一、t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料
二、P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。
总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
在相同自由度下,查t表所得t统计量值越大,其尾端概率p越小,两者是此消彼长的关系,但不是直线型负相关。
扩展资料:
T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。
t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与Z检验、卡方检验并列。
t检验是戈斯特为了观测酿酒质量而发明的。戈斯特在位于都柏林的健力士酿酒厂担任统计学家,基于Claude Guinness聘用从牛津大学和剑桥大学出来的最好的毕业生以将生物化学及统计学应用到健力士工业程序的创新政策。
戈斯特于1908年在Biometrika上公布t检验,但因其老板认为其为商业机密而被迫使用笔名(学生)。实际上,戈斯特的真实身份不只是其它统计学家不知道,连其老板也不知道。
P值来源于六西格玛管理,是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进 行比较。由R·A·Fisher首先提出。
P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。
总之,P值越小,表明结果越显著。但是检验的结果究竟是"显著的"、"中度显著的"还是"高度显著的"需要我们自己根据P值的大小和实际问题来解决。
参考资料:百科-P值 百科-t检验
1、t值是t检验的统计量值,t检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。 t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。
2、F值是F检验的统计量值 。F检验是一种在零假设(null hypothesis, H0)之下,统计值服从F-分布的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。
3、P值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P < 为有统计学差异, P< 为有显著统计学差异,P<为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于 、、。
扩展资料:
F值和t值是F检验和t检验的统计量值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性是出现目前样本这结果的机率。P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率,如p=提示样本中变量关联有5%的可能是由于偶然性造成的。
参考资料:
百度百科——假设检验中的P值
百度百科——F检验
百度百科——t检验
t值是t检验的统计量值,t检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。
1、选用的检验方法必须符合其适用条件(注意:t检验的前提:来自正态分布总体;随机样本;均数比较时,要求两样本总体方差相等,即具有方差齐性)。理论上,即使样本量很小时,也可以进行t检验。(如样本量为10,一些学者声称甚至更小的样本也行),只要每组中变量呈正态分布,两组方差不会明显不同。如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。方差齐性的假设可进行F检验,或进行更有效的Levene's检验。如果不满足这些条件,可以采用校正的t检验,或者换用非参数检验代替t检验进行两组间均值的比较。
2、区分单侧检验和双侧检验。单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第Ⅰ错误的可能性大。t检验中的p值是接受两均值存在差异这个假设可能犯错的概率。在统计学上,当两组观察对象总体中的确不存在差别时,这个概率与我们拒绝了该假设有关。一些学者认为如果差异具有特定的方向性,我们只要考虑单侧概率分布,将所得到t-检验的P值分为两半。另一些学者则认为无论何种情况下都要报告标准的双侧t检验概率。
专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)
t值指的是t检验,t检验分为单总体检验和双总体检验;单总体t检验时检验一个样本平均数与一个已知的总体平均数的差异是否显著,当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布;双总体t检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。
朋友或者是同学
t值是t检验的统计量值,t检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。
t检验注意事项
1、选用的检验方法必须符合其适用条件(注意:t检验的前提:来自正态分布总体;随机样本;均数比较时,要求两样本总体方差相等,即具有方差齐性)。理论上,即使样本量很小时,也可以进行t检验。(如样本量为10,一些学者声称甚至更小的样本也行)。
只要每组中变量呈正态分布,两组方差不会明显不同。如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。方差齐性的假设可进行F检验,或进行更有效的Levene's检验。如果不满足这些条件,可以采用校正的t检验,或者换用非参数检验代替t检验进行两组间均值的比较。
2、区分单侧检验和双侧检验。单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第Ⅰ错误的可能性大。t检验中的p值是接受两均值存在差异这个假设可能犯错的概率。
在统计学上,当两组观察对象总体中的确不存在差别时,这个概率与我们拒绝了该假设有关。一些学者认为如果差异具有特定的方向性,我们只要考虑单侧概率分布,将所得到t-检验的P值分为两半。另一些学者则认为无论何种情况下都要报告标准的双侧t检验概率。
T的数值表示的是对回归参数的显著性检验值,它的绝对值大于等于ta/2(n-k)(这个值表示的是根据你的置信水平,自由度得出的数值)时,就拒绝原假设,即认为在其他解释变量不变的情况下,解释变量X对被解释变量Y的影响是显著的。
人的一生有骨密度最高值的年龄段,一般是 25到35岁之间,这段时间的骨密度平均值与被测试患者的骨密度的比较,叫做t值,t值大于-1是正常。Z值是被测患者的骨密度与同龄人的比较值,比如测试患者是25岁,则与25岁的年龄的人的骨密度值比较,通俗理解就是t值是与最高值的比较,z值是与同年龄的人的比较。
你好,不知你是指哪个T值。 如果是联通业务的,T即Text的首个字母,是文本内容的计价单位。如果是医疗方面的, T值是指睾酮同时也是检查睾丸的一种重要指标。在睾酮的指标上,正常值为~之间。如果T值的变化很大就很有可能是身体内的一些疾病发生。最常见的就是男性的睾丸炎。希望对你有帮助,谢谢!
t是T检验的值 p是概率,p<或p<0、001最好,可以拒绝原假设,表明差异显著
t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
1、t值
T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。
T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。t检验是戈斯特为了观测酿酒质量而发明的,并于1908年在Biometrika上公布 。
2、P值
P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。
P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。
扩展资料
实用举例
1、t检验可用于比较男女身高是否存在差别
为了进行独立样本t检验,需要一个自(分组)变量(如性别:男、女)与一个因变量(如身高测量值)。根据自变量的特定值,比较各组中因变量的均值。用t检验比较下列男、女儿童身高的均值 。
假设
H0:男平均身高 = 女平均身高
H1:男平均身高 ≠ 女平均身高
选用双侧检验:选用α=的统计显著水平
2、P值
从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。
如果P<,说明是较强的判定结果,拒绝假定的参数取值。
如果
如果P值>,说明结果更倾向于接受假定的参数取值。
参考资料来源:百度百科-t值
参考资料来源:百度百科-p值
采用spss软件,单因素分组对照计算。
t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法
假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。
t/F值是指t值或F值,两种不同的统计学方法中的参数指标;t值常见于t检验中,当t<(一般取为检验水准),即拒绝无效假设,认为差异具有统计学意义;取值范围0~1F值常见于方差分析中,当F<(一般取为检验水准),即拒绝无效假设,认为差异具有统计学意义;取值范围0~1对于适用的同一组资料t检验和方差分析的结果是等价的(结果指标F=t的平方)。
F值是F检验的统计量值 。F检验是一种在零假设(null hypothesis, H0)之下,统计值服从F-分布的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。
F值和t值是F检验和t检验的统计量值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性是出现目前样本这结果的机率。P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率,如p=提示样本中变量关联有5%的可能是由于偶然性造成的。
扩展资料
F值和t值是F检验和t检验的统计量值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性是出现目前样本这结果的机率。P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率,如p=提示样本中变量关联有5%的可能是由于偶然性造成的。
参考资料来源:百度百科——F检验