首页

医学论文

首页 医学论文 问题

医学论文中p值如何判断

发布时间:

医学论文中p值如何判断

P 值即概率,反映某一事件发生的可能性大小.统计学根据显著性检验方法所得到的P 值,一般以P < 为显著,P F,也可写成Pr( >F),P = P{ > F}或P = P{ > F}.下面的内容列出了P值计算方法.(1) P值是:1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率.2) 拒绝原假设的最小显著性水平.3) 观察到的(实例的) 显著性水平.4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法.(2) P 值的计算:一般地,用X 表示检验的统计量,当H0 为真时,可由样本数据计算出该统计量的值C ,根据检验统计量X 的具体分布,可求出P 值.具体地说:左侧检验的P 值为检验统计量X 小于样本统计值C 的概率,即 = P{ X < C} 右侧检验的P 值为检验统计量X 大于样本统计值C 的概率 = P{ X > C} 双侧检验的P 值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) .若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} .计算出P 值后,将给定的显著性水平α与P 值比较,就可作出检验的结论:如果α > P 值,则在显著性水平α下拒绝原假设.如果α ≤ P 值,则在显著性水平α下接受原假设.在实践中,当α = P 值时,也即统计量的值C 刚好等于临界值,为慎重起见,可增加样本容量,重新进行抽样检验.整理自:樊冬梅,假设检验中的P值.郑州经济管理干部学院学报,2002,韩志霞,张玲,P 值检验和假设检验.边疆经济与文化,2006中国航天工业医药,1999 P值是怎么来的 从某总体中抽 ⑴、这一样本是由该总体抽出,其差别是由抽样误差所致; ⑵、这一样本不是从该总体抽出,所以有所不同.如何判断是那种原因呢?统计学中用显著性检验赖判断.其步骤是:⑴、建立检验假设(又称无效假设,符号为H0):如要比较A药和B药的疗效是否相等,则假设两组样本来自同一总体,即A药的总体疗效和B药相等,差别仅由抽样误差引起的碰巧出现的.⑵、选择适当的统计方法计算H0成立的可能性即概率有多大,概率用P值表示.⑶、根据选定的显著性水平(或),决定接受还是拒绝H0.如果P>,不能否定“差别由抽样误差引起”,则接受H0;如果P<或P <,可以认为差别不由抽样误差引起,可以拒绝H0,则可以接受令一种可能性的假设(又称备选假设,符号为H1),即两样本来自不同的总体,所以两药疗效有差别.统计学上规定的P值意义见下表 P值 碰巧的概率 对无效假设 统计意义 P> 碰巧出现的可能性大于5% 不能否定无效假设 两组差别无显著意义 P< 碰巧出现的可能性小于5% 可以否定无效假设 两组差别有显著意义 P < 碰巧出现的可能性小于1% 可以否定无效假设 两者差别有非常显著意义 理解P值,下述几点必须注意:⑴P的意义不表示两组差别的大小,P反映两组差别有无统计学意义,并不表示差别大小.因此,与对照组相比,C药取得P<药取得P<并不表示D的药效比C强.⑵ P>时,差异无显著意义,根据统计学原理可知,不能否认无效假设,但并不认为无效假设肯定成立.在药效统计分析中,更不表示两药等效.哪种将“两组差别无显著意义”与“两组基本等效”相同的做法是缺乏统计学依据的.⑶统计学主要用上述三种P值表示,也可以计算出确切的P值,有人用P <,无此必要.⑷显著性检验只是统计结论.判断差别还要根据专业知识.样所得的样本,其统计量会与总体参数有所不同,这可能是由于两种原因

P值是采用假设检验的方法来计算的。举个例子来说明:比较两个样本的均数有没有差别,采用反证法,首先建立假设检验,H0:假设两组没有差别,H1:假设两组有差别。通过假设两组没有差别计算出其没有差别的概率,一般取P<作为临界值,若P<则代表随机抽取的两组均数没有差别的概率小于,为小概率事件,此时拒绝H0,接受H1。P>接受H0。但是P值的大小只能代表两者是否具有统计学差异,不能代表差异的大小。详细的计算方法要根据你采用的统计学方法具体计算,现在这步一般都采用统计软件SPSS、SAS等来完成。希望对你有所帮助。

统计学P值检验数值含义如下:

理解P值,下述几点必须注意:

一、P的意义不表示两组差别的大小,P反映两组差别有无统计学意义,并不表示差别大小。因此,与对照组相比,C药取得P<,D药取得P <并不表示D的药效比C强。

二、P>时,差异无显著意义,根据统计学原理可知,不能否认无效假设,但并不认为无效假设肯定成立。在药效统计分析中,更不表示两药等效。那种将“两组差别无显著意义”与“两组基本等效”相同的做法是缺乏统计学依据的。

三、统计学主要用上述三种P值表示,也可以计算出确切的P值,有人用P <,无此必要。

四、显著性检验只是统计结论。判断差别还要根据专业知识。抽样所得的样本,其统计量会与总体参数有所不同,这可能是由于两种原因。

P值的计算:

一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说:

左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C}

右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C}

双侧检验的P值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。

计算出P值后,将给定的显著性水平α与P 值比较,就可作出检验的结论:

如果α > P值,则在显著性水平α下拒绝原假设。

如果α ≤ P值,则在显著性水平α下不拒绝原假设。

在实践中,当α = P值时,也即统计量的值C刚好等于临界值,为慎重起见,可增加样本容量,重新进行抽样检验。

编辑如何判断医学论文价值

据学术堂了解,一篇医学论文的质量好坏可以决定论文发表的命运,如何判断一篇医学论文质量好坏,需要从以下五个角度来看:第一:简单重复这一级别的论文是最差的,没有新的方法及见解,就是重复别人研究的课题,需要进行有深度的写作。第二:没有新发现没有新的见解及发现,没有重要的改进。对于这类的论文修改,需要深入探索实验研究,改进技术,反复实验。第三:未证实理论这个等级的论文已经能够将论文的内容论述完整了,但是却无法论证这篇论文的论题,这样使用的材料或者技术都是毫无意义的。建议将这些没多大作用的部分删减,寻找更好的论述内容论证论文主题。第四:未有突破对原有理论增添了新内容,但未有重大关键性突破。这个等级的论文,其实已经是一篇不错的论文了,但是想要投递高分期刊,特别是国外SCI论文期刊,还是不够分量。没有关键性的突破,那么论文的创新性就显得不足。第五:最适合发表的医学论文发现前人未发现的新规律,提出了新理论,并得到了学术界肯定。在技术上有重大发明,用事实推翻旧理论。提出新的指导思想及方法。最后一个级别的论文是对一篇高质量论文的基本要求,只要满足这些内容,不管是投递国内期刊还是SCI论文期刊都是很够被收录的。

如果你要查pubmed和cnki论文全文,可以去花甲论坛,24小时或者1个工作日,免费,地址是60old点中国。...

引用次数这个就不用多介绍了吧。很多数据库和在线查询平台都可以实现引用次数的查看,例如Google和微软学术搜索Microsoft Academic Search,还有利用医学文献助手筛查PubMed文献质量H指数(H Index)H指数是2005年由美国加利福尼亚大学圣地亚哥分校的物理学家乔治·希尔施提出的。H指数的计算基于其研究者的论文数量及其论文被引用的次数。赫希认为:一个人在其所有学术文章中有N篇论文分别被引用了至少N次,他的H指数就是N。可以按照如下方法确定某人的H指数:将其发表的所有SCI论文按被引次数从高到低排序;从前往后查找排序后的列表,直到某篇论文的序号大于该论文被引次数。所得序号减一即为H指数。以上有关H指数的内容来自维基百科查看H指数的最简单的方法就是利用Google Scholar,注意是英文版的,中文版的不要。另外FireFox和Chrome也有相应的插件可以选用。I10指数(I10-Index)I10-index是由Google提出来的,指作者发表文章数被引用10次以上的个数。比如我发表了100篇文章(呵呵,有点大了啥),其中90篇被他人引用了10次以上,那么本人的I10-index就是90。如果说影响因子是针对期刊的话,那么H指数和I10指数就是针对个人的。论文的影响因子高,只能说该论文找了一个好婆家,具体引用情况并不一定。而H指数和I10指数就是确切反应论文引用的一种量化标准。G指数(G-Index)G-Index(G指数)相比于上述几个指标来有点默默无闻。G-Index是由Leo Egghe于2006年提出的, 评价作者论文数量的一个指标。

编辑眼中好论文的基本特征 本文此处所讲的编辑,专指学术编辑; 所讲的论文、著作...

医学论文如何算t值p值

你把各组30例原始数据拿来可以直接统计分析,你所给的数据不能分析。

统计中t值和p值的区别为:

1、t值,指的是T检验,主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

2、P值,就是当原假设为真时,所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

p值代表的是不接受原假设的最小的显著性水平,可以与选定的显著性水平直接比较。例如取5%的显著性水平,如果P值大于5%,就接受原假设,否则不接受原假设。这样不用计算t值,不用查表。

3、P值能直接跟显著性水平比较;而t值想要跟显著性水平比较,就得换算成P值,或者将显著性水平换算成t值。在相同自由度下,查t表所得t统计量值越大,其尾端概率P越小,两者是此消彼长的关系,但不是直线型负相关。

扩展资料:

1、T检验的适用条件:

(1) 已知一个总体均数;

(2)可得到一个样本均数及该样本标准差;

(3) 样本来自正态或近似正态总体

2、P值数据解释:

参考资料:百度百科_P值百度百科_t检验

t=(样本平均值-总体平均值)/[标准差/√n]~t(n-1)求出t值后,查t值表,就可得到p值。

统计学中,P值是用来判定假设检验结果的一个参数。

如果P值很小,说明原假设情况的发生的概率很小,且P值越小,表明结果越显著。

为理解P值的计算过程,用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。

左侧检验 H0:μ≥μ0 vs H1:μ<μ0

P值是当μ=μ0时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = P(ZC≤Z|μ=μ0)

右侧检验 H0:μ≤μ0 vs H1:μ>μ0

P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = P(ZC≥Z|μ=μ0)

双侧检验 H0:μ=μ0 vs H1:μ≠μ0

P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = 2P(ZC≥|Z||μ=μ0)

扩展资料:

t检验主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。

单总体t检验是检验一个样本平均数与一个已知的总体平均数的差异是否显著。当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布。

双总体t检验又分为两种情况,一是独立样本t检验(各实验处理组之间毫无相关存在,即为独立样本),该检验用于检验两组非相关样本被试所获得的数据的差异性;一是配对样本t检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。

参考资料来源:百度百科--t检验

如何判断医学期刊

由于国家政府规定,专业技术人员晋升高级专业技术职称的条例之一是,必须在相应的专业学术期刊上发表本专业学术文章若干篇,才能晋升高级专业技术职称。又由于绝大多数医学科技期刊规定发表文章必须缴纳发表费(也称版面费),因此,一些非法期刊有了滋生的土壤便应运而生,打着“中华”、“中国”和 “国际”杂志的牌子到处招摇撞,诱惑医护人员上钩以致上当,取投稿者大量金钱。如何辨识各种非法医学期刊,最为简单、快捷、准确的方法就是,到单位收发室或邮政局去查阅或查对《全国报刊简明目录》或称《收订报刊目录》中刊登的各种期刊杂志的“邮发代号”(简称代号)和“杂志名称”,或登录本省邮政网站查询。以下为辑文编译所收集的重要资料,希望可以第一时间帮到您,更多需要请关注官网如果想要了解一下合法期刊与非法期刊之间的区别点,主要从如下这几个方面去辨别:其一是辨主管部门。合法的医学期刊均在版权页(目录页)上标明了主管部门的名称。以《吉林医学》杂志为例:《吉林医学》杂志在版权页的左上方标明了“ 主管单位:吉林省卫生厅”字样。其二是辨主办单位。合法的医学期刊也都有主办单位的名称。如《吉林医学》杂志在版权页的左上方也标明了“主办单位:吉林省人民医院”字样。

看主管主办。除了国家级和省级之外,还分统计源期刊和中文核心期刊。

主管单位是国家单位的就是国家级期刊,主管单位是省级期刊的就是省级期刊。

首先,登录中国期刊全文数据库、万方数据库或者 维普数据库(此为中国三大专业文献数据库)或国外Pubmed/Medline等国外专业数据库,然后搜索相关的文献,写出您的文章。其次,再去以上数据库中搜索相关专业期刊编辑部信息(国家级或是非国家级,核心或者非核心,统计源或者非统计源期刊等等),找到投稿联系方式,这样的方法避免网上很多钓鱼网站,确保您投稿的期刊是合法的。最后,祝好运。欢迎交流。静石医疗,竭诚为您服务。

医学论文中P值如何得出

放到spss中,定义两个变量,第一个变量叫做:group,用1代表实验组,用2代表对照组,每个组两个数字;第二个变量叫分娩方式,分别用1、2、3代表阴道分娩、阴道助产和剖宫产。然后用描述性统计方法中的交叉列联表计算就ok了!希望对你有帮助!

P值的计算:一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说:左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C}右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C}双侧检验的P值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。p值的计算公式:=2[1-φ(z0)]当被测假设h1为p不等于p0时;=1-φ(z0)当被测假设h1为p大于p0时;=φ(z0)当被测假设h1为p小于p0时;其中,φ(z0)要查表得到。z0=(x-n*p0)/(根号下(np0(1-p0)))最后,当p值小于某个显著参数的时候我们就可以否定假设。反之,则不能否定假设。注意,这里p0是那个缺少的假设满意度,而不是要求的p值。没有p0就形不成假设检验,也就不存在p值统计学上规定的p值意义:p值碰巧的概率对无效假设统计意义p>碰巧出现的可能性大于5%不能否定无效假设两组差别无显著意义p<碰巧出现的可能性小于5%可以否定无效假设两组差别有显著意义p<碰巧出现的可能性小于1%可以否定无效假设两者差别有非常显著意义

相关百科

热门百科

首页
发表服务