究和性能优化的材料平台。然而当单原子催化剂与锂空气电池相遇,会擦出怎样的火花呢?本文采用原位聚合技术,设计合成了Co单原子嵌入的氮掺杂碳空心球(N-HP-Co)用于锂氧气电池的研究,并对其充放电过程进行详细分析。其结果表明,受益于N-HP-Co最大化暴露的CoN4单原子活性位点及活性位点在碳球壳上的均匀分布,降低了对LiO2的吸附能力,有效的改变了电池的反应路径,使得电池反应动力学得到极大提高,大幅提升了电池性能。
▲图一 单原子催化剂的合成过程。
单原子催化剂由于活性位点均匀性的提高以及配位环境的高度可控性,在许多催化反应中都表现出较高的催化活性。因此将单原子Co催化剂应用于锂氧气电池中,来探究对Li2O2形成与分解反应路径的影响。我们采用原位聚合的方法,以二氧化硅作为模板,盐酸多巴胺作为碳源,并在900 °C的氮气氛围内热解。
▲图二 单原子催化剂的特性表征。a, b) 样品的SEM图像(a:1微米;b:200纳米);c) 样品的TEM图像(主图:200纳米;插图:10纳米);d) 样品的EDX元素分析(50纳米);e, f) 样品的HAADF-STEM图像(e:50纳米;f:2纳米);g) 样品及对比材料的XRD图像;h) 样品的N 1s XPS光谱;i) 样品及对比材料的氮气吸附曲线。
▲图三 单原子催化剂的原子结构分析。a) 样品的XANES光谱;b) 样品的傅里叶转换的Co-K边光谱;c, d)样品在k和R空间的EXAFS拟合曲线。
N掺杂的碳球壳作为载体是锚定Co单原子的关键步骤。高角度环形暗场球差电镜(HAADF)、能量色散谱(EDX)元素映像图表和X射线吸收光谱(XAS)测试等关键性表征技术证实了单原子Co的成功制备和CoN4高活性位点的存在。
▲图四 单原子催化剂的放电机理研究。a) 样品及对比材料的放电曲线;b) 样品及对比材料的CV曲线;c) 样品及对比材料的倍率性能;d, e, f) 样品及对比材料的放电产物的SEM图像及相应的XRD谱图(500纳米);h, i) 样品及对比材料的放电机理图。
受益于N-HP-Co SACs最大化暴露的CoN4单原子活性位点在碳球壳上的均匀分布,电极氧化还原反应动力学得到极大提升,加快了放电产物Li2O2的形成速率,大幅提升了电池的放电容量和倍率性能。与同等含量的贵金属催化剂相比,在相同的电流密度和容量下,N-HP-Co SACs具有更多的反应活性位点,因而更有利于生成纳米片状的Li2O2,并通过“外延生长方式”进一步组装形成有利的纳米花状Li2O2。这种特殊的放电机制有利于打破电荷传输限制和放电产物电化学绝缘的本质。
▲图五 单原子催化剂的充电特性。a) 样品及对比材料在不同充电阶段的紫外可见光谱图;b) 样品的充电机理图;c-h) 样品及对比材料上的不同结构对LiO2的吸附能。
为了更全面地了解CoN4单位点催化剂的充电机理,通过密度泛函理论(DFT)计算表明复杂的配位环境可以显著改变中心金属原子CoN4对LiO2*的吸附能力,从而调控反应的活性和选择性。可以看出,CoN4活性中心对放电中间体LiO2弱的吸附能,有利于提高LiO2在电解质中的溶解度,诱导充电反应过程由两电子路径向单电子路径转变。因而有利于提高电池的充电效率。
▲图六 锂空气电池的循环稳定性。a) 样品及对比材料的循环性能;b-e) 样品及对比材料在不同循环过程中放电产物的SEM图像(b, d:1微米;c, e:500纳米);f, g) 样品及对比材料在不同循环过程中的放电产物的XPS光谱。
单原子催化的锂空气电池可以有效的抑制副反应的发生,并展现出优异的循环稳定性,充分验证了催化剂对放电产物的精准调控对稳定电池体系的重要作用。
▲图七 单原子催化剂在循环过程中的稳定性。a) 样品在全圈循环后的XPS光谱;b) 样品在多圈循环后的EDX光谱(200纳米);c) 样品在多圈循环后的XANES光谱;d) 样品在多圈循环后的傅里叶转换的Co-K边光谱。
N-HP-Co 在50次的循环过程中,Co的单原子结构依然被保留。Co单原子在碳载体上的固有稳定性使它们在电化学反应中具有优异的耐久性,这一显著的优势与低成本的优势相结合,为金属单原子催化剂在锂氧电池反应路线的可调性提供了新的策略。
单原子催化剂的合成受到草莓生长过程的启发,采用二氧化硅为模板,原位聚合生成氮掺杂的Co单原子催化剂。由于单原子催化的本质特征,低配位环境和单原子与碳球壳之间的协同作用能够精准的调控锂氧气电池中放电产物的生成与分解路线。与同等含量的贵金属催化剂相比,单原子催化剂不仅能够调控放电产物的形貌,同时增加了放电容量,避免了过多的副反应的发生,极大地提高了电池的电催化性能。该研究提出的单原子催化正极的概念、设计、制备及催化机制,将为锂空气电池领域新型催化剂的发展提供新的研究思路和科学依据,具有鲜明的引领性和开创性特征。
参考文献 [1] Yao, W. T. et al. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc.,2019,141,12832-12838.
徐吉静,1981年7月出生于山东省单县,现任吉林大学,化学学院,无机合成与制备化学国家重点实验室,未来科学国际合作联合实验室,教授,博士生导师。光学晶体标准化技术委员会副秘书长。主要从事多孔新能源材料与器件领域的基础研究和技术开发工作,研究方向包括锂(钠、钾、锌)离子电池关键材料及器件,锂空气(硫、二氧化碳)电池等新型化学电源,外场(光、力、磁、热)辅助能量储存与转化新体系。近5年共发表SCI学术论文50余篇,其中包括第一作者/通讯作者论文:篇、 1篇、. 2篇、篇、Energy 篇、ACS Nano 1篇、ACS 篇。迄今为止,论文被他引4000余次,单篇最高引用360次,12篇论文入选ESI高引论文,研究成果被Nature、Science等作为亮点报道。获授权发明专利和国防专利10项。曾获科睿唯安“全球高被引学者”(2019年)、吉林省拔尖创新人才(2019年)、吉林省青年 科技 奖(2018年)和吉林大学学术带头人(2018年)等奖项或荣誉。
1.分子催化
内容侧重于配位催化、酶催化、光肋催化、催化过程中的立体化学问题、催化反应机理与动力学、催化剂表面态的研究及量子化学在催化学科中的应用等。 《分子催化》工业催化过程中均相催化剂、固载化的均相催化剂、固...
2.催化学报
《催化学报》(月刊)创刊于1980年,由中国化学会和中国科学院大连化学物理研究所主办。 《催化学报》主要报道能源、环境、有机化工、新材料、多相催化、均相催化、生物催化、光催化、电催化、表面化学、催化动力...
3.工业催化
《工业催化》主要报道我国化工、石化、炼油、生物工程、医药、环保、新能源等方面催化新技术、新工艺,催化剂和工业助剂的研制,催化剂性能的测试与表征,催化反应器的开发,催化剂新成果、新产品的应用技术等。...
4.化学反应工程与工艺
化学反应动力学、催化剂及催化反应工程、反应工程技术及其分析、反应装置中的传递过程、流态化及多相流反应工程、聚合反应工程、生化反应工程、反应过程和反应器的数学模型及仿真、工业反应装置结构特性的研究、反...
如下:
【摘要】:综述了分子氧氧化环己烷制取环己酮的催化剂的研究进展,重点介绍了光催化剂、纳米催化剂、仿生催化剂、分子筛催化剂和复合催化剂在环己烷催化氧化方面的应用,其中,负载在分子筛上的纳米金催化剂具有较高的催化活性、选择性及稳定性。
【关键词】:环己烷氧化,环己酮,催化剂的认识。
环己酮是重要的有机化工原料和工业溶剂,广泛应用于医药、油漆、涂料、橡胶、农药行业、印刷和塑料回收方面。目前,工业上制取环己醇和环己酮的方法主要为苯酚加氢法、苯部分加氢法和环己烷液相氧化法,环己烷氧化法的应用最为普遍,占90%以上。
由于环己醇和环己酮比环己烷更易于被氧化,为获得适宜的环已醇和环已酮的选择性,工业上环己烷氧化转化率通常控制在,氧化选择性为90%左右。
但环己烷的大量循环造成能耗上的巨大浪费。目前,环己烷氧化工艺研究的热点主要集中在对传统工艺的改造优化、氧化剂的选择及高效催化剂的开发。开发高性能和环境友好的催化剂成为研究热点,近年来开发的一些氧化催化剂在改善环己烷转化率和产物选择性方面表现出较好的性能。
本文主要综述分子氧氧化环己烷制环己酮催化剂的研究进展。
喜欢就 关注我们吧,订阅更多最新消息
第一作者:钮峰
通讯作者:涂文广教授,周勇教授,邹志刚教授
通讯单位:香港中文大学(深圳)理工学院
论文DOI:
全文速览
通过醇和胺的C-N偶联是工业中合成不同有机胺的重要反应路径,而这一过程往往需要在高温高压等较苛刻的条件下进行。因此,本工作中,我们设计了一种基于CdS-Pd单原子体系催化剂用于实现高效可光催化苯甲醇和苯胺的C-N偶联反应获得二级胺。通过实验研究发现,Pd与CdS表面的悬挂S原子原位配位形成单一Pd-Sx物种。该催化剂的可见光催化C-N偶联的二级胺产率接近100%,同时释放出可观的绿色能源氢气( mmol gcat-1h-1)。机理研究与分析表明,苯甲醇上脱去的H+较容易吸附到长寿命的•Pd-Sx中间态物种而形成H-Pd-Sx中间体。最后,吸附的H又容易脱附,加成到苄烯苯胺的N上,实现氢转移,完成亚胺的加氢过程,得到最后所需要的二级胺产物苄基苯胺。整个过程中,H的吸脱附可以循环进行,因此Pd-Sx配位物种可以作为有效的氢转移的桥梁实现加氢过程。此外,该光催化剂体系具有较好的底物适应性和循环能力。这一工作将为温和条件下实现高效C-N偶联反应提供一种新的思路。
背景介绍
随着工业的发展与进步,有机胺广泛应用于农业、医药、家居、军工等领域,其合成在工业生产中有着越来越明显的重要性。基于“借氢机制(氢转移)”,通过胺与醇的C-N偶联被认为是一种较为绿色的合成有机胺的理想路径。这一过程主要包含醇的脱氢、亚胺的生成以及亚胺的加氢这三个主要步骤。其中醇的脱氢是整个反应的决速步骤。然而,基于这一机制,在热催化合成有机胺的过程中存在一些缺点:(1)醇的脱氢决速步骤需要较苛刻的条件(高温高压);(2)易发生过度偶联,使得产物分布广,不利于分离;(3)反应中使用的催化剂多为高负载量的负载型贵金属催化剂(如Ru/Al2O3、Pd/Al2O3、Rh/Al2O3等),成本较高。因此,开发出高效低成本的催化剂具有一定的挑战性。近年来,利用光氧化还原技术实现常温常压条件下有机胺的合成引起了广泛的关注。研究者们通常采用一些贵金属有机配合物分子进行均相催化反应,但反应后催化剂难以进行分离,在实际工业生产中难以大规模应用。而采用传统的半导体光催化剂进行多相催化反应,则可以有效解决这一难题。然而仅仅依靠半导体本身的催化能力,很难达到较高的催化活性,实际应用过程中往往需要通过负载一些助催化剂或表面修饰来提高催化性能。近些年,单原子催化被认为是较有前景的领域。单原子催化剂由于其独特的电子结构和较高的原子利用效率而表现出优异的催化活性,被广泛应用于光催化水分解制氢、二氧化碳还原、固氮和有机物降解等领域。因此,我们课题组设计开发了一种单原子光催化剂CdS-Pd,该催化剂可以有效地用于可光催化苯甲醇和苯胺的C-N偶联反应,获得具有工业应用价值的二级胺。同时反应过程中释放出清洁能源氢气。这一工作将为温和条件下实现C-N偶联反应提供一种新的途径。
本文亮点
1. 本工作通过Pd原子与CdS表面的悬挂S原子原位配位制备了一种CdS-Pd的单原子光催化剂,该催化剂可以实现高效可光催化苯甲醇和苯胺的C-N偶联反应获得近100%产率的二级胺N-苄基苯胺以及较高的产氢活性。
2. 实验和理论计算结果证实了,相比于Pd纳米颗粒助催化剂负载的CdS,单一Pd-Sx物种能够有效捕获光生电子,使其具有较长的寿命,而且氢在Pd-Sx物种上的吸脱附能力较强,从而可以作为有效的氢转移载体实现亚胺的加氢,得到目标产物二级胺。
3. 此外,在优化的反应条件下,该催化剂具有较好的稳定性,以及对不同醇类和取代胺的C-N偶联反应具有良好的底物适应性。
图文解析
本工作中,首先我们采用水热法制备了六方晶系结构,颗粒尺寸约为50 nm的纳米球形CdS,其带宽约为( 图1 a )。随后,在可见光催化C-N偶联反应过程中加入PdCl2溶液原位合成单原子催化剂CdS-Pd SAs。作为对比,我们采用浸渍法制备了Pd纳米颗粒负载的CdS催化剂CdS-Pd NPs。从图1b的XPS图谱可以看出,光催化反应后的CdS中事实上存在Pd元素。结合能 eV和342 eV分别对应Pd 3d5/2和Pd 3d3/2,表明Pd以2+价态形式存在,而非单质态。因此,我们可以初步推测反应后,Pd与CdS进行了一定的配位。
图1 CdS和CdS-Pd SAs单原子催化剂的结构表征
为了进一步确定反应后Pd的状态以及与CdS的配位环境,我们对样品分别进行了X射线精细结构谱(XAFS)和球差电镜的表征。从图3d可以明显看出反应后的CdS表面上的Pd物种既不是二价态也不是单质态,而是以一定配位的形式存在。通过对样品CdS-Pd SAs中Pd的K-edge EXAFS图谱进行拟合,可以得出Pd-S的配位数约为3( 表1 )。通过进一步的HAADF-STEM和 EDS mapping图可以清晰地看到Pd以单原子形式均匀地分散在CdS上( 图1 e-j )。因此,综合上述表征方法,我们可以初步证实在光催化反应过程中,PdCl2以Pd-S配位键的形式将Pd原子锚定在了CdS载体上,为光催化反应过程提供一定的反应活性中心。
表1 样品CdS-PdSAs中Pd的EXAFS拟合数据
CN , coordination number; R , bonding distance; σ 2, Debye-Waller factor; Δ E0 , inner potential shift.
为了进一步研究CdS表面的S对催化反应的影响,我们首先对CdS进行了不同程度的表面修饰(400 oC高温煅烧:CdS-400;双氧水表面腐蚀:CdS-H2O2)。从图2 a可以看出,采用不同的手段修饰后,CdS的结构并未发生明显变化,仍然是结晶度较好的六方晶系结构。CdS、CdS-400和CdS-H2O2的能带分别为、和 eV,即能带结构也未发生明显变化( 图2 b )。从图2 c和d可以明显看出, CdS通过表面修饰之后,Cd 3d和S 2p均向高结合能偏移,而且偏移程度随着修饰强度增强而增大。这主要是由于CdS修饰后产生了一定的S空位,使得表面部分Cd暴露,从而改变了Cd和S的周边电子云密度分布。
图2 修饰前后的CdS结构表征
在常温常压氮气气氛下,我们采用苯甲醇和苯胺的C-N偶联作为模型反应对所制备的催化剂进行可见光催化活性评价( 图3 )。首先我们确定了暗反应、无光催化剂以及只有PdCl2的情况下该模型反应没有任何催化活性。在添加PdCl2的条件下,我们对不同的半导体光催化剂进行了活性筛选,发现只有CdS能有效地进行光催化C-N偶联生成二级胺(N-苄基苯胺),产率高达 mmolgcat-1h-1。而其他半导体催化剂在反应过程中只能催化生成亚胺(N-苄烯苯胺),且普遍产率较低(< mmolgcat-1h-1)。
图3 可见光催化C-N偶联反应的催化剂活性筛选
基于CdS对该反应的催化特异性,我们测试了其苯胺的转化率及产物的选择性随时间的变化曲线。从图4b可以看出,随着反应的进行,苯胺的转化率不断提高,当反应达到16 h后,底物苯胺几乎完全转化。随着反应的进行,亚胺(N-苄烯苯胺)的选择性不断降低,而二级胺(N-苄基苯胺)的选择性不断提高,表明反应过程中逐步完成了亚胺的加氢过程。
为了进行对比,我们采用浸渍法提前将Pd纳米颗粒沉积到CdS表面上并进行光催化活性评价。从图4c我们发现,沉积Pd纳米颗粒的CdS催化活性是单一CdS活性的4倍。这主要是由于Pd纳米颗粒作为助催化剂可以有效地提高光生载流子的分离效率。而当我们将Pd以PdCl2的形式加入到反应体系中时,催化活性是单一CdS活性的约倍。而且产物中出现了二级胺(N-苄基苯胺)。也就是说反应体系中原位加入PdCl2能够促使该反应完成加氢过程,有效实现氢转移。因此,我们可以初步推断,光催化反应过程中Pd和CdS表面悬挂的S作用产生的Pd-S物种对实现C-N偶联起到至关重要的作用。此外,在反应过程中我们可以检测到氢气的生成。从图4d可以看出,单一的CdS在反应过程中几乎不产生氢气。而CdS-Pd SAs产氢速率达到 mmolgcat-1h-1,是CdS-Pd NPs的约倍,CdS的近10倍。这一结果也与苯胺转化率的差异相吻合。
为了验证CdS表面的S与Pd作用形成了Pd-S物种,从而提高了C-N偶联反应性能,我们对CdS进行了不同程度的表面修饰。从图4e可以明显看出,随着表面修饰的增强,反应的活性逐渐下降,而且产物苄基苯胺的选择性也随之下降。这也就意味着,当我们遮盖或者去除部分S位点,反应底物在催化剂表面的吸附性能下降,从而导致反应活性降低。另一方面,由于S空位的增多,使得Pd原子很难与S进行配位产生Pd-S物种,从而无法完成C-N偶联反应过程中的氢转移,也就不能得到饱和的目标产物二级胺N-苄基苯胺。
图4 可见光催化活性评价
为了研究在光催化反应过程中不同自由基的作用,我们进行了捕获实验。从图5a可以看出,当体系中加入叔丁醇和苯醌来分别捕获•OH和•O2-,反应的活性基本没有发生变化,说明体系中的这两种自由基对反应基本没有贡献。而当体系中加入草酸铵捕获光生空穴后,产率降为原来的1/3,加入过硫酸钾捕获光生电子后,产率降为0。这一结果表明,光生电子和空穴在光催化C-N偶联反应中有着重要作用。
接着,我们采用超快光谱(TAS)来揭示光照下不同催化剂的载流子衰减动力学。图5b为不同催化剂的瞬态吸收图谱以及拟合曲线。采用双指数模型拟合可获得两个弛豫时间τ1和τ2。Τ1代表导带电子到过渡态的捕获时间,τ2代表电子与过渡态或者价带空穴复合的时间。通过对比,CdS-Pd Sas的弛豫时间明显要长,也就是说,在反应过程中CdS表面单原子态的Pd配位物种Pd-Sx可以作为电子陷阱来捕获光生电子,提高载流子的分离效率,从而加速光催化C-N偶联。另外,从CdS导带转移到过渡态Pd-Sx中间体的弛豫时间更长,更利于氢原子的吸附。
为了研究不同催化剂对于H的吸附以及转移能力,我们做了一个N-苄烯苯胺加氢的模型反应。从图5c可以明显看出,对于单原子态的CdS-Pd SAs催化剂,N-苄烯苯胺较容易实现光催化加氢到苄基苯胺产物,而单质态的Pd(CdS-Pd NPs)催化剂无法实现加氢过程。这也证明了单原子态的CdS-Pd SAs可以很好地吸附H并完成氢转移,从而实现加氢过程得到二级胺N-苄基苯胺。
基于以上的机理表征分析,我们可以给出一个可能的反应机理和路径( 图5d )。光催化反应前,当体系中同时加入CdS催化剂和PdCl2时,PdCl2很快吸附到CdS表面上与表面悬挂的S原子形成Pd-Sx的配位物种。当CdS被光激发后,表面的Pd-Sx配位物种可以有效捕获光生电子,形成•Pd-Sx中间态物种,同时光生空穴能够脱去苯甲醇上的质子,将其氧化成苯甲醛。然后生成的苯甲醛与苯胺进行亲核加成反应,产生醇胺中间体。由于醇胺非常不稳定,很快脱水生成亚胺。苯甲醇上脱去的H+较容易吸附到长寿命的•Pd-Sx中间态物种形成H-Pd-Sx。最后,吸附的H又容易脱附,加成到N-苄烯苯胺的N上,实现氢转移,完成亚胺的加氢过程,得到最后的目标产物N-苄基苯胺。整个过程中,H的吸脱附可以循环进行,因此Pd-Sx物种可以作为有效的氢转移的桥梁实现加氢过程。此外,过多的吸附H可以从H-Pd-Sx上脱附产生H2。
图5 反应机理表征及推测
我们通过DFT模拟计算进一步验证了为什么单原子态的CdS催化剂CdS-Pd SAs可以很好地实现光催化C-N偶联生成N-苄基苯胺( 图6 )。结合EXAFS拟合结果,我们以Pd-S三配位的形式作为计算模型来研究H吸附和反应过程。对于催化剂CdS-Pd NPs来说,在位点1和2的H吸附能分别为 eV和,而催化剂CdS-Pd SAs的H吸附能为 eV。通过过渡态能量搜索,可以得出,Pd纳米颗粒负载的CdS-Pd NPs的加氢能垒为 eV,而对于单原子态的CdS-Pd SAs来说,由于形成的Pd-Sx配位物种能够有效地吸附和脱附H,因此脱附的H直接加成到亚胺的不饱和C上,完成加氢过程。
图6 DFT模拟计算
总结与展望
总的来说,我们设计开发了一种CdS-Pd单原子光催化剂,该催化剂可以有效地用于可光催化苯甲醇和苯胺的C-N偶联反应,获得具有工业应用价值的二级胺。同时反应过程中释放出清洁能源氢气。结合实验以及模拟计算,我们推测Pd在光催化反应过程中与CdS表面的S原位配位形成Pd-Sx中间物种,而这一中间体可以提高载流子分离效率以及有效地进行H的吸脱附,构成Pd-Sx •Pd-Sx H-Pd-Sx Pd-Sx的循环过程,实现氢转移,完成亚胺的加氢过程,得到目标产物N-苄基苯胺。整个过程中,Pd-Sx中间体可以作为有效氢转移的桥梁实现加氢过程。此外,该催化剂体系具有较好循环能力和底物适应性。这一工作将为温和条件下实现C-N偶联反应提供一种新的思路。
作者介绍
钮峰 ,博士毕业于法国里尔大学(法国国家科学研究中心)(导师Andrei Khodakov教授和Vitaly Ordomsky研究员)。2020年8月加入香港中文大学(深圳)邹志刚院士团队从事博士后研究。以第一作者在ACS Catalysis,Green Chemistry,Solar Energy Materials & Solar Cells等期刊上发表SCI论文12篇。目前主要研究方向为多相热催化、光催化能源转化。
涂文广 ,2015年获南京大学物理学院博士学位。2015至2020年在新加坡南洋理工大学从事研究博士后研究工作。2020年6月起任职于香港中文大学(深圳)理工学院。主要从事于低维光电材料表界面结构的精准设计与构建,实现太阳能驱动下的小分子转换,取得了一系列重要成果,迄今为止已在Nature Communications, Advanced Material, Advanced functional Material, ACS Catalysis, ACS Energy Letters等期刊上发表论文70余篇, SCI被引超过8000次,H指数为44。
周勇 ,香港中文大学(深圳)兼职教授。2009 年9月被南京大学物理学院按海外人才引进回国工作,加入南京大学环境材料与再生能源研究中心,聘为教授。主要从事:1、人工光合成二氧化碳转化为可再生碳氢燃料;2、光电材料的设计和构建;3、高效、低成本钙钛矿太阳能电池产业化应用研究。近五年来,以第一作者或通讯作者在 国际重要期刊上发表论文超过 60 篇,其中包括 J. Am. Chem. Soc. (1 篇)、Adv. Mater. (2 篇)、Adv. Funct. Mater. (1 篇)和 Nano Lett. (1 篇),受邀以第一作者或通讯作者撰写 2 篇综述论文。近五年论文他引超过 1600 次,5 篇论文入选 Web of Science 统计的“过去十年高被引论文”, H 指数 46。光催化还原 CO2 研究成果作为主要研究内容,荣获 2014 年国家自然科学二等奖(排名第四)。主编三本英文专著(Springer 等出版社出版)。多次受邀在国内外相关学术会议上做邀请报告或主持会议。担任 Current Nanoscience 中国地区编辑和 Mater. Res. Bull.编委。主持承担国家基金委、 科技 部 973 项目等项目。入选教育部新世纪人才(2010 年)、江苏省首届杰出青年基金(2012年)。
邹志刚 ,2003年凭为教育部“长江学者奖励计划”特聘教授,国家重点基础研究发展计划“973”项目首席科学家,教育部创新团队带头人,2015 年当选中国科学院院士,2018 年当选发展中国家科学院院士。主要从事新型可再生能源与环境材料方面的研究,邹院士在光催化领域做出了卓越的贡献,被媒体称为“光催化领域的前行者”。邹志刚院士已在 Nature等国际一流期刊上发表论文 602 多篇,H指数 74,连续 5年入选爱思唯尔材料科学高被引学者,是材料领域有国际影响力的学术带头人。申请中国发明专利 200 多项,其中 83 项已获授权;承担两届国家重大基础研究计划 973 项目、国家自然科学基金中日合作项目、 科技 部国际合作重大项目等多项科研项目;获国家自然科学二等奖 1 项、江苏省科学技术一等奖 2 项,作为第一完成人获第 46 届日内瓦国际发明展金奖及阿卜杜拉国王大学特别奖各 1项。
305 浏览 2 回答
317 浏览 3 回答
222 浏览 3 回答
175 浏览 3 回答
135 浏览 3 回答
331 浏览 3 回答
151 浏览 2 回答
226 浏览 3 回答
234 浏览 3 回答
255 浏览 2 回答
229 浏览 2 回答
201 浏览 3 回答
97 浏览 4 回答
190 浏览 3 回答
148 浏览 3 回答