首页

医学论文

首页 医学论文 问题

核技术与医学论文

发布时间:

核技术与医学论文

撰写开题报告是进行科研课题申请的首要工作。通过开题报告的思考与写作可以帮助我们清楚地了解自己为什么要做这个课题,究竟想做什么,想得到什么,怎么做,能否达到自己的预期目标?若分析后觉得不现实,则可以立即调整自己的方向和目标,使课题目标的达成有可能性,从而避免“大题小作”或“小题大作”。开题报告的写作根据课题研究的类别略有不同。但一般地说,科研课题开题报告主要包括以下几个方面: (一 )课题名称 课题名称就是课题的名字。这看起来是个小问题,但实际上很多人写课题名称时,往往写得不准确、不恰当,从而影响整个课题的形象与质量。这就是平常人们所说的“只会生孩子,不会起名字”。那么,如何给课题起名称呢? 1、名称要准确、规范。 准确就是课题的名称要把课题研究的问题是什么,研究的对象是什么交待清楚,比如“小学语文指导自主教学模式研究”,这里研究对象就是小学语文教学,研究的问题就是指导自主教学法。有时候还要把研究方法写出来,例如“小学生心理健康教育实验研究”,其研究的对象是小学生,研究的问题是心理健康教育,研究的主要方法是实验法,这就说得很清楚,别人一看就知道这个课题是研究什么。而有些课题名称则起得不是很准确。如,“集中识字,口语突破”这个名称,别人只看题目,就无法看出研究的是什么问题,好象是语文,又象是英语,是中学或是小学,是小学高年级还是小学低年级更没办法看出来。若改为“集中识字,口语突破一小学英语教学模式研究”,这样就一目了然了。总之,课题的名称一定要和研究的内容相一致,要准确地把你研究的对象、间题概括出来。规范 就 是 所用的词语、句型要规范、科学。如“培养学生自主学习能力,提高课堂教学效率”,这个题目如果是一篇经验性论文,或者是一个研究报告,笔者觉得不错,但作为课题的名称就不是很好,因为课题就是我们要解决的问题,这个问题正在探讨,正开始研究,不能有结论性的口气。 2、名称要 简洁,不能太长。 不管是论文或者课题,名称都不能太长,要简明扼要,通俗易懂,能不要的文字就尽量不用,一般不要超过20个字。但要尽可能表明三点:研究对象、研究问题和研究方法。 (二)课题研究的目的、意义 首先,要阐明课题研究的背景,即根据什么、受什么启发而进行这项研究的。因为任何课题研究都不是凭空来的,都有一定的背景和思路。 其次,要阐明为什么要研究这个课题、研究它有什么价值,能解决什么问题。 第三,要认真、仔细查阅与本课题有关的文献资料,了解前人或他人对本课题或有关问题所做的研究及研究的指导思想、研究范围、方法、成果等。把已有的研究成果作为自己的研究起点,并从中发现以往的不足,确认自己的创意,从而确定自己研究的特色或突破点。这样既可以更加突出本课题研究的的价值、意义,也可以使自己开阔眼界,受到启发,拓展思路。一般可以先从现实需要方面去论述,指出现实中存在这个问题,需要去研究,去解决,本课题的研究有什么实际作用,然后,再写课题的理论和学术价值。这些都要写得具体,有针对性,不能漫无边际地空喊口号,写成诸如坚持党的教育方针、实施素质教育、提高教育教学质量等一般性的口号。 有位老师在课题申请表中对它的课题意义是这样说的:“高考实施3十x方案后,化学学科作为一门选考科目,其教育、教学必将受到一定影响。如何在当前的形势下进一步提高高中化学教学和教育水平,这是化学工作者所面临的一个急待解决的问题。本课题正是以3十x对高中化学教学的影响为引线,以1999届至2001届为观察样本,运用观察、统计、访问等现代教育科学研究方法,??研究如何在3十x实施过程中调整教学模式,提高学生综合素质等问题,为在教学改革的新形势下提高高中化学教学水平进行有益的探讨”。这样有针对性地写使别人一看就觉得科学性、实用性比较强,的确有价值。 (三)课题研究的目标 课题 研 究 的目标就是通过研究,要达到什么目标?要解决哪些具体问题?研究的目标是比较具体的,不能笼统地讲,必须清楚地写出来。只有目标明确而具体,才能知道工作的具体方向是什么,才知道研究的重点是什么,思路就不会被各种因素所干扰。下面是“学科教学与素质教育”研究实验方案所写的课题研究目标: 1、通过实验研究,总结出中小学各学科实施素质教育的特点和规律; 2、提出在中小学学科教学中实施素质教育的意见; 3、制定中小学各学科教学中实施素质教育的目标和评价方案; 4、初步形成素质教育机制下的中小学学科教学基本理论; 5、全面提高实验学校学生的素质,促进实验学校教育质量的大面积提高; 6、促进实验学校教师素质的提高,造就高水平的科研队伍。 确定课题研究目标时,一方面要考虑课题本身的要求,另一方面要考虑课题组实际的工作条件与工作水平。

创新医学网整理编辑医学论文的常见问题科研设计的选题与立题问题标题太长,主题不突出。标题与内容不符,或题目太大而内容贫乏。标题单调,主题不明确。关于题目要求:⑴可检索性;⑵特异;⑶明确;⑷简短。命题方法:⑴方法;⑵结论;⑶探讨。关于把“构成比”当“率”的概念问题。在医学文献中,我们发现有些作者对患病率、发病率、死亡率、感染率等概念混淆不清。关于疗效的确切评价问题。只有观察组没有对照组:有比较才能有鉴别,医学研究结果如无适当的对照比较,就难结论。即使有了对照组,若两者之间没有可比性,同样不能得出确切的结论。以上可见,对照组与实验组一定在性别、年龄、病情、病期、病型、部位、疗程等条件大致相同的情况下,才有可比性,其结果才有科学价值。病例资料经过有意无意的挑选:有些论文,对所谓“资料不全”、“疗程未满”、“未随访到”的病例剔除不计,这样所得的结果往往比实际疗效高,因为若如此剔除,其结果的科学性必然成问题。更有甚者,对一些数据,主观臆断地以某种原因为理由加以剔除,完全失去了这次研究的意义。考核方法和考核指标的科学性不够。⑴无明确的客观指标、仅凭患者主诉进行考核;⑵观察、研究人员的主观偏面性;⑶考核标准过低;⑷数据未经统计学处理;⑸考核方法不够科学。统计学分析的差错。⑴对照组的设立(随机同期对照、历史性对照、不同地区或医院的对照交叉对照);⑵随机化分组(简单、区组、分层);⑶盲法(非盲、双盲)。以上资料,说明了在考核疗效时一定要注意:⑴病例资料的可比性;⑵客观数据要经统计学处理;⑶考核指标要有严格的科学性(可比性、指标不能过低,不能有主观偏面性等)。图表的应用问题:图表是表达研究数据,使之一目了然的最简洁方法。一般来说“图”是从“表”来的,可以使读者从图中看出一个大概趋势和实验内容。在图表应用上,可用文字表达的就尽可能不用图表,必需用的也不宜过多,一般在4幅以内。写作技巧问题论文要使读者喜爱就必须求“新”、“精”、“全”。文字简练达到“量体裁衣”的水平,力争达到“少一句不够,多一句嫌罗嗦”的要求。一般论著字数在2500~5000字左右,摘要在1500~2001字左右,病例报告在1000字左右。字迹要端正。简化字要规范,不用自选字及自选简化字。各种符号亦要符合规范。其他当有医学名词、药物名词、数字、统计学符号、缩略语、基金资助、著作权法等问题,一切均按国家及中华医学会规定的标准执行。计量单位请按法定计量单位书写。

可以发《医学信息》《中外医疗》《吉林医学》《大家健康》

浅议医院核医学科辐射安全管理

医院核医学科的辐射来源以接触放射污染源为主要来源之一,因此,加强核医学科工作人员对辐射防护知识的了解、提高工作人员对辐射防护知识的重视意识,能够有效减少不必要的放射性物质照射。以下是我收集整理的浅议医院核医学科辐射安全管理论文,和大家一起分享。

摘要: 核医学科是医院及医疗机构设置的重要科室之一,能够为广大患者提供有效的诊治依据。近年来,随着医学技术的不断发展,核医学的发展步伐也不断加快,在医疗卫生保健领域中,同位素被逐渐广泛地应用,在医院的核医学科得到广泛应用。但是,与此同时,电离辐射也会随着同位素的应用而产生,因此,有效防护及管理医院核医学科的辐射安全,能够有效保障核医学科工作人员以及患者的健康。本文笔者针对某医院核医学科目前对辐射安全防护与管理中存在的不足进行分析,并对相应的管理对策进行探讨,旨在为医院核医学科的临床工作提供帮助。

关键词: 核医学科;安全防护;辐射;管理;对策

近年来,随着医学技术的不断发展,核医学的发展较快,在医疗卫生保健领域中,同位素被逐渐广泛地应用,广泛应用在医院的核医学科工作中[1]。核医学科是医院及医疗机构设置的重要科室之一,能够为广大患者提供有效的诊治依据[2]。但是,电离辐射也会随着同位素的应用而产生,目前,一些医院的核医学科尚存在对辐射安全防护与管理中的不足[3]。本文笔者针对某医院核医学科目前对辐射安全防护与管理中存在的不足进行分析,并对相应的管理对策进行探讨,对医院核医学科的辐射安全进行管理,保障核医学科工作人员以及患者的健康,为医院核医学科的临床工作提供帮助,现作如下分析。

1某医院的核医学科辐射检测情况

对辐射进行检测的仪器及检测方法

本次对某医院的核医学科进行全方位检测,以了解掌握该医院核医学科辐射情况。辐射检测仪选用型号为BH3103X-γ的便携式巡测仪,对核医学科的工作场面进行射线测量;选用PCM-100(α、β、γ)对核医学科进行表面污染的检测;选用FJ-377热释光剂量计对个人计量进行检测。

该医院核医学科辐射检测结果分析

本次检测结果显示,该医院核医学科中,辐射源主要包括非密封源和密封源,非密封源为99mTc源、131I源、125I源,密封源为137Cs源、241Am源、90Sr源。本次测量结果具体如下:

(1)空气比释动能率:分装室、放射源库、给药室、分装室操作位置、骨密度室、治疗室、放免室分别为μGy/h、 μGy/h、μGy/h、μGy/h、μGy/h、μGy /h、μGy/h。

(2)核医学病房内表面污染的活度浓度测量结果:分装室、放射源库、治疗室、给药室、操作者手、放免室的活度浓度分别为 ,,, /cm2,和。

(3)本次参与个人剂量调查的有12名工作人员,调查结果显示每人每年有效剂量为,采用2000h/a的最长工作时间计算可得,在操作99mTc源的工作人员中,其工作量最大为,高于5mSv的年个人剂量约束值,因此,在尚未投入通风橱的.运行前,应进行多人轮流作业的工作模式,并尽快购买通风橱进行安全防护。

(4)在本次研究中,在100厘米敷贴器贮源箱表面位置处,测量出空气比释动能率的平均值为μGy/h,与国家标准值相比明显较低,但个人剂量约束值明显较高,因此,该医院核医学科应该尽快投入有机玻璃防护眼镜及防护屏的使用,尚未运行使用时,采用多人轮流作业的工作模式进行。

2医院核医学科辐射安全防护与管理对策

合理进行医院核医学科的布局

在医院核医学科的工作区域布局中,应严格按照GB18871的规定对非密封工作场所进行分区、分级布局[4]。在辐射防护与管理中,应将工作场所分为监督区及控制区,即二区管理。监督区分别为显像室、标记实验室、放射性废物、诊断病床区以及放射性核素贮存区,控制区分别为给药室、操作室、病人进行放射性核素治疗的床位区。在对控制区以及监督区进行分区时,应该合理布局并安排区域的分布情况。例如,在进行检查室以及给药室的布局时,应将其分开,并诊断用的候诊室、给药室等进行合理布局,并设置专门用于受检者使用的卫生间。当在检查室实施给药操作时,必须采用放射防护设备进行防护。

加强管理放射性核素废弃物的处理

在医院核医学科的管理过程中,加强管理工作人员对存在放射性的核素废弃物的处理,是减少辐射的重要措施[5]。对于在医院核医学科工作现场残留的污染物废水,在处理过程中,应将废水置于衰变池进行储存衰变处理,使废水的放射性核素浓度比相关标准值低后,再在排放管道中将废水排出;对于生产过程中存在的废弃,在排放前应采用活性炭进行相关过滤处理,降低废气的放射性核素活度后再进行排放处理;对于高浓度废水以及使用过但仍剩余的原液,应将其进行集中收集,再统一进行处理,活性浓度降低至合格值后,再将其排放。

加强核医学科工作人员对辐射防护的重视

医院核医学科的辐射来源以接触放射污染源为主要来源之一,因此,加强核医学科工作人员对辐射防护知识的了解、提高工作人员对辐射防护知识的重视意识,能够有效减少不必要的放射性物质照射。大多数工作人员并未对辐射防护知识具有全面了解,因而并不重视防护措施的重要性及必要性,加之辐射存在于无形之中,导致工作人员并未养成良好的习惯,大量存在未换鞋便随意出入标记室、未佩戴防护手套即对放射源进行分类处理等,导致放射性污染的发生率较高。因此,医院应加强对核医学科工作人员的防护知识的宣教,提高防护意识。

完善医院内部的规章制度以及管理措施

在单位内部中,规章制度能够保证各项工作得以顺利开展,因此,医院应加强对核医学科辐射防护与安全的管理力度,完善相关制度,定期对核医学科的工作人员进行培训。要求核医学科的工作人员对国家相关法律法规进行熟悉与掌握,定期培训在职的辐射工作人员,对于新入职的工作人员,入职前应进行系统的岗前培训,加强工作人员对辐射防护安全及管理的认识。根据核医学科的科室特点,针对突发放射事件制定具有针对性、全面性的应急预案,并制定有效的防护措施。当放射事件无可避免的发生时,可根据应急预案对事件进行及时处理与控制,防止事件进一步恶化。

3讨论

核医学科是医院及医疗领域中的重要科室,对广大患者的疾病诊断、治疗具有重要影响,核医学科的辐射防护与管理水平,与该科室的工作效率、工作质量具有明显联系,因此,加强医院核医学科的合理布局、加强管理放射性核素废弃物的处理、加强核医学科工作人员对辐射防护的重视并积极完善医院内部的规章制度以及管理措施,是保证核医学科工作环境安全的重要措施。

参考文献

[1]王宏芳,娄云,万玲,等.核医学科操作人员及相关场所辐射水平调查[J].现代预防医学,2015,42(4):601-602.

[2]高芳,高向东,刘继平,等.某医院临床核医学放射卫生防护分析与探讨[J].中国辐射卫生,2014,23(2):140-143.

[3]郜风丽,刘淑娟.由辐射安全与防护探讨核医学科健康管理模式[J].中国现代药物应用,2014,8(22):216-218.

[4]陈宇导,张峰,吴春兴,等.核医学科核素治疗病房的辐射防护及管理[J].中华护理杂志,2014,49(1):574-576.

[5]宋培峰,王晓涛,陈栋梁,等.医院核医学科辐射安全与防护管理应注意的问题及对策探讨[J].辐射防护通讯,2011,31(4):16-18.

核技术医学论文

浅议医院核医学科辐射安全管理

医院核医学科的辐射来源以接触放射污染源为主要来源之一,因此,加强核医学科工作人员对辐射防护知识的了解、提高工作人员对辐射防护知识的重视意识,能够有效减少不必要的放射性物质照射。以下是我收集整理的浅议医院核医学科辐射安全管理论文,和大家一起分享。

摘要: 核医学科是医院及医疗机构设置的重要科室之一,能够为广大患者提供有效的诊治依据。近年来,随着医学技术的不断发展,核医学的发展步伐也不断加快,在医疗卫生保健领域中,同位素被逐渐广泛地应用,在医院的核医学科得到广泛应用。但是,与此同时,电离辐射也会随着同位素的应用而产生,因此,有效防护及管理医院核医学科的辐射安全,能够有效保障核医学科工作人员以及患者的健康。本文笔者针对某医院核医学科目前对辐射安全防护与管理中存在的不足进行分析,并对相应的管理对策进行探讨,旨在为医院核医学科的临床工作提供帮助。

关键词: 核医学科;安全防护;辐射;管理;对策

近年来,随着医学技术的不断发展,核医学的发展较快,在医疗卫生保健领域中,同位素被逐渐广泛地应用,广泛应用在医院的核医学科工作中[1]。核医学科是医院及医疗机构设置的重要科室之一,能够为广大患者提供有效的诊治依据[2]。但是,电离辐射也会随着同位素的应用而产生,目前,一些医院的核医学科尚存在对辐射安全防护与管理中的不足[3]。本文笔者针对某医院核医学科目前对辐射安全防护与管理中存在的不足进行分析,并对相应的管理对策进行探讨,对医院核医学科的辐射安全进行管理,保障核医学科工作人员以及患者的健康,为医院核医学科的临床工作提供帮助,现作如下分析。

1某医院的核医学科辐射检测情况

对辐射进行检测的仪器及检测方法

本次对某医院的核医学科进行全方位检测,以了解掌握该医院核医学科辐射情况。辐射检测仪选用型号为BH3103X-γ的便携式巡测仪,对核医学科的工作场面进行射线测量;选用PCM-100(α、β、γ)对核医学科进行表面污染的检测;选用FJ-377热释光剂量计对个人计量进行检测。

该医院核医学科辐射检测结果分析

本次检测结果显示,该医院核医学科中,辐射源主要包括非密封源和密封源,非密封源为99mTc源、131I源、125I源,密封源为137Cs源、241Am源、90Sr源。本次测量结果具体如下:

(1)空气比释动能率:分装室、放射源库、给药室、分装室操作位置、骨密度室、治疗室、放免室分别为μGy/h、 μGy/h、μGy/h、μGy/h、μGy/h、μGy /h、μGy/h。

(2)核医学病房内表面污染的活度浓度测量结果:分装室、放射源库、治疗室、给药室、操作者手、放免室的活度浓度分别为 ,,, /cm2,和。

(3)本次参与个人剂量调查的有12名工作人员,调查结果显示每人每年有效剂量为,采用2000h/a的最长工作时间计算可得,在操作99mTc源的工作人员中,其工作量最大为,高于5mSv的年个人剂量约束值,因此,在尚未投入通风橱的.运行前,应进行多人轮流作业的工作模式,并尽快购买通风橱进行安全防护。

(4)在本次研究中,在100厘米敷贴器贮源箱表面位置处,测量出空气比释动能率的平均值为μGy/h,与国家标准值相比明显较低,但个人剂量约束值明显较高,因此,该医院核医学科应该尽快投入有机玻璃防护眼镜及防护屏的使用,尚未运行使用时,采用多人轮流作业的工作模式进行。

2医院核医学科辐射安全防护与管理对策

合理进行医院核医学科的布局

在医院核医学科的工作区域布局中,应严格按照GB18871的规定对非密封工作场所进行分区、分级布局[4]。在辐射防护与管理中,应将工作场所分为监督区及控制区,即二区管理。监督区分别为显像室、标记实验室、放射性废物、诊断病床区以及放射性核素贮存区,控制区分别为给药室、操作室、病人进行放射性核素治疗的床位区。在对控制区以及监督区进行分区时,应该合理布局并安排区域的分布情况。例如,在进行检查室以及给药室的布局时,应将其分开,并诊断用的候诊室、给药室等进行合理布局,并设置专门用于受检者使用的卫生间。当在检查室实施给药操作时,必须采用放射防护设备进行防护。

加强管理放射性核素废弃物的处理

在医院核医学科的管理过程中,加强管理工作人员对存在放射性的核素废弃物的处理,是减少辐射的重要措施[5]。对于在医院核医学科工作现场残留的污染物废水,在处理过程中,应将废水置于衰变池进行储存衰变处理,使废水的放射性核素浓度比相关标准值低后,再在排放管道中将废水排出;对于生产过程中存在的废弃,在排放前应采用活性炭进行相关过滤处理,降低废气的放射性核素活度后再进行排放处理;对于高浓度废水以及使用过但仍剩余的原液,应将其进行集中收集,再统一进行处理,活性浓度降低至合格值后,再将其排放。

加强核医学科工作人员对辐射防护的重视

医院核医学科的辐射来源以接触放射污染源为主要来源之一,因此,加强核医学科工作人员对辐射防护知识的了解、提高工作人员对辐射防护知识的重视意识,能够有效减少不必要的放射性物质照射。大多数工作人员并未对辐射防护知识具有全面了解,因而并不重视防护措施的重要性及必要性,加之辐射存在于无形之中,导致工作人员并未养成良好的习惯,大量存在未换鞋便随意出入标记室、未佩戴防护手套即对放射源进行分类处理等,导致放射性污染的发生率较高。因此,医院应加强对核医学科工作人员的防护知识的宣教,提高防护意识。

完善医院内部的规章制度以及管理措施

在单位内部中,规章制度能够保证各项工作得以顺利开展,因此,医院应加强对核医学科辐射防护与安全的管理力度,完善相关制度,定期对核医学科的工作人员进行培训。要求核医学科的工作人员对国家相关法律法规进行熟悉与掌握,定期培训在职的辐射工作人员,对于新入职的工作人员,入职前应进行系统的岗前培训,加强工作人员对辐射防护安全及管理的认识。根据核医学科的科室特点,针对突发放射事件制定具有针对性、全面性的应急预案,并制定有效的防护措施。当放射事件无可避免的发生时,可根据应急预案对事件进行及时处理与控制,防止事件进一步恶化。

3讨论

核医学科是医院及医疗领域中的重要科室,对广大患者的疾病诊断、治疗具有重要影响,核医学科的辐射防护与管理水平,与该科室的工作效率、工作质量具有明显联系,因此,加强医院核医学科的合理布局、加强管理放射性核素废弃物的处理、加强核医学科工作人员对辐射防护的重视并积极完善医院内部的规章制度以及管理措施,是保证核医学科工作环境安全的重要措施。

参考文献

[1]王宏芳,娄云,万玲,等.核医学科操作人员及相关场所辐射水平调查[J].现代预防医学,2015,42(4):601-602.

[2]高芳,高向东,刘继平,等.某医院临床核医学放射卫生防护分析与探讨[J].中国辐射卫生,2014,23(2):140-143.

[3]郜风丽,刘淑娟.由辐射安全与防护探讨核医学科健康管理模式[J].中国现代药物应用,2014,8(22):216-218.

[4]陈宇导,张峰,吴春兴,等.核医学科核素治疗病房的辐射防护及管理[J].中华护理杂志,2014,49(1):574-576.

[5]宋培峰,王晓涛,陈栋梁,等.医院核医学科辐射安全与防护管理应注意的问题及对策探讨[J].辐射防护通讯,2011,31(4):16-18.

核医学科论文

医学论文是科学论文的一个分支。下面是我帮大家整理的核医学科论文,希望大家喜欢。

1、紧密结合临床实际应用

(1)内分泌系统核医学。

(2)临床应用广泛的核医学技术,如:骨骼系统、泌尿系统等。

(3)在临床诊断治疗、疗效判断、预后评估中有较高临床应用价值的核医学技术,如:肿瘤核医学、心血管系统核医学、神经系统核医学。

(4)临床价值重大的核素治疗,如甲状腺疾病及肿瘤的核素治疗等。对重点内容进行重点讲解,从核素显像的原理,影像的分析要点、常见的异常类型、临床应用价值以及核素治疗的适应证、禁忌证、治疗后的防护,突出教学中的重点内容;同时给出实际病例,进行课堂讨论,积极与学生互动,活跃课堂气氛,充分调动学生的学习积极性,增强教学效果。在考试命题过程中,充分体现教学大纲中的重点内容,突出核医学的临床实用性。

2、改进教学方法

进行多模式教学过去由于教学内容多,理论课时数少的矛盾,教师们更多进行了“填鸭式灌输”的传统教学模式,课堂以教师讲授为主进行教学,忽略了与学生的互动、提问、讨论等环节,使学生疲于接受教学内容,而难以及时消化吸收,导致学习兴趣低、学习效率低。随着多媒体技术在医学教学中的广泛应用,核医学的教学模式发生了前所未有的变革。多媒体技术将图像、动画、视频及文字资料生动逼真的融于教学过程中,将抽象的无法用语言描述清楚的教学内容予以模拟,给学生们更为直观、深刻的影像,为学生提供了一个感性认识与理性认识相结合的平台。教师们充分利用多媒体教育技术来辅助教学,将大量的.图片制作成多媒体幻灯,将核素示踪过程完全以图片或动画的形式展现给学生,结合实际病例进行提问并展开讨论,最大限度的吸引了学生的注意力,高度的调动了学生学习的积极性、主动性,实现教学互动,突出了教学中的重点,增加了教学信息量,同时增强了教学效果。

3、将核医学影像与其它影像学进行比较

体现出核医学功能显像独特优势在教学过程中,我们发现学生们以放射学得理念学习核医学,特别强调解剖学的概念,例如在描述影像时,常用放射学概念,如“密度”、“信号”等,因此,授课时,我们特别将放射影像学与核医学进行对比,在总论的教学过程中,强调放射影像学与核医学成像原理的不同;在各论教学时再进行比较教学;例如心肌灌注显像是核医学的一个重点内容,主要目的是评估冠心病心肌缺血的部位、范围及程度;而多排螺旋CT冠状动脉血管成像(简称冠脉CTA)也是目前诊断冠心病的主要影像学诊断手段之一;我们将二者进行比较教学;冠脉CTA检查的是冠状动脉的解剖学改变,即冠脉有无狭窄、钙化及肌桥,并对病变进行精确定位。理论上冠状动脉狭窄可致心肌的血流灌注减少,但由于机体有着强大的代偿机制,并不是所有冠脉狭窄、斑块及肌桥都会出现心肌缺血或梗死,因此,冠脉CTA并不能显示冠脉疾病引发的心肌缺血的范围、程度;然而这恰好是心肌灌注显像的特长。心肌灌注显像观察的是心肌的血流灌注情况,通过心肌放射性分布的多与少反映心肌血流灌注的多与少,而心肌细胞聚集放射性的多少取决于该部位冠状动脉灌注血流灌注量,即心肌灌注显像反映的是冠状动脉狭窄这个病因所导致的结果-冠心病患者心肌缺血的范围及程度,从而判断预后,并可评价冠脉支架的疗效。这好比是水渠与稻田,冠状动脉好比是水渠,心肌好比是稻田,水渠有问题不能代表稻田的灌溉不好,而我们更为关注的是稻田里的麦苗是否长的好,即心肌是否缺血。由此可见冠脉CTA所提供的是解剖学信息,心肌灌注显像提供的是功能学信息,二者分别反映了一个疾病的两个不同的侧面,从不同的角度对疾病进行评估,各有所长,不可相互替代或混淆。

4、紧随现代医学发展

及时更新教学内容,增加核医学最新研究进展,培养学生及时跟进医学科技发展的新动态科学技术的飞速发展带动了现代医学的发展,现代医学影像学的发展更是日新月异。现代医学影像学已从单纯的形态学诊断发展为形态与功能成像并重,并着眼于分子影像学的研究,分子影像学代表了21世纪医学影像学的发展方向。随着现代核医学的不断发展,尤其是分子核医学取得了显著进展,带动了肿瘤核医学、核心脏病学及神经核医学的迅猛发展。尤其是图像融合技术的应用,解决了核医学图像模糊、解剖结构欠清晰的难题;PET/CT、SPECT/CT图像融合一体机的使用,使核医学的发展进入了新的发展阶段。另外,随着现代临床医学及现代医学影像学的发展,有些传统的核医学检查方法的临床应用逐渐减少,甚至被淘汰了;同时,随着核医学仪器及放射性药物的发展,核医学中新的内容层出不穷,我们需要及时跟进核医学的发展,将核医学的新技术、新进展及时补充到教学中,突出核医学先进性及实用性,及时对教学内容进行更新并重点讲解这些内容,例如:随着PEC/CT的广泛使用,正电子显像成为了核医学研究热点,并广泛应用于临床,因此,正电子显像的显像原理、临床应用价值就成为了新的重点内容;这样更贴近临床的教学,不但提高了学生的学习情趣,同时也拓宽了学生的知识面,使得学生们及时跟进学科发展新动态,在将来的临床实践中能更合理自如的运用核医学知识为临床服务。

5、加强教师技能培训

促进教师知识扩展首先,医学科学的发展,鞭策着教师们要在教学过程中不断更新知识,拓宽视野,提高业务水准。尤其图像融合技术的应用,迅速推进了分子核医学的发展,因此教师们需要充分利用各种资源,更快更新教学内容,使学生了解核医学的新进展,培养学生及时跟踪的学科新动态。其次,多媒体教学的应用,使得核医学的教学形式发生了重大变化,也充分调动了学生的学习兴趣与积极性;如何更好的应用多媒体进行教学,也成为了教师们的新课题。这样的变化不仅要求教师精通核医学的专业理论和实践,还要求教师掌握基本的微机应用知识、相关的操作软件、一定的网络知识及扫描仪、数码相机等电子仪器的应用技能。

总之,教学是一个长期持续性的工作,在现代医学飞速发展的今天,需要每一位教师对教学的模式及内容作出相应的调整,与时俱进,使教学内容随着学科的发展不断地改革和扩充,灵活应用多样的教学模式,培养学生的临床思维能力,使学生能在将来的临床工作中有所获益。

由此看来,的确是书到用时方恨少。我读的专业是电气自动化。到了工作岗位,在设计生产流水线和研发新产品时,需要设计机械装置,我不得不自学了理论力学、材料力学和机械零件设计,还有物理化学、无机化学和玻 璃 专业化工理论等读物。通过自学,我很快地掌握了相关知识,圆满地完成了流水线及新设备的设计制造任务。随着自动控制的深入,我们要实现过程控制自动化DCS的操 控,这涉及到数据库和软件界面 编程,涉及到数据交换技术。于是我读着有关数据库和软件编程的书籍,同时动手在电脑上编写程序,经过三个多月的努力,终于实现了DCS分散式测控系统的操控,完成了 任务。之后不断更新,一年后我们有了很完善的系统,得到业内人士的好评。到了外企,企业每年都要在国内核心技术刊物发表许多论文。这些论文大多让我来写,我成了写论文专业户,笑!在写论文和写培训教材时,我阅读了许多中国古代文学作品,以及各种报告文学,参阅了大量技术期刊论文和书籍。通过阅读和写作,我的写作能力提高不少,我认为这种能力应当属于动手能力的范畴。

科学技术与医学论文

有关我国古代在科学技术方面的突出成就.字不要太多要资料 一天文学 中国古代的天文学名著简介 中国古代的天象记录 中国古代在天体测量方面的成就 浑仪和简仪——中国古代测天仪器的成就 中国古代的历法成就 中国古代的宇宙理论 二数学 中国古代的数学名著简介 十进位值制、筹算和珠算 出入相补原理 割圆术和圆周率 刘徽割圆术 中国剩余定理 高次方程数值解法和天元术 内插法和垛积术 中国古代的无穷小分割思想 三物理学 中国古代的力学知识 中国古代的声学知识 指南针和中国古代的磁学知识 中国古代光学成就 四化学和化工 造纸术的发明和发展 火药和火药武器 驰名世界的中国瓷器 中国古代的油漆技术和漆器 古代炼丹术中的化学成就 五地学 中国古代对天气现象的观测和理论 中国古代的物候历和物候知识 中国古代的旅行考察事业 中国古代的水利工程和水文知识 马王堆出土的地图和裴秀制图六体 中国古代的矿物学和采矿技术 中国古代对海陆变迁的认识 中国古代的地震测报和防震抗震 六生物学 中国现存的几部古代动植物志 中国古代的动植物分类 中国古代关于遗传育种的研究 中国古代认识和利用微生物的成就 七农学 中国古代几部重要农书 精耕细作是中国农业技术的优良传统 历史悠久的中国园艺技术 茶 中国古代养蚕科学技术的发展和传播 中国古代畜牧兽医方面的成就 八医药学 从两部古典的中医名著看中国医学的早期成就 中药学的突出成就 中国医学独特的针灸疗法 中国古代医学的突出成就之一——脉诊 中国古代的外科学成就 免疫法的先驱 世界第一部法医学专著 九印刷术 印刷术的发明发展和外传 十纺织 中国古代的纺车和织机 中国古代的丝绸和丝织技术 中国古代的葛、麻纺织 中国古代的染色技术 十一冶金铸造 中国古代冶金技术的成就 炼钢技术 湿法冶金的起源——胆铜法 中国古代三大铸造技术 十二机械 中国古代的农业机械 中国古代原动力的利用——人力的进一步发挥和自然力的有效利用 中国古代各种车辆、指南车和记里鼓车 水运仪象台 十三建筑 雄伟的万里长城 中国古桥成就 世界历史名城——唐代的长安城 辉煌灿烂的故宫建筑 颐和园——中国古典园林建筑的珍贵遗产 中国古代高层砖石建筑——嵩岳寺塔和其他 世界上现存最高的古代木构建筑——山西应县木塔 十四造船和航海 中国古代造船工程技术成就 中国古代航海技术上的成就 十五军事技术 中国古代的兵器成就 中国古代战车、战船和城防技术成就 十六少数民族的科技成就 蒙古族在我国古代科学上的贡献 藏族医学的成就 新疆古代少数民族在农业科学技术上的贡献 美丽精致的壮布和壮锦 彝族的火器——“葫芦飞雷”。 中国医学科学技术发展落后 60多年以来,中国就一直跟在世界先进国家后边“爬”。在如下关键的十类科技领域里,都没有“原创性专利”,在实用技术上也都落后于世界先进国家: 一、基础科学研究。基础科学研究解决的是未知领域的研究。它攻克周期长,投入见效 慢。但一旦突破将会带动出一批新兴应用领域。二、材料科学研究和制造技术。耐高温、耐高压、材料;耐腐蚀、耐辐射材料;比重小 强度高的材料、以及新型隐形消声材料等。 三 电脑信息技术。独立自主的纯汉字电脑信息系统,摆脱对外国的依赖。此项不单涉 及到电脑芯片的制造技术,还涉及到必须把汉子楷体系统,更新升级为“意、音双表新体汉字”系统。 四、空间技术。制导技术和抗干扰技术、夜视设备、航天医学设备等。 五、高性能发动机研究和制造技术。汽车、火车、舰船、飞机、火箭等发动机。 六、基因工程研究和制造技术。基因遗传、合成、分拆、移植转接技术。为生物工程新药物研制提供理论技术支撑。 七、生物工程研究和制造技术。生物科学和生命科学在人类认识自然改造自然中居十分重要地位。加强生物科学、生命科学的研究。发现、培育、发展新物种,新品种,为农牧业跨越发展及提高农牧业产品质量品质提供技术支撑;为研究发展新医药、新疫苗为保障提高人民健康提供坚实保障。 八、能源研究和制造技术。例如,节能技术、可再生能源技术、光电产品、体积小容量大的蓄能设备、高能高效车用电瓶。 九、检测和操作物理或生物用的仪器、设备。 十、精微机器制造技术、宏大机器制造技术、险恶环境中的机器制造技术。 科技革命给医学发展带来哪些影响 科技革命给医学发展带来的影响 1、科学是人类认识世界的方法和工具,技术是人类改造世界的方法和工具,它们也是人类认识世界和改造世界的积极成果。所谓科学技术既是人类医学重要组成部分,又是使医学从初级向高级进化的强大动力。 2、人类医学发展史表明,科学技术是与医学共生共荣的。近现代科学技术的发展,使医学进程大大加快,而科学技术也日益渗透到社会物质生活和精神生活的各个领域。 3、现代科学技术革命日益深化,新技术不断涌现,给传统的医学以及伦理道德观念带来了新课题,新课题的解决又将推动伦理道德观念的更新,如器官移植、安乐死及生态伦理等问题。 科技革命给医学发展带来哪些影响 学是人类认识世界的方法和工具,技术是人类改造世界的方法和工具,它们也是人类认识世界和改造世界的积极成果,科学技术是与医学和教育共生共荣的。 近现代科学技术的发展,而科学技术也日益渗透到社会物质生活和精神生活的各个领域、方法的经验总结。科学指的是人类在实践中形成的对于客观世界规律性的认识,属于知识形态,使在对客观世界改造过程中积累起来,并在生产劳动过程中体现出来的操作性手段、程序,是社会的精神财富。 技术则是人类对客观世界的改造,使医学和教育的进程大大加快,通常也指那些为实现操作而创造出来的工具和机器,有的属于知识形态,有的则表现为实物和实践形态,技术是创造物质财富的手段。人类医学和教育发展史表明。 所谓科学技术既是人类医学和教育的重要组成部分,又是使医学和教育从初级向高级进化的强大动力。 科学技术是两个不同而又紧密相关的概念。 医学技术毕业论文怎么写开题报告? 医学技术毕业论文可以写科技前沿之类的题目,莫文网很多这类的文章,有高手帮忙还怕这些~ 关于医学影像技术专业教学模式与改革的探索 医学图像处理技术与应用分析 浅论计算机技术在医学中的应用 重组DNA技术的医学研究思路 中国传统文化对现代医学技术创新的影响 医学院校教师信息技术素养的培养 计算机技术在医学中的应用浅论 培养我国医学影像技术高素质人才的思考 医学科学技术档案管理思考 利用信息技术实现医学影像档案的信息共享 现代教育技术在医学院校远程教育中的应用 “医学技术主义”思潮的当代形态及其应对之“道”——兼论医师职业精神的建设与培育 医学技术评估的概述 医学检验技术专业学生沟通能力培养的研究与实践 技术医学时代与高扬科学、人文精神 虚拟现实技术在心理医学中的应用初探 当代医学技术演进若干问题的探讨 对医学技术的控制何以可能——兼谈应对医学技术主体化的策略 我国医学技术专业高等教育现状调查及问题分析 PACS系统在医学影像影像检查技术专业模拟临床教学中的应用 《中国医学教育技术》杂志征稿简则 医学图象技术的发展与应用 论医学工程技术在现代医学中的战略地位 生物医学图像信息技术的应用和发展 数字化医学技术与脊柱外科的临床应用 全军医学电子技术专科中心 远程医学教育系统的技术模式 论医学技术异化的本质、根源及其消解 医学图像三维可视化技术及其应用 医学技术评估在卫生政策中的应用 *** 医学科学技术大会暨第八届医学科学技术委员会全体会议隆重召开 医学图像可视化及加速技术的研究进展和趋势 从教学角度探讨医学影像技术学教材的编写与选用 自然辩证法、科学技术和医学的关系 《自然辩证法》复习重点第一讲:自然辩证法纵横谈一、何谓“自然辩证法”2、辩证法:(1)辩证法的存在方式:通常是作出如下的分类:其一是区分为“客观辩证法”和“主观辩证法”,其二是区分为“自然辩证法”、“社会(历史)辩证法”和“认识(思维)辩证法”,其三是区分为“自发辩证法”、“唯心辩证法”和“唯物辩证法”。 (4)马克思主义的辩证法概念 :马克思主义认为,辩证法是关于普遍联系的科学,是在肯定矛盾的基础上关于发展的学说。马克思主义创始人给唯物辩证法下了科学的定义:唯物辩证法不过是关于自然、人类社会和思维发展的最一般规律的科学。 3、自然辩证法 :主要是由恩格斯的《自然辩证法》这部著作所开创的一个广阔的研究领域。构成马克思主义哲学的一个组成部分。 就自然辩证法这个语词的原意说,它是指自然界发展的辩证法,就它是一门学科说,它的基本内容由三部分组成,(1)研究揭示自然界存在和演化的一般规律,形成辩证唯物主义自然观——自然界的辩证法,(2)研究揭示作为一种社会现象的科学技术发生与发展的一般规律,形成辩证唯物主义的科学技术观——科学技术发展的辩证法,(3)研究认识自然界和改造自然界的一般方法论,形成辩证唯物主义的科学技术方法论——科学技术研究的辩证法。三、自然辩证法与哲学的关系 :2、自然辩证法在马克思主义哲学中的地位和作用:自然辩证法属于马克思主义哲学的分支。 它运用马克思主义哲学的世界观和方法论,去展开对自然界、科学技术及科学技术研究的一般规律的探讨。自然辩证法与马克思主义哲学之间又是一般与个别、共性与个性的关系。 自然辩证法是介于马克思主义哲学与自然科学、技术之间的具有相对独立性的学科。与最高层次的哲学相比较,可把它归属为亚层次。 自然辩证法既是马克思主义哲学的重要组成部分,又是联系马克思主义哲学与科学技术的纽带。3、马克思主义哲学(自然辩证法)与科学哲学的关系:所谓“科学哲学”,即关于科学的哲学理论,是哲学对科学这一现象的研究或反思,这里所说的“科学”指的当然是自然科学。 科学哲学属于现代西方哲学的范畴。西方哲学关于科学的哲学研究由来已久,可以说自从有科学以来就已经存在了,但是真正成熟的科学哲学却是20世纪的产物。 一般说来,科学哲学研究的是科学的本质、科学的合理性、科学的研究活动、科学方法论、科学认识论、科学的逻辑结构、科学发展的规律等等,因而它与哲学的许多学科例如形而上学、认识论和逻辑学有着密切的关系。传统的科学哲学是形而上学的一部分,而现代科学哲学则是从反形而上学起家的,它在20世纪的第一个系统形态就是罗素与维特根斯坦等人所开创和推动的逻辑经验主义。 波普尔为代表的证伪主义,库恩为代表的历史主义等在西方被称为标准的科学哲学。马克思主义哲学是与现代西方哲学分足鼎立的当代哲学。 第二讲:自然界的存在方式二、自然界物质联系的系统方式1、自然界物质系统及其基本特点:(1)系统方式的基本特点从自然观的角度看,可以认为系统是一种联系方式,在这种方式中,若干有特定属性的要素经特定关系而构成具有特定功能的整体。对系统概念的这种理解,包括如下要点:A、系统是由若干要素组成的。 B、系统的各要素之间存在着特定关系,形成一定的结构。C、系统的结构使它成为一个有特定功能的整体。 D、功能是在系统与外部环境的相互作用中表现出来的,系统总是存在于一定的环境之中。显然,系统方式是事物之间普遍联系的一种方式。 但并非所有联系都可以称为系统。只有那些有物质、能量、信息交换且造成新属性突现的联系,才能构成系统。 2、自然界物质各级组织系统的基本分类:从系统与环境的关系进行分析,可将自然界中的系统区分为:(1)孤立系统,这是指与环境交换的物质和能量很少以至对研究日的来说可以忽略不计的系统;(2)封闭系统,指与环境仅有能量交换的系统;(3)开放系统,指与环境既交换物质义交换能量的系统。在这三类系统中,开放系统具有更大的普遍性。 从系统内发生的实际过程分析,可把自然界中的系统区分为:(1)物理系统,这是指发生物理学所研究的各种过程的系统;(2)化学系统,指发生化学组成或结构变化的系统;(3)生命系统,指发生生命过程的系统。从人对自然物的参与程度分析,可把自然界中的系统区分为:(1)天然系统,这是人类尚未改变其自然进程的系统;(2)人工系统,指人工制造的各种系统,如机器、现代交通丁具等;(3)复合系统,指人的实践活动已经部分参与其中的系统,即其中包括天然系统也包括人工系统的复合系统,如水力发电系统、农业系统等。 从系统内各要素相互作用的特点分析,可把自然界中的系统区分为:(1)线性系统,这是指比较简单的系统,系统中要素的关系是线性的;(2)非线性系统,在这种系统中存在着自催化、正反馈之类的非线性相互作用。从人对自然的认识程度分析,可把自然界的系统区分为:(1)黑系统,这是指人们当前对其要素和结构还一无所知的系统;(2)白系。

现代生命科学技术的论文基因芯片——“生物信息精灵”——浅谈数学、计算机在现代生命科学研究中的作用二十世纪是物理科学的世纪,而二十一世纪则是生命科学的世纪。生命科学,尤其是生物技术的迅猛发展,不仅与人类健康,农业发展以及生存环境密切相关,而且还将对其它学科的发展起到促进作用,所谓"今天的科学,明天的技术,后天的生产"。而生命科学的基础性研究是现代生物技术的源泉、科学和技术创新的关键。现代生物技术,是一门领导尖端科技的学科,正因如此,我很想知道它与数学——我得专业课,计算机等理论或技术是怎样有机的联系在一起的。基于此,我利用课余时间查阅了许多网站、书籍,并有了小小的收获。现就“基因芯片”技术,浅谈如下。一、基因芯片简介基因芯片,也叫DNA芯片,是在90年代中期发展出来的高科技产物。基因芯片大小如指甲盖一般,其基质一般是经过处理后的玻璃片。每个芯片的基面上都可划分出数万至数百万个小区。在指定的小区内,可固定大量具有特定功能、长约20个碱基序列的核酸分子(也叫分子探针)。 由于被固定的分子探针在基质上形成不同的探针阵列,利用分子杂交及平行处理原理,基因芯片可对遗传物质进行分子检测,因此可用于进行基因研究、法医鉴定、疾病检测和药物筛选等。基因芯片技术具有无可比拟的高效、快速和多参量特点,是在传统的生物技术如检测、杂交、分型和DNA测序技术等方面的一次重大创新和飞跃。二、基因芯片技术 生物芯片技术是于90年代初期随着人类基因组计划的顺利进行而诞生,它是通过像集成电路制作过程中半导体光刻加工那样的微缩技术,将现在生命科学研究中许多不连续的、离散的分析过程,如样品制备、化学反应和定性、定量检测等手段集成于指甲盖大小的硅芯片或玻璃芯片上,使这些分析过程连续化和微型化。也就是说将现在需要几间实验室、检验室完成的技术,制作成具有不同用途的便携式生化分析仪,使生物学分析过程全自动化,分析速度成千上万倍地提高,所需样品及化学试剂成千上万倍地减少。可以预见,在不远的将来,用它制作的微缩分析仪将广泛地应用于分子生物学、医学基础研究、临床诊断治疗、新药开发、司法鉴定、食品卫生监督、生物武器战争等领域。 生物芯片技术是目前应用前景最好的DNA分析技术之一,分析对象可以是核酸、蛋白质、细胞、组织等。目前全世界用生物芯片进行疾病诊断还处于研究阶段,国外已将其用于观察癌基因及肌萎缩等一些遗传病基因的表达和突变情况。 生物芯片技术还可以用于治疗,例如已开发出在4平方毫米的芯片上布满400根有药物的针,定时定量为病人进行药物注射。另外,科学家还在考虑制作定时释放胰岛素治疗糖尿病的生物芯片微泵及可以置入心脏的芯片起搏器等。生物芯片技术与组合化学相结合将开辟另一个极有价值的应用方向,即为新药研制提供超高通量筛选平台技术,这必将使新药研究开发和传统中药的成分评估获得重大突破。三、基因芯片的应用技术举例1、基因破译 目前,由多国科学家参与的“人类基因组计划”,正力图在21世纪初绘制出完整的人类染色体排列图。众所周知,染色体是DNA的载体,基因是DNA上有遗传效应的片段,构成DNA的基本单位是四种碱基。由于每个人拥有30亿对碱基,破译所有DNA的碱基排列顺序无疑是一项巨型工程。与传统基因序列测定技术相比,基因芯片破译人类基因组和检测基因突变的速度要快数千倍。 基因芯片的检测速度之所以这么快,主要是因为基因芯片上有成千上万个微凝胶,可进行并行检测;同时,由于微凝胶是三维立体的,它相当于提供了一个三维检测平台,能固定住蛋白质和DNA并进行分析。 美国正在对基因芯片进行研究,已开发出能快速解读基因密码的“基因芯片”,使解读人类基因的速度比目前高1000倍。图1所示为一种内嵌基因芯片的基因检测装置。2、基因诊断 通过使用基因芯片分析人类基因组,可找出致病的遗传基因。癌症、糖尿病等,都是遗传基因缺陷引起的疾病。医学和生物学研究人员将能在数秒钟内鉴定出最终会导致癌症等的突变基因。借助一小滴测试液,医生们能预测药物对病人的功效,可诊断出药物在治疗过程中的不良反应,还能当场鉴别出病人受到了何种细菌、病毒或其他微生物的感染。利用基因芯片分析遗传基因,将使10年后对糖尿病的确诊率达到50%以上。 未来人们在体检时,由搭载基因芯片的诊断机器人对受检者取血,转瞬间体检结果便可以显示在计算机屏幕上。利用基因诊断,医疗将从千篇一律的“大众医疗”的时代,进步到依据个人遗传基因而异的“定制医疗”的时代。3、基因环保 基因芯片在环保方面也大有可为。基因芯片可高效地探测到由微生物或有机物引起的污染,还能帮助研究人员找到并合成具有解毒和消化污染物功能的天然酶基因。这种对环境友好的基因一旦被发现,研究人员将把它们转入普通的细菌中,然后用这种转基因细菌清理被污染的河流或土壤。4、基因计算 DNA分子类似“计算机磁盘”,拥有信息的保存、复制、改写等功能。将螺旋状的DNA的分子拉直,其长度将超过人的身高,但若把它折叠起来,又可以缩小为直径只有几微米的小球。因此,DNA分子被视为超高密度、大容量的分子存储器。 基因芯片经过改进,利用不同生物状态表达不同的数字后还可用于制造生物计算机。基于基因芯片和基因算法,未来的生物信息学领域,将有望出现能与当今的计算机业硬件巨头――英特尔公司、软件巨头――微软公司相匹敌的生物信息企业。四、基因芯片的实际应用 基因芯片在生命科学、医药研究、环境保护和农业等领域有极其重要的应用价值。在基因芯片的驱动下,人类正进入一个崭新的生物信息时代。1、在美国科学家第一次将一个他们称之为生物芯片的计算机芯片植入人体的细胞上,从而使人体细胞与计算机连接。这是美国科学家波利斯·鲁宾斯基(Boris Lubinsky)和他的同事黄永(译音)在3月份的美国《生物医学微设备》杂志中著文披露的。 2、人体细胞外面包有一个细胞膜,该细胞膜具有使特定物质单向通过的功能。多年来,科学家们一直寻求找到用电冲击的方法,使所希望的物质进入细胞膜,但直 到目前为止,所用的方法有时成功,有时失败。而使用鲁宾斯基和黄永研究出来的 新方法,细胞膜由计算机得到一个信号,让某些物质进入到细胞中。随具体场合的 不同,这些物质可以是例如用来改变基因的遗传物质,也可以是药物或蛋白质。这样,就可以更好地使这些物质发生效力。 鲁宾斯基等科学家打算研制出能对例如神经细胞和肌肉等人体组织发出指令的生物芯片,这样至少会使人所服用的药物发挥更大的效力。俄亥俄州立大学生物医学工程中心主任莫里罗·弗拉里称鲁宾斯基的这项发明是处在发展阶段早期的具有潜在作用的实验室工具。美国科学家们称,他们已经找到了一种能使人体细胞和电路进行交配的生物工程芯片,它能在医学和基因工程学方面发挥关键的作用。 这种比头发还小还细的微型装置使健康人体细胞和电子芯片结合,通过电脑对芯片进行控制,科学家认为他们能够控制细胞的活动。 电脑向细胞芯片发送电脉冲,激发细胞膜孔张开,并激活细胞。科学家希望能够大批量地生产这种细胞芯片,并能够把它们植入人体,取代或修正病变组织。 领导这项研究的加州大学机械工程学教授鲍里斯·鲁宾斯基说:“细胞芯片还使科学家在复杂的基因治疗过程中更准确地进行控制,因为他们能够更准确地开启细胞孔。” 鲁宾斯基还说:“我们在生物学领域里引入了工程学的精髓,我们完全可以在不影响周围其它细胞的情况下输入DNA、提取蛋白质以及注射药物。” 该细胞芯片的出现与长期存在的一种理论有关,即一定量的电压能够穿透细胞膜。 多年来,科学家一直在进行用电力轰击细胞试验的遗传研究,希望藉此引入新的疗法和基因物质。研究人员希望能最终制造出与激活不同的身体组织(从肌肉到骨骼到大脑)所需的准确的电压量相调合的细胞芯片。那样的话,将会有数以千计的细胞芯片用来治疗各种类型的疾病。3、用独创技术自行研制的中国第一片应用型基因芯片于近日在第一军医大学正式诞生。 据第一军医大学有关负责人透露,该军医大研制成功的基因芯片,是中国首次应用一种创新的基因片扩增技术,率先攻克了内地同行在基因芯片研究中首先面临的快速经济地搜集数以万数基因探针难题,并巧妙运用新技术手段明显地降低成本。 目前,该芯片已完成实验室工作,即将进入临床验证阶段,如果顺利,用於临床诊断的基因芯片可望不久投入批量生产。但到目前为止,全世界还没有实际用於临床应用诊断的基因芯片生产。 在实验室里,将这几片比大拇指盖稍大的基因芯片,放在检测器上,与之相连的电脑屏幕上立刻出现了纵横交错的红红绿绿荧光点,出现的每个荧光点就是一个基因片断的点阵。只要取病人一滴血放在芯片检测卡上,经过分子杂交后,连上电脑就可以立刻显示出基因变化情况,并通过电脑把基因语言翻译成医生能读得懂的信息,从而对疾病做出准确的诊断。 这种芯片的成功诞生,标志着疾病的诊断由细胞和组织水平推进到基因水平。它们的开发应用将在环境污染控制、动植物检疫、器官移植、产前诊断、药物筛选、药物开发等方面展示出广阔的前景。五、生命科学渐成IT公司关注焦点 人类基因组工作草图绘毕的消息像打开了阿里巴巴宝藏的大门,以基因技术为核心的生命科学市场正吸引着越来越多的淘金者。近来,为这些淘金者生产“铁锨”的资讯科技(IT)公司的积极行动颇为引人注目。1、揭开基因之迷须破译大量数据 人类基因组草图仅仅是读出了“生命之书”,而要真正读懂它,揭示所有基因编码所代表的信息,还必须破译浩如烟海的数据。 在著名的英国桑格中心里,有关人类基因组的数据已经达到22万亿字节,是世界上首屈一指的美国国会图书馆藏书内容的两倍多。据这家中心估计,在未来两至三年内,与人类基因组有关的数据量还将上升到50万亿至100万亿字节。2、生命科学公司10%投资用于开发资讯科技 为了解决处理数据所需的庞大计算能力的问题,世界上最大的12家生命科学公司目前把近10%的科研预算用于资讯科技投资,而且这个比例可能还将增长。 据美国国际商业机器公司(IBM)估计,与生命科学有关的资讯科技市场将在今年达到35亿美元,到2003年达到90亿美元。3、市场潜力巨大 一些著名的IT企业,已将眼光瞄准了这一潜力巨大的市场。例如,IBM已经决定投资1亿美元,用五年时间研制一种名为“蓝基因”的超级电脑。 “蓝基因”的运算能力将是美国现有40台最快的超级电脑运算能力总和的40倍,它主要用于模拟人类蛋白折叠成特殊形状的过程。世界最大的个人电脑制造商美国康柏公司,也垂涎这块“肥肉”。4、康柏趁早下手培养未来客户基础 已经成为生命科学领域电脑服务器主要供应商的康柏公司最近宣布,它将继续投资1亿美元,支持新兴生物技术公司,以培养未来的客户基础。 其实,IT公司还远不止盯着这些近期利益。以基因研究为基础的生物经济可能在新世纪里成为新经济的重要组成部分,对此人们已经达成共识。5、行业标准制定者能享有巨大经济利益 根据以往的经验,率先进入市场的公司大多能够成为行业标准的制定者,这些行业标准往往意味着巨大的经济利益。 今年8月,德国狮生命科学公司的股票上市。由于投资者看中这家公司的基因次序检索系统(SRS)可能成为行业新标准,其股票价格在短短时间里迅速上涨了50%。6、政府支持基因研究 IT公司进军生命科学领域,与各国政府对基因研究的支持密不可分。为了在基因组研究的下一个阶段——分析蛋白质结构的国际竞争中领先,不少国家积极采取措施,促进信息业与生物产业的结合。 例如,日本不久前就组织了“官产学”大联合的“生物产业信息化研究共同体”,参加这个共同体除了制药、食品、生物、化学等与基因科学相关的企业外,还有不少电脑公司。 小结:科学界公认,生物芯片技术将给下个世纪生命科学和医学研究带来一场革命。目前我国科学家正在加速研制这种可能快捷便利提取DNA,查找遗传基因特性的新技术。相信,这一现代生物与高科技联姻的成果将为二十一世纪的发展作出巨大的贡献!

技术与方法医学论文

不知道医学论文怎么写?学术堂来告诉你:医学论文的写作过程:1.选题阶段:论文的选题,也即是科研的选题,有时一项科研可产生多篇论文.选题过程一般可分为三步:2.初拟题目:在这项工作之前必须手中有信息、资料和设想,当然可以是前瞻性研究或回顾性总结,大致可有以下几个方面:⑴临床遇到的罕见病和疑难病例;⑵危重病人的诊治经验;⑶阅读国内外文献、参加学术会议受到的启发,进行技术和方法的移植研究;⑷新药、新仪器的临床应用,新的诊断方法及治疗经验;⑸上级布置或招标的题目.在初步考虑拟选题目之后,应进行全面的文献检索,避免题目类同、结论陈旧和不符合客观事实.在别人研究成果基础上寻找尚未解决的问题作为自己的研究题目.3.实验研究阶段:这包括应用国外或国内的先进手段、药物、手术方法、检测等进行临床试用、观察和随访调查,并用动物或正常人作对照试验,要求详细记录各种数据及资料,作为论证和评价成果的依据.4.整理、分析资料和总结阶段:对以上资料进行统计分析,绘制图表,临床分析和比较,得出显效、有效和生存率、死亡率、发病率等结论,并分析其相互关系,引证文献作对比.分析成功和失败的原因及制约因素,并对病因学、流行病学、发病机制进行论证,包括预后的估价.最后对论文作出自我评价,提出有待进一步探讨的问题.5.撰写论文阶段:该详则详,该简则简,文字简练,用语准确,恰如其分,切忌浮夸和虚构.当然,在产生论文以前,每位作者必须学会文献检索,统计学的基础知识的X2检验、T检验、F检验、相关分析、回归运算、如何选择样本大小等,努力阅读医学情报信息和文献积累,在实践中不断总结,逐步提高写作水平,这样才能水到渠成写出真正好的论文.

这几个发表论文的方法,你用了吗?视频8分钟,通俗易懂的介绍如何提升论文发表率,增强论文引用率。适合有发表英文论文,咨询选题、论文构建、选刊、以及论文润色等一站式服务需求的用户。

医学论文是医学科学研究工作的文字记录和书面总结,是医学科学研究工作的重要组成部分。医学论文报道医学领域领先的科研成果;是医学科学研究工作者辛勤劳动的结晶,是人类医学科学发展和进步的动力。从事医学科研究工作的同志,经常撰写医学论文,不仅可以扩大视野,掌握国内、外医学动态,而且能提高科研设计能力和研究能力,以及教学能力和业务水平。反过来,如果科研能力、业务水平及教学能力提高了,工作成绩显著,又能写出高质量的医学论文。论文一经发表,即被社会所承认,也是该项目取得科研成果的必要途径。由此可知,医学论文像一面镜子一样,反映出一个国家、一个省、一个地区、一个单位的医学科学水平和工作风貌,更能反映出人才的多少和水平的高低。因此,如何撰写出高质量的医学论文是广大医务工作者应该掌握的基本技能,也是取得学历、学位、晋升职称的必要条件。故怎样写作出高水平的医学论文,是摆在每个医务工作者面前的一个重要课题。为了提高大家的医学论文写作水平,本文重点介绍医学论文写作的五大要素。第一大要素:思想性医学论文是专业性、探索性很强的文章,它的基本任务是探索未知,具体讲就是提出问题、解决问题,即提出前人从未提出过的问题,解决前人没有解决的问题。然而,医学论文同样要体现党和国家有关卫生工作的方针、政策,贯彻理论与实践、普及与提高相结合的方针,反映我国医学科学工作的重大进展,促进国内、外医学界的学术交流。同时,在医学科学研究工作中,必须理论联系实际,运用辩证唯物主义和历史唯物主义的观点分析问题。要遵守国家法令,执行著作权法、保密和技术专利等有关规定。做到尊重科学,讲究道德,反对作假,反对剽窃。让医学技术工作面向经济建设,为国家经济建设服务。因为在一定程度上讲,“文如其人”;所以,医务工作者有了好的思想才会有好的主题,有了好的主题才会有好的结论,最后才会有好的论文发表。第二大要素:创新性科学贵在创新,只有不断创新,人类社会才会进步,医学科学也不例外。所谓“创”,是指医学论文所报道的主要科研成果是前人没有做过或没有发表的“发明”、“创造”,而不是重复别人的工作。所谓“新”,是指医学论文所提供的信息是鲜为人知的,非公知公用,非模仿抄袭的,即指医学的研究性课题,包括基础医学、临床医学和医学边缘学科等三个领域。此外,即所谓推广性课题研究:在此类研究当中,如果是模仿和重复他人课题或研究,应仿中有“创”、推陈出“新”。作者应在别人研究的基础上有自己的新见解,产生出一种新的理论或技术,只有在一定程度上创新,才会从新的角度反映出新的成就。如国家级重大科研课题的推广应用,以及老药新用,古方今用等项目,亦包括基础医学、临床医学和医学边缘学科等三个领域的推广应用性课题。第三大要素:科学性衡量医学论文水平的首要条件是论文的科学性。在评价医学论文时,主要看科研设计是否严密合理,方法是否正确,资料是否完整可靠,依据是否准确并符合统计学要求,结果是否科学严谨,结论是否妥当并有充分依据等等。医学论文写作的科学性,具体包括“三严”和“五个体现”两个方面。第一方面:撰写医学论文,必须贯彻“三严”精神。众所周知,按医学论文来源分类:(1)、分为原著(包括论著、著术及短篇报道)和编著(包括教科书、参考书、专著、文献、综述、讲座、专题笔谈、专题讨论等)两类;(2)、按论文写作目的分类为:学术论文和学位论文两类;(3)、按医学学科及课题性质分为:基础医学、临床医学、预防医学、康复医学等四类;(4)、按论文的研究内容分:实验研究论文、调查研究论文、实验研究论文、资料分析论文、经验体会论文五类;(5)、按论文的论述体裁分为:论著、文献、综述、述评、讲座、技术与方法、个案报告和医学科普论文等。所以,作者必须根据自己研究工作和研究资料的内容,选择相应体裁的论文表达形式。1、坚持严肃的态度:有一种观点认为“态度决定一切”。医学工作者只有思想端正,对待科学严肃认真,不夸大其词,不掺杂水份,才可能写出高质量的论文。2、坚持严谨的学风:如果没有严谨的学风,心浮气躁,沉入不到你所从事的研究当中去;或者被别的议论轻易改变自己的观点或实验过程,均难以得出正确的结果,更谈不上写出高水平的论文。3、坚持严密的方法:每一项实验或者临床观察,均应有严密的计划和步骤。在应用严密的操作和相关的程序当中,更不允许随意更改自己的科研设计和论证。所以,一篇好的医学论文诞生,既要有好的选题,好的设计,又要有具体的实施和认真的总结,作者必须把握好每一个环节,做到“严肃、严谨、严密”。有的人临时想写一篇论文,平时没有选题、没有设计、没有素材、更谈不上积累,怎么能临时写出论文呢?所以,医学论文来不得半点想当然、来不得半点虚假。第二方面:撰写医学论文必须具有“五个体现”1、体现真实性医学论文必须取材可靠,有原始资料和记录,实验结果务必忠于事实和主题,无夸大之处,更不能因实验数据与设计有出入而轻易改变程序和操作方法。当你做出的实验失败了,只要找出失败的真正原因,你同样可以总结出有价值的论文,同样可以发表。你的论文告诉后来的研究者,在此课题研究的某一个方面上道路不通;它的意义也就是为后来的研究者节约了大量的人力、物力以及宝贵的时间。2、体现再现性医学论文报道临床或实验观察所得出的结论,其所采用的实验对象、实验方法、实验器材和实验步骤,以及得出的结果,都必须经得起他人在任何时间、任何地点、相同条件下的重复,并能得出相同的结果。例如,我国有的医学论文虽然发表了,但别人重复不出你论文当中的结果,这样的医学论文没有任何价值。再如,我国医学工作者的医学论文寄到国外医学杂志发表时,其杂志社均有严格的审编过程,必要时有相应的机构再现你的论文结果,考察其可靠程度,然后再根据情况决定是否发表。3、体现准确性医学论文中,数据必须准确,必须反复探讨,特别是统计学处理。例如:有的论文作者演算数据错误,编辑也未严格把关,不知不觉中统计学出了差错,文章虽然发表了;但最后在评职称中,错误被评审的专家核查出来了,当事人未能晋升上职称还不知是什么原因,这样的教训值得引起大家注意和重视。另外,论文中的引文,必须是作者亲自阅读的文献资料,引用一定要准确,引文用词必须规范,术语必须准确;自己的论文推导出来的结论必须合乎逻辑,表达准确。因此,在你的论文完成之前,那怕是一个标点、一个字符、一个数据你都必须核对得准确无误。4、体现逻辑性我们写作医学论文,必须结构严谨,层次清楚,概念明确,判断恰当,推理合乎逻辑。不能概念不清,判断不当,更不能证据不足,论证不力,导致观点不明。目前,对医学论文的格式要求各家杂志社不尽相同;因此,作者在写作前,必须参阅你想投稿的医学期刊,每一种期刊都有它相应《投稿须知》或《稿约》。通常情况下,以中华系列杂志的《稿约》要求为标准,从文题、署名、摘要(目的、方法、结果、结论)主题词、正文、参考文献等多个方面把握全篇。5、体现公开性医学论文的作者要客观真实地评价自己和他人的研究成果,切忌片面性和说过头话。对临床实验结果要如实所映,不能任意取舍,不摒弃偶然现象。例如:某人做一项临床研究,对200例病人进行药物疗效观察,结果只有50例有效,有效率为25%;而作者若舍弃100例无效病例,只报道100例,仍保留50例有效,会导致有效率为50%的错误结果。此外,我们引用他人科研成果或文献资料时,必须亲自查阅,注明出处,以示对作者的尊重和公正。第四大要素:实用性医学论文发表后,对人类医学事业具有使用价值,是一种社会承认的劳动。发表论文最终目的就是给同行参阅,效仿使用,推动医学事业的向前发展。如读者用了你的论文中提供的方法,则必然有效,能取得良好的社会和经济效益。从现代需要的观点出发,医学论文有的能解决防病治病的实际问题,具有实用价值;有的着眼示来,能促进医学科学技术的发展,具有较高的理论价值和社会价值。如果一篇医学论文内容空洞,言之无物,不仅谈不上发表,更谈不上它存在的价值;即使这样的论文侥幸发表了,别人一看就知道没有水准,一看就知道是关系稿、凑数稿,更经不住时间和实践的检验,将对作者、编者、以及该医学期刊都是一个不少的负面影响。第五大要素:可读性撰写医学论文是为了交流、传播,存储新的医学信息,让他人用较少的时间和脑力就能顺利阅读,以解论文的内容和实质。这不仅要求论文结构严谨,层次清楚,用词准确;而且要求论文语言通顺,文风清新,可读性强。一般我们在阅读时,首先会参阅论文的摘要。摘要一般在300~500字之间,英文摘要则相对具体些(600个实词左右),内容包括目的、方法、结果、结论四个部分,它是全篇内容的高度浓缩和提炼;也是整个论文的精髓和灵魂。读者只有在参阅论文摘要,确定其价值后,才会更进一步去参阅详细的内容,再去进一步去应用,所以摘要与正文同样重要。如为论著虽标引2~5个主题词。正文语句结构多以主谓宾句为主,是一个有血有肉的实体;同时,必须让读者感受到文章的脉搏和灵气,体会到论文的思想和主题,有很强的可读性。正文中的医学名词,以1989年科学出版社出版的《医学名词》为标准。药物名称应使用1995年版药典(法定药物),英文药物名称则采用国际非专利药名,不用商品名。计量单位必须是1991年中华医学会编辑出版的《法定计量单位在医学上的应用》一书为蓝本。数字执行GB/T15835-1995《关于出版物上数字用法的规定》。统计学符号按GB3358-82《统计学名词及符号》的有关规定书写。文中缩略语尽量少用。参考文献,按BG7714-87《文后参考文献著录规则》,采用顺序编码制著录。综上所述,以上“五大要素”是我们撰写医学论文的基本要求,也是我们撰写医学论文的核心要素。总之,撰写医学论文时,我们必须客观地、真实地反映事物的本质,反映事物的内部规律,完成从感性认识到理性认识的过程,尽量反映我国医学科研工作的重大进展,促进国内外医学界学术交流。真正做一个发现医学真理、检验医学真理、实践医学真理、证实医学真理和发展医学真理的人。

多看看文献。本来就没实际性的”墨水“,肯定不容易写。

纳米技术与医学论文

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。下面是我整理的纳米材料科技论文,希望你能从中得到感悟!

纳米材料综述

【摘要】 本文综述了纳米材料的发展、种类、结构特性、目前应用状况和相关的应用前景,并对我国和国际目前的研究水平和投入做了对比分析。

【关键词】 纳米、纳米技术、纳米材料、纳米结构

1 引言

著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。”[1]

1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。1982年,科学家发明研究纳米的重要工具――扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。[2]

2 纳米技术

纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。

3 纳米材料

纳米材料的概念

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在微米以下,即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。

纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。

纳米材料的分类

纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。

(1)纳米粉末

纳米粉末又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。

(2)纳米纤维

纳米纤维指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。静电纺丝法是目前制备无机物纳米纤维的一种简单易行的方法。

(3)纳米膜

纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。

(4)纳米块体

纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。

4 纳米材料的应用

由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性[8]、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。

5 纳米材料的前景

纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。纳米材料的应用涉及到各个领域,21世纪将是纳米技术的时代。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。

21世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性,设计出各种新型的材料和器件。通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品,目前已出现可喜的苗头,具备了形成21世纪经济新增长点的基础。纳米材料将成为材料科学领域一个大放异彩的明星展现在新材料、能源、信息等各个领域,发挥举足轻重的作用。随着其制备和改性技术的不断发展,纳米材料在精细化工和医药生产等诸多领域会得到日益广泛的应用。

6 结束语

纳米材料在21世纪高科技发展中占有重要地位。纳米材料由于其无可挑剔的优越性,已成为世界各国研究的热点。其应用已渗透到人类生活和生产的各个领域,促使许多传统产业得到改进。世界发达国家的政府都在部署未来10~15年有关纳米科技研究规划。我国对纳米材料的研究也取得了令世界瞩目的、具有前沿性的科技成果。纳米技术的开发,纳米材料的应用,推动了整个人类社会的发展,也给市场带来了巨大的商业机遇。

参考文献

[1]孙红庆.科技天地―计划与市场探索[M],2001/05

[2]肖建中.材料科学导论[M].北京:中国电力出版社,2001,43~50.

[3]吴润,谢长生.粉状纳米材料的表面研究进展与展望[J].材料导报.2000,14(10):43~46.

纳米材料与应用

摘要 :简要介绍了纳米材料的分类以及它的基本效应,讲解了纳米材料的特殊性能。分析了新型能源纳米材料中光电转换、热点转换、超级电容器及电池电极的纳米材料;环境净化纳米材料中的光催化、吸附、尾气处理等;较具体的讲述了纳米生物医药材料中纳米陶瓷材料、纳米碳材料、纳米高分子材料、纳米复合材料。

关键词 :纳米材料 性能 应用

纳米是一个长度单位,1nm=10ˉ9m。纳米材料是指在结构上具有纳米尺度调制特征的材料,纳米尺度一般是指1~100nm。当一种材料的结构进入纳米尺度特征范围时,其某个或某些性能会发生明显的变化。纳米尺度和性能的特异变化是纳米材料必须同时具备的两个基本特征。

按材质,纳米材料可分为纳米金属材料、纳米非金属材料、纳米高分子材料和纳米复合材料。其中纳米非金属材料又可细分为纳米陶瓷材料、纳米氧化物材料和其他非金属纳米材料。

悬浮于流体的纳米颗粒可大幅度提高流体的热导率及传热效果,例如在水中添加5%的铜纳米颗粒,热导率可以增大约倍,这对提高冶金工业的热效率有重要意义。纳米颗粒可表现出同质大块物体不同的光学特性,例如宽频带、强吸收、蓝移现象及新的发光现象,从而可用于发光反射材料、光通讯、光储存、光开光、光过滤材料、光导体发光材料、光学非线性元件、吸波隐身材料和红外线传感器等领域。

纳米颗粒在电学性能方面也出现了许多独特性。例如纳米金属颗粒在低温下呈现绝缘性,纳米钛酸铅、钛酸钡等颗粒由典型得铁电体变成了顺电体。可以利用纳米颗粒制作导电浆料、绝缘浆料、电极、超导体、量子器件、静电屏蔽材料压敏和非线性电阻及热电和介电材料等。纳米粒子的粒径小,表面原子所占比例很大,表面原子拥有剩余的化学键合力,表现出很强的吸附能力和很高的表面化学反应活性。新制备的金属粒子接触空气,能进行剧烈氧化反应或发光燃烧(贵金属除外)。

纳米材料还广泛应用于环境保护中,它具有能耗低、操作简便、反应条件温和、可减少二次污染等突出特点。纳米材料在生物学性能也有广泛应用,用纳米颗粒很容易将血样中极少的胎儿细胞分离出来,方法简便,成本低廉,并能准确判断胎儿细胞是否有遗传缺陷。人工纳米材料由于其所具有的独特性质能满足人类发展中的多样化需求,近年来获得迅速的发展。目前,越来越多的人工纳米材料已被投放市场,给人们的生活带来巨大的变化和进步。

来自美国加州大学洛杉矶分校和中国天津大学的研究人员们合作,将导电性能良好的碳纳米管和高容量的氧化钒编织成多孔的纤维复合材料,并将该复合材料应用到超级电容器的电极上,获得了新型的具有高能量密度和高循环稳定性的超级电容器。这种超级电容器是非对称的,包含复合材料的阳极和传统的阴极,以及有机的电解质。其中电极薄膜的厚度要比之前的报道高很多,可以达到100微米上,从而使其可以获得更高的能量密度。由于其制备过程与传统的锂离子电池和电容器的生产过程近似,研究人员们认为这种新型电容器的可以比较容易地投入大规模生产。同时,他们也相信该项研究成果向同行们展示了纳米复合材料在高能量、高功率电子设备中的应用前景。

通过先进碳材料的应用,综合了人造石墨和天然石墨做为锂离子电池负极材料活性物质的优点,克服了它们各自存在的缺点,是满足先进锂离子电池性能要求的新一代碳贮锂材料。具有下列优点:微观结构稳定性好,适合大电流充放电;表观性状相容性好,适合形成稳定的SEI膜;粒子形貌、粒径分布适应性强,适合不同的加工工艺要求。适用于先进锂离子电池(液态、聚合物)对下列性能的要求:更高的比能量(体积比、重量比);更高的比功率;更长的循环寿命;更低的使用成本。

应用纳米TiO2泡沫镍金属滤网及甲醛、氨、TVOC吸附改性活性炭等新材料,以及采用惯流风扇取代传统的离心风扇结构,提高空气净化器的性能。光催化泡沫镍金属滤网的特性;镍金属网是用特殊的工艺方式将金属镍制作成具有三维网状结构的金属滤网。它具有:空隙加大,一般大于96%;通透性好,流体通过阻力小;其实际面积比表观面积大很多倍的特性。镍金属网是将纳米级的TiO2以特殊工艺镶嵌在泡沫状镍金属网上,从而将光催化材料的杀菌、除臭、分解有机物的功能和镍的超稳定性很好的结合在一起。它有效的解决了其他光催化材料在使用中存在的有效受光面积小、流体和光催化材料接触面积小、气阻大以及因光催化材料在光催化作用下的强氧化性致使其附着基材易老化和光催化易脱落而使其寿命短的缺陷。活性炭改性工艺及增强性能;活性炭是一种多孔性的含碳物质,它具有高度发达的空隙构造,是一种优良的空气中异味吸附剂。

纳米TiO2具有巨大的比表面积,与废水中有机物更充分地接触,可将有机物最大限度地吸附在它的表面具有更强的紫外光吸收能力,因而具有更强的光催化降解能力可快速降息夫在其表面的有机物分解。此外,在汽车尾气催化的性能方面以及在空气净化中广泛应用。

常规陶瓷由于气孔、缺陷的影响,存在着低温脆性的缺点,它的弹性模量远高于人骨,力学相容性欠佳,容易发生断裂破坏,强度和韧性都还不能满足临床上的高要求,使它的应用受到一定的限制。而纳米陶瓷由于晶粒很小,使材料中的内在气孔或缺陷尺寸大大减少,材料不易造成穿晶断裂,有利于提高材料的断裂韧性;而晶粒的细化又同时使晶界数量大大增加,有助于晶粒间的滑移,使纳米陶瓷表现出独特的超塑性。许多纳米陶瓷在室温下或较低温度下就可以发生塑性变形。纳米陶瓷的超塑性是其最引入注目的成果。传统的氧化物陶瓷是一类重要的生物医学材料,在临床上已有多方面应用,主要用于制造人工骨、人工足关节、肘关节、肩关节、骨螺钉、人工齿,以及牙种植体、耳听骨修复体等等。

由碳元素组成的碳纳米材料统称为纳米碳材料。在纳米碳材料中主要包括纳米碳纤维、碳纳米管、类金刚石碳等;纳米碳纤维除了具有微米级碳纤维的低密度、高比模量、比强度、高导电性之外,还具有缺陷数量极少、比表面积大、结构致密等特点,这些超常特性和良好的生物相容性,使它在医学领域中有广泛的应用前景,包括使人工器官、人工骨、人工齿、人工肌腱在强度、硬度、韧性等多方面的性能显著提高;此外,利用纳米碳材料的高效吸附特性,还可以将它用于血液的净化系统,清除某些特定的病毒或成份。

目前,纳米高分子材料的应用已涉及免疫分析、药物控制释放载体、及介入性诊疗等许多方面。免疫分析作为一种常规的分析方法,在蛋白质、抗原、抗体乃至整个细胞的定量分析上发挥着巨大的作用。在特定的载体上,以共价结合的方式固定对应于分析对象的免疫亲和分子标识物,将含有分析对象的溶液与载体温育,通过显微技术检测自由载体量,就可以精确地对分析对象进行定量分析。在免疫分析中,载体材料的选择十分关键。纳米聚合物粒子,尤其是某些具有亲水性表面的粒子,对非特异性蛋白的吸附量很小,因此已被广泛地作为新型的标记物载体来使用。

近年来,组织工程成为一个崭新的研究领域,吸引了众多学科研究者的关注。在工程化的方法培养组织、器官的过程中,用于细胞种植、生长的支架材料是一个关键的因素,能否使种植的细胞保持活性和增殖能力,是支架材料应用的重要条件。据报道,将甲壳素按一定的比例加入到胶原蛋白中可以制成一种纳米结构的复合材料,与以往的胶原蛋白支架相比,其力学强度得到增强,孔径尺寸增大,表明这种具有纳米结构的复合材料作为细胞生长的三维支架,在力学、生物学方面有很大的优越性和应用潜力。在硬组织修复与替换的研究中,纳米复合材料也开始逐步显示出其优异的性能。用肽分子和两亲化合物的自组装可以得到一种类似细胞外基质的纤维状支架,这种纳米纤维可以引导羟基磷灰石的矿化,形成纳米结构的复合材料,研究发现,这种纳米复合材料内部的微观结构与自然骨中胶原蛋白/羟基磷灰石晶粒的排列结构一致。

参考文献:

[1] 陈飞. 浅谈纳米材料的应用[J]. 中小企业管理与科技(下旬刊). 2009(03)

[2] 张桂芳. 纳米材料应用与发展前景概述[J]. 黑龙江科技信息. 2009(16)

纳米技术的含义-1 . 所谓纳米技术,是指在纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。 . 纳米技术与微电子技术的主要区别是:纳米技术研究的是以控制单个原子、分子来实现设备特定的功能,是利用电子的波动性来工作的;而微电子技术则主要通过控制电子群体来实现其功能,是利用电子的粒子性来工作的。人们研究和开发纳米技术的目的,就是要实现对整个微观世界的有效控制。 . 纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。1993年,国际纳米科技指导委员会将纳米技术划分为纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学等6个分支学科。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。 纳米技术的含义-2 纳米技术(纳米科技nanotechnology) 纳米技术其实就是一种用单个原子、分子制造物质的技术。 从迄今为止的研究状况看,关于纳米技术分为三种概念。第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术未取得重大进展。 第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的“加工”来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即便发展下去,从理论上讲终将会达到限度。这是因为,如果把电路的线幅变小,将使构成电路的绝缘膜的为得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。 第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。 所谓纳米技术,是指在纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。 纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。 纳米科技现在已经包括纳米生物学、纳米电子学、纳米材料学、纳米机械学、纳米化学等学科。从包括微电子等在内的微米科技到纳米科技,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高到前所未有的高度。我国著名科学家钱学森也曾指出,纳米左右和纳米以下的结构是下一阶段科技发展的一个重点,会是一次技术革命,从而将引起21世纪又一次产业革命。 虽然距离应用阶段还有较长的距离要走,但是由于纳米科技所孕育的极为广阔的应用前景,美国、日本、英国等发达国家都对纳米科技给予高度重视,纷纷制定研究计划,进行相关研究。

浅谈纳米技术及其在机械工业中的应用摘要:主要介绍了纳米技术的内涵、主要内容及纳米技术在微机械和包装、食品机械工业中的应用,并研究预测了纳米技术在未来机械工业中的发展前景。关键词:纳米技术;微机械;机械工业;发展前景1纳米技术的内涵纳米是长度单位,原称“毫微米”,就是10-9(10亿分之一)米。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1~100纳米范围内材料的性质和应用。纳米科技与众多学科密切相关,它是一门体现多学科交叉性质的前沿领域。若以研究对象或工作性质来区分,纳米科技包括三个研究领域:纳米材料、纳米器件、纳米尺度的检测与表征。其中纳米材料是纳米科技的基础;纳米器件的研制水平和应用程度是人类是否进入纳米科技时代的重要标志;纳米尺度的检测与表征是纳米科技研究必不可少的手段和理论与实验的重要基础。纳米科技的最终目的是以原子、分子为起点,去设计制造具有特殊功能的产品。2纳米技术的主要内容(1)纳米材料包括制备和表征。在纳米尺度下,物质中电子的放性(量子力学学性质)和原子的相互作用将受到尺度大小的影响,如能得到纳米尺度的结构,就可能控制材料的基本性质如熔点、磁性、电容甚至颜色。而不改变物质的化学成份。(2)纳米动力学主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等。MEMS使用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。(3)纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间相互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。(4)纳米电子学包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷。“更快”是指响应速度要快。“更冷”是指单个器件的功耗要小。但是“更小”并非没有限度。3纳米技术在机械工业中的应用3.1纳米技术在微机械领域中的应用随着纳米技术应用途径的不断拓宽,微机械的开发在全世界方兴未艾。例如,进入人体的医疗机械和管道自动检测装置所需的微型齿轮、电机、传感器和控制电路等。制造这些具有特定功能的纳米产品,其技术路线可分为两种:一是通过微加工和固态技术,不断将产品微型化;二是以原子、分子为基本单元,根据人们的意愿进行设计和组装,从而构筑成具有特定功能的产品。3.1.1采用微加工技术制造纳米机械(1)微细加工。日本发那科公司开发的能进行车、铣、磨和电火花加工的多功能微型精密加工车床(FANUCROBO nano Ui型),可实现5轴控制,数控系统最小设定单位是1nm(10-3μm)。该机床设有编码器半闭环控制,还有激光全息式直线移动的全闭环控制。编码器与电机直联,具有每周6 400万个脉冲的分辨率,每个脉冲相当于坐标轴移动0.2 nm,编码器反馈单位为1/3 nm,故跟踪误差在±1/3 nm以内。直线分辨率为1 nm,跟踪误差在±3 nm以内。CNC装置采用FANUC-16i,实现AInano轮廓控制。并用FANUCSERVOMOTORαi伺服电机装上高分辨率检测装置及αi系列伺服放大器,实现了微细加工。(2)微型机器人。在工业制造领域,微型机器人可以适应精密微细操作,尤其在电子元器件的制造方面。美国迈特公司的研究人员最近设计出一种用于组装纳米制造系统的微型机器人,这种机器人的长度约为5mm。研究人员称,假设能利用纳米制造技术使这种机器人的体积不断缩小,其最终的体积不会超过灰尘的微粒。日本三菱公司也开发了一种微型工业机器人,该机器人采用了5节闭式连杆机构,以实现手臂的轻量化与高刚性,其动作速度及精度完全可以赶上专用机器人。往复上下方向25 mm,水平方向100 mm的拾取动作,所需时间缩短到0.28 s。另外,通过采用闭式连杆机构与高刚性减速机,实现了比以往机器人高10%的位置重复精度(±5 nm),可适用于精密微细操作。我国在微型机器人的研制方面也取得了可喜的成绩。据媒体报道,由哈尔滨工业大学研制的机器人,其操作精度达到了纳米级,可以应用于分子生物学基因操作,能够对细胞和染色体进行“手术”,并能在微电子、精密加工等精度要求较高的领域一显身手。(3)微型电机。美国俄亥俄州克利夫西卡塞大学已建立了一所纳米级微型电机实验室,专门研究纳米技术及其超微机电系统。美国加利福尼亚大学伯克利分校研制的微型电动机,小到只能在显微镜下才能看得见。德国汽车零件制造商博士公司正在研制纳米技术传感器,这种传感器将为人们提供关于汽车上每个零部件在三维空间中运动的精确信息。当微型传感器探测到速度骤减时,就会自动释放安全气囊。3.1.2采用自组装技术制造纳米机械(1)生物器件。以分子自组装为基础制造的生物分子器件是一种完全抛弃以硅半导体为基础的电子器件。将一种蛋白质选作生物芯片,利用蛋白质可制成各种生物分子器件,如开关器件、逻辑电路、存储器、传感器以及蛋白质集成电路等。美国密歇根韦思大学医学院生物分子信息小组,利用细菌视紫红质(简称BR蛋白质)和发光染料分子研制具有电子功能的蛋白质分子集成膜,这是一种可使分子周围的势场得到控制的新型逻辑元件。美国锡拉丘兹大学也利用BR蛋白质研制模拟人脑联想能力的中心网络和联想式存储装置。(2)纳米分子电动机。美国IBM公司瑞士苏黎士实验室与瑞士巴塞尔大学的研究人员发现DNA能够被用来弯曲直径不及头发丝的五十分之一的硅原子构成的“悬臂”。上下弯曲,顶端则粘有单股DNA链。DNA自然形成双螺旋结构,双链被分开后,它们会力图重新组合。当研究人员将带有单股DNA链的“悬臂”置于含有与之对应的单股DNA链的溶液中,这两个链就会自动配对结合在一起,小“悬臂”在这种力的作用下开始弯曲。研究人员利用这种生物力学技术制造带有纳米级阀门的微型胶囊(纳米分子电动机)。通过控制这种驱动力来控制阀门的开合,可以将精确剂量的药物传送到身体的需要部位来达到治疗的目的。3.2纳米技术在包装机械领域中的应用采用纳米材科技术对包装机关键零部件(如轴承、齿轮、弹簧等)进行金属表面纳米粉涂层处理,可以提高设备的耐磨性、硬度和寿命。碳纳米管还具有较高的机械强度和较高的热导率。由于具有非常大的长度—直径比,可以制造出任何复杂形状的零件,是复合材料理想的增强纤维。目前,用价格低廉的纳米塑料制成的齿轮、陶瓷轴承、纳米陶瓷蚊辊、电雕辊等印刷包装机械零件已走进企业,开始代替金属材料。现代胶印机上应用着很多传感器.如控制飞达纸堆的自动升降、气泵供气时间检测、合压时间检测、空张检测、墨量控制等。纳米陶瓷具有良好的耐磨性、较高的强度及较强的韧性可用于制造刀具、包装和食品机械的密封环、轴承等以提高其耐磨性和耐蚀性,也可用于制作输送机械和沸腾干燥床关健部件的表面涂层。3.3纳米技术在食品机械领域中的应用纳米SiC、Si3N4在较宽的波长范围内对红外线有较强的吸收作用,可用作红外吸波和透波材料,做成功能性薄膜或纤维。纳米Si3N4非晶块具有从黄光到近红外光的选择性吸收,也可用于特殊窗口材料,以纳米SiO2做成的光纤对600 nm以上波长光的传输损耗小于10 dB/km,以纳米SiO2和纳米TiO2制成的微米级厚的多层干涉膜,透光性好而反射红外线能力强,与传统的卤素灯相比,可节省15%的电能。经研究证明,将30~40 nm的TiO2分散到树脂中制成薄膜,成为对400 nm波长以下的光有强烈吸收能力的紫外线吸收材料,可作为食品杀菌袋和保鲜袋最佳原料。纳米SiO2光催化降解有机物水处理技术无二次污染,除净度高,其优点是:①具有很大的比表面积,可将有机物最大限度地吸附在其表面;②具有更强的紫外线吸收能力,因而具有更强的光催化降解能力,可快速将吸附在其表面的有机物分解掉。这为污水处理量较大的食品企业提供了有力的技术支持。介孔固体和介孔复合体是近年来纳米材料科学领域较引人注目的研究对象,由于这种材料较高的孔隙率(孔洞尺寸为2~50 nm)和较高的比表面,因而在吸附、过滤和催化等方面有良好的应用前景。对纯净水、软饮料等膜过滤和杀菌设备又提供了一个广阔的发展空间。橡胶和塑料是包装和食品机械应用较多的原材料。但通常的橡胶是靠加入炭黑来提高其强度、耐磨性和抗老化性,制品为黑色,不适宜用在食品机械上。纳米材料的问世使这一问题迎刃而解。新的纳米改性橡胶各项指标均有大幅度提高,尤其抗老化性能提高3倍,使用寿命长达30年以上,且色彩艳丽,保色效果优异。普通塑料产量大、应用广、价格低,但性能逊于工程塑料,而工程塑料虽性能优越,但价格高,限制了它在包装和食品机械上的大范围应用。用纳米材料对普通塑料聚丙烯进行改性,达到工程塑料尼龙-6的性能指标,且工艺性能好、成本低,可大量采用。4纳米技术在机械行业中的发展前景(1)机械及汽车工业的滑配原件如:轴承、滑轨上应用纳米陶瓷镀膜能产生超底的磨擦界面,大大减低磨损并能提高负载。(2)塑胶流道的低粘应用:例如T型模、拉丝模、套筒和热胶道,可有效减少积料碳化的产生几率。(3)射出成型时发生的粘模、包封短射、镜面雾化及拖痕均具有革命性的改善,尤其是在滑块及顶针上所展现的干式润滑,更是任何金属所无法表现的优异性。(4)IC封装胶、橡胶及发泡塑料由于具有极高的粘着性,因此必须借助大量脱模剂来帮助脱模,纳米陶瓷的荷叶效应可减少脱模剂的使用及模具清理时间。(5)纳米陶瓷的低摩擦、低沾粘特性使塑胶在模具内的流动性大幅提升,特别是高精度模具例如薄光板、塑胶镜片、汽车聚光灯罩等模具应用后对产品的不良率上均有明显的改善。5结语综上所述,纳米技术是近十多年来逐步发展起来的一门前沿性与综合性交叉的新学科,是现代科学和现代技术相结合的产物,它的迅猛发展将引发21世纪新的工业革命。美国商业通讯公司研究报告称,未来五年,用于橡胶产品和油墨生产的碳黑填充料将继续高居纳米材料需求榜首。今后几年,全球纳米材料的需求将以2.7%年增长速度增长,到2010年将达到1 030万t,所以纳米包装具有较大的市场发展潜力。过去,我国机械包装工业的一些先进设备、先进技术,大多是依靠进口。纳米技术的出现,将对我国机械包装行业的技术创新带来新的发展机遇。相信在不远的将来,纳米技术将广泛应用于机械工业的各个领域,它给机械工业带来的变化将是巨大的。参考文献1向春礼.纳米科技及其发展前景[J].新材料产业,2001(4)2王新林.金属功能材料的几个最新发展动向[J].新材料产业,2001(4)3唐苏亚.纳米技术在微机械领域中的应用[J].微电机,2002(5)4万乃建.21世纪数控技术新面貌[J].机械制造,2001(20)5杨大智.智能材料与智能系统[M].天津:天津大学出版社,2000

1 引 言 磁性纳米粒子是近年来发展起来的一种新型材料,因其具有独特的磁学特性,如超顺磁性和高矫顽力,在生物分离和检测领域展现了广阔的应用前景[1]。同时,因磁性氧化铁纳米粒子具有小尺寸效应、良好的磁导向性、生物相容性、生物降解性和活性功能基团等特点[2~4], 在核磁共振成像、靶向药物、酶的固定、免疫测定等生物医学领域表现出潜在的应用前景[5~7]。但由于其较高的比表面积,强烈的聚集倾向,所以通常对其表面进行修饰,降低粒子的表面,能得到分散性好、多功能的磁性纳米粒子。对磁性纳米粒子的表面进行特定修饰,如果在修饰后的粒子上引入靶向剂、药物分子、抗体、荧光素等多种生物分子,可以改善其分散稳定性和生物相容性, 以实现特定的生物医学应用。此外,适当的表面修饰或表面功能化还可以调节磁性纳米粒子表面的反应活性[8],从而使其应用在细胞分离、蛋白质纯化、核酸分离和生物检测等领域。本文介绍了磁性氧化铁纳米粒子的制备方法, 比较了各种制备方法的优缺点,并对其在生物分离及检测中应用的最新进展进行了评述。2 磁性氧化铁纳米粒子的合成方法 磁性纳米粒子的制备是其应用的基础。目前已发展了多种合成和制备方法,如共沉淀法、水热合成法、溶胶凝胶法和微乳液法等,上述方法均可制备高分散、粒度分布均匀的纳米粒子,并能方便地对其表面进行化学修饰,这些方法的优点和缺点见表1。 在这些合成方法当中,共沉淀法是水相合成氧化铁纳米粒子最常用的方法。该方法制备的磁性纳米颗粒具有粒径小,分散均匀,高度生物相容性等优点,但制得的颗粒存在形状不规则,结晶差等缺点。通过在反应体系中加入柠檬酸,可得到形状规则、分散性好的纳米粒子。利用这种方法合成的磁性纳米材料被广泛应用在生物化学及生物医学等领域[9]。微乳液法制备纳米粒子,产物均匀、单分散,可长期保持稳定,通过控制胶束、结构、极性等,可望从分子规模来控制粒子的大小、结构、特异性等。微乳液合成的磁性纳米粒子仅溶于有机溶剂,其应用受到限制。通常需要在磁性纳米粒子的表面修饰上亲水分子,使其溶于水,从而能应用于生物、医学等领域。 热分解法是有机相合成氧化铁纳米粒子最多也是最稳定的方法。利用热分解法制备的纳米Fe3O4颗粒产物具有好的单分散性,且呈疏水性,可以长期稳定地分散于非极性有机溶剂中。该方法合成的氧化铁纳米粒子虽然具有粒径均一的特点,但必须在其表面偶联亲水性及生物相容性好的生物分子或制备成核壳结构,才可用于生物医学领域。表1 磁性氧化铁纳米粒子的制备方法(略)此外,绿色化学和生物方法合成氧化铁纳米粒子也备受关注[28,29]。磁性氧化铁纳米粒子除具有的表面效应、小尺寸效应、量子效应、宏观量子隧道效应等纳米粒子基本特性外,它同时还具有超顺磁特性、类酶催化特性和生物相容性等特殊性质,因此在医学和生物技术领域中的应用引起了人们的广泛兴趣。 3 磁性氧化铁纳米材料在生物分离与生物检测的应用 磁性氧化铁纳米材料在生物分离的应用 磁性氧化铁纳米粒子可以通过外界磁场来控制纳米粒子的磁性能,从而达到分离的目的,如细胞分离[30,31]、蛋白分离[32] 和核酸分离[33]等。此外磁性氧化铁纳米粒子由于兼有纳米、磁学和类酶催化活性等性能,不仅能够实现被检测物的分离和富集,而且能够使检测信号放大,在生物分析领域也都具有很好的应用前景[34,35]。磁性纳米粒子(MNP)能够应用于这些领域主要基于它的表面化学修饰,包括非聚合物有机固定、聚合物有机固定、无机分子固定及靶向配体修饰等[36](图1)。纳米粒子表面功能化修饰是目前研究的热点。 磁性氧化铁纳米材料在细胞分离方面的应用 细胞分离技术的目的是快速获得所需目标细胞。传统细胞分离技术主要根据细胞的大小、形态以及密度的差异进行分离,如采用微滤、超滤以及超离心等方法。这些方法操作简单,但是特异性差,而且存在纯度不高、制备量偏小、影响细胞活性等缺点,因此未能被广泛地用于细胞的纯化研究[37]。近年来,随着对磁性纳米粒子研究的深入,人们开始利用磁性纳米粒子来分离细胞[38,39]。如磁性氧化铁纳米粒子在其表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质、外源凝结素等),利用它们与目标细胞的特异性结合,在外加磁场的作用下将细胞分离、分类以及对其种类、数量分布进行研究。张春明等[40]运用化学连接方法将单克隆抗体CD133连接到SiO2/Fe3O4复合粒子的表面得到免疫磁性Fe3O4纳米粒子,利用它分离出单核细胞和CD133细胞。经培养后可以看出,分离出来的CD133细胞与单核细胞一样,具有很好的活性,能够正常增殖形成集落,并且在整个分离过程中对细胞的形态以及活性没有明显的毒副作用,这与Kuhara等[30]]报道的采用磁分离技术分离CD19+和CD20+细胞的结果一致。Chatterjee等[39]采用外源凝结素分别修饰聚苯乙烯包被的磁性Fe3O4微球和白蛋白磁性微球,利用凝结素与红细胞良好的结合能力,快速、高效的分离了红细胞。此外,磁性粒子在分离癌细胞和正常细胞方面的动物实验也已获得成功。 磁性氧化铁纳米材料在蛋白质和核酸分离中的应用 利用传统的生物学技术(如溶剂萃取技术等)来分离蛋白质和核酸程序非常繁杂,而磁分离技术是分离蛋白、核酸及其他生物分子便捷而有效的方法。目前在外磁场作用下,超顺磁性氧化铁纳米粒子已广泛应用于蛋白质和核酸的分离。 Liu等[41]利用聚乙烯醇等表面活性剂存在下制备出共聚磁性高分子微球,表面用乙二胺修饰后用于分离鼠腹水抗体,得到很好的分离效果。Xu等[42]在磁性氧化铁纳米粒子表面偶联多巴胺分子,用于多种蛋白质的分离纯化。多巴胺分子具有二齿烯二醇配体,它可以与氧化铁纳米粒子表面配位不饱和的Fe原子配位,形成纳米颗粒多巴胺复合物,此复合物可以进一步偶联次氨基三乙酸分子(NTA),NTA分子可特异螯合Ni+,对于具有6×His标签的蛋白质的分离纯化方面表现出很高的专一性。Liu等[43]用硅烷偶联剂(AEAPS)对核壳结构的SiO2/Fe2O3复合粒子的表面进行处理,研究复合磁性粒子对牛血清白蛋白(BSA)的吸附情况,结果表明BSA与磁性复合粒子之间是通过化学键作用被吸附的,复合粒子对BSA的最大吸附量达86 mg/g,显示出在白蛋白的分离和固定上有很大的应用潜力。Herdt等[44]利用羧基修饰的吸附/解离速度快的核壳型(Fe3O4/PAA)磁性纳米颗粒与Cu2+亚氨基二乙酸(IDA)共价交联,通过Cu2+与组氨酸较强的亲和能力实现了组氨酸标记蛋白的选择性分离,分离过程如图2所示。 磁性纳米粒子也是核酸分子分离的理想载体[45]。DNA/mRNA含有单一碱基错位,它们的富集和分离在人类疾病诊断学、基因表达研究方面有着至关重要的作用。Zhao等[46]合成了一种磁性纳米基因捕获器,用于富集、分离、检测痕量的DNA/mRNA分子。这种材料以磁性纳米粒子为核,包覆一层具有生物相容性的SiO2保护层,表面再偶联抗生素蛋白维生素H分子作为DNA分子的探针,可以将10-15 mol/L DNA/mRNA有效地富集,并能实时监控产物。Tayor等[47]用硅酸钠水解法、正硅酸乙酯水解法制备SiO2/Fe2O3磁性纳米粒子并对DNA进行了分离。结果表明,SiO2功能化的Fe2O3磁性纳米粒子对DNA的吸附分离效果明显好于单独Fe2O3磁性纳米粒子的分离效果,但是其吸附机理有待进一步研究。 磁性氧化铁纳米材料在生物检测中的应用 基于磁学性能的生物检测磁性氧化铁纳米粒子因其特有的磁导向性、小尺寸效应及其偶联基团的活性,兼有分离和富集地作用,使其在生物检测领域有广泛的应用。当检测目标为低含量的蛋白分子时,不能通过聚合酶链反应(PCR)对其信号进行放大,而磁微球与有机染料或量子点荧光微球结合可以对某些特异性蛋白、细胞因子、抗原和核酸等进行多元化检测,实现信号放大的作用。Yang等[48]采用一对分子探针分别连接荧光光学条码(彩色)和磁珠(棕色),对DNA(顶端镶板)和蛋白质(底截镶板)生物分子进行目标分析(图3)。如果目标DNA序列或蛋白存在,它将与两个磁珠结合一起,形成了一个三明治结构,经过磁选,光学条码可以在单磁珠识别目标水平下,通过分光光度计或是在流式细胞仪读出。通过此方法检测目标分子是基于数百万个荧光基团组成的微米尺寸光学条码信号的扩增而检测出来,其基因和蛋白的检出限可达到amol/L量级,甚至更低。 Nam等[49]利用多孔微粒法(每个微粒可填充大量条形码DNA)和金纳米微粒为基础的比色法生物条形码检测技术检测了人白细胞介素2(IL2),检出限可达到30 amol/L,比普通的酶联免疫分析技术的灵敏度高3个数量级。Oh等 [50]利用荧光为基础的生物条形码放大方法检测了前列腺特异性抗原(PSA)的水平,其检出限也低于300 amol/L,而且实现了快速检测。 在免疫检测中,磁性纳米粒子作为抗体的固相载体,粒子上的抗体与特性抗原结合,形成抗原抗体复合物,在磁力作用下,使特异性抗原与其它物质分离,克服了放免和酶联免疫测定方法的缺点。这种分离具有灵敏度高、检测速度快、特异性高、重复性好等优点。Yang等[51]通过反相微乳液法制备了粒径很小的SiO2包覆的Fe3O4磁性纳米粒子,生物分子通过诱导这些高单分散的磁性纳米粒子可用于酶的固定和免疫检测。Lange等[52]采用直接或三明治固相免疫法(生物素基化抗IgG抗体和共轭连接链霉素的磁性纳米粒子组成三明治结构)和超导量子干涉法(SQUID),研究它们在确定抗原、抗体相互作用免疫检测中的应用,结果表明特异性键合的磁性纳米颗粒的驰豫信号大小依赖于抗原(人免疫球蛋白G,IgG)的用量,这种磁弛豫(Magnetic relaxation)免疫检测方法得到的结果与广泛使用的ELISA方法的结果相当。 因磁性纳米粒子独特的性能,在生物传感器上也有潜在的应用前景。Fan等[53]在磁珠上偶联被检测物的一级抗体,在金纳米颗粒上连接二级抗体,两者反应后,利用HClNaClBr2将Au氧化为Au3+,催化发光胺(Luminol)化学发光,人免疫球蛋白G(IgG)的检出限可达2 × 10-10 mol/L ,实现了磁性纳米颗粒化学发光免疫结合的方法对IgG进行生物传感分析(图4)。 类酶催化特性在生物检测中的应用 Cao等[54]发现Fe3O4磁性纳米粒子能够催化H2O2氧化3,3',5,5'四甲基联苯胺(TMB)、3,3'二氨基联苯胺四盐酸盐(DAB)和邻苯二胺(OPD),使其发生显色反应,具有类辣根过氧化物酶(HRP)活性(图5),而且其催化活性比相同浓度的辣根过氧化物酶高40倍。并且Fe3O4磁性纳米粒子可以运用磁分离手段进行重复性利用,显著降低了生物检测的实验成本,利用此特性可进行多种生物分子的检测。 利用葡萄糖氧化酶(GOx)与Fe3O4磁性纳米粒子催化葡萄糖的反应(见式(1)和(2)),通过比色法检测葡萄糖,其检测的灵敏度达到5×10-5 ~ 1×10-3 mol/L 。由于Fe3O4磁性纳米粒子制备简单、稳定性好、活性高,成本低,因而比普通酶更有竞争优势,这也为葡萄糖的检测提供了高灵敏度和选择性的分析方法,在生物传感领域的应用上展现了巨大的潜能,为糖尿病人疾病的诊断提供了快速、灵敏的检测方法。然而要提高检测灵敏度,合成催化效率高的Fe3O4磁性纳米粒子及多功能磁性纳米粒子是关键。Peng等[56]用电化学方法比较了不同尺寸Fe3O4纳米粒子的催化活性发现,随着尺寸的变小,磁性纳米粒子的催化活性变高。Wang等[57]制备的单分散哑铃型PtFe3O4纳米粒子,由于本身尺寸和结构特点,可更大限度地提高催化活性。本研究组已经合成了分散性好和磁性高的氧化铁纳米粒子并对其进行了表征,利用其磁学和催化特性,已开展了葡萄糖等生物分子的检测,该方法的检出限达到1 μmol/L,具有灵敏度高、操作简便和成本低等优点[58]。总之,Fe3O4磁性氧化铁纳米粒子不但具有显著的超顺磁性,而且具有类辣根过氧化物酶催化特性,可通过使用过氧化物敏感染料,设计了一系列(如乙肝病毒表面抗原等)的免疫检测模型[59],因此超顺磁性纳米粒子在生物分离和免疫检测领域具有广阔的应用前景。4 结 语 随着纳米技术的迅速发展,磁性氧化铁纳米粒子的开发及其在生物医学、生物分析、生物检测等领域的潜在应用已经越来越受到重视,但同时也面临很多挑战和问题。(1)构建并制备尺寸小、粒径均一、分散性和生物相容性好及催化性能高的多功能磁性纳米粒子;(2)根据被检测生物分子的特点设计多功能磁性氧化铁纳米粒子,实现高灵敏度、特异性检测;(3)利用纳米氧化铁颗粒作为分子探针进行实时、在线、原位、活体和细胞内生物分子的检测。这些问题不仅是纳米材料在生物分子检测领域应用需要解决的难点,也是目前其进行生物分子检测研究的热点和重点。【参考文献】 1 Perez J M, Simeone F J, Saeki, Y, Josephson L, Weissleder R. J. Am. Chem. Soc., 2003, 125(34): 10192~101932 Kim G J, O'Regan R M, Nie S M. 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2005,17:714~7163 LIU JunTao(刘军涛), LIU RuPing(刘儒平), WANG MiXia(王蜜霞), LIU ChunXiu(刘春秀), LUO JinPing(罗金平), CAI XinXia(蔡新霞). Chinese J. Anal. Chem.(分析化学), 2009, 37(7): 985~9884 Lang C, Schuler D, Faivre D. Macromol. Biosci., 2007, 7(2): 144~1515 Silva G A. Surg. Neurol., 2007, 67(2):113~1166 Corot C, Robert P, Idee J M, Port M. Adv. Drug Delivery. Rev., 2006, 58(14): 1471~15047 Kohler N, Sun C, Wang J, Zhang M Q. Langmuir., 2005, 21(19), 8858~88648 LI BaoYu(李宝玉). Biomedical Nanomaterials(纳米生物医药材料). Beijing(北京): Chemical Industry Press(化学工业出版社), 2004: 1419 Tartaj P, Morales M P, GonzalezCarreno T, VeintemillasVerdaguer S, Serna C J. J. Magn. Magn. Mater., 2005, 290: 28~3410 ZHANG Xin(张 鑫), LI XinGang(李鑫钢), JIANG Bin(姜 斌). Chinese Chem. Industry. Eng.(化学工业与工程), 2006, 23(1): 45~4811 Wu J H, Ko S P, Liu H L, Jung M H, Lee J H, Ju J S, Kim Y K. Colloids Surf. A, 2008, 313/314: 268~27212 CHENG HaiBin(程海斌), LIU GuiZhen(刘桂珍), LI LiChun(李立春), GUAN JianGuo(官建国), Yuan RunZhang(袁润章). J. Wuhan University of Technology(武汉理工大学学报), 2003, 25(5): 4~613 QIU XingPing(邱星屏). J. Xiamen University: Natural Science(厦门大学学报:自然科学版), 1999, 38(5): 711~71514 Mao B D, Kang Z H, Wang E B, Lian S Y, Gao L, Tian C G, Wang C L. Mater. Res. Bull., 2006, 41(12): 2226~223115 Fan R, Chen X H, Gui Z, Liu L, Chen Z Y. Mater. Res. Bull., 2001, 36(3~4): 497~50216 Wang H W, Lin H C, Yeh Y C, Kuo C H. J. Magn. Magn. Mater., 2007, 310(2): 2425~242717 Harris L A, Goff J D, Carmichael A Y, Riffle J S, Harburn J J, St Pierre T G, Saunders M. Chem. Mater., 2003, 15(6):1367~137718 SONG LiXian(宋丽贤), LU ZhongYuan(卢忠远), LIAO QiLong(廖其龙). J. Funct. Mater.(功能材料), 2005, 36(11): 1762~176819 Itoh H, Sugimoto T. J. Colloid. Interface. Sci., 2003, 265(2): 283~29520 Xu J, Yang H B, Fu W Y, Du K, Sui Y M, Chen J J, Zeng Y, Li M H, Zou G. J. Magn. Magn. Mater., 2007, 309(2): 307~31121 Li Z, Wei L, Gao M Y, Lei H. Adv. Mater., 2005, 17(8): 11301~11305 22 Sun S H, Zeng H. J. Am. Chem. Soc., 2002, 124(28): 8204~820523 Bang J H, Suslick K S. J. Am. Chem. Soc. 2007, 129(8): 224224 Vijayakumar R, Koltypin Y, Felner I, Gedanken A. Mater. Sci. Eng. A, 2000, 286(1): 101~10525 Pinkas J, Reichlova V, Zboril R, Moravec Z, Bezdicka P, Matejkova J. Ultrason. Sonochem., 2008, 15(3): 257~26426 Khollam Y B, Dhage S R, Potdar H S, Deshpande S B, Bakare P P, Kulkarni S D, Date S K. Mater. Lett., 2002, 56(4): 571~57727 HAI YanBing(海岩冰), YUAN HongYan(袁红雁), XIAO Dan(肖 丹). Chinese Chem. Res. Appl.(化学研究与应用), 2006, 18(6): 744~74628 Jun Y W, Huh Y. M, Choi J S, Lee J H, Song H T, Kim S, Yoon, S, Kim K S, Shin J S, Suh J S, Cheon J. J. Am. Chem. Soc., 2005, 127(16), 5732~573329 Bharde A A, Parikh R Y, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad B L V, Shouche Y S, Ogale S, Sastry M. Langmuir, 2008, 24(11): 5787~579430 Kuhara M, Takeyama H, Tanaka T, Matsunaga T. Anal. Chem., 2004, 76(21): 6207~621331 Y, G. Biofuctionalization of Nanamaterials. WileyVCH: Weinheim 200532 Safarik I M S. Biomagn. Res. Technol., 2004, 2(1): 7

相关百科

热门百科

首页
发表服务