首页

医学论文

首页 医学论文 问题

纳米材料医学论文

发布时间:

纳米材料医学论文

纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。下面我给大家分享一些纳米材料与技术3000字论文, 希望能对大家有所帮助!纳米材料与技术3000字论文篇一:《试谈纳米复合材料技术发展及前景》 [摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。 [关键词]高聚物纳米复合材料 一、 纳米材料的特性 当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能: 1、尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。 2、表面效应 一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。 纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044××1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与 其它 原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。 3、量子隧道效应 微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际 应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。 二、高聚物/纳米复合材料的技术进展 对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类: 1、高聚物/粘土纳米复合材料 由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。 2、高聚物/刚性纳米粒子复合材料 用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性 方法 。随着无机粒子微细化技术和粒子表面处理技术的 发展 ,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。 3、高聚物/碳纳米管复合材料 碳纳米管于1991年由 发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。 碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。 在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。 三、前景与展望 在高聚物/纳米复合材料的研究中存在的主要问题是:高聚物与纳米材料的分散缺乏专业设备,用传统的设备往往不能使纳米粒子很好的分散,同时高聚物表面处理还不够理想。我国纳米材料研究起步虽晚但 发展 很快,对于有些方面的研究 工作与国外相比还处于较先进水平。如:漆宗能等对聚合物基粘土纳米复合材料的研究;黄锐等利用刚性粒子对聚合物改性的研究都在学术界很有影响;另外,四川大学高分子 科学 与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的手段。尽管如此,在总体水平上我国与先进国家相比尚有一定差距。但无可否认,纳米材料由于独特的性能,使其在增强聚合物 应用中有着广泛的前景,纳米材料的应用对开发研究高性能聚合物复合材料有重大意义。特别是随着廉价纳米材料不断开发应用,粒子表面处理技术的不断进步,纳米材料增强、增韧聚合物机理的研究不断完善,纳米材料改性的聚合物将逐步向 工业 化方向发展,其应用前景会更加诱人。 参考 文献 : [1] 李见主编.新型材料导论.北京:冶金工业出版社,1987. [2]都有为.第三期工程科技 论坛 ——‘纳米材料与技术’ 报告 会. [3]rohlich J,Kautz H,Thomann R[J].Polymer,2004,45(7):2155-2164. 纳米材料与技术3000字论文篇二:《试论纳米技术在新型包装材料中的应用》 【摘 要】作为一门高新科学技术,纳米技术具有极大的价值和作用。进入20世纪90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学及纳米生物学等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。 【关键词】纳米技术 包装材料 1 纳米技术促进了汽车材料技术的发展 纳米技术可应用在汽车的任何部位,包括发动机、底盘、车身、内饰、车胎、传动系统、排气系统等。例如,在汽车车身部分,利用纳米技术可强化钢板结构,提高车体的碰撞安全性。另外,利用纳米涂料烤漆,可使车身外观色泽更为鲜亮、更耐蚀、耐磨。内装部分,利用纳米材料良好的吸附能力、杀菌能力、除臭能力使室内空气更加清洁、安全。在排气系统方面,利用纳米金属做为触媒,具有较高的转换效果。 由于纳米技术具有奇特功效,它在汽车上得到了广泛的应用,提升汽车性能的同时延长使用寿命。 2 现代汽车上的纳米材料 (1)纳米面漆。汽车面漆是对汽车质量的直观评价,它不但决定着汽车的美观与否,而且直接影响着汽车的市场竞争力。所以汽车面漆除要求具有高装饰性外,还要求有优良的耐久性,包括抵抗紫外线、水分、化学物质及酸雨的侵蚀和抗划痕的性能。纳米涂料可以满足上述要求。纳米颗粒分散在有机聚合物骨架中,作承受负载的填料,与骨架材料相互作用,有助于提高材料的韧性和其它机械性能。研究表明,将10%的纳米级TiO2粒子完全分散于树脂中,可提高其机械性能,尤其可使抗划痕性能大大提高,而且外观好,利于制造汽车面漆涂料;将改性纳米CaCO3以质量分数15%加入聚氨酯清漆涂料中,可提高清漆涂料的光泽、流平性、柔韧性及涂层硬度等。 纳米TiO2是一种抗紫外线辐射材料,加之其极微小颗粒的比表面积大,能在涂料干燥时很快形成网络结构,可同时增强涂料的强度、光洁度和抗老化性;以纳米高岭土作填料,制得的聚甲基丙烯酸甲酯纳米复合材料不仅透明,而且吸收紫外线,同时也可提高热稳定性,适合于制造汽车面漆涂料。 (2)纳米塑料。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。随着汽车应用塑料数量越来越多,纳米塑料会普遍应用在汽车上。主要有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。阻燃塑料是燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。 目前汽车设计要求规定,凡通过乘客座舱的线路、管路和设备材料必须要符合阻燃标准,例如内饰和电气部分的面板、包裹导线的胶套,包裹线束的波纹管、胶管等,使用阻燃塑料比较容易达到要求。增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。 抗紫外线老化塑料是将纳米级的TiO2、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上。据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为10%,如果作为暴露在外的车身塑料构件材料,能有效延长其使用寿命。抗菌塑料是将无机的纳米级抗菌剂利用纳米技术充分地分散于塑料制品中,可将附着在塑料上的细菌杀死或抑制生长。这些纳米级抗菌剂是以银、锌、铜等金属离子包裹纳米TiO2、CaCO3等制成,可以破坏细菌生长环境。据介绍无机纳米抗菌塑料加工简单,广谱抗菌,24小时接触杀菌率达90%,无副作用。 (3)纳米润滑剂。纳米润滑剂是采用纳米技术改善润滑油分子结构的纯石油产品,它不会对润滑油添加剂、稳定剂、处理剂、发动机增润剂和减磨剂等产品产生不良作用,只是在零件金属表面自动形成纯烃类单个原子厚度的一层薄膜。由于这些微小烃类分子间的相互吸附作用,能够完全填充金属表面的微孔,最大可能地减小金属与金属间微孔的摩擦。与高级润滑油或固定添加剂相比,其极压可增加3倍-4倍,磨损面减小16倍。由于金属表面得到了保护,减小了磨损,使用寿命成倍增加。 另外,由于纳米粒子尺寸小,经过纳米技术处理的部分材料耐磨性是黄铜的27倍、钢铁的7倍。目前纳米陶瓷轴承已经应用在奔驰等高级轿车上,使机械转速加快、质量减小、稳定性增强,使用寿命延长。 (4)纳米汽油。纳米汽油最大优点是节约能源和减少污染,目前已经开始研制。该技术是一种利用现代最新纳米技术开发的汽油微乳化剂。它能对汽油品质进行改造,最大限度地促进汽油燃烧,使用时只要将微乳化剂以适当比例加入汽油便可。交通部汽车运输节能技术检测中心的专家经试验后认为,汽车在使用加入该微乳化剂的汽油后,可降低其油耗10%~20%,增加动力性能25%,并使尾气中的污染物(浮碳、碳氢化合物和氮氧化合物等)排放降低50%~80%。它还可以清除积碳,提高汽油的综合性能。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力。根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,故其能替代昂贵的超低温液氢储存装置。 (5)纳米橡胶。汽车中橡胶材料的应用以轮胎的用量最大。在轮胎橡胶的生产中,橡胶助剂大部分成粉体状,如炭黑、白炭黑等补强填充剂、促进剂、防老剂等。以粉体状物质而言,纳米化是现阶段橡胶的主要发展趋势。新一代纳米技术已成功运用其它纳米粒子作为助剂,而不再局限于使用炭黑或白炭黑,汽车中最大的改变即是,轮胎的颜色已不再仅限于黑色,而能有多样化的鲜艳色彩。另外无论在强度、耐磨性或抗老化等性能上,新的纳米轮胎均较传统轮胎都优异,例如轮胎侧面胶的抗裂痕性能将由10万次提高到50万次。 (6)纳米传感器。传感器是纳米技术应用的一个重要领域,随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护上已得到应用。纳米材料来制作汽车尾气传感器,可以对汽车尾气中的污染气体进行吸附与过滤,并对超标的尾气排放情况进行监控与报警,从而更好地提高汽车尾气的净化程度,降低汽车尾气的排放。我国纳米压力传感器的研制已获得成功,产品整体性能超过国外的超微传感器,缩小了我国在这一技术领域与世界先进国家存在的差距。有专家认为,到2020年,纳米传感器将成为主流。 (7)纳米电池。早在1991年被人类发现的碳纳米管韧性很高,导电性极强,兼具金属性和半导体性,强度比钢高100倍, 密度只有钢的1/6。我国科学家最近已经合成高质量的碳纳米材料,使我国新型储氢材料研究一举跃入世界先进行列。此种新材料能储存和凝聚大量的氢气,并可做成燃料电池驱动汽车,储氢材料的发展还会给未来的交通工具带来新型的清洁能源。 结语 随着材料技术的发展,纳米技术已成为当今研究领域中最富有活力,对未来经济和社会发展有着十分重要影响的研究对象。纳米科技正在推动人类社会产生巨大的变革,未来汽车技术的发展,有极大部分与纳米技术密切相关,纳米材料和纳米技术将会给汽车新能源、新材料、新零部件带来深远的影响。对于汽车制造商而言,纳米技术的有效运用,有效地促进技术升级、提升附加价值。相信在不久的将来,纳米技术必将在汽车的制造领域得到更广泛的应用。 参考文献 [1]肖永清.纳米技术在汽车上的应用[J].轻型汽车技术,. [2]潘钰娴,樊琳.纳米材料的研究和应用[J].苏州大学学报(工科版),2002. [3]周李承,蒋易,周宜开,任恕,聂棱.光纤纳米生物传感器的现状及发展[J].传感器技术,2002,(1):18~21 纳米材料与技术3000字论文篇三:《试谈纳米技术及纳米材料的应用》 摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。 关键词:纳米材料;应用;前景展望 1.纳米技术引起纳米材料的兴起 1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。80年代初,德国科学家成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的 热点 。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.纳米材料及其性质表现 纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。 3.纳米材料的应用示例 目前纳米材料主要用于下列方面: 高硬度、耐磨WC-Co纳米复合材料 纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。 纳米结构软磁材料 Finemet族合金已经由日本的Hitachi Special Metals,德国的Vacuumschmelze GmbH和法国的 Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的 Alps Electric Co.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。 电沉积纳米晶Ni 电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为 EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。 基纳米复合材料 Al基纳米复合材料以其超高强度(可达到)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如 Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为Gigas TM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。 4.纳米材料的前景趋向 经过我国材料技术人员多年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。 近年来还有一些引人注目的发展趋势新动向,如:(1)纳米组装体系蓝绿光的研究出现新的苗头;(2)巨电导的发现;(3)颗粒膜巨磁电阻尚有潜力;(4)纳米组装体系设计和制造有新进展。

纳米材料的特点和用途论文如下当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。

荧光,又作“萤光”,是指一种光致发光的冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。在日常生活中,人们通常广义地把各种微弱的光亮都称为荧光,而不去仔细追究和区分其发光原理。以下是我为大家精心准备的:纳米标记材料荧光碳点的制备探析相关论文。内容仅供参考,欢迎阅读!

纳米标记材料荧光碳点的制备探析全文如下:

近年来,半导体荧光量子点因其优良的光电性能在生物、医学及光电器件等领域得到了广泛应用. 但是用于生物和医学领域最成熟的量子点,大多是含重金属镉的CdTe,CdSe 和CdS 等量子点,限制了其在生物医学领域的应用. 因此,降低和消除荧光量子点的毒性,一直是研究者密切关注的课题. 直到2006 年,Sun 等用激光消融碳靶物,经过一系列酸化及表面钝化处理,得到了发光性能较好的荧光碳纳米粒子—碳量子点( CQDs) .

作为新型荧光碳纳米材料,碳量子点不仅具有优良的光学性能与小尺寸特性,还具有很好的生物相容性、水溶性好、廉价及很低的细胞毒性,是替代传统重金属量子点的良好选择. 水溶性碳量子点因其表面具有大量的羧基、羟基等水溶性基团,并且可以和多种有机、无机、生物分子相容而引起广泛关注,这些性质决定了碳量子点在生物成像与生物探针领域有更大的应用前景. Zhu H和王珊珊等将PEG - 200 和糖类物质的水溶液进行微波加热处理,得到了具有不同荧光性能的碳量子点,虽然利用微波合成碳量子点可以合成修饰一步实现,但是与水热法相比荧光量子的产率并没有显著地提高. 目前,该领域的科研工作主要集中在3 个方面: 碳量子点形成与其性能的机理特别是光致发光机理、如何简单快速的制备出性能优异的碳量子点以及碳量子点如何成功高效地应用于实际之中.

本文采用单因素法分析影响荧光碳量子点合成的几种因素,寻求高性能荧光碳量子点的最佳合成条件,并比较微波法和水热法合成荧光碳量子点的优劣,为制备出高性能荧光纳米标记材料性能提供一定的实验依据和科学方法.

1 实验部分

1. 1 试剂与仪器

葡萄糖( AR,中国医药集团上海化学试剂公司) 、聚乙二醇( PEG - 200,AR,中国医药集团上海化学试剂公司) 、硫代乙醇酸( TGA,AR,国药集团化学试剂有限公司) 、CS( 大连鑫蝶) 、牛血清蛋白( BSA > 99%,德国默克公司) 购自武汉凌飞生物科技公司) ; 盐酸( HCl,AR,信阳市化学试剂厂) ; 十二水合磷酸氢二钠( Na2HPO4·12H2O,AR,国药集团化学试剂有限公司) ; 二水合磷酸二氢钠( NaH2PO4·2H2O,AR,国药集团化学试剂有限公司) ; 氢氧化钠( NaOH,AR,国药集团化学试剂有限公司) .

荧光分光光度计( LS55 型,PerkinElmer,American) ; 紫外- 可见吸收光谱仪( U - 3010 型,Hitachi,Japan) ; 纯水仪( UP 型,上海优普实业有限公司) ; 台式电热恒温干燥箱( 202 - 00A 型,天津市泰斯特仪器有限公司) ; 傅立叶红外变换光谱仪( VERTEX70 型,德国BRUKER 公司) ; 透射电子显微镜( JEM -2100UHR STEM/EDS 型,日本) ; 微波反应器( Milestone, Italy) ; 电子天平( METTER - TOLEDO,梅特勒- 托利多仪器( 上海) 有限公司) ; 电动搅拌器( DJIC - 40,金坛市大地自动化仪器厂) ; 智能恒温电热套( ZNHW型,武汉科尔仪器设备有限公司) ; 数显恒温水浴锅( HH - S2s,金坛市大地自动化仪器厂) ; 紫外灯.

所有光谱分析均在室温下进行. 实验中所用水为电阻率大于18 MΩ·cm 的高纯水. 紫外- 可见吸光光度计设置为: 夹缝2 nm,扫描速度600 nm/min,扫描范围200 ~ 600 nm; 荧光分光光度计设置为: 激发波长为350 nm,扫描范围为350 ~ 650 nm,扫描速度600 nm/min. 激发夹缝: 10 nm,发射夹缝: 15 nm.

1. 2 碳量子点的制备

影响碳量子点荧光性能的因素较多,其主要因素有反应物摩尔比、反应温度和反应时间. 为更好的控制实验条件,提高碳量子点的性能,采用了三因素三水平的正交实验方法. 该方法以较少的实验次数完成多条件下最优选择. 选择碳源为葡萄糖,表面修饰剂为PEG,温度分别选择为150 ℃,160 ℃和180 ℃,时间分别选择为1. 5 min,2. 5 min 和3. 5 min,PEG 与葡萄糖的摩尔比分别选择为4,5和6. 此外在确定最佳条件时,除了考虑碳量子点的荧光强度之外,还要综合考虑实验条件、产物的毒性和生物相容性等因素.称取葡萄糖2 g,将其溶解到3 mL 水中,与不同体积的聚乙二醇( PEG - 200) 混合,得到澄清溶液,然后放在微波反应器或电热恒温水浴锅中,设定一定温度和反应时间,微波辐射或水浴加热,得到不同棕红色的溶液,即碳量子点原液; 再将碳量子点原液于不同转速下离心分离纯化,测定比较其光学性能,最后选定在6000 r /min 转速下离心分离纯化,取上层清液,稀释不同倍数用于表征.

1. 3 碳量子点的表征分析

将上述得到的碳量子点稀释不同倍数后,分别用U - 3010 型紫外- 可见吸收光谱仪和LS55 型荧光分光光度计测试制得的碳量子点的光致发光性能.

紫外可见吸收光谱测定: 将制备好的碳量子点稀释若干倍( 激发波长处吸收值为0. 1) ,先进行紫外扫描确定其吸收峰位置. 以碳量子点的紫外吸收峰波长为激发波长,激发和发射狭缝均为5. 0 nm,PMT 电压设置为700 V,激发波长是290 ~ 350 nm 进行多次荧光发射光谱扫描,确定激发波长为350 nm 时,其荧光发射峰位置为435 nm 左右,碳量子点的荧光谱峰更好.

荧光光谱测定: 取2. 5 mL 左右的待测碳量子点溶液于荧光比色皿中,在室温下用LS55 型荧光光谱仪检测其荧光,激发波长为350 nm,激发和发射狭缝宽度均为5 nm,扫描波长范围300 ~ 650 nm,扫描速度1 200 nm/min.

透射电子显微镜( 加速电压200 kV) 观察碳量子点样品的微观形态和尺寸; 将得到碳量子点原液等体积与无水乙醇混匀后滴在KBr 压片上后放到台式电热恒温干燥箱中干燥直到变干,然后放于傅立叶红外变换光谱仪中得到红外谱图.

2 结果与讨论

2. 1 微波合成碳量子点的因素分析

本实验选择反应物摩尔比( n) 、反应温度( T) 和反应时间( t) 3 种影响因素,每种因素选择3 种不同的水平,即三因素三水平正交实验方法安排试验,探讨微波法制备碳量子点时对其荧光强度的影响因素,找到最优的合成条件. 根据三因素三水平的条件,选择正交表34 型.

碳量子点合成中,不同影响因素在不同水平下的趋势变化,在同一因素下,随着水平的变化,实验指标也发生变化,根据图中趋势,可以得到微波合成碳量子点的最优条件是: PEG 与葡萄糖摩尔比为6,反应温度为180 ℃,反应时间为2. 5 min,在此条件下合成的碳量子的荧光强度最好.从趋势图还可看出,微波辅助反应时间并不是越长越好,但反应时间小于3. 5 min 时,碳量子点的的荧光强度有随反应时间减少而提高的趋势.

由以上正交实验的直观分析得到了优化条件,然后在该条件下微波合成了荧光碳量子点,优化条件下制备的碳量子点与实验组中最好的第9 号实验条件下制备的碳量子点的荧光发射光谱.在其他条件相同的情况下,优化合成的碳量子点的荧光强度为234,远远大于第9 号实验组的碳量子点的荧光强度153. 17.

改变前驱溶液pH 值( 分别为3,7和9) ,对实验结果进行分析处理,随着溶液pH 值的增加,碳量子点的荧光强度先减小再增加. 在前驱体为碱性条件即pH = 9 时,所得碳量子点荧光强度最大,在酸性条件pH = 3 时次之,在中性条件pH = 7 时最小. 其原因可能是在葡萄糖-PEG 体系中,制备出来的碳量子点表面含有丰富的羟基和羧基官能团( 在图8 中得到了证明) ,在酸性条件下,由于碳量子点表面大量羟基与H + 形成大量氢键,导致体系较为稳定,碳量子点能较好的分散,所以发出较好的荧光; 而在碱性条件下,碳量子点表面的羧基与OH - 的相互作用致使体系较为稳定,碳量子点也能很好的分散; 但是在中性条件下,生成的碳量子点由于高的表面能而发生团聚,致使粒子粒径增加,粒径分布变宽.

2. 2 微波法与水热法的比较

在上述相同的优化条件下,分别采用微波法和水热法2 种方法合成碳量子点,并对其光学性能进行初步比较.

2. 2. 1 碳量子点的紫外可见吸收光谱

2 种方式得到的碳量子点的紫外可见吸收光谱图,两者的吸收峰位置都是在280 nm 左右,吸收峰位置并没有随着加热方式的变化而变化,这说明2 种加热方式形成碳量子点的机制可能是一致的. 此外,在同等合成条件下,微波法制备的碳量子点的紫外可见吸收光谱强度小于水热法的吸收峰强度.

2. 2. 2 碳量子点的荧光发射光谱

将微波优化合成得到的一组碳量子点稀释后,依次增大激发波长,观察其荧光发射波长变化. 微波合成碳量子点在不同激发波长( 340 ~ 450 nm) 下的荧光发射光谱,随着激发波长的增大,荧光发射峰位置发生红移,荧光强度也先增大后减小,其中,激发波长为350 nm 时,碳量子点的荧光发射强度最大. 因此,选择350 nm 作为本实验中碳量子点的激发波长.

2. 2. 3 碳量子点的荧光机理探讨

碳量子点的荧光性能主要来源于2 种不同类型的发射,一种是其表面能的陷阱发射,另一种是其内在的状态发射,即电子和空穴的重新结合产生的发射,也就是通常所说的量子点的量子尺寸效应所导致的碳量子点的TEM 图射. 在本文中,一方面葡萄糖的高温热解生成的碳量子点,其表面能陷阱发射产生荧光; 另一方面,PEG 可以作为碳量子点的表面钝化剂. 而在本研究中,前驱体是葡萄糖和PEG的混合物,因此,PEG 在此合成体系中,一方面发挥了稳定剂的作用,另一方面也发挥了表面修饰剂的作用,PEG 含有大量的羟基等基团,在碱性条件下,羟基等官能团引入碳量子点表面,抑制了碳量子点的缺陷状态发射,使得能够产生荧光的电子和空穴的辐射结合更加便利,即内在的本征态发射更加容易,进而提高了碳量子点的荧光强度.

2. 2. 4 碳量子点的TEM

从中可以看出,碳量子点与半导体量子点类似,外貌呈圆球形,分散性较好,尺寸分布较均匀,平均粒径在5 ~ 8 nm 左右,表明在葡萄糖热解制备碳量子点的过程中,聚乙二醇作为分散剂和表面修饰剂起到了比较好的作用,能有效防止碳量子点团聚.

2. 2. 5 碳量子点的红外光谱

不同方法制备的碳量子点的红外光谱( a. 微波法; b. 水热法)在相同的优化条件下,微波法和水热法。

2种方法得到的碳量子点的红外谱图峰位和峰形基本一致,只是吸收峰强度略有不同,这可能与碳量子点的浓度有关.

羟基伸缩振动谱带出现在3 700 ~ 3 100cm - 1区域,在大多数含羟基的化合物中,由于分子间氢键很强,在3 500 ~ 3 100 cm - 1区域出现一条很强、很宽的谱带. 在3 370cm - 1附近2 种方法制备的碳量子点都有宽化的吸收峰,是O - H 键的伸缩振动特征峰,同时在指纹区1 101 cm - 1处和1 247cm - 1同出现较强的吸收峰,分别属于C - O - C的对称收缩和不对称伸缩振荡,证明了羟基的存在; 同时在1 643 cm - 1处观察到两者的吸收峰,这是C = O的伸缩振动,证明了羧基的存在. 由此判断,碳量子点表面带有羟基和羧基官能团,这不仅增强了量子点的水溶性和生物相容性,更为后续的修饰该类碳量子点提供了有益的指导.

3 结论

通过正交实验方法初步确定了微波法制备纳米荧光碳量子点的合适实验条件为: 反应时间为2. 5 min,反应温度为180 ℃,PEG 与葡萄糖摩尔比为6,pH = 9. 合成中影响因素从主到次顺序为: 反应时间> 摩尔比> 反应温度.同时发现极差R空白> R温度,表明实验过程中,还有其他重要的因素需要探讨,其中,最可能忽略的因素是搅拌.

在相同优化条件下,水热法合成的碳量子点的光学性能要略优于微波合成的,究其原因可能除了本文提到的是否使用搅拌装置有关外,可能还与合成时碳量子点的生长速度、表面修饰程度和状态等因素有关.这些因素的联合作用,导致荧光碳量子点晶格缺陷没有得到很好的控制,而表面缺陷、边缘效应等又会导致陷阱电子或空穴对的产生,它们反过来又会影响量子点的发光性质,有待今后进一步实验验证. 总之,2 种加热方式所制备的荧光碳量子点均具有较好的光学性能,可望用于荧光标记领域.

纳米材料医学杂志

ACS nano, Nanotechnology,nano letter

Small Methods是综合性期刊small的第一本子刊,由国际著名出版商Wiley于2017年2月正式发布,线上发表ISSN号为2366-9608,2019年8月正式被Web of Science核心合集Science Citation Index Expanded(SCIE)收录。该刊的名誉主编是比利时安特卫普大学教授Jose Oliveira,他是Wiley 出版商中国区副总裁兼编辑总监,同时也是small期刊的主编。Small Methods期刊的执行主编是北京科技大学徐广臣教授。

作为一本综合性期刊,Small Methods创刊的宗旨是推进先进技术和方法的发展。其重要关注点是材料科学、生物医学、化学、物理学及工程学等各个领域及学科在纳米和微米尺度研究的重大前沿发现和进展。在生物医学研究中,多个领域均在收录范围内,包括细胞亚结构、光遗传学、单细胞测序和蛋白质组学研究等多个研究方向。

由于Small Methods杂志 2017年才创刊,因此,2020年将获得首个影响因子。通过web of science数据库进行查询,发现该刊2017和2018两年中总共发表了239篇论文。这些论文在2019年被引用了2033次(2019年10月12日查询结果),由此可以算得该刊的即时影响因子为分。因此,Small Methods明年获得的首个影响因子必然会超过10分,这对于不少想要冲击高分文章的科研同行们来说绝对是一个福音。

Small Methods是国际著名出版商Wiley旗下的一本综合性期刊,也是综合性期刊small的第一本子刊,于2017年创刊,截止至2020年,Small Methods即时影响因子已经超过12分。

该期刊又被称为“微小世界的研究方法”,原因在于它主要收录材料科学、生物医学、化学和物理等各个领域的纳米级和微米级的研究方法的重大进展,比如X射线、电子衍射、层析成像方法、扫描探针技术、波长色散X射线能谱、扫描隧道显微镜、单细胞方法、基因编辑等等。

该刊的名誉主编是比利时安特卫普大学教授JoseOliveira,他是Wiley出版商中国区副总裁兼编辑总监,同时也是small期刊的主编。SmallMethods期刊的执行主编是北京科技大学徐广臣教授。作为一本综合性期刊,SmallMethods创刊的宗旨是推进先进技术和方法的发展,其重要关注点是材料科学、生物医学、化学、物理学及工程学等各个领域及学科在纳米和微米尺度研究的重大前沿发现和进展。在生物医学研究中,多个领域均在收录范围内,包括细胞亚结构 光遗传学、单细胞测序和蛋白质组学研究等多个研究方向。该刊2017和2018两年中总共发表了239篇论文并于2020年获得首个影响因子。近三年期刊的发⽂量:2017年70多篇,2018年160多篇,2019年270多篇。2020年截⽌现在已发表110多篇,预计2020年发表200篇左右。

智能DNA分子纳米机器人模型以短的单链DNA为骨架,长度通常为100个左右的核苷酸,通过自身折叠形成纳米尺度的结构。在试管液体环境下,智能DNA分子纳米机器人会自动识别目标生物分子,然后迅速集结展开“围攻”,实现对目标生物分子的捕获和信号放大,有助于研究人员对其快速追踪。 我们所熟知的机器人都是“钢铁战士”,帮助人类完成高危、高难度的工作。如今,生命的遗传物质——脱氧核糖核酸(DNA)为纳米机器人缔造了“血肉之躯”,刷新了人们的认知。 近日,中国科学院合肥物质科学研究院杨良保研究员课题组与安徽大学等机构合作,构建出了可非线性云集“围攻”生物靶标分子的智能DNA分子纳米机器人模型。有关论文发表于纳米材料领域顶级期刊《纳米视野》。 用DNA分子造个机器人 早在20世纪中期,国外学者就提出了分子机器的设想,预测未来只要把纳米机器人放进人体的血液中,它们就能自动抵达病灶,进行手术,治疗疾病。然而,构筑这样的机器人并不容易。超分子化学领域经历50多年的发展,已经可以制备出颇为精巧的“分子马达”“分子算盘”“分子 汽车 ”等人工分子机器。尽管如此,这些人工分子机器无论是其功能性还是多样性,都难以匹敌自然界的分子机器,如蛋白质等。 作为遗传物质的DNA,有着令人叹为观止的精准组装能力。20世纪80年代,国外学者提出利用DNA分子构建各种具有纳米尺度形状和结构的聚集体的想法,并将其发展成为一个富有活力的DNA纳米技术领域。“这种技术将DNA分子的组装能力发挥得淋漓尽致。结合核酸适配体、核酶、各种刺激响应DNA基元以及DNA链交换反应,人们甚至可以让DNA纳米结构‘动’起来,并在物质和能量的输入下,实现计算、行走、搬运、整理等多种功能。”论文第一作者、安徽大学生命科学学院教师李绍飞表示。 李绍飞说,DNA纳米机器人体积小、特别适用于狭窄的人体循环系统的药物靶向递送。“让DNA纳米机器人靶向递送药物,到达指定地点,定向治疗炎症或清除肿瘤,同时减少在正常组织或细胞的分布,是医学纳米技术的终极目标之一。”李绍飞说。 不仅能精准送药还能“杀敌” “DNA是由4种核苷酸为基本单位连接而成的生物分子序列,特定的核苷酸之间可以相互配对结合。”李绍飞介绍,核苷酸的自身作用力和序列的可编程性,以及快速发展的DNA合成和修饰技术,为DNA纳米机器人行使药物靶向递送功能奠定了基础。 “将识别和结合肿瘤细胞的分子,包括核酸适配体、肽、抗体和生物小分子等,通过化学方法与DNA连接,就宛如为DNA纳米机器人装载了‘定向导航系统’,可发挥机器人的靶向功能。”李绍飞说,同样,将抗肿瘤药物,包括功能核酸、化疗药物、蛋白质、多肽和纳米颗粒等与DNA结合,可发挥DNA纳米机器人的药物负载和递送功能。 李绍飞介绍,在传统的药物递送系统里,药物经血液循环,被动到达有效部位的效率非常低。大剂量的使用药物,将在全身产生严重的毒副作用。而DNA纳米机器人,通过与环境作用自我驱动,可将药物有选择地运送到靶向部位,提高靶向部位的药物浓度。 “由于DNA序列具有良好的生物相容性、相对的化学稳定性,因此DNA纳米机器人也具有这些特点,且还具有药物包裹和药效保护、提高肿瘤细胞对药物的摄取效率等多种独特功能。”李绍飞说。 “在试管液体环境下,智能DNA分子纳米机器人会自动识别目标生物分子,然后迅速集结展开‘围攻’,实现对目标生物分子的捕获和信号放大,有助于研究人员对其快速追踪。”李绍飞说,这就像一只蜜蜂盯上了目标物,然后召唤其他蜜蜂不断围攻,形成容易被发现的聚集群一样。 李绍飞介绍,智能DNA分子纳米机器人模型以短的单链DNA为骨架,长度通常为100个左右的核苷酸,通过自身折叠形成纳米尺度的结构,其形状类似于一个发夹。 智能DNA分子纳米机器人模型由多功能机械臂和备选附件(药物、信号标签、靶标钳夹等)、靶标验证器、智能云集路径控制器和自组装马达等部件组成。每个部件都有各自的“使命”。例如,多功能机械臂可以从混合物中抓取目标分子,然后由靶标验证器检验抓取目标的正确性。在抓取和识别到正确的目标分子后,机器人开始在路径控制器的引导下,按照非线性的路径方式云集,并依赖自组装马达驱动机器人完成云集组装,最终形成大的组装体。当这些部件完成各自“使命”时,目标分子充分“暴露”,只能乖乖“束手就擒”。 补齐短板方可迎来广阔前景 早在1959年,诺贝尔物理学奖得主理查德·费曼就提出了纳米机器人的设想,这是药物靶向递送纳米机器人概念的起源。20世纪90年代,纳米技术的兴起,不断推动纳米机器人的发展。2017年,美国科研人员在《科学》杂志上发文,介绍了一款具有分拣功能的DNA纳米机器人,它可以抓住某些分子,并且将它们释放到指定的位置上,这是DNA机器人的重要一步。2018年,我国国家纳米科学中心设计出一种DNA纳米折纸机器人,可携带药物准确寻找到癌细胞的藏身之处。 “无论是国内还是国外,对DNA纳米机器人的研究仍处于初级阶段,距离临床应用还有很长的路要走。”李绍飞认为,虽然经过几十年的研究和发展,DNA纳米机器人作为新型药物靶向递送系统,不断取得突破。然而,为了满足生物医学应用的实际需求,纳米机器人在生物安全性、体内跟踪导航、递送效率、可持续地精确操控以及其他方面仍然存在诸多挑战。 李绍飞表示,他们研究团队成员分别将肿瘤细胞小分子和外泌体等作为靶标,成功对靶标实现了追踪,初步验证了智能DNA分子纳米机器人模型的应用性能。 尽管目前已经创新了方法原理,并且建立了模型,但李绍飞坦言:“考虑到DNA分子运动的复杂性和表征手段的局限性,以及生物样品的多样性,对模型的应用性能 探索 空间还很大。”李绍飞表示,下一步,团队将重点优化智能DNA分子纳米机器人模型云集组装效率,并进一步整合优良的信号读出技术,挖掘其在DNA纳米技术、生化分析和生物医学中的应用潜能。 “特别是针对当前流行传染性疾病,团队正着手 探索 利用智能DNA分子纳米机器人模型进行超灵敏诊断的可行性。”李绍飞表示,随着计算机科学、材料学、机器人学和医学等学科的发展和学科交叉的融合进步,智能DNA纳米机器人在药物靶向递送中必然拥有广阔的前景和发展空间。 ( 科技 日报)

纳米材料与医学论文

纳米科技发展态势和特点_(转) 科学界普遍认为,纳米技术是21世纪经济增长的一台主要的发动机,其作用可使微电子学在20世纪后半叶对世界的影响相形见绌,纳米技术将给医学、制造业、材料和信息通信等行业带来革命性的变革。因此,近几年来,纳米科技受到了世界各国尤其是发达国家的极大青睐,并引发了越来越激烈的竞争。 一、各国竞相出台纳米科技发展战略和计划 由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以指导和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了国家级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。 (一) 发达国家和地区雄心勃勃 众所周知,为了抢占纳米科技的先机,美国早在2000年就率先制定了国家级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。 曰本政府将纳米技术视为“曰本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,曰本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。 欧盟在2002~2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。 (二) 新兴工业化经济体瞄准先机 意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和曰本等领先国家的水平,进入世界前5位的行列。 中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。 (三) 发展中大国奋力赶超 综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就发布了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印对箕府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。 二、纳米科技研发投入一路攀升 纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。 美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的亿美元增加到2003年的亿美元,2005年将增加到亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。 曰本目前是仅次于美国的第二大纳米技术投资国。曰本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。 在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达亿美元,有些人估计可达亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。 中国期望今后5年内中央政府的纳米技术研究支出达到亿美元左右;另外,地方政府也将支出亿~亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为亿美元,而新加坡则达亿美元左右。 就纳米科技人均公共支出而言,欧盟25国为欧元,美国为欧元,曰本为欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,曰本2004年增加到8欧元,因此欧盟与美曰之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为,美国为,曰本为。 另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年发布的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资亿美元,占17%。由于这样的投资水平,基于纳米技术的创新势必将到来。 三、世界各国纳米科技发展各有千秋 各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。 (一) 在纳米科技论文方面曰、德、中三国不相上下 根据中国科技信息研究所进行的纳米论文统计结果,2000~2002年,共有40 370篇纳米研究论文被《2000~2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了和。 2000~2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10 000篇,几乎占全部论文产出的30%。曰本()、德国()、中国()和法国()列在其后,它们各自的论文总数都超过了3000篇。而且以上5国2000~2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与曰本接近。 在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国三年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。 另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的。 。

1 引 言 磁性纳米粒子是近年来发展起来的一种新型材料,因其具有独特的磁学特性,如超顺磁性和高矫顽力,在生物分离和检测领域展现了广阔的应用前景[1]。同时,因磁性氧化铁纳米粒子具有小尺寸效应、良好的磁导向性、生物相容性、生物降解性和活性功能基团等特点[2~4], 在核磁共振成像、靶向药物、酶的固定、免疫测定等生物医学领域表现出潜在的应用前景[5~7]。但由于其较高的比表面积,强烈的聚集倾向,所以通常对其表面进行修饰,降低粒子的表面,能得到分散性好、多功能的磁性纳米粒子。对磁性纳米粒子的表面进行特定修饰,如果在修饰后的粒子上引入靶向剂、药物分子、抗体、荧光素等多种生物分子,可以改善其分散稳定性和生物相容性, 以实现特定的生物医学应用。此外,适当的表面修饰或表面功能化还可以调节磁性纳米粒子表面的反应活性[8],从而使其应用在细胞分离、蛋白质纯化、核酸分离和生物检测等领域。本文介绍了磁性氧化铁纳米粒子的制备方法, 比较了各种制备方法的优缺点,并对其在生物分离及检测中应用的最新进展进行了评述。2 磁性氧化铁纳米粒子的合成方法 磁性纳米粒子的制备是其应用的基础。目前已发展了多种合成和制备方法,如共沉淀法、水热合成法、溶胶凝胶法和微乳液法等,上述方法均可制备高分散、粒度分布均匀的纳米粒子,并能方便地对其表面进行化学修饰,这些方法的优点和缺点见表1。 在这些合成方法当中,共沉淀法是水相合成氧化铁纳米粒子最常用的方法。该方法制备的磁性纳米颗粒具有粒径小,分散均匀,高度生物相容性等优点,但制得的颗粒存在形状不规则,结晶差等缺点。通过在反应体系中加入柠檬酸,可得到形状规则、分散性好的纳米粒子。利用这种方法合成的磁性纳米材料被广泛应用在生物化学及生物医学等领域[9]。微乳液法制备纳米粒子,产物均匀、单分散,可长期保持稳定,通过控制胶束、结构、极性等,可望从分子规模来控制粒子的大小、结构、特异性等。微乳液合成的磁性纳米粒子仅溶于有机溶剂,其应用受到限制。通常需要在磁性纳米粒子的表面修饰上亲水分子,使其溶于水,从而能应用于生物、医学等领域。 热分解法是有机相合成氧化铁纳米粒子最多也是最稳定的方法。利用热分解法制备的纳米Fe3O4颗粒产物具有好的单分散性,且呈疏水性,可以长期稳定地分散于非极性有机溶剂中。该方法合成的氧化铁纳米粒子虽然具有粒径均一的特点,但必须在其表面偶联亲水性及生物相容性好的生物分子或制备成核壳结构,才可用于生物医学领域。表1 磁性氧化铁纳米粒子的制备方法(略)此外,绿色化学和生物方法合成氧化铁纳米粒子也备受关注[28,29]。磁性氧化铁纳米粒子除具有的表面效应、小尺寸效应、量子效应、宏观量子隧道效应等纳米粒子基本特性外,它同时还具有超顺磁特性、类酶催化特性和生物相容性等特殊性质,因此在医学和生物技术领域中的应用引起了人们的广泛兴趣。 3 磁性氧化铁纳米材料在生物分离与生物检测的应用 磁性氧化铁纳米材料在生物分离的应用 磁性氧化铁纳米粒子可以通过外界磁场来控制纳米粒子的磁性能,从而达到分离的目的,如细胞分离[30,31]、蛋白分离[32] 和核酸分离[33]等。此外磁性氧化铁纳米粒子由于兼有纳米、磁学和类酶催化活性等性能,不仅能够实现被检测物的分离和富集,而且能够使检测信号放大,在生物分析领域也都具有很好的应用前景[34,35]。磁性纳米粒子(MNP)能够应用于这些领域主要基于它的表面化学修饰,包括非聚合物有机固定、聚合物有机固定、无机分子固定及靶向配体修饰等[36](图1)。纳米粒子表面功能化修饰是目前研究的热点。 磁性氧化铁纳米材料在细胞分离方面的应用 细胞分离技术的目的是快速获得所需目标细胞。传统细胞分离技术主要根据细胞的大小、形态以及密度的差异进行分离,如采用微滤、超滤以及超离心等方法。这些方法操作简单,但是特异性差,而且存在纯度不高、制备量偏小、影响细胞活性等缺点,因此未能被广泛地用于细胞的纯化研究[37]。近年来,随着对磁性纳米粒子研究的深入,人们开始利用磁性纳米粒子来分离细胞[38,39]。如磁性氧化铁纳米粒子在其表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质、外源凝结素等),利用它们与目标细胞的特异性结合,在外加磁场的作用下将细胞分离、分类以及对其种类、数量分布进行研究。张春明等[40]运用化学连接方法将单克隆抗体CD133连接到SiO2/Fe3O4复合粒子的表面得到免疫磁性Fe3O4纳米粒子,利用它分离出单核细胞和CD133细胞。经培养后可以看出,分离出来的CD133细胞与单核细胞一样,具有很好的活性,能够正常增殖形成集落,并且在整个分离过程中对细胞的形态以及活性没有明显的毒副作用,这与Kuhara等[30]]报道的采用磁分离技术分离CD19+和CD20+细胞的结果一致。Chatterjee等[39]采用外源凝结素分别修饰聚苯乙烯包被的磁性Fe3O4微球和白蛋白磁性微球,利用凝结素与红细胞良好的结合能力,快速、高效的分离了红细胞。此外,磁性粒子在分离癌细胞和正常细胞方面的动物实验也已获得成功。 磁性氧化铁纳米材料在蛋白质和核酸分离中的应用 利用传统的生物学技术(如溶剂萃取技术等)来分离蛋白质和核酸程序非常繁杂,而磁分离技术是分离蛋白、核酸及其他生物分子便捷而有效的方法。目前在外磁场作用下,超顺磁性氧化铁纳米粒子已广泛应用于蛋白质和核酸的分离。 Liu等[41]利用聚乙烯醇等表面活性剂存在下制备出共聚磁性高分子微球,表面用乙二胺修饰后用于分离鼠腹水抗体,得到很好的分离效果。Xu等[42]在磁性氧化铁纳米粒子表面偶联多巴胺分子,用于多种蛋白质的分离纯化。多巴胺分子具有二齿烯二醇配体,它可以与氧化铁纳米粒子表面配位不饱和的Fe原子配位,形成纳米颗粒多巴胺复合物,此复合物可以进一步偶联次氨基三乙酸分子(NTA),NTA分子可特异螯合Ni+,对于具有6×His标签的蛋白质的分离纯化方面表现出很高的专一性。Liu等[43]用硅烷偶联剂(AEAPS)对核壳结构的SiO2/Fe2O3复合粒子的表面进行处理,研究复合磁性粒子对牛血清白蛋白(BSA)的吸附情况,结果表明BSA与磁性复合粒子之间是通过化学键作用被吸附的,复合粒子对BSA的最大吸附量达86 mg/g,显示出在白蛋白的分离和固定上有很大的应用潜力。Herdt等[44]利用羧基修饰的吸附/解离速度快的核壳型(Fe3O4/PAA)磁性纳米颗粒与Cu2+亚氨基二乙酸(IDA)共价交联,通过Cu2+与组氨酸较强的亲和能力实现了组氨酸标记蛋白的选择性分离,分离过程如图2所示。 磁性纳米粒子也是核酸分子分离的理想载体[45]。DNA/mRNA含有单一碱基错位,它们的富集和分离在人类疾病诊断学、基因表达研究方面有着至关重要的作用。Zhao等[46]合成了一种磁性纳米基因捕获器,用于富集、分离、检测痕量的DNA/mRNA分子。这种材料以磁性纳米粒子为核,包覆一层具有生物相容性的SiO2保护层,表面再偶联抗生素蛋白维生素H分子作为DNA分子的探针,可以将10-15 mol/L DNA/mRNA有效地富集,并能实时监控产物。Tayor等[47]用硅酸钠水解法、正硅酸乙酯水解法制备SiO2/Fe2O3磁性纳米粒子并对DNA进行了分离。结果表明,SiO2功能化的Fe2O3磁性纳米粒子对DNA的吸附分离效果明显好于单独Fe2O3磁性纳米粒子的分离效果,但是其吸附机理有待进一步研究。 磁性氧化铁纳米材料在生物检测中的应用 基于磁学性能的生物检测磁性氧化铁纳米粒子因其特有的磁导向性、小尺寸效应及其偶联基团的活性,兼有分离和富集地作用,使其在生物检测领域有广泛的应用。当检测目标为低含量的蛋白分子时,不能通过聚合酶链反应(PCR)对其信号进行放大,而磁微球与有机染料或量子点荧光微球结合可以对某些特异性蛋白、细胞因子、抗原和核酸等进行多元化检测,实现信号放大的作用。Yang等[48]采用一对分子探针分别连接荧光光学条码(彩色)和磁珠(棕色),对DNA(顶端镶板)和蛋白质(底截镶板)生物分子进行目标分析(图3)。如果目标DNA序列或蛋白存在,它将与两个磁珠结合一起,形成了一个三明治结构,经过磁选,光学条码可以在单磁珠识别目标水平下,通过分光光度计或是在流式细胞仪读出。通过此方法检测目标分子是基于数百万个荧光基团组成的微米尺寸光学条码信号的扩增而检测出来,其基因和蛋白的检出限可达到amol/L量级,甚至更低。 Nam等[49]利用多孔微粒法(每个微粒可填充大量条形码DNA)和金纳米微粒为基础的比色法生物条形码检测技术检测了人白细胞介素2(IL2),检出限可达到30 amol/L,比普通的酶联免疫分析技术的灵敏度高3个数量级。Oh等 [50]利用荧光为基础的生物条形码放大方法检测了前列腺特异性抗原(PSA)的水平,其检出限也低于300 amol/L,而且实现了快速检测。 在免疫检测中,磁性纳米粒子作为抗体的固相载体,粒子上的抗体与特性抗原结合,形成抗原抗体复合物,在磁力作用下,使特异性抗原与其它物质分离,克服了放免和酶联免疫测定方法的缺点。这种分离具有灵敏度高、检测速度快、特异性高、重复性好等优点。Yang等[51]通过反相微乳液法制备了粒径很小的SiO2包覆的Fe3O4磁性纳米粒子,生物分子通过诱导这些高单分散的磁性纳米粒子可用于酶的固定和免疫检测。Lange等[52]采用直接或三明治固相免疫法(生物素基化抗IgG抗体和共轭连接链霉素的磁性纳米粒子组成三明治结构)和超导量子干涉法(SQUID),研究它们在确定抗原、抗体相互作用免疫检测中的应用,结果表明特异性键合的磁性纳米颗粒的驰豫信号大小依赖于抗原(人免疫球蛋白G,IgG)的用量,这种磁弛豫(Magnetic relaxation)免疫检测方法得到的结果与广泛使用的ELISA方法的结果相当。 因磁性纳米粒子独特的性能,在生物传感器上也有潜在的应用前景。Fan等[53]在磁珠上偶联被检测物的一级抗体,在金纳米颗粒上连接二级抗体,两者反应后,利用HClNaClBr2将Au氧化为Au3+,催化发光胺(Luminol)化学发光,人免疫球蛋白G(IgG)的检出限可达2 × 10-10 mol/L ,实现了磁性纳米颗粒化学发光免疫结合的方法对IgG进行生物传感分析(图4)。 类酶催化特性在生物检测中的应用 Cao等[54]发现Fe3O4磁性纳米粒子能够催化H2O2氧化3,3',5,5'四甲基联苯胺(TMB)、3,3'二氨基联苯胺四盐酸盐(DAB)和邻苯二胺(OPD),使其发生显色反应,具有类辣根过氧化物酶(HRP)活性(图5),而且其催化活性比相同浓度的辣根过氧化物酶高40倍。并且Fe3O4磁性纳米粒子可以运用磁分离手段进行重复性利用,显著降低了生物检测的实验成本,利用此特性可进行多种生物分子的检测。 利用葡萄糖氧化酶(GOx)与Fe3O4磁性纳米粒子催化葡萄糖的反应(见式(1)和(2)),通过比色法检测葡萄糖,其检测的灵敏度达到5×10-5 ~ 1×10-3 mol/L 。由于Fe3O4磁性纳米粒子制备简单、稳定性好、活性高,成本低,因而比普通酶更有竞争优势,这也为葡萄糖的检测提供了高灵敏度和选择性的分析方法,在生物传感领域的应用上展现了巨大的潜能,为糖尿病人疾病的诊断提供了快速、灵敏的检测方法。然而要提高检测灵敏度,合成催化效率高的Fe3O4磁性纳米粒子及多功能磁性纳米粒子是关键。Peng等[56]用电化学方法比较了不同尺寸Fe3O4纳米粒子的催化活性发现,随着尺寸的变小,磁性纳米粒子的催化活性变高。Wang等[57]制备的单分散哑铃型PtFe3O4纳米粒子,由于本身尺寸和结构特点,可更大限度地提高催化活性。本研究组已经合成了分散性好和磁性高的氧化铁纳米粒子并对其进行了表征,利用其磁学和催化特性,已开展了葡萄糖等生物分子的检测,该方法的检出限达到1 μmol/L,具有灵敏度高、操作简便和成本低等优点[58]。总之,Fe3O4磁性氧化铁纳米粒子不但具有显著的超顺磁性,而且具有类辣根过氧化物酶催化特性,可通过使用过氧化物敏感染料,设计了一系列(如乙肝病毒表面抗原等)的免疫检测模型[59],因此超顺磁性纳米粒子在生物分离和免疫检测领域具有广阔的应用前景。4 结 语 随着纳米技术的迅速发展,磁性氧化铁纳米粒子的开发及其在生物医学、生物分析、生物检测等领域的潜在应用已经越来越受到重视,但同时也面临很多挑战和问题。(1)构建并制备尺寸小、粒径均一、分散性和生物相容性好及催化性能高的多功能磁性纳米粒子;(2)根据被检测生物分子的特点设计多功能磁性氧化铁纳米粒子,实现高灵敏度、特异性检测;(3)利用纳米氧化铁颗粒作为分子探针进行实时、在线、原位、活体和细胞内生物分子的检测。这些问题不仅是纳米材料在生物分子检测领域应用需要解决的难点,也是目前其进行生物分子检测研究的热点和重点。【参考文献】 1 Perez J M, Simeone F J, Saeki, Y, Josephson L, Weissleder R. J. Am. Chem. Soc., 2003, 125(34): 10192~101932 Kim G J, O'Regan R M, Nie S M. 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2005,17:714~7163 LIU JunTao(刘军涛), LIU RuPing(刘儒平), WANG MiXia(王蜜霞), LIU ChunXiu(刘春秀), LUO JinPing(罗金平), CAI XinXia(蔡新霞). Chinese J. Anal. Chem.(分析化学), 2009, 37(7): 985~9884 Lang C, Schuler D, Faivre D. Macromol. Biosci., 2007, 7(2): 144~1515 Silva G A. Surg. Neurol., 2007, 67(2):113~1166 Corot C, Robert P, Idee J M, Port M. Adv. Drug Delivery. Rev., 2006, 58(14): 1471~15047 Kohler N, Sun C, Wang J, Zhang M Q. Langmuir., 2005, 21(19), 8858~88648 LI BaoYu(李宝玉). Biomedical Nanomaterials(纳米生物医药材料). Beijing(北京): Chemical Industry Press(化学工业出版社), 2004: 1419 Tartaj P, Morales M P, GonzalezCarreno T, VeintemillasVerdaguer S, Serna C J. J. Magn. Magn. Mater., 2005, 290: 28~3410 ZHANG Xin(张 鑫), LI XinGang(李鑫钢), JIANG Bin(姜 斌). Chinese Chem. Industry. Eng.(化学工业与工程), 2006, 23(1): 45~4811 Wu J H, Ko S P, Liu H L, Jung M H, Lee J H, Ju J S, Kim Y K. Colloids Surf. A, 2008, 313/314: 268~27212 CHENG HaiBin(程海斌), LIU GuiZhen(刘桂珍), LI LiChun(李立春), GUAN JianGuo(官建国), Yuan RunZhang(袁润章). J. Wuhan University of Technology(武汉理工大学学报), 2003, 25(5): 4~613 QIU XingPing(邱星屏). J. Xiamen University: Natural Science(厦门大学学报:自然科学版), 1999, 38(5): 711~71514 Mao B D, Kang Z H, Wang E B, Lian S Y, Gao L, Tian C G, Wang C L. Mater. Res. Bull., 2006, 41(12): 2226~223115 Fan R, Chen X H, Gui Z, Liu L, Chen Z Y. Mater. Res. Bull., 2001, 36(3~4): 497~50216 Wang H W, Lin H C, Yeh Y C, Kuo C H. J. Magn. Magn. Mater., 2007, 310(2): 2425~242717 Harris L A, Goff J D, Carmichael A Y, Riffle J S, Harburn J J, St Pierre T G, Saunders M. Chem. Mater., 2003, 15(6):1367~137718 SONG LiXian(宋丽贤), LU ZhongYuan(卢忠远), LIAO QiLong(廖其龙). J. Funct. Mater.(功能材料), 2005, 36(11): 1762~176819 Itoh H, Sugimoto T. J. Colloid. Interface. Sci., 2003, 265(2): 283~29520 Xu J, Yang H B, Fu W Y, Du K, Sui Y M, Chen J J, Zeng Y, Li M H, Zou G. J. Magn. Magn. Mater., 2007, 309(2): 307~31121 Li Z, Wei L, Gao M Y, Lei H. Adv. Mater., 2005, 17(8): 11301~11305 22 Sun S H, Zeng H. J. Am. Chem. Soc., 2002, 124(28): 8204~820523 Bang J H, Suslick K S. J. Am. Chem. Soc. 2007, 129(8): 224224 Vijayakumar R, Koltypin Y, Felner I, Gedanken A. Mater. Sci. Eng. A, 2000, 286(1): 101~10525 Pinkas J, Reichlova V, Zboril R, Moravec Z, Bezdicka P, Matejkova J. Ultrason. Sonochem., 2008, 15(3): 257~26426 Khollam Y B, Dhage S R, Potdar H S, Deshpande S B, Bakare P P, Kulkarni S D, Date S K. Mater. Lett., 2002, 56(4): 571~57727 HAI YanBing(海岩冰), YUAN HongYan(袁红雁), XIAO Dan(肖 丹). Chinese Chem. Res. Appl.(化学研究与应用), 2006, 18(6): 744~74628 Jun Y W, Huh Y. M, Choi J S, Lee J H, Song H T, Kim S, Yoon, S, Kim K S, Shin J S, Suh J S, Cheon J. J. Am. Chem. Soc., 2005, 127(16), 5732~573329 Bharde A A, Parikh R Y, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad B L V, Shouche Y S, Ogale S, Sastry M. Langmuir, 2008, 24(11): 5787~579430 Kuhara M, Takeyama H, Tanaka T, Matsunaga T. Anal. Chem., 2004, 76(21): 6207~621331 Y, G. Biofuctionalization of Nanamaterials. WileyVCH: Weinheim 200532 Safarik I M S. Biomagn. Res. Technol., 2004, 2(1): 7

国际纳米材料医学期刊

通用高端杂志JACS,德国应用化学,先进功能材料,先进材料,nanoletters,档次低一点的,欧洲化学,CC,JPC等

1、《Nature Reviews Materials》《自然评论材料》

2、《Nature Energy》《自然能量》

3、《NATURE MATERIALS》《自然材料》

4、《Nature Nanotechnology》《自然纳米技术》

5、《ADVANCED MATERIALS》《先进材料》

AFM:Atomic Force Microscope

AM:Advanced Materials

扩展资料:

AFM优点:

原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品的表面状态信息。

AFM原理:

当原子间距离减小到一定程度以后,原子间的作用力将迅速上升。因此,由显微探针受力的大小就可以直接换算出样品表面的高度,从而获得样品表面形貌的信息。

参考资料来源:百度百科-AFM

ACS nano, Nanotechnology,nano letter

wulishi8(站内联系TA)nano research, nanoscale都是中国人办的杂志,支持一下。nano research, nanoscale都是中国人办的杂志,支持一下。这问得。。。这方面新杂志很多,如国人办得nano research, nanoscale就是一些新的功能纳米材料或者复合材料的合成,想看这些材料的合成方法,:) 嗯,总之不要旧瓶装旧酒就好。需要提醒你的是,目前Journals都是喜欢application-directed work,光是报道合成方法肯定吃亏,最好在此基础上稍微努一努,做些性能的研究,那怕是模拟也行。相对纯研究的期刊可以是JACS,Nanosale,. Nanoscale嗯,总之不要旧瓶装旧酒就好。

纳米材料生物医学期刊

投Physical,质量不错,好多师兄都投哪个杂志。

通用高端杂志JACS,德国应用化学,先进功能材料,先进材料,nanoletters,档次低一点的,欧洲化学,CC,JPC等

Small Methods是综合性期刊small的第一本子刊,由国际著名出版商Wiley于2017年2月正式发布,线上发表ISSN号为2366-9608,2019年8月正式被Web of Science核心合集Science Citation Index Expanded(SCIE)收录。该刊的名誉主编是比利时安特卫普大学教授Jose Oliveira,他是Wiley 出版商中国区副总裁兼编辑总监,同时也是small期刊的主编。Small Methods期刊的执行主编是北京科技大学徐广臣教授。

作为一本综合性期刊,Small Methods创刊的宗旨是推进先进技术和方法的发展。其重要关注点是材料科学、生物医学、化学、物理学及工程学等各个领域及学科在纳米和微米尺度研究的重大前沿发现和进展。在生物医学研究中,多个领域均在收录范围内,包括细胞亚结构、光遗传学、单细胞测序和蛋白质组学研究等多个研究方向。

由于Small Methods杂志 2017年才创刊,因此,2020年将获得首个影响因子。通过web of science数据库进行查询,发现该刊2017和2018两年中总共发表了239篇论文。这些论文在2019年被引用了2033次(2019年10月12日查询结果),由此可以算得该刊的即时影响因子为分。因此,Small Methods明年获得的首个影响因子必然会超过10分,这对于不少想要冲击高分文章的科研同行们来说绝对是一个福音。

材料类一些期刊或者一些国际会议论文期刊

相关百科

热门百科

首页
发表服务