基于PLC的智能温室控制系统的设计摘要:温室环境系统是一个非线性、时变、滞后复杂大系统,难以建立系统的数学模型,采用常规的控制方法难以获得满意的静、动态性能。根据温室环境控制的特点,设计了一个基于PLC的智能温室控制系统。关键谝:PLC;智能控制:温室控制智能温室系统是近年逐步发展起来的一种资源节约型高效设施农业技术。本文在吸收发达国家高科技温室生产技术的基础上,对温室温度、湿度、CO,浓度和光照等环境因子控制技术进行研究,设计了一种基于PLC的智能温室控制系统。1智能温室控制算法的研究1.1温室环境的主要特点温室环境系统是一个复杂的大系统,建立精确的控制模型很难实现。由于作物对环境各气候因子的要求并不是特别的精确,而是一个模糊区间,比如作物对温度的要求,只要温度在某一时间段在某一区间内,该作物就能很好地生长,因此,也没有必要将各种参数进行精确控制。温室气候环境作为计算机控制系统的控制对象,有以下特点:非线性系统、分布参数系统、时变系统、时延系统、多变量藕合系统。1.2智能温室控制对象微分方程智能温室温度微分方程为:式中,为智能温室的放大系数;为智能温室的时间常数;为智能温室内外干扰热量换算成送风温度的变化量;为智能恒温室室内温度。2系统总体结构与硬件设计2.1系统总体结构2.1.1控制系统设计目标温室控制系统是依据室内外装设的温度传感器、湿度传感器、光照传感器、CO,传感器、室外气象站等采集或观测的温室内的室内外的温度、湿度、光照强度、CO,浓度等环境参数信息,通过控制设备对温室保温被、通风窗、遮阳网、喷滴灌等驱动/执行机构的控制,对温室环境气候和灌溉施肥进行调节控制以达到栽培作物生长发育的需要,为作物生长发育提供最适宜的生态环境,以大幅度提高作物的产量和品质。2.1.2控制模式以时间为基准的变温管理。根据一天中时间的变化实行变温管理,根据作物的生长需要将l天分成4个时间段,4个时间段中根据不同的控温要求对温室进行控制。1天中4个时间段的分段方法用户可以灵活的更改,而且4个时间段中的温度设定值用户也可以设定修改。不同季节的控制模式不同,只是自动控制系统启动的调节机构不相同,但不同季节的控制目的是相同的,即将环境参数调控到设定的参数附近。随着季节的变化,以及随作物生长阶段的变化,各时间段所需要的温度也是变化的,这时可通过修改设定温度值来调整温室的温度控制目标。2.1-3控制方案本系统采用自动与手动互相切换控制两种方式来实现对温室的自动控制,提高设备运行的可靠性。在运行时可通过按钮对这两种控制方式进行切换。手动控制简单可靠,由继电器、接触器、按钮、限位开关等电气元器件组成。自动控制模式采用计算机自动控制。通过传感器对环境因子进行监测,并对其设定上限和下限值,当检测到某一值超过设定值,便发出信号自动对驱动设备进行开启和关闭,从而使温室环境因子控制在设定的范围内。其运行成本较低,可大大节约劳动力,降低劳动者的劳动强度。2.2系统的硬件组成为了实现智能温室的环境监控,本设计建立了温室环境控制参数的长时间在线计算机自动控制系统。实现了温室内温度、湿度、CO,浓度、光照强度等参数的长期监测。并可根据智能温室温湿度的需求,对天窗、侧窗、降温湿风扇、风机、湿帘、内外遮阳网等设备自动控制。采用计算机作为上位机安装有组态t6.02监控软件,能将数据汇总、显示、记录、自动形成数据库,并实现了温室调控设备的自动设置与远程监控。为了确保系统的可靠性,温室设备的控制采用手动/自动切换方式,即在某些特殊情况下系统可以切换成手动,使用灵活方便。3系统的软件设计3.1温室控制系统PLC软件的设计根据基本要求和技术要求列出以下几点:(1)防止接点误动作:可利用自锁电路加以解决;(2)系统自诊断功能:PIG本身具有此项功能;(3)风机控制:温室设有一组风机,能同时启动与停止,当温室内的温度超出预定值时,受PLC的控制先是4个侧窗自动打开,延时5s后风机启动,再延时5s后湿帘水泵启动,从而使温室的温度降低;(4)侧窗控制:温室中设有4个侧窗,侧窗受电机控制,通过电机限位的设定来控制侧窗行程。解决方法类似上一点,但考虑到程序的精炼性,可配合PGI的中断功能命令加以解决;(5)系统自动/手动控制:可利用一个开关量作为PLC的输入信号,实现控制程序的转换;(6)湿帘泵控制;(7)遮阳网控制;(8)CO,补气(控制;(9)补光灯控制;(1O)可扩展性:在PLC中预留一定的存储空间和端口即可解决。3.2控制系统软件设计系统中对风扇、天窗、侧窗、环流风机、遮阳幕和湿帘泵的控制是通过PLC发出开关指令,通过交流接触器控制相关机构的启停。由于PLC检测系统具有较高的灵敏度,能够把温室内的扰动快速反应出来,同时由于温室较大的传递滞后,执行机构动作频繁,从而影响使用寿命。为此,在程序中加有时间可调的延时模块,使用时可根据具体情况调整延时,使控制效果达到最佳。3.3系统的组态监控软件的设计组态软件是可从可编程控制器以及各种数据采集卡等设备中实时采集数据,然后发出控制命令并监控系统运行是否正常的一种软件包。其主要功能如下:(1)远程监视功能。它可以通过通讯线远程监视多座温室的当前状态,包摇‘户外温度、光照强度、风速、风向、雨雪信号、室内温度、室内湿度、控制器温度、三组独立通风窗的位置和开关状态、内外遮阳幕的位置和开关状态以及一级二级风扇、湿帘、微雾、加热器、环流风扇、补光灯、C0,补气阀、水暖三通阀的状态和多种形式的报警监视,还能监视各灌溉阀的照强度、风速、室内温度、室内湿度、CO,浓度、水暖温度等全月的、全周的、全日的和本时段的最大值、最小值和平均值。(3)温室设备运行记录功能。它能在线记录各温室设备状态变化时的时间、当前状态和位置、当前目标温度、室内温度、目标湿度和室内湿度,并能打印输出。(4)远程设定功能。可以通过通讯线远程修改可编程控制器的全部设定参数。(5)生成曲线图功能。它能以平面图或立体图的方式同时绘制任意时刻的户外温度、光照强度、风速、目标温度、室内温度、目标湿度、室内湿度、CO,浓度、水暖温度等全年的、全月的、全周的、全日的变化曲线并打印输出。4结语本文通过分析温室执行机构的相应动作对环境因子的影响,将可编程控制技术、变频技术、组态监控技术和传感器技术应用于温室控制系统的设计,开发了基于PLC的智能温室控制系统。圜状态(2)数据统计功能。它可以统计任意时刻的户外温度、光[2]。它可以统计任意时刻的户外温度、光14O[参考文献】邓璐娟,张侃谕,龚幼民.智能控制技术在农业工程中的应用.现代化农业,2003(12):1~3申茂向等.荷兰设施农业的考察与中国工厂化农业建设的思考.农业工程学报,2000,16(5)
研究领域:光学生物传感器 传感器技术的研究和应用,是实现实时在位、在线分析的重要途径。作为学科交叉与渗透的产物,化学和生物传感器是一个非常活跃的研究领域,已成功地用于生产过程的自动化控制、炸药和化学战争制剂的遥测分析、新型环境自动监测网络的建立、生命科学和临床化学中多种生物活性物质分析、活体成分分析和免疫分析等。这是一个正处于高速发展的科学领域,已成为现代科学的前沿领域之一。光导纤维化学和生物传感器是二十世纪八十年代诞生的一类新型化学和生物传感器,它的出现是分析化学近十多年来的一项重大进展。这种传感器具有很高的传输容量,可以通过波长、相位、衰减分布、偏振和强度调制、搜集瞬时信息等来反映多元成份的多维信息。它还具有探头直径小(可小至纳米级)、远距离传输能力强、抗电磁干扰性能好和对恶劣环境的适应性强等许多优良性能。现已成功地用于生产过程和化学反应的自动控制、遥测分析、化学战争制剂的现场监测和报警、生命科学研究和临床化学中活体成份的分析、药物分析和药代动力学分析。章竹君教授从1982年赴美国开始进行光纤化学和生物传感器的研究以来,在国内帅先开展分子识别光纤发光传感器的研究,曾得到1项国家自然科学基金重大项目、1项国家自然科学基金重点项目、4项国家自然科学基金项目和2项教育部科技重点项目的资助。在国内外权威刊物(SCI著录刊物)上发表论文120篇、论文在SCI上记录的引用次数有378次,被国内外公认 “对光纤化学传感器的创立和发展作出了贡献”。曾获得两项国家教委科技进步二等奖。 研究工作主要涉及以下几个方面的内容:(1) 新型光学流通式生物传感器的研究 传统的光学传感器一般为静态响应,有许多不足之处,如污染问题、提供的测量数据精密度差、响应时间长、不能用不可逆反应进行分子识别等。建立动态响应模式,有望解决以上问题。另外,传统的光学生物传感器多用酶分子识别,但由于酶种类缺乏、价格昂贵及诸多影响酶活性因素的存在而限制了其发展。寻找新的分子识别模式,是传感器发展的一个重要方向。如利用动植物组织、微生物、细胞进行分子识别,利用化学基础研究的新成果超分子化学进行超分子识别等,这些分子识别模式具有广阔的前景,值得人们探索和研究。本课题组改变传统光学传感器静态响应模式,把流动分析技术引入传感器的设计中,克服静态响应的缺点,建立动态响应模式,设计出流通式化学发光传感器、流通式荧光传感器和流通式室温磷光传感器,并对光学传感器的换能器和分子识别系统作了全面的研究,完成了一系列性能优良的流通式光学传感器。组织传感器国内外都已经开展了研究工作。但是,目前在这类生物传感器中,换能器几乎全部是电流型的电化学换能器。这类传感器中,一般通过物理的方法,把极其少量的生物材料固定在电极上。由于生物材料的固定量极少,故其生物催化活性不会很高,对分析物的转化率低,从而使这类传感器的灵敏不高,线性范围不宽;这些生物传感器均为静态分析,在静态响应过程中,底物需扩散到生物催化层中进行反应,而且反应产物需扩散到电极表面,一般需要较长的时间才能达到稳态响应,故不适合进行在线实时分析;此外,现存的这类生物传感器的制作工艺比较复杂、费时。本课题组首次把化学发光换能器引入这类传感器的设计中,采用大容量固定化技术,结合流动分析技术,从而把原有这类传感器的灵敏度提高1-2个数量级,响应时间减少到十分之一,从而达到了进行在线、实时分析和活体分析的要求。据此,完成了乙醇酸、草酸、脲化学发光组织传感器。溶胶凝胶技术是一种新型的化学和生物传感器试剂固定化技术,它具有优异的光学特性和热力学及机械稳定性,且形成的化学条件温和,尤其适合包埋生物大分子。我们把溶胶-凝胶技术引入化学发光传感器的设计中,从而设计出了溶胶-凝胶化学发光过氧化氢和葡萄糖传感器,并结合微透析活体取样技术,活体测定了动物的血糖浓度,实时性地监测了动物的体内血糖浓度的变化。文献上所有报道过的化学发光传感器大多数都是将一种或多种酶制剂固定在载体上的消耗型生物传感器且酶以外其它发光试剂均以溶液形式同时注入发光池中实现待测物的定量分析,从严格意义上来说不能算成一种真正的传感器。本课题组所提出的全固态化学发光传感器,即将具有分子识别功能和换能器功能的所有化学发光试剂通过电价键全部固定在阴、阳离子交换树脂上,在先于化学发光反应之前,将一定量发光试剂从载体上洗脱,与分析物发生化学发光反应,实现对待测物的传感。这种传感器虽然是消耗型、不可逆的,但树脂交换容量大,每次洗脱下的发光试剂的量又很少,每个柱子可以使用200次以上,这一概念已被国内外同行所接受。这一新型化学发光传感器的设计不仅优化了化学发光反应的量子产率,节约发光试剂的用量,而且由于载体远离检测器,减小了散射背景,提高了灵敏度。此外,还可通过控制洗脱剂的浓度精确控制发光试剂的释放量,进而控制传感器的使用寿命。根据这一构想,我们首次报道了抗坏血酸、过氧化氢、次氯酸、钒(V)、铬(VI)等十几种传感器。对于一定的流动相,能够保留于C18柱上的物质种类有限,而且其中具有天然荧光的也只是其中的一小部分,从而保证了C18硅胶作为分子识别试剂荧光传感器的选择性;当用另一种特定极性的流动相洗脱时,保留于柱上的荧光物质又能够被很好地洗脱,从而保证了这种传感器的可逆性;同时C18柱可改变荧光物质的微环境,且有富集作用,使这种传感器有高的灵敏度。基于此构想,本课题组首次完成以C18硅胶为分子识别试剂和载体的维生素B2、色氨酸、金鸡纳碱的荧光传感器,并提出了其理论响应模式。b-环糊精及其衍生物能够选择性的与一些物质形成包容配合物从而决定了b-环糊精及其衍生物作为分子识别试剂的传感器的选择性;同时b-环糊精及其衍生物空腔提供与客体分子的相对有机的微环境以及其富集作用,使得荧光客体分子荧光强度增加,大大改善了这种荧光传感器的灵敏度。根据这种构想,我们测定了奎宁、色氨酸、苯丙氨酸、潘生丁、四环素、土霉素及氯霉素等,同时对响应的理论模式进行了探索。磷光传感器是光学传感器中最薄弱的部分,尽管磷光有许多优点,但由于水和湿气都能破坏磷光体与基质形成的氢键,削弱刚性化作用,使磷光的淬灭增大,很难用于测定水溶液中的有机物和无机物。我们合成了多种Eu、Tb、Gd等稀土离子的配体,研究了它们二元和三元配合物的磷光特性,发现了它们的一些二元配合物能够与Chelex-100螯合树脂形成三元配合物增敏、增稳的室温磷光特性,据此设计制作了Zu、Tb、Gd室温磷光传感器,并用于稀土试样和免疫分析。我们所设计的一系列新型流通式光学传感器在环境监测、临床检验、生化分析、冶金分析等方面有较好的应用前景,可为上述这些领域提供实时、在线、连续、准确的分析测试新方法和技术;同时,这些传感器也将在生物芯片分析、微流控芯片分析技术、毛细管电泳分析和高效液相色谱分析中得到广泛的应用。该方向的研究工作处于国内领先,国际先进水平(获省科技进步一等奖)。(2) 光学传感器在纳米材料生物环境安全性研究中的应用 纳米生物环境效应研究,是一个典型的综合性强的交叉学科领域,需要各个领域的研究者的共同参与,才能有效地完成纳米生物环境效应的研究。作为“科学技术的眼睛”的分析科学,在这项研究有着极其重要的作用。生物环境下的纳米颗粒检测方法和技术、纳米材料毒性检测新方法和新技术等是我们分析工作者义不容辞的研究任务。目前,用于研究纳米生物环境效应的检测方法和技术均为传统的研究毒理的方法,如MTT法。这些传统的方法适合常规的物质(如重金属离子、有机污染物),但不一定适合具有特殊性质的纳米尺度的物质。此外,这些传统的检测方法灵敏度不够高,而且费时、复杂,不利于掌握和操作。可见,建立和应用一些灵敏度高、成本低、简单、快速的检测技术和方法,对于纳米材料生物环境效应研究是非常必要的。新的检测技术和方法的应用将可以大大地推动和促进纳米生物效应研究。近年来,光传感器在多类复杂有机物质,如氨基酸、维生素、核酸、激素、生物碱及各类药物及毒物的检测,多种生物活性物质的分析,生物芯片、微流控芯片研究中得到了广泛的应用,而且目前呈现出上升趋势。为生命科学、环境科学、材料科学的研究提供了许多新的、高灵敏度有效的分析手段,推动了这些学科理论和高新技术的发展。一些生命活动过程(如发光细菌在生长良好时、高等绿色植物的光合作用过程、种子萌发过程)会产生的化学发光。这种生物的微发光是生物体内生化代谢过程中的产物,其发光强度易受外界环境条件的影响。这种化学发光特性的改变提示出生物体、组织的代谢变化,从而综合性地反映其生态环境的变化。因此,控制一定的条件,就可以用这些生命活动过程所自发产生的发光现象来测定某中环境因素的变动。这类方法简单、灵敏、快速,已用于测定水和大气污染程度。可见,集准确、灵敏、快速、简便、廉价为一身的化学发光传感器最有希望被应用到纳米材料的生物环境安全性研究中,而且这种方法比其他的分析检测方法更简单、更直接,更适合于现场分析。我们将发光细菌化学发光体系、绿色植物光合作用延迟化学发光体系、植物种子(如大豆)萌发过程微化学发光体系和流通式化学发光传感器用于纳米材料的生物环境安全性研究中,来考察化学发光生物传感器用于研究纳米材料生物环境效应的可能性。根据纳米材料的特性以及生物环境安全性研究的要求,优化这些化学发光体系,设计出合适的化学发光生物传感器。以常见的纳米材料(如碳纳米材料、TiO2纳米粉末)为模型,来考察存在于人类生活和生存环境(大气、水体和土壤)中这些纳米材料的生物环境效应。用发光细菌的发光体系来研究存在于水体中的纳米材料的生物效应;用绿色植物叶子的延迟化学发光来研究存在于大气中的纳米粉末对光合作用过程的影响。以大豆种子及其幼苗作为生物个体模型,通过检测植物种子萌发过程中的微化学发光体系的发光强度的变化,在个体水平研究纳米尺度材料的生物效应;用多功能流通式化学发光生物传感器通过实时、在线检测细胞(如小鼠T细胞、吞噬细胞)培养液中活性组分的浓度变化,在细胞水平研究纳米粒子对细胞生长及代谢过程的影响;以葡萄糖氧化酶作为生物活性分子的模型分子,用化学发光葡萄糖传感器通过检测葡萄糖氧化酶分子活性的变化,在分子水平研究纳米粒子对生物分子活性的影响。并进一步研究纳米材料的粒径、浓度、形貌等对其生物环境效应的影响。从而,建立起简单、快速、灵敏的研究纳米材料生物环境安全性的新方法和新技术。此外,根据纳米材料的生物效应,设计出具有新特性的化学发光传感器。我们将简单、快速、高灵敏度的化学发光生物传感器应用于纳米材料的生物环境安全性研究,为在生物个体水平、细胞水平及分子水平上研究纳米尺度物质的生物效应提供新的检测方法和技术,从而推动纳米材料生物环境安全性研究。另一方面,拓宽化学发光传感器在科学研究(生命科学、环境科学、材料科学) 中的应用领域,为化学发光传感器的发展提供动力和源泉。(3) 近场光学和纳米粒子生物传感器的研究 传统的光学显微技术在细胞生物学和分子生物学研究中应用很广,也能够用于分析活细胞,但分辨能力被Abbe衍射作用所限制,其理论分辨率最高为,放大倍数最高也只能达到1600倍。而近场光学显微镜和近场光学传感器是近年发展起来的一个新的技术,可以大幅度地提高显微镜的分辨率和放大倍数。我们实验室组装了一台近场光学显微镜,其分辨率为1-2nm,放大倍数从1600倍提高到25000倍,能更清晰地显示活细胞内被检测成分的分布、含量及其动态变化。检测器为ICCD和雪崩金属光电倍增管(AMPMT)两种,并能同时进行数字显示、计算机处理和模拟显示,能够动态检测活细胞内物质代谢、能量代谢及信息传递过程并进行全程录像。纳米光纤探针尖端的直径为50nm,表面用真空沉积镀上一层银,端点用共价键合法键合上一层BPT抗体,用三维微移动器在近场光学显微镜下进行操作,使光纤尖端直接插入靶细胞中。当靶细胞中存在BPT时,它会同纳米光纤探针上的BPT抗体特异性结合,再从光纤的另一端射入的波长为325nm 激光的激发下,产生明亮的蓝色荧光。该法具有很高的选择性和灵敏度。利用这种抗体靶标,还可以测定活细胞中的多种化学物质及基因表达的多种蛋白质,在阻断单细胞中致病蛋白生产的药物筛选研究中,也将发挥重要的作用。从原理上讲,还可以制备出含有几种荧光体及生物活性分子,如酶、蛋白质受体或抗体,同时反映出多元成分的多维信息,并通过波长、相位、衰减分布、偏振和强度调制、时间分辨等,对单个活细胞中的多个成分同时进行实时传感。在近场光纤传感器方面,我们正用于细胞中环腺苷酶介导的膜信号传导的研究,此传感器是在纳米级光纤端点固定荧光素和荧光虫素酶,用生物发光反应检测ATP,并通过偶合反应检测cAMP,从而获取环腺苷酶介导的细胞信号转导系统的实时信息。在细胞或线粒体内物质代谢所涉及的电子传递,最终体现在膜上的传递及相应的细胞膜电位或线粒体电位的变化。现用的微电极法,由于弱电的干扰,难于得出准确的结果。我们曾对应用电位敏感染料的生物传感器进行过系统研究,故可以采用近场光学和纳米粒子生物传感器两种手段,将电位敏感染料固定化,通过近场显微技术,可以实时、在位对膜电位的变化进行监测,为细胞内信息传递提供定量数据。(4) 对光纤化学和生物传感器进行了系统的理论研究 首次提出了双波长技术的荧光传感器,建立起了这类传感器的响应理论。这一理论被国内外所有光导纤维传感器专著引用,被评论为“双波长荧光传感器的诞生”和“理论上奠定了光纤荧光传感器的基础”;提出了基于光吸收的光纤传感器。首次提出一配合物形成模式作为分子识别系统的金属离子光纤传感器,建立金属离子荧光、吸收、反射传感器的设计原理,这已成为离子光纤传感器的经典理论;把离子对萃取原理,应用于光纤传感器的设计中,完成了高灵敏、高选择性的钠离子、钾离子光纤传感器。系统地建立了各类光纤传感器的响应理论模式,这些理论已被作为经典理论被国内外学者接受,并已载入国内外有关专著中。阐明了传感膜的分子识别和传感机制,研究了多种传感膜基质的动力学,实现了多种分子识别物质在这些膜基质上的固定化。完成了pH、pO2、胆固醇、多巴胺、乙酰胆碱、胆碱、铁蛋白、D-氨基酸等生化物质,抗坏血酸、潘生丁、安乃近、维生素K3、甲氨蝶呤、核黄素等物,乙型肝炎表面抗原和抗体、核心抗原和抗体、E抗原、茶叶碱等抗原,抗体和半抗原以及14种微量元素传感器的设计和应用研究。其中,基于双波长技术和荧光能量转移的荧光传感器、基于选择性中性载体和离子对萃取原理的传感器、基于聚合物膨胀的单光纤传感器、基于电位敏感染料和脂质技术的传感器、二元和三元体系磷光传感器、流动式消耗型化学发光传感器、细胞免疫传感器等均为原始性创新。当前,在对光导纤维生物传感器的分子识别反应和多维信息换能系统进行研究的基础上,研究无损在体和微量离体检测用新型光纤生物传感器,建立活体组织、人体体液、细胞等的高灵敏快速分析技术及其在体药代动力学分析方法,从而能快速、精确地反映活体组织及体液的变化,以适应临床快速诊断的要求(国家自然科学基金生命科学部重点项目)。
智慧温室大棚蔬菜种植自动控制系统的具体应用论文
在日常学习、工作生活中,说到论文,大家肯定都不陌生吧,论文写作的过程是人们获得直接经验的过程。怎么写论文才能避免踩雷呢?以下是我为大家收集的智慧温室大棚蔬菜种植自动控制系统的具体应用论文,仅供参考,希望能够帮助到大家。
摘要:
传统的农业种植模式已经很难满足现代生活模式与需求,以传统塑料大棚为例,不仅产量很低,也会带来较大的污染,且人员管理非常繁琐,不利于蔬菜种植效益的提升。智慧温室大棚蔬菜种植模式优势较多,相比于传统塑料大棚能够大幅度扩展蔬菜种植发展空间,也改变了现代农业、新型农村的格局。该文简述了智慧温室大棚蔬菜种植的优势,然后分析了智慧温室大棚建设方案,最后介绍了智慧温室大棚蔬菜种植自动控制系统的具体应用。
关键词 :
智慧温室;大棚蔬菜;种植技术;
引言:
在传统农业发展模式下,农民的浇水、施肥和打药等农业劳动过程主要借助已有经验进行。在温室大棚蔬菜种植中,需要关注浇水的时机,准确把控农药浓度,且保证温湿度、光照、氮元素等处于适宜的状态。由于无法量化指标,通常依赖于人为判断,因而经常发生误差,也无法提高温室大棚蔬菜种植的产量和质量。要想解决传统农业中低效率、低产能等现象,需要积极引入智慧温室大棚蔬菜种植技术,将各影响因素进行有效控制,改进环境条件,促进蔬菜的正常生长。
1、传统大棚蔬菜种植的危害气体
传统大棚蔬菜种植会释放很多有害气体,如氮气,引起有害气体含量超标的原因较多,主要包括人员操作不当、肥料质量不合格等因素。若是施肥方法不科学,施用含量超标的肥料,将引起氮气排放的增加,当温室大棚内氮气含量超出一定限度后,将导致叶片枯死,特别是对黄瓜、西红柿、西葫芦等蔬菜来说,对氮气更加敏感。此外,还会存在亚硝酸气体,当土壤呈弱酸性后,即pH值未超过5,某些菌体的作用效果将持续减弱,形成大量的亚硝酸气体。亚硝酸气体含量的增加,会让蔬菜绿叶发生白色斑点,黄瓜、西葫芦、青椒和西芹等蔬菜对亚硝酸气体较为敏感[1].冬季严寒,很多农民常用煤球升温取暖,在燃料不充分燃烧的情况下,将形成大量一氧化碳等有毒气体,温室大棚中碳元素也会超标,不利于蔬菜产量与质量的提升。
在预防过程中主要采取以下措施:
(1)做到施肥的科学性。温室大棚中施用的有机肥必须需要发酵腐热,以优质化肥为主,尿素要与过磷钙混施。基肥要深施15~20cm,追施化肥深度至少为12cm,施后及时覆土浇水。
(2)通风换气。在天气条件较好的情况下,要根据温度要求及时通风换气,遇到雨雪天气时也应该做好通风换气工作。
(3)农膜与地膜不能产生毒性,温室大棚中废旧塑料品等需第一时间清理干净。
2、智慧温室大棚蔬菜种植的优势
在蔬菜种植中需要控制好空气温湿度、土壤温湿度和水肥条件,才能保证蔬菜生长的品质,实现产量提高的目的。因此要通过精准化控制各项环境因素,改善温室大棚蔬菜种植品质,确保经济效益逐步提升。智慧大棚主要在温室大棚蔬菜种植中引入自动化控制系统,发挥最新生物模拟技术的作用,对棚内蔬菜生长最适宜的环境进行模拟。同时也设置了温度、湿度、二氧化碳和光照度传感器,对温室大棚内多项环境指标进行感知,并利用微机完成数据分析,实现对棚内水帘、风机和遮阳板等设施的全面监控,最终有效改善大棚内蔬菜生长环境。
在科技进步与发展过程中,各种智慧大棚控制系统得到了广泛应用,实行精细化管理模式,温室大棚内的茄子、辣椒、黄瓜和西红柿等蔬菜都能快速生长,能够帮助种植户创造丰厚利润,也促进了智慧温室大棚的发展。在智慧大棚控制系统中主要应用了物联网技术,设置农业物联网传感器,管理中物联网系统能够有效采集实施环境数据,其中包含了光照、空气温度、湿度和二氧化碳浓度等信息,在网络支持下向控制平台传输[2].系统结合获得的数据信息完成智能判断,远程控制温室大棚中的各项设备,达到及时调节棚内环境的目的,确保满足大棚内蔬菜生长的要求。在温室大棚蔬菜种植中引入智慧大棚控制系统,大幅度提升了温室大棚生产自动化和管理智能化水平。
智慧大棚控制系统除了可以在温室环境方面实现精准管理以外,还具备大面积统一管理的优势。在系统运行过程中,能够为温室大棚蔬菜种植提供精细化的智慧管控服务,实现对设施农业管理效果的不断优化。这样不仅能让温室大棚管理效率大幅度提升,也有效减少了管理成本的投入,为大棚蔬菜种植创造了诸多便利,能够达到增产增收的目的,温室大棚蔬菜种植也能逐步发展为稳定型和持续增收型产业。在中国加快推进乡村振兴战略实施的过程中,智慧大棚控制系统将在农业智能化发展中发挥越来越大的作用,为农业全面升级打牢基础。
3、智慧温室大棚建设方案
在智慧温室大棚建设过程中,需要由多个环境监测节点完成组网,才能实时采集环境信息,达到精准控制的目的。在各环境监测节点上需要安装传感器,控制设备主要有补光照明设备、排风设备、灌溉设备以及报警设备等。各节点也设置2节干电池保证电能供应,因为节点功耗不高,所以电池使用寿命很长,在智慧温室大棚中供电非常安全与便利。各传感器获得的数据向上位机传输过程中,上位机除了可以实时显示、控制与存储,并自动生成温度、湿度和光照等环节因素变化曲线图以外,也可以借助网关与Internet服务器进行连接,达到手机远程监测和控制等目的。建设智慧温室大棚后,能够实现对温室大棚蔬菜生长情况的远程视频监控,也能将相关信息实时存储下来,为农业生产科学化管理创造条件。
在智慧温室大棚功能设计上,主要包括以下几点:
(1)身份识别功能。借助RFID射频识别技术将个人信息显示在上位机,用户在系统刷卡登记后才能完成相应操作。
(2)自动报警功能。要想农业生产更加安全可靠,在大棚中发生烟雾、明火以后,利用烟雾传感器与火焰传感器进行检测,能够第一时间让蜂鸣器报警得到控制,在GPRS模块支持下为用户发送短信或者是打电话,并在屏幕上清晰完整呈现大棚报警信息。
(3)远程监控功能。登录网页端,即实现对智慧温室大棚蔬菜种植的远程监控。
(4)无线信息采集与传输功能。为提高大棚蔬菜种植的产量与质量,要实时监测和控制大棚内蔬菜生长环境。环境监测节点主要由光照、空气温度、土壤温湿度以及二氧化碳传感器等构成,能够精确采集相关信息数据[3].
(5)定时防治病虫害功能。利用臭氧发生器,能够在高压、高频电等电离作用下,让空气内氧气转化为臭氧,并定时进行杀菌,达到对温室大棚蔬菜种植中的病虫害防治功能。这种方式不仅具有安全、高效等优点,还降低了成本与农药使用量,能够达到无污染、无残留的要求,不断推动智慧温室大棚蔬菜种植增值提效。
4、智慧温室大棚蔬菜种植自动控制系统
在农业自动化发展过程中,除了应用计算机技术以外,也涉及微电子技术、通信技术和光电技术等,尤其对蔬菜种植自动控制系统而言,它们是智慧温室大棚蔬菜种植中需要重点关注的.内容。对该系统而言,主要结合蔬菜温室控制要求建设的远程监控管理系统,属于可扩展、可操作的硬件与软件系统。利用无线通信方式与蔬菜温室管理中心的计算机联网,能够让蔬菜温室单元得到实时调节与控制。
蔬菜种植自动控制系统主要构成如下:
(1)无线传感器,分别为温湿度传感器,土壤温湿度传感器、光传感器和二氧化碳传感器等设备。
(2)控制器,主要有温湿度控制器、光强控制器和土壤温湿度控制器等,可以集中处理各传感器传输的数据信息,并由计算机发出相应的控制指令。
(3)触摸屏,能够显示各种数据,以及风机、加湿、加热电磁阀等现场设备的远程控制,各种数据报表的打印等。
(4)遥控终端,通常包括手机、计算机等。
对蔬菜种植自动控制系统功能来说,包括以下几点:
(1)检测系统:设置多种无线传感器,将蔬菜生长环境中的温度、湿度、pH值、光照强度、土壤养分和二氧化碳浓度等物理参数及时采集起来。
(2)信息传输系统:利用本地无线网络、互联网、移动通信网络等通信网络,为数据传输、转换等创造有利条件,能够提高智慧温室大棚内环境信息传输效率。
(3)信息通过无线网络传输系统和信息路由设备传输到控制中心,各节点能够自由匹配,任意监控,互不干扰。
(4)控制系统:增加摄像头,对各温室大棚进行监测,并借助监控计算机对环境调整的全过程进行监控。蔬菜生长环境信息数据等进行实时监测,将各节点数据采集起来,通过存储、管理后能够动态呈现各测点信息。同时结合掌握的信息数据自动灌溉、施肥、喷施、降温和补光等,发挥历史数据存储、查询、报警和打印等作用[4].
(5)远程控制系统:移动电话终端用户能够了解蔬菜棚的工作状态,借助手机实时发布指挥控制设备。
蔬菜种植自动化控制系统不仅安全可靠,适应性也很强,能够提高蔬菜种植智能化水平,为绿色健康蔬菜种植奠定了良好基础。蔬菜自动种植控制系统融合处理大量的农业信息,确保技术人员可以完成多个蔬菜棚环境的监控与智能管理,让蔬菜生长环境得到改善,真正实现增产、提高质量、调节生长周期、提高经济效益等目标,也达到集约化农业生产、高产、优质、高效、生态、安全的目的[5].
5、结语
总之,近年来人民生活水平不断提高,在蔬菜栽培自动化控制系统建设与应用上有着更高的要求,产品附加值越来越高,经济效益也不断提升。通过光照、温度、湿度、二氧化碳、土壤等监测与自动化控制,推动现代农业发展再上新台阶,也是智能技术在农业生产中作用的体现。实行智慧温室大棚蔬菜种植技术,为蔬菜种植技术提供量化指标作为参照,这样蔬菜种植产量与品质得到保障,可操作性也大幅度提升,不仅可以实现增产创收的目的,也为产业链的形成创造了有利条件。
参考文献
[1]胡琼香基于物联网的智慧温室大棚蔬菜种植技术[J]江西农业,2019(14):13-17.
[2]刘欣"互联网+"设施蔬菜智慧决策管理系统设计与验证[J.江苏科技信息,2018,35(29):62-64.
[3]孙通农业气象物联网在蔬菜大棚中的应用[J]现代农业科技2020(16):164-171.
[4]何淑红设施大棚蔬菜生产技术与发展趋势研究[J].农村实用技术2020(08):11-12.
[5]胆温室大棚蔬菜种植技术试析[J]农民致富之友,2020(13):50-50.
182 浏览 4 回答
120 浏览 1 回答
221 浏览 2 回答
249 浏览 3 回答
85 浏览 4 回答
290 浏览 6 回答
239 浏览 5 回答
303 浏览 3 回答
140 浏览 3 回答
308 浏览 2 回答
119 浏览 3 回答
335 浏览 3 回答
80 浏览 3 回答
317 浏览 2 回答
172 浏览 4 回答