把检验值理解为靶值更为直觉一些,靶值就是你想要与你的样本均值相比较的数值。单样本t检验:T-Statistic=(样本平均值 - 靶值)/ 标准误
刚在那个什么 创新医学网 上看见过 医学论文 写作辅导的文章 这个知道是不是 你要的答案 统计资料的显著性检验(significant test)方法的选择是医学论文中常常遇见的问题,退稿原因中常有显著性检验方法选择不当。如t检验、u检验、χ2检验等,虽然各有其应用范围和要求,但也其共同之处。作者可根据统计资料的类型,选择一种或几种检验方法。但当作者在获得一组、两组或两组以上的数据资料时,选择何种显著性检验,是至关重要的问题。不同的资料类型其统计指标、统计检验的方法是不同的,见表1。 医学生物研究中,许多指标都是服从正态分布(u分布)的,而随着样本含量加大或自由度增大,t分布、χ2分布、F分布都趋向于正态分布见图1、图2。 在《中华创伤杂志》第12卷1~6期和增刊中文章所涉及的统计方法(表2),表明了正态分布的广泛性、常见性。 故当作者获得数据资料后,首先应进行正态性检眩�范ㄊ欠为标准正态分布(或近似正态分布)或不属于正态分布。笔者首先推荐概率单位法。 当统计资料属于正态分布或近似正态分布时,差异显著性检验方法的选裕�诜合其应用条件下,一般可按表3进行选择。 显著性检验应用时的主要注意事项:(1)率值或均值在进行显著性检验前,应注意样本的代表性和可比性。(2)检验结果接近显著性界限时:要多方面考虑,是否确实不存在差异;或是观察例数不够,而需加大样本例剩换是检验公式运用不当,可用其他检验印证。(3)多个样本比例数的χ2检验,差异显著性,只能说明多组比例数不同或不完全相同,而不能确定哪个比例数不同,要进一步进行显著性检验才能了解两个样本比例数是否构成相同。表1 一般情况下不同资料的统计指标与检验方法的关系资料类型 统计指标 统计检验方法 计量资料 均数、标准差 t检验、F检验等 计数资料 率、构成比 χ2检验等 半定量资料 率、构成比 秩和检验、Ridit分析表2 《中华创伤杂志》第12卷1~6期、 增刊显著性检验方法使用频数检验方法 应用次数 检验方法 应用次数 t检验 27 直线相关与回归分析 5 χ2检验 16 拟合线性回归 1 F检验 24 相关分析 6 Q检验 2 非参数统计 4 u检验 1 未注明方法 6表3 常用显著性检验方法的选择统计资料比较类型 显著性检验 小样本均数与总体均数相比较 t检验 小样本均数相比较 t检验、F检验 两个或多个大样本均数与 总体均数相比较 u检验、t检验 大样本均数相比较 u检验、t检验 配对计量资料 配对t检验 两个率的比较 u检验、χ2检验 多个样本率的的比较 χ2检验 配对计数资料两种属性的 相关分析及其差别的比较 χ2检验
采用spss软件,单因素分组对照计算。
t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法
假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。
把检验值理解为靶值更为直觉一些,靶值就是想要与你的样本均值相比较的数值。
单样本t检验:T-Statistic=(样本平均值 - 靶值)/ 标准误
单样本t检验就是比较某一列数据的均值和某个数值是否有差异,比如检验温度是否为0,在spss的单样本t检验操作框中选入温度的数据,然后检验值输入0就可以。所以单样本t检验就是和单一数值作比较,不需要输入标准差之类的东西。
单总体检验
单总体t检验是检验一个样本平均数与一个已知的总体平均数的差异是否显著。当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布。
该检验用于检验两组非相关样本被试所获得的数据的差异性;一是配对样本t检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。
以上内容参考:百度百科-t检验
一般常用的统计检验方法有:t 检验、卡方检验、方差分析和相关回归分析。统计检验方法的选择主要依据数据的类型(计量、计数) 、组数的多少(两组、多组) 、样本量的大小以及对比的方式(相互比较、配对比较) ,此外计量数据还要考虑分布形态和方差齐性等问题。
宜采用两独立样本均数的t检验进行计算。过程基本都是一样的,只公式不同。
1、作两样本的正态性检验及方差齐性检验。
2、建立检验假设,确定检验水准
H0:u1=u2 无影响
H1:u1<>u2 有影响
a=
3、计算检验统计量(用下面的公式)
4、确定P值,作出推断结论。(此步要查t界值表,双侧)。
具体数值自己算吧。
采用spss软件,单因素分组对照计算。
t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法
假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。
可以使用SPSSAU[进阶方法]--[二元logistic回归]。
二元Logit回归分析时,首先分析p 值,如果此值小于,说明具有影响关系,接着再具体研究影响关系情况即可,比如是正向影响还是负向影响关系等;除此之外,还可以写出二元Logit回归分析的模型构建公式,以及模型的预测准确率情况等。
PS软件与教程百度网盘资源免费下载
软件资源实时更新旅誉枣
链接:
密码:ffh6
资源包含:bavi视频素材、pscs6软件和虚渗色盘的插件、PS4人物转手绘教程ps、安装包+入门教程+高级课程、祁连山、李涛Photoshop高手之路教程、PS课程素材包、PS各版本软件+教程、Photoshop教程+配套素材、各种Photoshop 中文破解版+破解方法+正版软件+补丁+安装方法,AE PR PS软件安装包,spss教学视频,PS破解器,PS字体包、拆拆矢量素材打包等
绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。显然,经正确统计处理的结果可信度高,论文的质量也高。楼主信不信由你,这篇文章就是在、创新医学网那摘录下来的。别的太多的我也复制不下来....
一、 SAS统计软件 SAS 是英文Statistical Analysis System的缩写,翻译成汉语是统计分析系统,最初由美国北卡罗来纳州立大学两名研究生开始研制,1976 年创立SAS公司, 2003年全球员工总数近万人,统计软件采用按年租用制,年租金收入近12亿美元。SAS系统具有十分完备的数据访问、数据管理、数据分析功能。 在国际上, SAS被誉为数据统计分析的标准软件。SAS系统是一个模块组合式结构的软件系统,共有三十多个功能模块。SAS是用汇编语言编写而成的,通常使用SAS 需要编写程序, 比较适合统计专业人员使,而对于非统计专业人员学习SAS比较困难。SAS最新版为版。网址:。 SAS是美国SAS(赛仕)软件研究所研制的一套大型集成应用软件系统,具有比较完备的数据存取、数据管理、数据分析和数据展现的系列功能。尤其是它的创业产品—统计分析系统部分,由于具有强大的数据分析能力,一直是业界中比较著名的应用软件,在数据处理方法和统计分析领域,被誉为国际上的标准软件和最具权威的优秀统计软件包,SAS系统中提供的主要分析功能包括统计分析、经济计量分析、时间序列分析、决策分析、财务分析和全面质量管理工具等。 SAS系统是一个组合的软件系统,它由多个功能模块配合而成,其基本部分是BASE SAS模块。BASE SAS模块是SAS系统的核心,承担着主要的数据管理任务,并管理着用户使用环境,进行用户语言的处理,调用其他SAS模块和产品。也就是说,SAS系统的运行,首先必须启动BASE SAS模块,它除了本身所具有数据管理、程序设计及描述统计计算功能以外,还是SAS系统的中央调度室。它除了可单独存在外,也可与其他产品或模块共同构成一个完整的系统。各模块的安装及更新都可通过其安装程序比较方便地进行。 SAS系统具有比较灵活的功能扩展接口和强大的功能模块,在BASE SAS的基础上,还可以增加如下不同的模块而增加不同的功能:SAS/STAT(统计分析模块)、SAS/GRAPH(绘图模块)、SAS/QC(质量控制模块)、SAS/ETS(经济计量学和时间序列分析模块)、SAS/OR(运筹学模块)、SAS/IML(交互式矩阵程序设计语言模块)、SAS /FSP(快速数据处理的交互式菜单系统模块)、SAS/AF(交互式全屏幕软件应用系统模块)等等。 SAS提供的绘图系统,不仅能绘各种统计图,还能绘出地图。SAS提供多个统计过程,每个过程均含有极丰富的任选项。用户还可以通过对数据集的一连串加工,实现更为复杂的统计分析。此外,SAS还提供了各类概率分析函数、分位数函数、样本统计函数和随机数生成函数,使用户能方便地实现特殊统计要求。 目前SAS软件对Windows和Unix两种平台都提供支持,最新版本分别为和。与以往的版本比较,版的SAS系统除了在功能和性能方面得到增加和提高外,GUI界面也进一步加强。在版中,SAS系统增加了一个PC平台和三个新的UNIX平台,使SAS系统这一支持多硬件厂商,跨平台的大家族又增加了新成员。SAS 的另一个显著特征是通过对ODBC、OLE和MailAPIs等业界标准的支持,大大加强了SAS系统和其它软件厂商的应用系统之间相互操作的能力,为各应用系统之间的信息共享和交流奠定了坚实的基础。 虽然在我国SAS的逐步应用还是近几年的事,但是随着计算机应用的普及和信息事业的不断发展,越来越多的单位采用了SAS软件。尤其在教育、科研领域等大型机构,SAS软件已成为专业研究人员实用的进行统计分析的标准软件。 然而,由于SAS系统是从大型机上的系统发展而来,其操作至今仍以编程为主,人机对话界面不太友好,系统地学习和掌握SAS,需要花费一定的精力。而对大多数实际部门工作者而言,需要掌握的仅是如何利用统计分析软件来解决自己的实际问题,因此往往会与大型SAS软件系统失之交臂。但不管怎样,SAS作为专业统计分析软件中的巨无霸,现在鲜有软件在规模系列上与之抗衡。 二、 SPSS统计软件 SPSS是英文Statistical package for the social science 的缩写,翻译成汉语是社会学统计程序包,20世纪60年代末由美国斯坦福大学的三位研究生研制,1975年在芝加哥组建SPSS总部。SPSS系统特点是操作比较方便,统计方法比较齐全,绘制图形、表格较有方便,输出结果比较直观。SPSS是用FORTRAN语言编写而成。适合进行从事社会学调查中的数据分析处理。最新版为版。网址:。 SPSS原名社会科学统计软件包,现已改名为统计解决方案服务软件。是世界著名的统计分析软件之一。 20世纪60年代末,美国斯坦福大学的三位研究生研制开发了最早的统计分析软件SPSS,同时成立了SPSS公司,并于1975年在芝加哥组建了 SPSS总部。20世纪80年代以前,SPSS统计软件主要应用于企事业单位。1984年SPSS总部首先推出了世界第一套统计分析软件微机版本 SPSS/PC+,开创了SPSS微机系列产品的先河,从而确立了个人用户市场第一的地位。 同时SPSS公司推行本土化策略,目前已推出9个语种版本。SPSS/PC+的推出,极大地扩充了它的应用范围,使其能很快地应用于自然科学、技术科学、社会科学的各个领域,世界上许多有影响的报刊杂志纷纷就SPSS的自动统计绘图、数据深入分析、使用灵活方便、功能设计齐全等方面给予了高度的评价与称赞。目前已经在国内广泛流行起来。它使用Windows的窗口方式展示各种管理和分析数据方法的功能,使用对话框展示出各种功能选择项,只要是掌握一定的 Windows操作技能,粗通统计分析原理,就可以使用该软件进行各种数据分析,为实际工作服务。 SPSS for Windows是一个组合式软件包,目前已经开发出SPSS12版本,它集数据整理、分析功能于一身。用户可以根据实际需要和计算机的功能选择模块,以降低对系统硬盘容量的要求,有利于该软件的推广应用。SPSS的基本功能包括数据管理、统计分析、图表分析、输出管理等等。SPSS统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类,每类中又分好几个统计过程,比如回归分析中又分线性回归分析、曲线估计、Logistic回归、Probit回归、加权估计、两阶段最小二乘法、非线性回归等多个统计过程,而且每个过程中又允许用户选择不同的方法及参数。SPSS也有专门的绘图系统,可以根据数据绘制各种统计图形和地图。 SPSS for Windows的分析结果清晰、直观、易学易用,而且可以直接读取EXCEL及DBF数据文件,现已推广到多种操作系统的计算机上,最新的版采用 DAA(Distributed Analysis Architecture,分布式分析系统),全面适应互联网,支持动态收集、分析数据和HTML格式报告,领先于诸多竞争对手。 方便易用是SPSS for Windows的主要优点,同时也是SPSS不够全面的原因所在。 三、 BMDP统计软件 BMDP是英文Biomedical computer programs 的缩写,翻译成汉语是生物医学计算程序,美国加州大学于1961年研制,是世界上最早的统计分析软件。特点是统计方法齐全,功能强大。但1991年的 版后没有新的版本推出,使用不太普及,最后被SPSS公司收购。 四、 Stata统计软件 Stata统计软件由美国计算机资源中心(Computer Resource Center)1985年研制。 特点是采用命令操作,程序容量较小,统计分析方法较齐全,计算结果的输出形式简洁,绘出的图形精美。不足之处是数据的兼容性差,占内存空间较大,数据管理功能需要加强。最新版为版。网址:。 五、 EPINFO软件 EPINFO是英文Statistics program for epidemiology on microcomputer 的缩写,翻译成汉语是流行病学统计程序。美国疾病控制中心CDC和WHO共同研制,为完全免费软件。特点是数据录入非常直观,操作方便,并有一定的统计功能,但方法比较简单,主要应用于流行病学领域中的数据录入和管理工作。最新版为Epidata 版及EPINFO2000版。 六、 Minitab Minitab由美国宾州大学研制。其特点是简单易懂,很方便进行试验设计及质量控制功能。在国外大学统计学系开设的统计软件课程中,Minitab与SAS、BMDP并列,根据没有SPSS的份。最新版本为版,网址:。 七、 Statistica Statistica为一套完整的统计资料分析、图表、资料管理、应用程式发展系统;美国StatSoft公司开发。能提供使用者所有需要的统计及制图程序,制图功能强大,能够在图表视窗中显示各种统计分析和作图技术。 八、 SPLM统计软件 SPLM是英文Statistical program for linear modeling 的缩写,翻译成汉语是线性模型拟合统计软件程序。1988年由解放军第四医学大学统计教研室研制。系统特点是采用线性模型的方法,实现各种统计方法的计算。统计方法比较齐全,功能比较强大。SPLM采用FORTRAN语言编写完成。但1999年推出版后无新的产品推出。 九、 CHISS统计软件 CHISS 是英文Chinese High Intellectualized Statistical Software的缩写,翻译成汉语是中华高智统计软件, 由北京元义堂科技公司研制,解放军总医院、首都医科大学、中国中医研究院等参加协作完成。1997年开始研发,2001年推出第一版。CHISS是一套具有数据信息管理、图形制作和数据分析的强大功能,并具有一定智能化的中文统计分析软件。CHISS的主要特点是操作简单直观,输出结果简洁。既可以采用光标点菜单式也可采用编写程序来完成各种任务。CHISS用C++语言、 FORTRAN语言和delphi 开发集成,采用模块组合式结构,已开发十个模块。 CHISS可以用于各类学校、科研所等从事统计学的教学和科研工作。最新版为CHISS2004版。网址:。 十、 SASD统计软件 SASD是英文package for Statistical analysis of stochastic data 的缩写,翻译成汉语是随机数据统计分析程序包。它是由中国科学院计算中心研制。系统特点是以FORTRAN源程序形式向用户提供大量的子程序可供用户进行二次开发,统计方法比较齐全,功能比较强大。SASD采用FORTRAN语言编写完成,比较适合从事统计专业人员使用。但无新版推出。 十一、 PEMS统计软件 PEMS是英文package for encyclopaedia of medical statistics汉语是中国医学百科全书-医学统计学软件包。它以<中国医学百科全书>一书为蓝本,开发的一套统计软件。系统特点是实现各种统计方法的计算。统计方法比较齐全,功能比较强大。PEMS采用TURBOC和TURBOBASIC语言编写完成,比较适合从事医学工作的非统计专业人员使用。最新版为版。网址:。 十二、 EXCEL电子表格与统计功能 EXCEL电子表格是Microsoft公司推出的Office系列产品之一,是一个功能强大的电子表格软件。特点是对表格的管理和统计图制作功能强大,容易操作。Excel的数据分析插件XLSTAT,也能进行数据统计分析,但不足的是运算速度慢,统计方法不全。 十三、 DAS统计软件 DAS是英文Drug and Statistics的缩写,翻译成汉语是药理学计算软件,由孙瑞元等开发。特点是内容涵盖基础药理学、临床药理学,药学,医学统计学。能多种处理结果同时显现。EXCEL平台使用方便,智能化,图表直接插入文档。网址:。 十四、 SDAS统计软件 DAS是英文Statisticaldesign and analysis system的缩写,翻译成汉语是统计设计和分析系统。1992年由解放军总医院医学统计教研室开发。特点是窗口操作,操作方便,图表简明,与国内医学统计学教材一致。但只有DOS版,1995年后没新的版本。 十五、 Nosa统计软件 Nosa是非典型数据分析系统,1999年由解放军四军医大学医学统计教研室夏结来教授开发。特点是采用广义线性模型建模,从数据录入与管理、统计分析、绘图,到结果管理嵌入了当代数据处理技术。但只有DOS系统下使用。 十六 S-PLUS(此部分摘自厂家的软件宣传资料) Insightful公司是世界著名的商务智能软件提供商,产品涵盖分析统计、数据挖掘、知识获取、决策支持等多个领域。公司总部设在美国西雅图。 S-PLUS作为一个工业数据分析工具与数据分析应用开发平台,在各行各业已经有较长的使用历史。并曾获得著名的“美国计算机协会优秀软件奖。 S-PLUS提供了方便、灵活、交互、可视化的操作环境,帮助您找出数据之间的关系和趋势,让您做出更好地决策。在科学研究、市场营销、产品研发、质量保证、财务分析、金融证券、资料统计等各个方面,S-PLUS都有广泛的应用。 S-PLUS有流畅、直观的操作界面,广泛的输入输出功能,不论您的数据在何处、数据的格式如何,都可以轻松地存取,生成的结果可以以任意格式进行输出 (图形、文档、表格、网页)。特别是:S-PLUS的操作界面与Microsoft Office完全一致,用鼠标轻松点击,就可以把S-PLUS 的分析结果嵌入到Word文档和PowerPoint文档中;S-PLUS与Excel无缝集成,您可以在S-PLUS 环境中随意操作Excel数据,也可以在Excel环境中使用S-PLUS功能,无需花时间在Excel及S-PLUS之间,将数据来回转换;S- PLUS可以在Internet环境中进行数据分析和结果发布。 S-PLUS领先于业界的探索式图形技术,使得您可以直观地展现隐藏在数据中的关系和趋势,不致迷失在简单的统计数值及文字报表中。S-PLUS提供超过80种的二维和三维图形库,您可以轻松修改每一层图形的细节,包括线条、颜色、字体等,产生您想要的图形。 S-PLUS提供超过4200种统计分析函数,包含了传统和现代的统计分析、数据挖掘、预测分析的算法。软件所有的分析功能都是向导式的,使您轻松完成数据的分析任务。S-PLUS的开放性,允许您自己开发新的算法,集成到S-PLUS软件中。您也可以从S-PLUS网站或者其它统计网站上免费下载算法,集成到S-PLUS软件中。 通过S-PLUS的脚本语言,可以记录和存储分析过程;或者,用鼠标拖拉对象(如按钮、菜单等等)到命令窗口,会立即产生相应的执行指令;反之,拖拉指令到工具列上,会产生相应的功能按钮。使得您的分析过程可以进行存储、共享和重复执行,大大减少您的重复工作量。 S-PLUS还提供强大的编程语言——S语言,您可以使用它来开发专门适合于您的个性化系统,也可以建立企业级的应用系统。而且,S-PLUS几乎可以集成到其它任何系统中,如:在Unix系统上,S-PLUS的CONNECT/Java接口,可以让S-PLUS集成到Java程序中。在Windows系统上,S-PLUS的CONNECT/C++接口,可以在您开发的C++程序内使用全部的S-PLUS分析方法。另外S-PLUS的DDE及OLE接口,可以让您集成S-PLUS到其他Windows应用程序中,允许您从Excel或Visual Basic应用程序中执行S-PLUS功能。
统计分析方法的选择:对于定量资料,应根据所采用的设计类型、资料所具备的条件和分析目的,选用合适的统计分析方法,不应盲目套用t检验和单因素方差分析;对于定性资料,应根据所采用的设计类型、定性变量的性质和频数所具备的条件以及分析目的,选用合适的统计分析方法,不应盲目套用χ2检验。对于回归分析,应结合专业知识和散布图,选用合适的回归类型,不应盲目套用简单直线回归分析,对具有重复实验数据的回归分析资料,不应简单化处理;对于多因素、多指标资料,要在一元分析的基础上,尽可能运用多元统计分析方法,以便对因素之间的交互作用和多指标之间的内在联系作出全面、合理的解释和评价。
采用spss软件,单因素分组对照计算。
t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法
假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。
医学统计论文
医学统计是研究如何搜集、整理和分析医学研究对象的数据和作出推断的一门学科,下面是我为大家收集整理的是医学统计论文,仅供参考。
摘要: 不同的统计分析方法均有其适用的范围和应用的条件,研究者在书写医学论文时应根据论文设计及资料的类型进行合理的试验设计,选择恰当的统计分析方法,切记勿盲目套用。同时,还应注意得出的结果和结论应满足设计的要求。医学统计方法的正确运用,是充分利用试验研究获得的数据,也是最终得出科学、可信的结论的必要条件。
关 键词 :医学统计;方法;运用;原理;选择
一、统计学方法简介
统计学方法包括统计软件包、统计分析方法以及检验水准三方面的内容。其中医学论文中常提到检验水准即α,它是用来表示组间实际无差别而统计结果判断有差别,犯这类错误的概率。实际工作中常取α=,当研究数据计算的P值小于时,组间差异比较被认为有统计学意义。统计学方法包括统计描述和假设检验两个方面的内容。统计描述是指根据资料及原始数据分布的类型,选择正确的指标来描叙资料及数据的特征。而假设检验即组间差异性检验,是医学论文中最常用的统计学方法。资料类型则包括能用具体数据表示的定量资料与不能用具体数值表示但能反映被观察对象某一特征的定性资料。定性资料的统计描述包括率、相对比和构成比。而参数法及非参数法是常用的定量资料统计分析方法。参数法一般包括t检验、方差分析,非参数法常用的有秩和检验。
二、试验设计中的统计学原理
合理的试验设计与统计处理的可信度存在直接联系,研究者在编写医学论文时应对医学研究设计方法进行说明。在进行试验设计时应遵循随机、对照、均衡和重复四大原则。在进行试验设计的时候通常会涉及到研究对象的选择,研究对象的分组及选择合理的检测指标三个方面的内容。
医学论文就是通过对样本的研究来进行推断总体,找出其共性,得出结论。因此研究者在选择研究对象时应注意选择样本应具有一定数量,能反映出该事物的规律性特征,但又应注意例数不能太多,以免造成不必要的浪费。其选择的原则就是在保证试验结果可靠性的前提下选择最少的样本例数。研究者在选择样本对象后应对其基本特征进行详细的描述,比如患者的年龄、性别、病理分期、疾病诊断的标准等。此外在试验中所用到的试剂、仪器的型号、规格等都应作出说明,以供读者借鉴和做出判断。选定好研究对象后就要对其进行分组。在进行分组时研究者一般遵循统计学中的“随机分配”、“设立对照”以及“均衡”、“重复”的原则。随机化原则是提高组间均衡性的一个重要手段,也是资料分析时进行统计推断的前提。有对照才有比较,在进行组间比较时,应确定好处理因素与实验效应的关系。均衡性则是要使得对结果产生影响的非处理因素尽可能保持一致,这样才能保证对照的结果让人信服。观察实验效应的.指标主要有主观指标与客观指标。正所谓主观指标就是通过问答的方式调查受试者自己判断的主观感受;而客观指标则是通过仪器来检验和测量所得出的结果。在进行试验设计时应选择客观性较强、高灵敏性和精确性的指标。
三、统计学方法的选择
统计学方法的正确选择是直接影响到论文结论可信度的重要依据,因此研究者在编写论文时应注意选择合适的统计学方法。不同的统计学方法应用的范围不同。研究者在编写医学论文时常根据论文研究的目的、资料类型、试验设计的方案、样品大小、水平数、特定条件、数据分布特征以及综合分析等来选择对应的统计方法,同时还要根据专业知识与资料的实际情况,结合统计学原则,灵活地选择。当定性资料正态分布时,研究者一般用均数和标准差来表示统计描述指标;当定性资料不符合正态分布时,则可选用中位数及级差来表示;当定量资料正态分布且组间方差齐时一般选用参数法,反之则选用非参数法。t检验一般适用于小样本(n<50)的定量资料且方差齐的两组数据之间的比较。其特点是在均方差不知道的情况下,可以检验样本平均数的显著性,大样本(n≥50)采用u检验;多个样本均数两两比较则用方差分析,如差异有统计学意义,可采用q检验;Dunnett检验则适用于多个实验组与一个对照组均数的比较。定性资料中,表现为互不相容的类别或属性,分为二分类和多类反应,如治疗结果为显著和好转的人数等,该种资料可选用字检验,大样本(n≥50)时采用u检验。如:患者的治疗结果评定为痊愈、显著有效、好转、无效或死亡。该种资料可选用秩和检验或u检验。总之,不论论文中选用的是哪种统计学方法,都要计算出检验值,然后再根据统计量值来判定P值的大小,结论一般描述为“差异有(无)统计学意义”。
四、常见统计学方法的误用分析及对策
1.统计方法误用。最常见统计方法误用是对等级资料进行比较时应用秩和检验而误用卡方检验。例如:在评价采取不同治疗方法的两组急性脑血管病患者疗效中,治疗组显著有效、有效、无效三种分型分别为15例、10例、8例,对照组分别为14例、11例、9例。本资料例数较少,应选用等级比较的秩和检验,而有些作者却认为只要是率的比较就可以采用字检验。研究者在选择统计学方法时应根据相应的原则,对文章研究目的、资料类型、样品大小、水平数、数据分布特征等进行综合分析后,再来选择对应的统计方法。
2.选用检验方法错误。在有些论文中,作者常将本应用方差分析和q检验的误用t检验。t检验一般适用于小样本(n<50)定量资料且方差齐的两组数据之间的比较,而方差分析及q检验主要用于对多个样本均数进行比较,几种不同治疗或处理方法等的同时比较。例如:在讨论中、西以及中西医结合治疗急性脑血管病时,两组患者的年龄、病程、病情严重程度等差别均无统计学意义,比较三组患者的一些指标变化。组间多重比较应用q检验,但文中作者采用的是t检验,对三组均数进行两两比较。这不仅造成了资料的利用率低,也增加了假阳性的概率,降低了试验结果的可信度。
五、结论表述中的统计学应用
资料的统计处理不是医学研究工作的最终目的,而是通过统计学分析为研究结论提供依据或者线索。因此,在对统计资料进行分析后应把握统计学术语,对结论做出科学的分析跟解释。在根据统计结果得出专业结论时研究者应遵循一个重要原则,就是统计结论都是概率性的,不能绝对地肯定或否定。研究者习惯上将“P<”称为显著性,不应误解为差别很大或者在医学上有显著的价值。统计推断是以一定的概率界值为依据,说明来自同一总体的可能性大小。“差异有统计学意义”说明在试验中的差异不能用抽象误差进行解释;“差异无统计学意义”表明在试验既定的条件下,差异可能是因抽象误差引起的,在增加样本数量的情况下,差异可能变成“有统计学意义”。
参考文献:
[1]医学统计工作的基本内容[J].国际检验医学杂志,2013(19):2563.
[2]关红阳,郭轶男.医学统计t检验的分析研究[J].中国校外教育,2013(30):114.
中级医师(主治医师)一般要求发表核心刊物1-2篇或者省级以上刊物3篇。我们单位是要求这样的,我同事单位会给一个期刊目录,每个医院可能要求不同,我每年都会发一点学术论文来增加自己的含金量,为了以后晋级或者评优秀作准备。具体你是需要问一下你们院方的要求,我们单位都是在百姓论文网发的,到时候你可以去问一下,每年都发,各方面还是不错的。知道的都介绍给你了,请务必采纳我哦~
VX添加:(提供)186(论文)6491(写发)6045(服务)一、文章质量要符合发表的基本要求文章的质量是一个很抽象的东西,但也有一个大致通用的标准,即,观点正确,文字通畅,逻辑严密,结构合理,结论有创新,等等。如果您有了这样的文章,就可以进行下一步投稿的事情了。但是,由于我国学术界的特殊情况,文章质量达到发表的要求并不是太难的事情,或者经过我们的修改就可以发表。关于质量,可以参考日本质量专家的话,质量的核心是实用性。二、文章的选题要符合刊物的定位,不能乱投稿大家都知道,每一个刊物或者杂志都有自己特定的宗旨、栏目和专业定位,投稿前必须先对此进行了解,弄清楚目标杂志是哪个方面的。还要搞清是季刊、双月刊、月刊还是半月刊、周刊,这直接影响您的稿件发表的速度。风险提示:并不是所有的杂志发表了论文都有效的。杂志有正规的有非法的,因为期刊行业开始了收费发表论文,所以很多不法分子使用非法期刊征稿,其目的无非就是敛财。非法期刊发表的论文属于无效的。如何辨别期刊的真伪?通过新闻出版局工作人员的回答:凡在国家新闻出版局查询系统里查询不到的刊物,均为非法刊物。所以作者可以通过国家新闻出版局的数据库进行刊物查询。三、文章格式要规范,还需控制字数学术性期刊的格式是非常严格的,医学论文的格式可以参照你所投刊物的要求去做。至于字数,因为很多刊物是按计空格字数收费的,所以,您要根据需要确定文章的字数,省得花冤枉钱。所谓的版面设计实际上是一本杂志的页面,一般为16开的标准。但由于一些期刊对字体大小有不同的要求,其特点是不同的。加上除了文字外,还包括标点符号、空格等。在论文中,如果它涉及到图像、形式、空间占用一定的空间,而且还可以根据一定的字符空间。因此,每个期刊的版面编排都是有限的,所以一些核心期刊对论文的数量有一定的限制。如一些对文章提交的论文在6000-8000字的字数适当规定的核心期刊,文本空间一般从5000到10000字的要求,包括简介、语篇分析、结果和结论等内容。太少的话不能充分讨论。除公共知识外,公共知识和公共事业的第一次出现,应标明对外汉语的汉译或对外汉语的全称。四、提前投稿,尽量提前2—3个月投稿一般的学术刊物,从接收稿件到样刊出来,需要2-3个月。如果是核心刊物,则需要半年,或许更长时间。虽然最近几年,有很多刊物变成了月刊、半月刊,甚至旬刊,但还是提前准备为好。比如现在投稿的文章,发表时间一般安排在3月份之后,这样发表的文章在6月份的使用中就绝对没有问题。而每年4月份的职称评审通知,通常是在当年出通知。等作者收到通知再发表论文,通常就会错过了时间。五、版面费起到破财免灾的作用在期刊上发表论文需要支付版面费已经成为一种惯例,所以作者们也不用在版面费上纠结,关键是能够解决自己的问题,花点钱也是必要的了。六、选择合法刊物,避免非法期刊发表医学论文不是随便找个期刊就可以的,期刊必须具有合法性,是合法期刊。不是国家新闻出版总署批准刊号的刊物,都是非法刊物。根据我的判断,目前我国大约有1000-2000家非法刊物,或不规范的刊物。对大部分普通作者来说,是很难判断刊物的合法性的。所以,大家要擦亮眼睛,以免上当。VX添加:(提供)186(论文)6491(写发)6045(服务)
医学统计论文
医学统计是研究如何搜集、整理和分析医学研究对象的数据和作出推断的一门学科,下面是我为大家收集整理的是医学统计论文,仅供参考。
摘要: 不同的统计分析方法均有其适用的范围和应用的条件,研究者在书写医学论文时应根据论文设计及资料的类型进行合理的试验设计,选择恰当的统计分析方法,切记勿盲目套用。同时,还应注意得出的结果和结论应满足设计的要求。医学统计方法的正确运用,是充分利用试验研究获得的数据,也是最终得出科学、可信的结论的必要条件。
关 键词 :医学统计;方法;运用;原理;选择
一、统计学方法简介
统计学方法包括统计软件包、统计分析方法以及检验水准三方面的内容。其中医学论文中常提到检验水准即α,它是用来表示组间实际无差别而统计结果判断有差别,犯这类错误的概率。实际工作中常取α=,当研究数据计算的P值小于时,组间差异比较被认为有统计学意义。统计学方法包括统计描述和假设检验两个方面的内容。统计描述是指根据资料及原始数据分布的类型,选择正确的指标来描叙资料及数据的特征。而假设检验即组间差异性检验,是医学论文中最常用的统计学方法。资料类型则包括能用具体数据表示的定量资料与不能用具体数值表示但能反映被观察对象某一特征的定性资料。定性资料的统计描述包括率、相对比和构成比。而参数法及非参数法是常用的定量资料统计分析方法。参数法一般包括t检验、方差分析,非参数法常用的有秩和检验。
二、试验设计中的统计学原理
合理的试验设计与统计处理的可信度存在直接联系,研究者在编写医学论文时应对医学研究设计方法进行说明。在进行试验设计时应遵循随机、对照、均衡和重复四大原则。在进行试验设计的时候通常会涉及到研究对象的选择,研究对象的分组及选择合理的检测指标三个方面的内容。
医学论文就是通过对样本的研究来进行推断总体,找出其共性,得出结论。因此研究者在选择研究对象时应注意选择样本应具有一定数量,能反映出该事物的规律性特征,但又应注意例数不能太多,以免造成不必要的浪费。其选择的原则就是在保证试验结果可靠性的前提下选择最少的样本例数。研究者在选择样本对象后应对其基本特征进行详细的描述,比如患者的年龄、性别、病理分期、疾病诊断的标准等。此外在试验中所用到的试剂、仪器的型号、规格等都应作出说明,以供读者借鉴和做出判断。选定好研究对象后就要对其进行分组。在进行分组时研究者一般遵循统计学中的“随机分配”、“设立对照”以及“均衡”、“重复”的原则。随机化原则是提高组间均衡性的一个重要手段,也是资料分析时进行统计推断的前提。有对照才有比较,在进行组间比较时,应确定好处理因素与实验效应的关系。均衡性则是要使得对结果产生影响的非处理因素尽可能保持一致,这样才能保证对照的结果让人信服。观察实验效应的.指标主要有主观指标与客观指标。正所谓主观指标就是通过问答的方式调查受试者自己判断的主观感受;而客观指标则是通过仪器来检验和测量所得出的结果。在进行试验设计时应选择客观性较强、高灵敏性和精确性的指标。
三、统计学方法的选择
统计学方法的正确选择是直接影响到论文结论可信度的重要依据,因此研究者在编写论文时应注意选择合适的统计学方法。不同的统计学方法应用的范围不同。研究者在编写医学论文时常根据论文研究的目的、资料类型、试验设计的方案、样品大小、水平数、特定条件、数据分布特征以及综合分析等来选择对应的统计方法,同时还要根据专业知识与资料的实际情况,结合统计学原则,灵活地选择。当定性资料正态分布时,研究者一般用均数和标准差来表示统计描述指标;当定性资料不符合正态分布时,则可选用中位数及级差来表示;当定量资料正态分布且组间方差齐时一般选用参数法,反之则选用非参数法。t检验一般适用于小样本(n<50)的定量资料且方差齐的两组数据之间的比较。其特点是在均方差不知道的情况下,可以检验样本平均数的显著性,大样本(n≥50)采用u检验;多个样本均数两两比较则用方差分析,如差异有统计学意义,可采用q检验;Dunnett检验则适用于多个实验组与一个对照组均数的比较。定性资料中,表现为互不相容的类别或属性,分为二分类和多类反应,如治疗结果为显著和好转的人数等,该种资料可选用字检验,大样本(n≥50)时采用u检验。如:患者的治疗结果评定为痊愈、显著有效、好转、无效或死亡。该种资料可选用秩和检验或u检验。总之,不论论文中选用的是哪种统计学方法,都要计算出检验值,然后再根据统计量值来判定P值的大小,结论一般描述为“差异有(无)统计学意义”。
四、常见统计学方法的误用分析及对策
1.统计方法误用。最常见统计方法误用是对等级资料进行比较时应用秩和检验而误用卡方检验。例如:在评价采取不同治疗方法的两组急性脑血管病患者疗效中,治疗组显著有效、有效、无效三种分型分别为15例、10例、8例,对照组分别为14例、11例、9例。本资料例数较少,应选用等级比较的秩和检验,而有些作者却认为只要是率的比较就可以采用字检验。研究者在选择统计学方法时应根据相应的原则,对文章研究目的、资料类型、样品大小、水平数、数据分布特征等进行综合分析后,再来选择对应的统计方法。
2.选用检验方法错误。在有些论文中,作者常将本应用方差分析和q检验的误用t检验。t检验一般适用于小样本(n<50)定量资料且方差齐的两组数据之间的比较,而方差分析及q检验主要用于对多个样本均数进行比较,几种不同治疗或处理方法等的同时比较。例如:在讨论中、西以及中西医结合治疗急性脑血管病时,两组患者的年龄、病程、病情严重程度等差别均无统计学意义,比较三组患者的一些指标变化。组间多重比较应用q检验,但文中作者采用的是t检验,对三组均数进行两两比较。这不仅造成了资料的利用率低,也增加了假阳性的概率,降低了试验结果的可信度。
五、结论表述中的统计学应用
资料的统计处理不是医学研究工作的最终目的,而是通过统计学分析为研究结论提供依据或者线索。因此,在对统计资料进行分析后应把握统计学术语,对结论做出科学的分析跟解释。在根据统计结果得出专业结论时研究者应遵循一个重要原则,就是统计结论都是概率性的,不能绝对地肯定或否定。研究者习惯上将“P<”称为显著性,不应误解为差别很大或者在医学上有显著的价值。统计推断是以一定的概率界值为依据,说明来自同一总体的可能性大小。“差异有统计学意义”说明在试验中的差异不能用抽象误差进行解释;“差异无统计学意义”表明在试验既定的条件下,差异可能是因抽象误差引起的,在增加样本数量的情况下,差异可能变成“有统计学意义”。
参考文献:
[1]医学统计工作的基本内容[J].国际检验医学杂志,2013(19):2563.
[2]关红阳,郭轶男.医学统计t检验的分析研究[J].中国校外教育,2013(30):114.
医学论文统计学分析的知识你可以登陆:创新医学网 创新医学网上有医学论文统计学分析视频、医学论文写作辅导范文、医学论文写作视频、医学论文写作电子书等等,统计学分析的所有信息创新医学网上有很多资料,都是可以查看的。 卫生统计在医学期刊中占有非常重要的地位。任何科研设计、实验研究都离不开统计方法,而统计方法的正确与否直接影响到论文的质量。我们在编审稿件过程中,经常遇到统计学方法使用不当等问题。 数理统计的基础是概率论,对统计分析的资料下结论的依据是小概率事件在一次试验中是不可能发生的。一般统计上习惯把概率P≤或P≤认为是小概率事件[1]。当通过假设检验(显著性检验)获得P>时,认为是大概率事件,说明在这一次试验中很可能发生,因此接受假设,认为差异无显著意义(差异不显著)。
绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。显然,经正确统计处理的结果可信度高,论文的质量也高。楼主信不信由你,这篇文章就是在、创新医学网那摘录下来的。别的太多的我也复制不下来....
去知网找,那里肯定有你要的论文,自己可以先搜搜看,不知道怎样找的话,可以去我百度空间里,有如何在网络上找论文的文章介绍