统计图在医学论文中常见的格式统计表是用表格的形式,通过分析指标来表达研究对象的特征、内部构成及各项目分组之间的相互关系。在科技报告或论文中除一些简单的数据必需用文字说明外,其余大部分的统计数据都要用统计表的形式表示。因此,统计表制作的合理与否,直接关系到统计分析的质量与效果。1、统计表的基本格式一张完整的统计表由4部分组成,即标题、标目、线条、数字,必要时可加备注。其制表的原则是重点突出、简单明了、层次清楚。重点突出是指突出所要表示研究事物的主要特征及相互关系;简单明了是指统计表的结构要简单,使人一目了然,不能包罗万象;层次清楚是指内容及标目要安排合理、数据准确。若表格编排不合理将不能充分揭示事物之间的内在规律及联系,也不便于理解和阅读。2、标题应简明扼要地说明表的主要内容,一般放在表的正上方。当某一统计表在同一研究报告中出现时,标题可不包括时间和地点;如果引用在其他文章中,则应包括时间和地点。如论文中只有一张表时,可写成附表,否则要注明表序。3、标目用以说明表内数字含义部分称为标目,分为横标目和纵标目。横标目位于表的左侧,代表被研究事物的主要标志,即主语部分,用以说明同一横行数字的意义;纵标目位于表的右上方,用来说明事物的统计指标,即谓语部分,说明同一列数字的意义。标目的正确安排可使读者自左向右顺利阅读,即从表的左侧横标目开始阅读到纵标目结束,可以读出一个完整的句子。
统计学是一门抽象难懂的学科,非统计学专业毕业人员一般很难做到精通。下文是我为大家整理的关于统计类论文投稿的范文,欢迎大家阅读参考!
医学统计学方法应用的错误解析
一、引 言
医学由于其研究的复杂性和系统性,常需要应用严谨的统计学方法,由于有些作者对医学科研的统计学理论和方法的应用缺乏深刻了解,在医学论文中错误应用统计学方法的现象时有发生。统计学方法应用的错误直接导致统计结果的错误。例如统计学图表、统计学指标、统计学的显著性检验等。因此,正确应用统计学方法,并将所获得的结果进行正确的描述有助于单篇论著的质量提高,现将医学论文中统计学方法应用及其常见结果的错误解析如下。
二、医学论文统计学方法应用概况
医学论文的摘要是全文的高度浓缩[1],主要由目的、方法、结果、结论组成。一般要求要写明主要的统计学方法、统计学研究结果和P值。一篇医学论文的质量往往通过摘要的统计学结果部分就能判断。统计学方法的选择和结果的表达直接影响单篇论著的科研水平。
(一)材料与方法部分
正文中,材料与方法部分必须对统计学方法的选择、应用、统计学显著性的设定进行明确说明。通过对统计学方法的描述,读者应该清楚论著的统计学设计思路。材料部分要清楚说明样本或病例的来源、入组和排除标准、样本量大小、研究组和对照组的设定条件、回顾性或者前瞻性研究、调查或者实验性研究、其他与研究有关的一般资料情况,其目的是表明统计学方法应用的合理性和可靠性,他人作相关研究时具备可重复性。方法部分应详细叙述研究组和对照组的不同处理过程、观察的具体指标、采用的测量技术,要具备可比较性和科学性,
方法部分还要专门介绍统计分析方法及其采用的统计软件。不同的数据处理要采用不同的方法,必须清楚的说明计数或者计量资料、两组或者多组比较、不同处理因素的关联性研究。常用的有两组间计量资料的t检验,多组间计量资料的F检验,计数资料的卡方检验,不同因素之间的相关分析和回归分析。有些遗传学研究方法还有专门的统计学方法,要在这里简要说明并给出参考文献,还要简单叙述统计方法的原理。统计学软件要清楚的说明软件的名称和版本号,如基于家系资料研究的版本。
(二)论文结果部分
论文结果部分要显示应用统计学方法得到的统计量[2],所采用的统计学指标较多时,往往分开叙述。分组比较多时还要借助统计图表来准确表达统计结果。对于数据的精确度,除了与测量仪器的精密程度有关外,还与样本本身的均数有关,所得值的单位一般采用紧邻均数除以三为原则。均数和标准差的有效位数要和原始数据一致。标准差或标准误差有时需要增加一个位数,百分比一般保留一个小数。在统计软件中,分析结果往往精确度比较高,一般要采用四舍五入的方法使其靠近实验的实际情况,否则还会降低论文的可信度和可读性。
结果部分的统计表采用统一的“三线”表,表题中要注明均数、标准差等数据类型。表格中的数值要按照行和列进行顺序放置,要求整齐美观,不能出现错行现象。要明确标注观察的例数,得到的检验统计量。统计图可以直观的表达研究结果,如回归和相关分析的散点图可以显示个体值的散布情况。曲线图表达个体均值在不同组别随时间变化的情况或者不同条件下重复测量的结果。误差条图由均数加减标准误绘出,描述的是67%的置信区间,不是95%,提倡在误差条图采用95%的置信区间。
关于统计量,一般采用均数与标准差两个指标,均数不宜单独使用。使用均数的时候要明确变异指标标准差或者精确性指标标准误。关于百分比,分母的确定必须要符合逻辑,过小的样本会导致分母过小而出现百分比过大的情况。百分率的比较要写清两者中不同的变化,可以采用卡方检验。
1.假设检验的结果中,常见只写P值的情况,有时候会误导读者,也会隐藏计算失误的情况,因此写出具体的统计值,如F值、t值,可以增强可信度。对于率、相关系数、均数这类描述统计量,要清楚写明进行过统计学检验并将结果列出。P值一般取与作为检验显著性,对于结果的计算要求具体的P值,如P=或P=。
2.在对论文进行讨论时,作为统计学方法产生的结果往往要作为作者的主要观点支持其科学假设,对统计结果的正确解释至关重要。P值很大表明两组间没有差别属于大概率事件,P值很小表明两组间没有差别的概率很小。当P<,表明差异具有统计学意义。P值与观察的样本量的大小有关联,当样本量小的时候,数据之间的差别即使很大,P值也可能很大;当样本量大时,数据之间的差别即使很小,P值也可能显示有显著性差异。相关系数统计学意义的显著性也与相关系数的大小没有绝对的关联,有统计学意义的样本相关系数可能很小。因此,有统计学差异的描述并不一定意味着两组间差别很大,错判的危险性很大,显著性的检验为定性的结果,结合统计量大小方可判断是否具有专业意义。
变量间虚假的相关关系与变量随时间变化而变化相关,统计学意义的关联并不表示变量间一定存在因果关系。因果关系的确定要根据专业知识和采用的研究方法的不同来考量。使用回归方程进行分析,当两变量间具有显著性关系,但是从自变量推测因变量仍然不会很精确。相关或回归系数不能预测推测结果的精确程度,而只是预测一个可信区间。诊断性检验应用于人群发病率很低的疾病,灵敏度、特异度的高低对于明确疾病诊断并不能很肯定。“假阳性率”与“假阴性率”根据实际的需要不同要求并不一致,在疾病患病率很低时,出现假阳性也是正常的,要确诊疾病必须要与临床症状体征相结合。因此,这两个率的计算方法必须交待清楚。
三、医学论文统计学方法应用的常见错误分析
(一)“材料与方法”中的统计学方法应用的常见错误
“材料与方法”中统计学方法常见的问题主要为:对样本的选择或者研究对象的来源和分组描述很少或者过于简单。例如,临床入组病例分组只采用简单的随机分组,未描述随机分组的方法,未描述是否双盲双模拟,未设置空白对照组,分组后对性别、年龄、文化程度的描述未进行统计学检验,对于特殊的统计学方法没有详细交代;动物实验分组的随机化原则描述过于简单,没有具体说清完全随机、配对或分层随机分组等;统计分析方法没有任何说明采用的分析软件,有的只说明采用的分析软件而不交代在软件中采用的统计方法;没有说明原因的情况下出现样本量过于小等情况。
(二)“结果”统计学方法应用的常见错误
1.应用正确的统计学方法出现的结果表达并不一定正确。例如前文所述数据的精确度要求。医学论文常见错误中包括均数、标准差、标准误等统计学指标与原始数据应保留的小数位数不同;对于率、例数、比值、比值比、相对危险度等统计学指标保留的小数点位数过多;罕见疾病的发病率、患病率、现患率等指标没有选择好基数,导致结果没有整数位;相关系数、回归系数等指标保留的小数位数过多或者过少;常用的一些检验统计量,如F值、t值保留的位数不符合要求。
2.对统计学指标进行分析和计算时,一般采用计数资料和计量资料进行区分。计量资料常用三线表,在近似服从正态分布的前提下采用均数、标准差进行说明,如果不符合正态分布时,可以采用加对数或其他的处理方式使其近似正态分布,否则只能采用中位数和四分位数间距等指标进行描述。医学论文中常见未对数据进行正态分布检验的计算,影响统计结果的真实性和可信度。对于率、构成比等常用的计数资料指标,常见样本量过小的问题,采用率进行描述会影响统计结果的可靠性,采用绝对数进行说明会显得客观一些。还有一些文献将构成比误用为率,也是不可取的。
3.在判断临床疗效之一指标时,两组平均疗效有差别并不意味着两组的每一个个体都有效或无效,必须通过计算有效率进行计算。如比较某药物治疗糖尿病的疗效,服药一周后,研究组和对照组的对血糖降低值分别为 ± 和 ± ( P = 1) 。按空腹血糖值低于的疗效判定有效率,研究组和对照组的有效率分别为和 ,尽管平均疗效相差较多,但也要注意到该药物对部分患者无效()。对假设检验结果的统计学分析结果,P 值的表达提倡报告精确P值,如P = 或P = 等。目前的统计学分析软件均可自动计算精确的P 值。例如常用的SAS,SPSS等,只要提供原始数据,就可以计算出t值、F值和相应的自由度,并可获得精确的P值。
四、小 结
提高医学论文中统计学方法的使用质量是编辑部值得重视的一项长期而又艰巨的工作[3],医学论文中统计方法应用和统计结果的表达正确与否,不仅体现了论文的科学性和严谨性,而且对于提高期刊整体的学术质量,促进医学科学的发展和传播也有着重要作用[4]。
参考文献:
[1] 李敬文,吕相征,薛爱华.医学期刊评论性文章摘要的添加对期刊被引频次的影响[J].编辑学报,2011(23).
[2] 陈长生.生物医学论文中统计结果的表达及解释[J].细胞与分子免疫学杂志,2008(24).
[3] 潘明志.新时期复合型医学科技期刊编辑应具备的素质和能力[J].中国科技期刊研究,2011 (22).
统计学专业毕业现状分析与对策研究
本科毕业论文是高等学校人才培养计划的重要组成部分,是本科教学过程中最后一个重要的教学实践环节,是学士学位授予的一个重要依据。[1,2]然而,相较于其他教学环节,毕业论文没有受到足够的重视,从而导致该环节存在着一些问题。[3]本文将以中央民族大学统计学专业毕业论文为例,在分析其现状的基础上,找到问题并提出相应的建议。
中央民族大学统计学本科专业设置于2003年,目前已有六届毕业生。经过学院和学校层面的努力,统计学专业作为新办专业取得了较快发展,所培养的学生具有较好的专业能力和综合素质,近四成学生继续读研深造,就业的学生大都在专业对口的工作岗位上,就业率一直在85%左右。
本科毕业论文环节在培养方案中是6个学分。学生在第七学期开始选择指导教师以确定毕业论文题目。经过前6个学期的系统理论学习,统计学专业学生已基本掌握了统计学的基础理论和基本方法,具备了正确的统计思想和较强的统计软件应用能力,以及运用所学的理论和方法解决实际问题、文献检索和资料查询等综合能力。本科毕业论文的写作就是统计学专业学生将上述基础和能力进一步深化与升华的重要过程,从而培养学生的创新能力和实践能力,使学生的知识、技能和素质得到进一步的充实和提高,同时也是衡量学校教学质量和办学水平的重要指标。因此对如何提高毕业论文质量进行研究是必要和有意义的。[4]
一、统计学专业毕业论文质量的现状分析
从论文完成情况来看,每届的毕业论文基本都能达到论文教学环节的要求,通过对中央民族大学统计学专业2007~2011年四届毕业生的毕业论文进行分析,发现毕业论文及格率为。
从毕业论文研究的类型来看,主要分为两大类:理论研究型论文和实证型论文,理论研究型论文表现为总结和论述现有统计理论问题,表述理论研究的成果,或应用理论对现实问题进行分析、说明,并提出自己的思考;实证型论文主要表现为针对某一特定的实际目的或目标,运用所学统计的理论和方法,对经济、管理、金融、医学、生物、工程、环境等领域进行统计调查、统计信息管理、数量分析等。
从论文知识点范围的分析来看,学生论文绝大多数是统计专业问题,极少数是其他数学分支的问题。从中央民族大学历届统计学专业学生的毕业论文情况分析,发现毕业论文中研究其他数学分支的问题占总数的,主要包括:一是其他科目的应用研究(数学分析、常微分方程、运筹学及空间解析几何等),占总数的。二是数学专业教育和数学思维的研究,占总数的。研究统计学专业问题的毕业论文占绝大部分,比例为,选题内容广泛且多为社会热点问题,涉及经济、社会、医疗卫生、教育发展、旅游、基础设施建设等多领域,由于受学校人文环境影响,很大比例的学生对少数民族地区的经济、社会、民生等问题进行了统计分析,约占总学生人数的。所使用的分析方法主要集中于抽样调查、回归分析、多元统计方法、聚类分析、判别分析等常用统计方法。
此外,统计分析显示学生成绩普遍偏高,统计学专业学生的毕业论文,尤其是实证类论文,存在着可以大量使用背景介绍和统计软件分析结果的特点,因此,一些论文没有创新性和学术含量,但具有较大的篇幅,与理学院其他专业的毕业论文成绩比较,其平均成绩相对较高,约分。
二、统计学专业毕业论文存在的问题
毕业论文的质量问题关系到本科人才的培养规格和目标,直接体现了学生本科阶段的学习成果,是衡量教学水平、学生毕业与学位资格认证的重要依据。通过对论文和考评结果的具体分析,发现学生的毕业论文在创新性、理论深度及论文写作常识多方面存在问题。具体表现为:
1.创新性不够
学生的毕业论文表现为理论性研究非常少,大都是实证型论文,并且多是简单的统计方法应用,缺少创新性研究和思考。从中央民族大学历届统计学专业学生的毕业论文来看,理论研究型论文只占,与实证型论文的比例为1︰,比例悬殊,体现了学生在毕业论文大的选题过程中,避重就轻,缺乏创新的特点。如每年都有一定数量的学生选择“我国人均GDP的预测”这类针对某经济指标进行预测的题目,论文的主要内容就是利用ARMA、灰色预测或者趋势外推方法等一种或多种方法对时间序列数据做简单建模和分析,论文没有对指标本身的意义以及国内国际的社会经济形势进行综合分析。这种方法简单套用性质的论文占有很大的比重。
2.选题过大、内容空泛,缺乏深入研究,存在抄袭、拼凑现象
有些学生在选择研究课题时,往往不能根据自身的专业知识结构特点和社会实践情况进行准确定位,只是一味的盲目的选择一些过大过空的社会热点问题,因此难以看到所要研究的问题的本质。如有的学生针对CPI做研究,没有深入了解问题的实质,只是收集了一些文献,很难提出自己的观点或研究角度,造成了材料堆积且过于散乱,论文变成了一些材料的简单拼凑。有些论文针对某一社会经济问题进行研究,论文的主题只是针对现有数据利用简单的统计方法进行分析,对数据的质量和可靠性以及方法的适用性不做针对性讨论,对所得的结论也不结合社会经济现实情况进行分析,导致论文质量不高。
3.相对前沿的分析方法利用较少
前沿的分析方法利用较少,通过毕业 论文的 写作, 统计分析能力没有实质性提升。学生论文使用的统计方法主要集中于回归分析、聚类分析、判别分析、相关性分析等,其中回归分析方法占有非常大的比例,约,其他各统计方法使用的比例分别为:聚类分析为,判别分析为,相关性分析为,多元统计方法为,时间序列分析为,极少有学生使用教科书外的相对前沿的分析方法。
4.论文写作上存在结构不合理、没有相关研究介绍、创新点表述不清、参考文献不会正确标注等问题
从学生的毕业论文来看,论文写作不规范,专业性差。主要存在论文形式不规范、结构不合理、题目含糊、有些论文杂乱无章、口语化严重、可读性差等问题。
三、存在问题的原因分析
针对上述问题,统计学系通过对论文进行详细审查以及 组织指导教师和学生座谈,发现毕业论文出现以上问题的主要原因包括以下几方面:
1.学生对论文不够重视
部分学生由于忙于考研学习而无暇顾及毕业论文的研究,还有部分学生由于忙于外出找 工作、 实习而无心认真撰写论文。论文撰写所需的必要时间难以得到保障,因此学生应付了事,从而无法保证论文的深度。此外,还有部分学生认为毕业论文只是一个教学环节,与考研的好坏无关,存在只要写了论文,教师都会让自己通过的侥幸 心理,在思想上没有引起足够的重视。
2.缺乏指导教师的针对性指导
指导教师所带毕业生人数过多,使得导师的工作量呈现超负荷状态,无法保证每个学生毕业论文的质量,从而致使部分学生的论文规范性较差,没有对存在的问题反复修改,使得学生论文存在诸多问题。
3.学生的专业训练还不够
大部分本科生没有经历过论文的写作训练,写作水平较低,不了解学术论文的规范性及其格式,不知如何从科研的角度构思文章、组织材料、安排结构,使得相当一部分学生的毕业论文表达的观点不够准确清楚,论据亦不能很好地支持论点。另外,一些同学为了完成任务,直接将在 网络中搜索到的资料不假思索的拼凑在一起,使得内容不成体系,观点混乱。
四、提高毕业论文质量的建议和 实践
1.加强毕业论文重要性的宣传,提高学生的重视度
加强对毕业论文重要性的认识有助于提高本科生毕业论文的质量。通过讲座、课堂传授等形式,让学生意识到毕业论文的实践性和综合性是任何教学环节都不能替代的,是提高发现问题、分析问题、解决问题能力的有效途径,更是进行个人综合素质提高的必不可少的重要环节,[4]从而使学生在思想上认识到毕业论文的重要性,投入更多精力进行毕业论文设计。
2.选题和教师的科研项目相结合,提高论文的创新性
在选择课题时,为了能充分发挥学生的主观能动性,可以让学生根据自身的特点,与指导教师协商,结合导师的研究方向制定课题方案。统计学专业的教师一般除了 申请国家自然科学基金和国家 社会科学基金这类对理论性和创新性要求较高的项目以外,很多教师还主持或参加有相应的 应用研究类项目。应用类项目大都需要实地调研(以及问卷涉及和数据分析)或者大量的数据分析和建模。引导学生参加这类项目来设计和完成自己的本科毕业论文,能够激发学生的科研热情和创新潜力。此外,鼓励和引导一些成绩较好,如让具备保研资格的学生参加教师的科研讨论班或者课题组,选择一些具有一定难度的理论问题进行研究,可以使学生了解本学科的 发展方向和最新动态。最近两年,越来越多的学生,特别是具备了保研资格的学生,在大四上学期就能投入到项目和毕业论文的写作中。
3.重视平时实践教学环节,培养学生的实践能力、发现问题以及解决问题的能力
为了提高学生的学习兴趣以及对问题的分析、解决能力,广泛开展了丰富多彩的社会实践活动,使学生尽可能早地接触与本专业有关的实际工作,切身 体会到如何将理论与实际相结合,了解本学科的实际业务,从而提高自主学习能力,加强专业知识的把握。结合学校的实际情况,积极鼓励学生在大二和大三阶段参加校级和国家级的全国大学生数学建模竞赛,申请“中央民族大学本科生研究训练 计划项目”、“北京市大学生科学研究计划项目”和“国家大学生创新性试验计划项目”。项目的申请和实施以及研究 报告的写作,对学生来说都是一个很好的锻炼。目前,统计学专业本科生的参与率在70%以上。此外,建立专业实习基地可以提高学生利用专业知识分析和解决实际问题的能力。这些环节的设计和实施都有力地保障了学生本科毕业论文的水平和质量。
4.加强学生科技论文写作训练
加强平时课堂上大作业的规范化,潜移默化培养学生科技论文的写作能力。通过平时的实践活动,如学生数学建模以及大学生创新实践等各类实践性项目来提高学生的 论文 写作能力。
5.实施激励措施,激发学生的兴趣和主动性
针对那些参与实际课题的学生,学院鼓励指导教师根据学生的完成情况以劳务费的形式给予其奖励,另外积极鼓励毕业论文质量优秀的学生进行投稿 发表。此外,还需对答辩程序和评分标准进行规范化,建立优秀毕业论文指导教师和优秀毕业论文奖励制度,以形成积极的导向作用,充分调动指导教师和学生的积极性。
6.加强教师责任心,建立完善的机制
加强学生毕业论文的过程 管理,从开题到中期检查严格执行,指导教师严格把关。为了保证学生与教师之间的沟通,学校可以通过建立师生信息反馈机制改善师生分离状态,为师生提供便利的沟通渠道,同时设置适当的教师激励制度,中央民族大学目前对教师指导本科毕业论文有额外的课时补贴。
医学论文统计学方法应用的错误解析论文
摘 要: 统计学方法应用正确与否直接关系到医学科研结果的可信度和有效性,在研究设计时的错误应用会否决整个科研研究方案,基于错误统计学方法上产生的结果会浪费科研人员的时间和精力。编审人员应该高度重视医学论文的统计学方法应用,提高单篇文献的质量和学术水平。
关键词: 统计学方法;医学论文;解析
一、引 言
医学由于其研究的复杂性和系统性,常需要应用严谨的统计学方法,由于有些作者对医学科研的统计学理论和方法的应用缺乏深刻了解,在医学论文中错误应用统计学方法的现象时有发生。统计学方法应用的错误直接导致统计结果的错误。例如统计学图表、统计学指标、统计学的显著性检验等。因此,正确应用统计学方法,并将所获得的结果进行正确的描述有助于单篇论著的质量提高,现将医学论文中统计学方法应用及其常见结果的错误解析如下。
二、医学论文统计学方法应用概况
医学论文的摘要是全文的高度浓缩[1],主要由目的、方法、结果、结论组成。一般要求要写明主要的统计学方法、统计学研究结果和P值。一篇医学论文的质量往往通过摘要的统计学结果部分就能判断。统计学方法的选择和结果的表达直接影响单篇论著的科研水平。
(一)材料与方法部分
正文中,材料与方法部分必须对统计学方法的选择、应用、统计学显著性的设定进行明确说明。通过对统计学方法的描述,读者应该清楚论著的统计学设计思路。材料部分要清楚说明样本或病例的来源、入组和排除标准、样本量大小、研究组和对照组的设定条件、回顾性或者前瞻性研究、调查或者实验性研究、其他与研究有关的一般资料情况,其目的是表明统计学方法应用的合理性和可靠性,他人作相关研究时具备可重复性。方法部分应详细叙述研究组和对照组的不同处理过程、观察的具体指标、采用的测量技术,要具备可比较性和科学性,
方法部分还要专门介绍统计分析方法及其采用的统计软件。不同的数据处理要采用不同的方法,必须清楚的说明计数或者计量资料、两组或者多组比较、不同处理因素的关联性研究。常用的有两组间计量资料的t检验,多组间计量资料的F检验,计数资料的卡方检验,不同因素之间的相关分析和回归分析。有些遗传学研究方法还有专门的统计学方法,要在这里简要说明并给出参考文献,还要简单叙述统计方法的原理。统计学软件要清楚的说明软件的名称和版本号,如基于家系资料研究的版本。
(二)论文结果部分
论文结果部分要显示应用统计学方法得到的统计量[2],所采用的统计学指标较多时,往往分开叙述。分组比较多时还要借助统计图表来准确表达统计结果。对于数据的精确度,除了与测量仪器的精密程度有关外,还与样本本身的均数有关,所得值的单位一般采用紧邻均数除以三为原则。均数和标准差的有效位数要和原始数据一致。标准差或标准误差有时需要增加一个位数,百分比一般保留一个小数。在统计软件中,分析结果往往精确度比较高,一般要采用四舍五入的方法使其靠近实验的实际情况,否则还会降低论文的可信度和可读性。
结果部分的统计表采用统一的“三线”表,表题中要注明均数、标准差等数据类型。表格中的数值要按照行和列进行顺序放置,要求整齐美观,不能出现错行现象。要明确标注观察的例数,得到的检验统计量。统计图可以直观的表达研究结果,如回归和相关分析的散点图可以显示个体值的散布情况。曲线图表达个体均值在不同组别随时间变化的情况或者不同条件下重复测量的结果。误差条图由均数加减标准误绘出,描述的是67%的置信区间,不是95%,提倡在误差条图采用95%的置信区间。
关于统计量,一般采用均数与标准差两个指标,均数不宜单独使用。使用均数的时候要明确变异指标标准差或者精确性指标标准误。关于百分比,分母的确定必须要符合逻辑,过小的样本会导致分母过小而出现百分比过大的情况。百分率的比较要写清两者中不同的变化,可以采用卡方检验。
1.假设检验的结果中,常见只写P值的情况,有时候会误导读者,也会隐藏计算失误的情况,因此写出具体的统计值,如F值、t值,可以增强可信度。对于率、相关系数、均数这类描述统计量,要清楚写明进行过统计学检验并将结果列出。P值一般取与作为检验显著性,对于结果的计算要求具体的P值,如P=或P=。
2.在对论文进行讨论时,作为统计学方法产生的结果往往要作为作者的主要观点支持其科学假设,对统计结果的正确解释至关重要。P值很大表明两组间没有差别属于大概率事件,P值很小表明两组间没有差别的概率很小。当P<;,表明差异具有统计学意义。P值与观察的样本量的大小有关联,当样本量小的时候,数据之间的差别即使很大,P值也可能很大;当样本量大时,数据之间的差别即使很小,P值也可能显示有显著性差异。相关系数统计学意义的显著性也与相关系数的大小没有绝对的关联,有统计学意义的样本相关系数可能很小。因此,有统计学差异的描述并不一定意味着两组间差别很大,错判的危险性很大,显著性的检验为定性的结果,结合统计量大小方可判断是否具有专业意义。
变量间虚假的相关关系与变量随时间变化而变化相关,统计学意义的关联并不表示变量间一定存在因果关系。因果关系的确定要根据专业知识和采用的'研究方法的不同来考量。使用回归方程进行分析,当两变量间具有显著性关系,但是从自变量推测因变量仍然不会很精确。相关或回归系数不能预测推测结果的精确程度,而只是预测一个可信区间。诊断性检验应用于人群发病率很低的疾病,灵敏度、特异度的高低对于明确疾病诊断并不能很肯定。“假阳性率”与“假阴性率”根据实际的需要不同要求并不一致,在疾病患病率很低时,出现假阳性也是正常的,要确诊疾病必须要与临床症状体征相结合。因此,这两个率的计算方法必须交待清楚。
三、医学论文统计学方法应用的常见错误分析
(一)“材料与方法”中的统计学方法应用的常见错误
“材料与方法”中统计学方法常见的问题主要为:对样本的选择或者研究对象的来源和分组描述很少或者过于简单。例如,临床入组病例分组只采用简单的随机分组,未描述随机分组的方法,未描述是否双盲双模拟,未设置空白对照组,分组后对性别、年龄、文化程度的描述未进行统计学检验,对于特殊的统计学方法没有详细交代;动物实验分组的随机化原则描述过于简单,没有具体说清完全随机、配对或分层随机分组等;统计分析方法没有任何说明采用的分析软件,有的只说明采用的分析软件而不交代在软件中采用的统计方法;没有说明原因的情况下出现样本量过于小等情况。
(二)“结果”统计学方法应用的常见错误
1.应用正确的统计学方法出现的结果表达并不一定正确。例如前文所述数据的精确度要求。医学论文常见错误中包括均数、标准差、标准误等统计学指标与原始数据应保留的小数位数不同;对于率、例数、比值、比值比、相对危险度等统计学指标保留的小数点位数过多;罕见疾病的发病率、患病率、现患率等指标没有选择好基数,导致结果没有整数位;相关系数、回归系数等指标保留的小数位数过多或者过少;常用的一些检验统计量,如F值、t值保留的位数不符合要求。
2.对统计学指标进行分析和计算时,一般采用计数资料和计量资料进行区分。计量资料常用三线表,在近似服从正态分布的前提下采用均数、标准差进行说明,如果不符合正态分布时,可以采用加对数或其他的处理方式使其近似正态分布,否则只能采用中位数和四分位数间距等指标进行描述。医学论文中常见未对数据进行正态分布检验的计算,影响统计结果的真实性和可信度。对于率、构成比等常用的计数资料指标,常见样本量过小的问题,采用率进行描述会影响统计结果的可靠性,采用绝对数进行说明会显得客观一些。还有一些文献将构成比误用为率,也是不可取的。
3.在判断临床疗效之一指标时,两组平均疗效有差别并不意味着两组的每一个个体都有效或无效,必须通过计算有效率进行计算。如比较某药物治疗糖尿病的疗效,服药一周后,研究组和对照组的对血糖降低值分别为 ± 和 ± ( P = 1) 。按空腹血糖值低于的疗效判定有效率,研究组和对照组的有效率分别为和 ,尽管平均疗效相差较多,但也要注意到该药物对部分患者无效()。对假设检验结果的统计学分析结果,P 值的表达提倡报告精确P值,如P = 或P = 等。目前的统计学分析软件均可自动计算精确的P 值。例如常用的SAS,SPSS等,只要提供原始数据,就可以计算出t值、F值和相应的自由度,并可获得精确的P值。
四、小 结
提高医学论文中统计学方法的使用质量是编辑部值得重视的一项长期而又艰巨的工作[3],医学论文中统计方法应用和统计结果的表达正确与否,不仅体现了论文的科学性和严谨性,而且对于提高期刊整体的学术质量,促进医学科学的发展和传播也有着重要作用[4]。
参考文献:
[1] 李敬文,吕相征,薛爱华.医学期刊评论性文章摘要的添加对期刊被引频次的影响[J].编辑学报,2011(23).
[2] 陈长生.生物医学论文中统计结果的表达及解释[J].细胞与分子免疫学杂志,2008(24).
[3] 潘明志.新时期复合型医学科技期刊编辑应具备的素质和能力[J].中国科技期刊研究,2011 (22).
[4] 张春军,董凯.网络信息时代加强医学期刊编辑的信息素养[J].牡丹江医学院学报,2011(32).
一般地,作者会在文章正文中明确解释问题1,粗略地解释2,试图证明问题3。而问题2的相关细节会散落在正文的results、discussion、methods/experimental section中,以及图释和supporting information里。越是专业的人,越要读得细致,要思考方法上有没有不同于传统方法的地方,方法本身是否可信。图中的各种细节也要特别留心,比如轴、坐标、单位的意义,极值、拐点的意义,error bar的大小,scale bar的大小,等等等等。搞清楚方法,具体到各个细节,那么文章是否可信自然可以得到结论。如果感觉不可信,可以找其他专业人士乃至作者本人讨论。由于编辑和审稿人的精力、水平、研究经历等可以理解的原因,很多经受了同行评审的文章一样有大量疑点(虽然比未经同行评审的文章要可靠得多)。如果读的过程中有概念/方法不理解,最可靠但是也最耗时的方法是根据文中列举的参考文献按图索骥。不知道题主的专业领域是什么。如果不在相关领域,需要的知识基础是不太可能在一个晚上就建立起来的。如果是这种情况,我的建议是:找一个专业领域的靠谱朋友,请他/她吃顿饭,让他/她帮忙解释一下。如果是专业领域内的东西而暂时超出自己的知识范畴(如果没记错,题主现在上大二?),其实最省时省力高效的办法还是找该领域的高年级研究生师兄师姐或靠谱学霸解释一下。如果不方便,找其他有相关研究经验的同学讨论也好。对于自己专业内相关程度特别高的概念和方法,最好还是去读一下原文。
统计图在医学论文中常见的格式统计表是用表格的形式,通过分析指标来表达研究对象的特征、内部构成及各项目分组之间的相互关系。在科技报告或论文中除一些简单的数据必需用文字说明外,其余大部分的统计数据都要用统计表的形式表示。因此,统计表制作的合理与否,直接关系到统计分析的质量与效果。1、统计表的基本格式一张完整的统计表由4部分组成,即标题、标目、线条、数字,必要时可加备注。其制表的原则是重点突出、简单明了、层次清楚。重点突出是指突出所要表示研究事物的主要特征及相互关系;简单明了是指统计表的结构要简单,使人一目了然,不能包罗万象;层次清楚是指内容及标目要安排合理、数据准确。若表格编排不合理将不能充分揭示事物之间的内在规律及联系,也不便于理解和阅读。2、标题应简明扼要地说明表的主要内容,一般放在表的正上方。当某一统计表在同一研究报告中出现时,标题可不包括时间和地点;如果引用在其他文章中,则应包括时间和地点。如论文中只有一张表时,可写成附表,否则要注明表序。3、标目用以说明表内数字含义部分称为标目,分为横标目和纵标目。横标目位于表的左侧,代表被研究事物的主要标志,即主语部分,用以说明同一横行数字的意义;纵标目位于表的右上方,用来说明事物的统计指标,即谓语部分,说明同一列数字的意义。标目的正确安排可使读者自左向右顺利阅读,即从表的左侧横标目开始阅读到纵标目结束,可以读出一个完整的句子。
论文中插入统计图的方法:1、打开需要编辑的文档。2、点击图表。3、选择相应的图表类型。4、接下来会弹出对应图表的excel文档,再编辑相关的参数。5、以柱状图为例,点击上方设计,可以编辑文字、颜色等。
统计图是展示数量的图表,是以几何图形或其他图形的形式表达统计数量关系的重要工具。它把统计资料直观形象、生动具体地表现出来,使人一目了然。它还能准确地表现统计资料,有助于对统计资料进行比较、对照、分析和研究。常用的统计图可按形状划分为饼图、条形图、线形图、直方图、多边图、散点图等。
统计图的类型有:扇形统计图、折线统计图、条形统计图、半对数线图、散点图、直方图、统计地图。常用的统计图,条形统计图、扇形统计图、折线统计图的特点统计图的类型有:扇形统计图、折线统计图、条形统计图、半对数线图、散点图、直方图、统计地图。常用的统计图,条形统计图、扇形统计图、折线统计图的特点:1、条形图:FineReport条形图用一个单位长度表示一定的数量,根据数量的多少,画成长短相应成比例的直条,并按一定顺序排列起来,这样的统计图,称为条形统计图。条形统计图可以清楚地表明各种数量的多少。条形图是统计图资料分析中最常用的图形。按照排列方式的不同,可分为纵式条形图和横式条形图;按照分析作用的不同,可分为条形比较图和条形结构图
常用的统计图主要有圆饼图、条形图、直方图和折线图四种。不同层次的变量其统计图的制作也不相同。一般情况下,定类变量用圆饼图或条形图;定序变量用条形图;定距变量用直方图或曲线图。
一、条形统计图用一个单位长度(如1厘米)表示一定的数量,根据数量的多少,画成长短相应成比例的直条,并按一定顺序排列起来,这样的统计图,称为条形统计图。条形统计图可以清楚地表明各种数量的多少。条形图是统计图资料分析中最常用的图形。按照排列方式的不同,可分为纵式条形图和横式条形图;按照分析作用的不同,可分为条形比较图和条形结构图。条形统计图的特点:(1)能够使人们一眼看出各个数据的大小。(2)易于比较数据之间的差别。二、扇形统计图以一个圆的面积表示事物的总体,以扇形面积表示占总体的百分数的统计图,叫作扇形统计图。也叫作百分数比较图。扇形统计图可以比较清楚地反映出部分与部分、部分与整体之间的数量关系。扇形统计图的特点:(1)用扇形的面积表示部分在总体中所占的百分比。(2)易于显示每组数据相对于总数的大小。三、折线统计图以折线的上升或下降来表示统计数量的增减变化的统计图,叫作折线统计图。与条形统计图比较,折线统计图不仅可以表示数量的多少,而且可以反映同一事物在不同时间里的发展变化的情况。折线图在生活中运用的非常普遍,虽然它不直接给出精确的数据,但只要掌握了一定的技巧,熟练运用“坐标法”也可以很快地确定某个具体的数据。折线统计图的特点:(1)能够显示数据的变化趋势,反映事物的变化情况。四、网状统计图网状统计图的特点是:这类统计图中只有一些字母,字母所代表的意义都在题外,在答题前必弄清这些字母代表的意义,在具体的答题过程中就可以脱离字母,较简便地得出答案
标题统计图都应有标题,其要求与统计表的标题一致。所不同的是统计图的标题列在图的下边,只有大的挂图,标题才放到图的上边,图域除圆图外,图域总是个矩形,其长宽之比一般要求为7:5,此图形较美观。
标目统计图的纵横两轴应有标目,即纵标目和横标目。医学教|育网搜集整理纵标目放在图的左侧,横标目放在图的下边,并要注明度量衡单位或其他单位,尺度纵轴尺度自下而上,横轴尺度自左至右,一律由小到大,同时标尺度要适中,不要过松或过密,图例表示两种或几种事物时,要用图例说明。图例一般放到图的下方。
扩展资料:
注意事项:
要有图表题,一般在图的下方,标题要简洁明了,不同职称人员频数。
报告中统计图要有标号。横轴和纵轴要标注清楚(横轴:职称, 纵轴:频数)。如有单位,还需注明。
图的标题、横轴、纵轴等,出现的文字要统一和准确,不要一会儿中文,一会儿英文。写中文报告,就要标注中文。
图的比例要协调,别太胖也别太瘦,别太高也别太矮。
参考资料来源:百度百科-统计图
1. 全文的中心思想是什么2. figure legend:基本上能把图表的中心思想,各个panel是什么描述清楚3. 正文result中哪些地方应用了这个图,如(Figure1a blablabla):这个就是作者从这些数据里得到了什么结论,支持哪个假设神马的;偷懒的话看result里的小标题4. 具体到每个图表的话,x axis,y axis是神马(注意某些作者会通过改变y axis的来达到视觉上dramatic,striking的效果,在比较前后panel的时候要注意),sample和control分别是神马,有没有significant之类的;偷懒的话就看下那些和control有significant difference
(1)要根据绘图目的和统计资料本身的特性选取适合的图形。(2)标示和说明要清晰。图里面画的变量是什么,单位是什么,以及资料来源,这些一定要在标示和说明里表示清楚。(3)要让数据很醒目。一定要注意,抓住看图者注意力的是数据本身,而不是标示、格子,也不是背景的图样。你是在画一个呈现数据的图,不是在从事艺术创作,所以数据要很醒目。(4)不要在图中加入不必要的东西(如物体图片、画像等),以免数据看不清楚。(5)注意曲线图中的刻度。图给人的印象深刻,所以不小心的人很容易被误导。谨慎的人读曲线图时,会很仔细地看横轴和纵轴上标示的刻度,看看有没有被刻意拉大或压缩来制造特定效果。
统计图的基本结构包括:表头也即总标题,行标题,列标题以及数字资料四个部分。
(1)条形统计图:条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排列起来。作用:从条形统计图中很容易看出各种数量的多少。特点:直观(2)拆线统计图:折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。作用:折线统计图不但可以表示出数量的多少,而且能够清楚地表示出数量增减变化的情况。特点:能表示数量变化和趋势(3)扇形统计图:扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数。作用:通过扇形统计图可以很清楚地表示各部分数量同总数之间的关系。折线统计图不但能反映数据(量)的多少,更能反映某一项目在某一时间内的数据(量)增减变化情况特点:能表示各部分比例和关系
统计图分为以下几种:
1、条形统计图
条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来。特点是用一个圆的面积来表示总数,用圆内扇形的大小来表示占总数的百分比。
2、折线统计图
折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量的增减变化。特点是用一个单位长度表示一定的数量,用直条的长短来表示数量的多少。
3、扇形统计图
扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数。特点是用一个单位长度表示一定的数量,用折线得上升或下降表示数量的多少和增减变化情况。
统计图简介:
统计图是根据统计数字,用几何图形、事物形象和地图等绘制的各种图形。它具有直观、形象、生动、具体等特点。统计图可以使复杂的统计数字简单化、通俗化、形象化,使人一目了然,便于理解和比较。因此,统计图在统计资料整理与分析中占有重要地位,并得到广泛应用。
统计图主要分为:条形图,扇形图,折线图,茎叶统计图,直方图。
统计图是根据统计数字,用几何图形、事物形象和地图等绘制的各种图形。它具有直观、形象、生动、具体等特点。统计图可以使复杂的统计数字简单化、通俗化、形象化,使人一目了然,便于理解和比较。
因此,统计图在统计资料整理与分析中占有重要地位,并得到广泛应用。在解答资料分析测验中有关统计图的试题时,既要考察图的直观形象,又要注意核对数据,不要被表面形象所迷惑。
统计图作用
统计学与数据分析过程可大致分为两个组成部分:定量分析方法和图解分析方法。定量分析方法是指那套产生数值型或表格型输出的统计学操作程序;比如,包括假设检验、方差分析、点估计、可信区间以及最小二乘法回归分析。这些手段以及与此类似的其他技术方法全都颇具价值,属于是经典分析方面的主流。
另一方面,还有一大套我们一般称之为图解分析方法的统计学工具。这些工具包括散点图、直方图、概率图、残差图、箱形图、块图以及双标图。图解分析操作程序不仅仅是在EDA背景下才使用的工具;在检验假设、模型选择、统计模型验证、估计量选择、关系确定、因素效应判定以及离群值检出方面,此类图解分析工具还可以作为最佳捷径,用来深入认识数据集。