t值和P值都用来判断统计上是否显著的指标。p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。
扩展资料:
Fisher的具体做法是:
假定某一参数的取值。
选择一个检验统计量(例如z 统计量或Z 统计量) ,该统计量的分布在假定的参数取值为真时应该是完全已知的。
从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。
如果P<,说明是较强的判定结果,拒绝假定的参数取值。
如果
如果P值>,说明结果更倾向于接受假定的参数取值。
脉率就是脉搏、心率英文:pulse
论文中p值也叫检验p值是否定原假设的强度。
p值统计学意义是结果真实程度(能够代表总体)的一种估计方法,专业上P 值为结果可信程度的一个递减指标。
P 值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。 如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。 总之,P值越小,表明结果越显著。
p值是指在一个概率模型中,统计摘要(如两组样本均值差)与实际观测数据相同,或甚至更大这一事件发生的概率。换言之,是检验假设零假设成立或表现更严重的可能性。p值若与选定显著性水平(或)相比更小,则零假设会被否定而不可接受。
然而这并不直接表明原假设正确。p值是一个服从正态分布的随机变量,在实际使用中因样本等各种因素存在不确定性。产生的结果可能会带来争议。
在体检表中出现时就是指脉搏。心脏功能正常的情况下心率和脉搏相等。
脉率就是脉搏、心率英文:pulse
p在医学上表示脉搏的意思。
脉搏(英语:Pulse)为人体表可触摸到的动脉搏动。人体循环系统由心脏、血管、血液所组成,负责人体氧气、二氧化碳、养分及废物的运送。血液经由心脏的左心室收缩而挤压流入主动脉,随即传递到全身动脉。
动脉为富有弹性的结缔组织与肌肉所形成管路。当大量血液进入动脉将使动脉压力变大而使管径扩张,在体表较浅处动脉即可感受到此扩张,即所谓的脉搏。
正常人的脉搏和心跳是一致的。正常成人为每分钟60~100次,常为每分钟70~80次,平均约每分钟72次。老年人较慢,为每分钟55~60次。
脉搏的频率受年龄和性别的影响,胎儿每分钟110~160次,婴儿每分钟120~140次,幼儿每分钟90~100次,学龄期儿童每分钟80~90次。
正常范围:
脉搏即动脉搏动,脉搏频率即脉率。正常人脉率规则,不会出现脉搏间隔时间长短不一的现象。正常人脉搏强弱均等,不会出现强弱交替的现象。
另外,运动和情绪激动时可使脉搏增快,而休息、睡眠则使脉搏减慢。成人脉率每分钟超过100次,称为心动过速;每分钟低于60次,称为心动过缓。
临床上有许多疾病,特别是心脏病可使脉搏发生变化。因此,测量脉搏对病人来讲是一个不可缺少的检查项目。中医更将切脉作为诊治疾病的主要方法。心动周期中,由于心室收缩和舒张的交替进行,脉管发生周期性扩张和回位的搏动。
病情危重,特别是临终前脉搏的次数和脉率都会发生明显的变化。脉搏的变化也是医生对病人诊断的其中一项依据。注:安装泵式人工心脏者无脉搏。
没有P”“D”之说,只有“PD”,具体代表意思如下:
医学中常见的英文词组:
医学术语里P指脉率。P代表脉搏,是Pulse英文的简写。脉率(pulserate)是每分钟脉搏的次数,正常情况下与心率一致,与呼吸的比例约为4:1~5:1。
脉率的快慢受年龄、性别、运动和情绪等因素的影响。成人每分钟超过100次,称为心动过速,每分钟低于60次,称为心动过缓。临床上有许多疾病,特别是心脏病可使脉率发生变化。因此,测量脉率对病人来讲是一个不可缺少的检查项目。中医更将切脉作为诊治疾病的主要方法。
扩展资料:
健康成人在安静状态下脉率为60~100次/min,女性稍快。
脉率受年龄和性别的影响,婴儿每分钟120-140次,幼儿每分钟90-100次,学龄期儿童每分钟80-90次,成年人每分钟70-80次。
另外,运动和情绪激动时可使脉率增快,而休息,睡眠则减慢。发烧时,人体的脉率会有所增高,一般每增多20下,相应体温会增高1摄氏度左右。
参考资料来源:百度百科-脉率
t检验中的P表示:无效假设成立与否的概率大小;P值大于设定的检验水准α水准,则无效假设成立的概率就大。
p大于表示差异性不显著。
通常情况下,实验结果达到水平或水平,才可以说数据之间具备了差异显著或是极显著。
在作结论时,应确实描述方向性(例如显著大于或显著小于)。sig值通常用P> 表示差异性不显著;
显著性水平是估计总体参数落在某一区间内,可能犯错误的概率,用α表示。
显著性是对差异的程度而言的,程度不同说明引起变动的原因也有不同:一类是条件差异,一类是随机差异。它是在进行假设检验时事先确定一个可允许的作为判断界限的小概率标准。
显著性水平是假设检验中的一个概念,是指当原假设为正确时人们却把它拒绝了的概率或风险。
它是公认的小概率事件的概率值,必须在每一次统计检验之前确定,通常取α=或α=。这表明,当作出接受原假设的决定时,其正确的可能性(概率)为95%或99%。
显著性水平代表的意义是在一次试验中小概率事物发生的可能性大小。
统计假设检验也称为显著性检验,即指样本统计量和假设的总体参数之间的显著性差异。显著性是对差异的程度而言的,程度不同说明引起变动的原因也有不同:一类是条件差异,一类是随机差异。
显著性差异就是实际样本统计量的取值和假设的总体参数的差异超过了通常的偶然因素的作用范围,说明还有系统性的因素发生作用,因而就可以否定某种条件不起作用的假设。
假设检验时提出的假设称为原假设或无效假设,就是假定样本统计量与总体参数的差异都是由随机因素引起,不存在条件变动因素。
假设检验运用了小概率原理,事先确定的作为判断的界限,即允许的小概率的标准,称为显著性水平。
如果根据命题的原假设所计算出来的概率小于这个标准,就拒绝原假设;大于这个标准则不拒绝原假设。这样显著性水平把概率分布分为两个区间:拒绝区间,不拒绝区间。
显著性水平不是一个固定不变的数字,其越大,则原假设被拒绝的可能性愈大,原假设为真而被否定的风险也愈大。显著性水平应根据所研究的的性质和我们对结论准确性所持的要求而定。
以上内容参考:百度百科-显著性水平
t检验是比较两个群体总体平均值的差异,p值越大说明这两个群体总体均值相同的概率越大,即两个群体是来自相同的总体;反正,越小则说明他们来自不同的群体。
1 设计方面的问题
11 分组没有严格遵循随机化原则研究对象的分组与抽样离不开随机化原则,在足够样本的前提下,随机抽样,随机分组,明确交代随机方法,各组样本量、基本特征等。随机不等于随便,有的作者滥用随机,只要抽样或分组,一概冠以随机,不描述随机方法,把随意、随便当做随机,使研究结果不可信。
12 无对照组或不合理医务科技工作者开展研究的目的就是验证假设是否正确,没有对照,无法做出判断。有的论文无对照组,没有对比观察,所得结论没有说服力。有的论文虽设有对照组,但不是严格的随机分组,组间缺乏可比性,如非同期对照,组间性别、年龄、患病状况不一致等。在实验组和对照组的可比性方面,两组例数要基本一致,否则没有可比性。
13 样本含量过少抽取恰当的样本量,结果才有可靠性。有些文章例数太少,这样抽样误差大,导致结果不可靠。研究对象变量标准差小的,样本可以小一些。观察计数指标的样本一般不少于20~30例,计量指标的样本不少于5~10例。有的作者仅仅观察了数例患者,就得出百分之多少的有效率,显然是不恰当的。
对于对比分析,样本太少得出的结果不可靠,往往随着样本量的增大而发生变化。
2 统计学处理不恰当在进行统计学处理时,首先要明白研究资料是计数资料还是计量资料,尽管是一个常识性的问题,但仍有不少作者搞混了。先分类再计数的资料叫计数资料,如A组30例,B组32例,可根据研究目的计算出阳性率、治愈率等。测定某项具体数值的资料叫计量资料,如身高、体重、脉搏、血压等许多物理诊断和化验结果。在医学科研论文中,计数资料最常用的统计学方法是检验,计量资料最常用的是t检验。在研究设计时,就应根据研究资料的特点,决定假设检验的方法。在处理资料时,因均数和标准差是用来描述正态分布资料集中和离散趋势的指标,可否采用均数±标准差描述研究资料的分布特征,首先要看资料是否是正态分布,如果资料不是正态分布或者方差不齐时,应对资料进行转换处理,使其符合正态分布,方差齐性后采用t检验或方差分析,达不到上述要求,用秩和检验。来稿中,不少作者不考虑适用条件,盲目使用t检验。造成统计学方法使用不当,结果不可靠。更有甚者,有的作者不分计数资料还是计量资料,乱用检验或t检验,其结果可想而知。这是无统计学常识或极不负责任的表现。
有的研究资料数据庞大,只能在表格描述中用阿拉伯数字或特殊符号表示与比较对象的P值,如 P>005 , P<005, P<001,无法一一给出具体的P值。但有的作者既不交代使用的统计学方法,也不给出具体的P值,直接列出 P<005或 P>005,认为差异有统计学意义或无统计学意义,使读者对无法判断结果的可靠性。正确的做法是写明使用的统计学方法,使用了什么统计学软件,如进行了校正检验。亦应说明。这才有说服力。
3 描述不严谨日常生活中对差异的判断与统计学上差异是否有统计学意义是两个完全不同的概念。我们主观上感觉差异不大,而经统计学处理差异可能具有统计学意义;主观上感觉差别很大,但经统计学处理差异可能有统计学意义。有相当数量的作者,在描述统计学结果时,常用差异显着或差异非常显着,易与日常生活中差异的概念混淆,使用差异有统计学意义或差异无统计学意义更为确切。
我们把检验水准设定为 a=005时就是以 P>005为界值,一般以 P>005, P<005, P<0O1 3个档次描述差异有无统计学意义即可,有的作者出现 P<0001,以强调差异的显着性。有的作者用 P>O01或 P<01来表示,是错误的, P>0O1既可能是 P>005,也可能是 P<005,二者有本质的不同。
4 统计符号使用不规范统计符号使用不规范是论文中经常出现的问题,把卡方检验中的 写成x或x2,丢掉平方或把希腊字母x写成英文字母x;把均数±标准差( ±s),丢掉z 上方的一横,既影响论文质量,又影响阅读效果。
5 统计表格不规范统计表格是论文的重要组成部分,表格是否符合统计学要求,对论文有重要影响。常见的问题有:
① 无表题;
② 表题过于简单或过于繁琐。不确切;
③ 横纵标目倒置,不符合语法规律;
④ 标目层次过多;
⑤ 线条太多。甚至左上角有斜线;
⑥ 表内同一栏目数字不对齐,小数点后位数不一致。
表题如同文章的题目,简明扼要,字数控制在15个字以内。表格左侧的标目叫横标目,相当于汉语的主语,表明相应横行内数字的涵义;纵标目位于表格的上方,相当于汉语的谓语部分,说明表格内相应纵行数字的'涵义。
主谓语倒置是统计表格最常见的错误,一般情况下主语做横标目,谓语做纵标目。统计表用三线表,即顶线、底线和隔开纵标目与表内数字的横线,必要时可在纵标目下加辅助线,其余线条一概省略。
统计表格和文字叙述相辅相成,互相补充,能用简洁的文字说明的,一般不用表格,文字描述不要和表格内容完全重复。表格要简洁明快,重点突出,让人一目了然,不要变成数字的堆彻。出现统计表前,要用简要文字描述或强调主要发现,不要把文字叙述放在表格后。
6 使用统计指标不当常见的问题是率与构成比、发病率与患病率、死亡率与病死率等的混淆。
61 把构成比当率构成比是说明事物或现象内部各构成部分的比重,构成比表示某事物内部各组成部分的比重或分布,单位为%,各组成部分之和应为100%。计算公式为:构成比=某组成部分的观察单位数/同一事物各组成的观察单位总数例如2011年某市围产儿死亡总数为18例,其中死胎7例、死产3例、新生儿死亡8例。其构成比分另0为3889%、1667%、4444%。
率为表示某种现象发生的频率或强度。常以%、/万或/lo万表示。计算公式为率=某时期内某现象实际观察单位数/同时期内可能发生该现象的观察单位总数,如共检测568名5~7岁儿童,患龋齿儿童314人,检出率5528%。
构成比和率都是相对数指标。有一篇题为某年某地区4种乙类传染病疫情分析。经数据处理后,作者认为,4种传染病的发病率依次为痢疾5453%(1546/2 835)、肝炎1619%(459/2 835)、乙脑921%(261/2 835)、流脑689% (569/28352007)。该资料是构成比,不是发病率。作者犯了以比代率的错误。
62 发病率与患病率发病率是指观察期内(年、季、月等)新发生某病的例数与同期平均人口数之比,强调在观察期内的新发病例数,常以‰、/7/或/lO万表示。其计算公式为:某病发病率等于某年(期)内所发生的新病例数除以同年(期)平均人口数乘1000%o。例如某地某年年平均人口数为2500人,白喉发病28人,该地白喉年发病率为1120%0。而患病率则指观察时点的某病的现患病例数与该时点人口数之比强调的是该观察时点上某病的现患(新、旧病例)情况,常以百分率表示。有人调查16 875人,其中男性8 674人,沙眼患者7 632人,发病率为8799%;女性8 201人,沙眼患者6 210人。发病率为7572%。这样的结论当然是错误的,其所描述的结果应该是患病率。
63 死亡率与病死率这也是两个容易混淆的指标。某病死亡率是观察人群中某病的死亡频率。常以‰、/万或/10万表示;某病病死率是某病患者中因该病而死亡的频率。
一般以百分率表示。前者反映人群因该病而死亡的频率,后者反映疾病的预后。部分作者常将某病住院病死率误为某病死亡率。如重症监护室患者死亡情况分析一文中报道,颅脑损伤32例,死亡20例,死亡率为625%;严重心衰26例,死亡9例,死亡率为346%;严重肾衰竭18例,死亡11例,死亡率为611%。很明显,作者在这里是将住院病死率误作死亡率来讨论。
我们在编辑医学论文中经常会发现存在这样那样的统计学问题,致使文章质量下降,甚至无法刊用,十分可惜。提高统计学应用水平,减少统计学差错,是作者、审稿专家和编辑共同的责任。树立严谨的科学态度,选择正确的统计学方法,对提高科研水平,确保论文质量有着十分重要的意义。
采用spss软件,单因素分组对照计算。
t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法
假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。
P值是采用假设检验的方法来计算的。举个例子来说明:比较两个样本的均数有没有差别,采用反证法,首先建立假设检验,H0:假设两组没有差别,H1:假设两组有差别。通过假设两组没有差别计算出其没有差别的概率,一般取P<作为临界值,若P<则代表随机抽取的两组均数没有差别的概率小于,为小概率事件,此时拒绝H0,接受H1。P>接受H0。但是P值的大小只能代表两者是否具有统计学差异,不能代表差异的大小。详细的计算方法要根据你采用的统计学方法具体计算,现在这步一般都采用统计软件SPSS、SAS等来完成。希望对你有所帮助。
MR医学代号?
论文中p值也叫检验p值是否定原假设的强度。
p值统计学意义是结果真实程度(能够代表总体)的一种估计方法,专业上P 值为结果可信程度的一个递减指标。
P 值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。 如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。 总之,P值越小,表明结果越显著。
p值是指在一个概率模型中,统计摘要(如两组样本均值差)与实际观测数据相同,或甚至更大这一事件发生的概率。换言之,是检验假设零假设成立或表现更严重的可能性。p值若与选定显著性水平(或)相比更小,则零假设会被否定而不可接受。
然而这并不直接表明原假设正确。p值是一个服从正态分布的随机变量,在实际使用中因样本等各种因素存在不确定性。产生的结果可能会带来争议。
没有P”“D”之说,只有“PD”,具体代表意思如下:
医学中常见的英文词组: