物理学知识与医学知识的渗透教学研究论文
物理学和医学其实是两门相辅相成的课程,医学的进步促进物理学的发展,物理学理论的深入也带来了医学理论的进一步发展。对于学习医学知识的学生来说如果能够认识到这一点,将物理学与医学结合起来学习,那么在医学学科的很多方面的学习可以起到事半功倍的效果。当然要培养起学生这样的意识和老师的努力是分不开的,老师在教授物理学时能够将医学知识结合起来,两者进行渗透教学,就会让学生明白学习物理学对于他们学习医学的的意义所在,也会在学习医学的过程中应用到物理学课堂中的知识。
一、在教学中启发学生明白二者联系
物理学是自然科学的一个分支,它研究中的许多方面与医学理论有着密切的联系。比如通过学习物理学的能量转换和代谢的热学知识,就能很好的理解体温调节的原理。还有通过学习力学知识也能更好的理解肌肉收缩、血液循环、呼吸运动、听觉功能。物理学中有电磁学,这与人体的神经传导、细胞生理、心电脑电等等都有共通之处。物理学的研究领域还有自然界中的温度、湿度、压强、放射线等等都会对人体造成影响,这和人的身体健康是密切相关的。在医学中不仅是病理、生理、药理知识的学习,还包括对医学仪器使用。这些先进的医学仪器例如核磁共振仪、X射线透视、超声波、激光等等都是物理学研究的成果在医学上的使用,因此在进行这些学科的教学中物理学不只是单单讲物理学的知识,而是把物理学的原理运用到医学上,这样学生才会更明白为什么在学习医学的过程中要学习物理学课程。
二、在教学中将各个模块与医学知识结合教学
(一)从力学教学的角度来说
力学是物理学中很重要的一个模块。在医学领域,外科对于骨折患者的治疗都会用一定大小和方向的力牵引患部来以平衡伤部的肌肉的恢复力,这其实和力学中的平行四边形法则息息相关。在护理和抢救伤员时,为了一般都会要求让伤员采取卧位,这是因为血液在重力的作用下会向下流淌,采取卧位可以防止伤员失血过多引起昏迷。在面对心力衰竭的病人时采取端坐位,这样可以减轻心脏的负担。这些都涉及到力学中的重力部分的知识。在讲到摩擦力时,可以结合人体的关节也都是有摩擦力的,为了让人的肢体更加的灵活,骨头和骨头的连接囊中都会有少量的滑液。体重大的人在运动时关节直接的摩擦力也会更大,这都是与力学息息相关的,所以在讲授力学的时候可以将这样的例子结合起来讲,这样学生就会听的更加的明白,也对今后的实践更有帮助。
(二)从流体力学的教学角度来说
在讲授流体力学时,可以结合医学中血液这一领域的知识。众多周知,动脉瘤多发于血液的交叉处,发于脑动脉的概率更大,血液到了此处由层流变为淌流,因此在检测动脉瘤时看看此处是否有湍流的噪音对于检测动脉瘤具有很大的意义。在教授流体力学时还应该结合体位对于血压测量的影响。这样学生就能够很好理解为什么针对不同的病人要采取不同的体位。
(三)从声学教学的角度来说
在声学的教学过程中,不应该仅仅只是介绍声学的例子,单纯的从物理的.角度去教授,而应该结合医学中对于声学的利用。比如在医学领域应用广泛的超声波检测,超声波不仅可以用于疾病的检察,例如利用A型超声波来检测人脑的中线,一般情况下正常人的脑中线在人颅骨的几何中心,最大的距离也不超过3CM.但是如果脑中有受伤或者有肿瘤则中线就会移位,用这样的方式去检查脑部的健康,可以让检查者没有痛苦,并且准确率也比较高。这就是物理中声学在医学中的应用,超声波不仅可以用来检测疾病,还可以用来加热身体的某些部分,人体通过吸收超声波得到热量,可以用于透热治疗腰肌疼痛和扭伤或者关节炎。这就是声学和能量转换学相结合的应用。可以说对于医学来讲物理学是其理论基础,而医学是物理学的理论操作。所以只有将二者结合起来学习才能够得到非常好的效果,但是现在很多物理学的教学是和医学分开教学的,各自有自己的主干和枝节,看起来似乎没有什么联系。但其实物理学和医学教学是有很多相辅相成之处,所以把二者结合起来教学,在讲授物理学的大模块时将医学理论穿插其中,就能够得到更好的效果。
三、医学院的物理学老师必须多掌握医学相关理论知识
医学院的物理学老师和其他的物理学老师不同的是对于这里的学生来说学医学才是自己的主修课程,但是其实对于医学院的学生来说学好物理学的知识才能真正理解医学中很多情况下为什么会采取截然不同的方法。这其中的原理何在。要让学生明白这一系列的问题,首先是老师自己必须也要是知道很多的医学理论知识和扎实的物理学知识,经常与医学基础课教师和临床课教师保持密切的联系,从而,拓宽自己的知识领域,以便在物理教学中纵横比较,左右逢源产挥洒自如,来促进物理教学质量的提高.这样在课堂教授的过程中才有能力将二者合二为一。将物理学与医学知识进行渗透教学。所以其实将物理学与医学渗透教学是对医学院的物理学老师提出了更高的要求,也是将医学院的物理学老师与其他学校的物理学老师区分开来的标志,医学院的物理学老师不仅是一名物理学上的优秀学者,也应该是一位医学上的爱好者,对于医学的知识领域也有着广泛的了解。
首先,登录中国期刊全文数据库、万方数据库或者 维普数据库(此为中国三大专业文献数据库)或国外Pubmed/Medline等国外专业数据库,然后搜索相关的文献,写出您的文章。其次,再去以上数据库中搜索相关专业期刊编辑部信息,找到投稿联系方式,这样的方法避免网上很多钓鱼网站,确保您投稿的期刊是合法的。最后,祝好运。欢迎交流。静石医疗,竭诚为您服务
物理学作为研究其他自然科学不可缺少的基础,其长期发展形成的科学研究 方法 已广泛应用到各学科当中。下面是我为大家整理的物理学博士论文,供大家参考。
《 物理学在科技创新中的效用 》
摘要:论述了X射线的发现,不仅对医学诊断有重大影响,还直接影响20世纪许多重大发现;半导体的发明,使微电子产业称雄20世纪,并促进信息技术的高速发展,物理学是计算机硬件的基础;原子能理论的提出,使原子能逐步取代石化能源,给人类提供巨大的清洁能源;激光理论的提出及激光器的发明,使激光在工农业生产、医疗、通信、军事上得到广泛应用;蓝光LED的发明,将点亮整个21世纪.事实告诉我们,是物理学推动科技创新,由此得出结论:物理学是科技创新的源泉.昭示人们,高校作为培养人才的场所,理工科要重视大学物理课程.
关键词:X射线;半导体;原子能;激光;蓝光LED;科技创新;大学物理
1引言
物理学是一门研究物质世界最基本的结构、最普遍的相互作用以及最一般的运动规律的科学[1-3],其内容广博、精深,研究方法多样、巧妙,被视为一切自然科学的基础.纵观物理学发展历史可以发现:其蕴含的科学思维和科学方法能够有效促进学生能力的培养和知识的形成,同时,其每一次新的发现都会带动人类社会的科技创新和科技发展.正因如此,大学物理成为了高等学校理、工科专业必修的一门基础课程.按照 教育 部颁发的相关文件要求[4-5],大学物理课程最低学时数为126学时,其中理科、师范类非物理专业不少于144学时;大学物理实验最低学时数为54学时,其中工科、师范类非物理专业不少于64学时.然而调查显示,众多高校(尤其是新建本科院校)并没有严格按照教育部颁发的课程基本要求开设大学物理及其实验课程.他们往往打着“宽口径、应用型”的晃子,大幅压缩大学物理和大学物理实验课程的学时,如今,大学物理及其实验课程的总学时数实际仅为32-96学时,远远低于教育部要求的最低标准(180学时).试问这么少的课时怎么讲丰富、深奥的大学物理?怎么能够真正发挥出大学物理的作用?于是有的院、系要求只讲力学,有的要求只讲热学,有的则要求只讲电磁学,…面对这种情况,大学物理的授课教师在无奈状态下讲授大学物理.从《大学物理课程 报告 论坛》上获悉,这不是个别学校的做法,在全国具有普遍性.殊不知,力、热、光、电磁、原子是一个完整的体系,相互联系,缺一不可.这种以消减教学内容为代价,解决课时不足的做法,就如同削足适履,是对教育规律不尊重,是管理者思想意识落后的一种体现.本文且不论述物理学是理工科必修的一门基础课,只论及物理学是科技创新的源泉这一命题,以期提高教育管理者对大学物理课程重要性的认识.
2物理学是科技创新的源泉
且不说力学和热力学的发展,以蒸汽机为标志引发了第一次工业革命,欧洲实现了机械化;且不说库伦、法拉第、楞次、安培、麦克斯韦等创立的电磁学的发展,以电动机为标志引发了第二次工业革命,欧美实现了电气化.这两次工业革命没有发生在中国,使中国近代落后了.本文着重论述近代物理学的发展对科学技术的巨大推动作用,从而得出结论:物理学是科技创新的源泉.1895年,威廉•伦琴(WilhelmR魻ntgen)发现X射线,这种射线在电场、磁场中不发生偏转,穿透能力很强,由于当时不知道它是什么,故取名X射线.直到1912年,劳厄(MaxvonLaue)用晶体中的点阵作为衍射光栅,确定它是一种光波,波长为10-10m的数量级[6].伦琴获1901年诺贝尔物理学奖,他发现的X射线开创了医学影像技术,利用X光机探测骨骼的病变,胸腔X光片诊断肺部病变,腹腔X光片检测肠道梗塞.CT成像也是利用X射线成像,CT成像既可以提供二维(2D)横切面又可以提供三维(3D)立体表现图像,它可以清楚地展示被检测部位的内部结构,可以准确确定病变位置.当今,各医院都设置放射科,X射线在医学上得到充分利用.X射线的发现不仅对医学诊断有重大影响,还直接影响20世纪许多重大科学发现.1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•劳仑斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d为晶格常数,α为入射光与晶面夹角,λ为X射线波长.布拉格父子提出使用X射线衍射研究晶体原子、分子结构,创立了X射线晶体结构分析这一学科,布拉格父子获1915年诺贝尔物理学奖.当今,X射线衍射仪不仅在物理学研究,而且在化学、生物、地质、矿产、材料等学科得到广泛应用,所有从事自然科学研究的科研院所和大多数高等学校都有X射线衍射仪,它是研究物质结构的必备仪器.1907年,威廉•汤姆孙(W•Thomson)发现电子,电子质量me=×10-31kg,电子荷电e=×10-19C.电子的荷电性引发了20世纪产生革命.1947年,美国的巴丁、布莱顿和肖克利研究半导体材料时,发现Ge晶体具有放大作用,发明了晶体三极管,很快取代电子管,随后晶体管电路不断向微型化发展.1958年,美国的工程师基尔比制成第一批集成电路.1971年,英特尔公司的霍夫把计算机的中央处理器的全部功能集成在一块芯片上,制成世界上第一个微处理器.80年代末,芯片上集成的元件数已突破1000万大关.微电子技术改变了人类生活,微电子技术称雄20世纪,进入21世纪微电子产业仍继续称雄.到各个工业区看看,发现电子厂比比皆是,这真是小小电子转动了整个地球啊!电子不仅具有荷电性,还具有荷磁性.
1925年,乌伦贝克—哥德斯密脱(Uhlenbeck-Goudsmit)提出自旋假说,每个电子都具有自旋角动量S轧,它在空间任意方向上的投影只可能取两个数值,Sz=±h2;电子具有荷磁性,每个电子的磁矩为MSz=芎μB(μB为玻尔磁子)[7].电子的荷磁性沉睡了半个多世纪,直到1988年阿贝尔•费尔(AlberFert)和彼得•格林贝格尔(PeterGrünberg)发现在Fe/Cr多层膜中,材料的电阻率受材料磁化状态的变化呈显著改变,其机理是相临铁磁层间通过非磁性Cr产生反铁磁耦合,不加磁场时电阻率大,当外加磁场时,相邻铁磁层的磁矩方向排列一致,对电子的散射弱,电阻率小.利用磁性控制电子的输运,提出巨磁电阻效应(giantmagnetoresistance,GMR),磁电阻MR定义MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)为零场下的电阻率,ρ(H)为加场下的电阻率[8].GMR效应的发现引起科技界强烈关注,1994年IBM公司依据巨磁电阻效应原理,研制出“新型读出磁头”,此前的磁头是用锰铁磁体,磁电阻MR只有1%-2%,而新型读出磁头的MR约50%,将磁盘记录密度提高了17倍,有利于器件小型化,利用新型读出磁头的MR才出现 笔记本 电脑、MP3等,GMR效应在磁传感器、数控机库、非接触开关、旋转编码器等方面得到广泛应用.阿尔贝?费尔和彼得?格林贝格尔获2007年诺贝尔物理学奖.1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中观察到MR高达105%,称为庞磁电阻(Colossalmagnetoresistance,CMR),钙钛矿氧化物中有如此高的磁电阻,在磁传感、磁存储、自旋晶体管、磁制冷等方面有着诱人的应用前景,引起凝聚态物理和材料科学科研人员的极大关注[10-12].然而,CMR效应还没有得到实际应用,原因是要实现大的MR需要特斯拉量级的外磁场,问题出在CMR产生的物理机制还没有真正弄清楚.1905年,爱因斯坦提出[13]:“就一个粒子来说,如果由于自身内部的过程使它的能量减小了,它的静质量也将相应地减小.”提出著名的质能关系式△E=△m莓C2式中△m.表示经过反应后粒子的总静质量的减小,△E表示核反应释放的能量.爱因斯坦又提出实现热核反应的途径:“用那些所含能量是高度可变的物体(比如用镭盐)来验证这个理论,不是不可能成功的.”按照爱因斯坦的这一重大物理学理论,1938年物理学家发现重原子核裂变.核裂变首先被用于战争,1945年8月6日和9日,美国对日本的广岛和长崎各投下一颗原子弹,迫使日本接受《波茨坦公告》,于8月15日宣布无条件投降.后来原子能很快得到和平利用,1954年莫斯科附近的奥布宁斯克原子能发电站投入运行.2009年,美国有104座核电站,核电站发电量占本国发电总量的20%,法国有59台机组,占80%;日本有55座核电站,占30%.截至2015年4月,我国运行的核电站有23座,在建核电站有26座,产能为千兆瓦,核电站发电量占我国发电总量不足3%,所以我国提出大力发展核电,制定了到2020年核电装机总容量达到58千兆瓦的目标.核能的利用,一方面减少了化石能源的消耗,从而减少了产生温室效应的气体———二氧化碳的排放,另一方面有力地解决能源危机.利用海水中的氘和氚发生核聚变可以产生巨大能量,受控核聚变正在研究中,若受控核聚变研究成功将为人类提供取之不尽用之不竭的能量.那时,能源危机彻底解除.
20世纪最杰出的成果是计算机,物理学是计算机硬件的基础.从1946年计算机问世以来,经历了第一至第五代,计算机硬件中的电子元件随着物理学的进步,依次经历了电子管、晶体管、中小规模集成电路、大规模集成电路、超大规模集成电路;主存储器用的是磁性材料,随着物理学的进步,磁性材料的性能越来越高,计算机的硬盘越来越小.近日在第十六届全国磁学和磁性材料会议(2015年10月21—25日)上获悉,中科院强磁场中心、中科院物理所等,正在对斯格明子(skyrmions)进行攻关,斯格明子具有拓扑纳米磁结构,将来的笔记本电脑的硬盘只有花生大小,ipod平板电脑的硬盘缩小到米粒大小.量子力学催生出隧道二极管,量子力学指导着研究电子器件大小的极限,光学纤维的发明为计算机网络提供数据通道.
1916年,爱因斯坦提出光受激辐射原理,时隔44年,哥伦比亚大学的希奥多•梅曼(TheodoreMaiman)于1960制成第一台激光器[14].由于激光具有单色性好,相干性好,方向性好和亮度高等特点,在医疗、农业、通讯、金属微加工,军事等方面得到广泛应用.激光在其他方面的应用暂不展开论述,只谈谈激光加工技术在工业生产上的应用.激光加工技术对材料进行切割、焊接、表面处理、微加工等,激光加工技术具有突出特点:不接触加工工件,对工件无污染;光点小,能量集中;激光束容易聚焦、导向,便于自动化控制;安全可靠,不会对材料造成机械挤压或机械应力;切割面光滑、无毛刺;切割面细小,割缝一般在;适合大件产品的加工等.在汽车、飞机、微电子、钢铁等行业得到广泛应用.2014年,仅我国激光加工产业总收入约270亿人民币,其中激光加工设备销售额达215亿人民币.
2014年,诺贝尔物理学奖授予赤崎勇、天野浩、中山修二等三位科学家,是因为他们发明了蓝色发光二极管(LED),帮助人们以更节能的方式获得白光光源.他们的突出贡献在于,在三基色红、绿、蓝中,红光LED和绿光LED早已发明,但制造蓝光LED长期以来是个难题,他们三人于20世纪90年代发明了蓝光LED,这样三基色LED全被找到了,制造出来的LED灯用于照明使消费者感到舒适.这种LED灯耗能很低,耗能不到普通灯泡的1/20,全世界发的电40%用于照明,若把普通灯泡都换成LED灯,全世界每个节省的电能数字惊人!物理学研究给人类带来不可估量的益处.2010年,英国曼彻斯特大学科学家安德烈•海姆(AndreGeim)和康斯坦丁•诺沃肖洛夫(Kon-stantinNovoselov),因发明石墨烯材料,获得诺贝尔物理学奖.目前,集成电路晶体管普遍采用硅材料制造,当硅材料尺寸小于10纳米时,用它制造出的晶体管稳定性变差.而石墨烯可以被刻成尺寸不到1个分子大小的单电子晶体管.此外,石墨烯高度稳定,即使被切成1纳米宽的元件,导电性也很好.因此,石墨烯被普遍认为会最终替代硅,从而引发电子工业革命[14].2012年,法国科学家沙吉•哈罗彻(SergeHaroche)与美国科学家大卫•温兰德(),在“突破性的试验方法使得测量和操纵单个量子系统成为可能”.他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步[16].
2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应.早在2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系,薛其坤等在这一理论指导下开展实验研究,从实验上首次观测到量子反常霍尔效应.我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题.这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗.而量子霍尔效应则可以对电子的运动制定一个规则,电子自旋向上的在一个跑道上,自旋向下的在另一个跑道上,犹如在高速公路上,它们在各自的跑道上“一往无前”地前进,不产生电子相互碰撞,不会产生热能损耗.通过密度集成,将来计算机的体积也将大大缩小,千亿次的超级计算机有望做成现在的iPad那么大.因此,这一科研成果的应用前景十分广阔[17].物理学的每一个重大发现、重大发明,都会开辟一块新天地,带来产业革命,推动社会进步,创造巨大物质财富.纵观科学与技术发展史,可以看出物理学是科技创新的源泉.
3结语
论述了X射线,电子、半导体、原子能、激光、蓝光LED等的发现或发明对人类进步的巨大推动作用,自然得出结论,物理学是科技创新的源泉.打开国门看一看,美国的著名大学非常注重大学物理,加州理工大学所有一、二年级的公共物理课程总学时为540,英、法、德也在400-500学时[18].国内高校只有中国科学技术大学的大学物理课程做到了与国际接轨,以他们的数学与应用数学为例,大一开设:力学与热学80学时,大学物理—基础实验54学时;大二开设:电磁学80学时,光学与原子物理80学时,大学物理—综合实验54学时;大三开设:理论力学60学时,大学物理及实验总计408学时.在大力倡导全民创业万众创新的今天,高等学校理所应当重视物理学教学.各高校的理工科要按照教育部高等学校非物理类专业物理基础课程教学指导委员会颁发的《非物理类理工学科大学物理课程/实验教学基本要求》给足大学物理课程及大学物理实验课时.
参考文献:
〔1〕祝之光.物理学[M].北京:高等教育出版社,.
〔2〕马文蔚,周雨青.物理学教程[M].北京:高等教育出版社,.
〔3〕倪致祥,朱永忠,袁广宇,黄时中,大学物理学[M].合肥:中国科学技术大学出版社,2005.前言.
〔4〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理课程教学基本要求[J].物理与工程,2006,16(5)
〔5〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理实验课程教学基本要求[J].物理与工程,2006,16(4):1-3.
〔6〕姚启钧,光学教程[M].北京;高等教育出版社,.
〔7〕张怪慈.量子力学简明教授[M].北京:人民教育出版社,.
〔8〕孙阳(导师:张裕恒).钙钛矿结构氧化物中的超大磁电阻效应及相关物性[D].中国科学技术大学,.
《 应用物理学专业光伏技术培养方案研究 》
一、开设半导体材料及光伏技术方向的必要性
由于我校已经有材料与化学工程学院,开设了高分子、化工类材料、金属材料等专业,应用物理、物理学专业的方向就只有往半导体材料及光伏技术方向靠,而半导体材料及光伏技术与物理联系十分紧密。因此,我们物理系开设半导体材料及光伏技术有得天独厚的优势。首先,半导体材料的形成原理、制备、检测手段都与物理有关;其次,光伏技术中的光伏现象本身就是一种物理现象,所以只有懂物理的人,才能将物理知识与这些材料的产生、运行机制完美地联系起来,进而有利于新材料以及新的太阳能电池的研发。从半导体材料与光伏产业的产业链条来看,硅原料的生产、硅棒和硅片生产、太阳能电池制造、组件封装、光伏发电系统的运行等,这些过程都包含物理现象和知识。如果从事这个职业的人懂得这些现象,就能够清晰地把握这些知识,将对行业的发展起到很大的推动作用。综上所述,不仅可以在我校的应用物理学专业开设半导体材料及光伏技术方向,而且应该把它发展为我校应用物理专业的特色方向。
二、专业培养方案的改革与实施
(一)应用物理学专业培养方案改革过程
我校从2004年开始招收应用物理学专业学生,当时只是粗略地分为光电子方向和传感器方向,而课程的设置大都和一般高校应用物理学专业的设置一样,只是增设了一些光电子、传感器以及控制方面的课程,完全没有自己的特色。随着对学科的深入研究,周边高校的互访调研以及自贡和乐山相继成为国家级新材料基地,我们逐步意识到半导体材料及光伏技术应该是一个应用物理学专业的可持续发展的方向。结合我校的实际情况,我们从2008年开始修订专业培养方案,用半导体材料及光伏技术方向取代传感器方向,成为应用物理学专业方向之一。在此基础上不断修改,逐步形成了我校现有的应用物理专业的培养方案。我们的培养目标:学生具有较扎实的物理学基础和相关应用领域的专业知识;并得到相关领域应用研究和技术开发的初步训练;具备较强的知识更新能力和较广泛的科学技术适应能力,使其成为具有能在应用物理学科、交叉学科以及相关科学技术领域从事应用研究、教学、新技术开发及管理工作的能力,具有时代精神及实践能力、创新意识和适应能力的高素质复合型应用人才。为了实现这一培养目标,我们在通识教育平台、学科基础教育平台、专业教育平台都分别设有这方面的课程,另外还在实践教育平台也逐步安排这方面的课程。
(二)专业培养方案的实施
为了实施新的培养方案,我们从几个方面来入手。首先,在师资队伍建设上。一方面,我们引入学过材料或凝聚态物理的博士,他们在半导体材料及光伏技术方面都有自己独到的见解;另一方面,从已有的教师队伍中选出部分教师去高校或相关的工厂、公司进行短期的进修培训,使大家对半导体材料及光伏技术有较深的认识,为这方面的教学打下基础。其次,在教学改革方面。一方面,在课程设置上,我们准备把物理类的课程进行重新整合,将关系紧密的课程合成一门。另一方面,我们将应用物理学专业的两个方向有机地结合起来,在光电子技术方向的专业课程设置中,我们有意识地开设了一些课程,让半导体材料及光伏技术方向的学生能够去选修这些课程,让他们能够对光伏产业的生产、检测、装备有更全面的认识。最后,在实践方面。依据学校资源共享的原则,在材料与化学工程学院开设材料科学实验和材料专业实验课程,使学生对材料的生产、检测手段有比较全面的认识,并开设材料科学课程设计,让学生能够把理论知识与实践联系起来,为以后在工作岗位上更好地工作打下坚实的基础。
三、 总结
半导体材料及光伏行业是我国大力发展的新兴行业,受到国家和各省市的大力扶持,符合国家节能环保的主旋律,发展前景十分看好。由于我们国家缺乏这方面的高端人才和行业指挥人,在这个行业还没有话语权。我们的产品大都是初级产品或者是行业的上游产品,没有进行深加工。目前行业正处在发展的困难时期,但也正好为行业的后续发展提供调整。只要我们能够提高技术水平和产品质量,并积极拓展国内市场,这个行业一定会有美好的前景。要提高技术水平和产品质量,就需要有这方面的技术人才,而高校作为人才培养的主要基地,有责任肩负起这个重任。由于相关人才培养还没有形成系统模式,这就更需要高校和企业紧密联系,共同努力,为半导体材料及光伏产业的人才培养探索出一条可持续发展的光明大道,也为我国的新能源产业发展做出自己的贡献。
有关物理学博士论文推荐:
1. 有关物理学论文
2. 物理学论文范文
3. 物理学论文
4. 物理学教学专业毕业论文
5. 物理学实验本科毕业论文
6. 物理学本科毕业论文
科技论文是一种很常见的学术论文类别,科技论文是一个大类,本身也有更为细致的小类别划分,主要包括论证型科技论文、实证型科技论文、综述型科技论文、述评型科技论文几类。01论证型科技论文论证型论文主要是指通过与选题相关的论据来证实选题的客观性和真实性,从而得出科学结论,并公开发表的学术论文类型,论证型科技论文偏理论性。02实证型科技论文实证型科技论文与论证型科技论文一样都是需要论据来证实选题的客观性和真实性,不同之处在于实证型科技论文需要通过事实和证据来印证文中的选题和结论,不单单是一些理论依据,还需要事实依据,可能涉及大量的实验等工作。03综述型科技论文是针对某一选题作者进行资料的搜集、整理、分析、汇总得出一定结论的文章,文章中更多的是对前任科研工作的汇总分析,在结论部分突出自己的见解和观点。04述评型科技论文这类论文就是对某一选题的陈述和评论,陈述和评论缺一不可,我们熟悉的书评影评就是述评型的文章,写作时可以先述后评,也可以同时进行。科技学术论文主要分为以上几种类型,作者可以根据自己所擅长的领域来选择合适的论文类型,这几种论文的应用范围都是很广的,关于科技论文的更多疑问可以咨询知实学术在线编辑。
物理学知识与医学知识的渗透教学研究论文
物理学和医学其实是两门相辅相成的课程,医学的进步促进物理学的发展,物理学理论的深入也带来了医学理论的进一步发展。对于学习医学知识的学生来说如果能够认识到这一点,将物理学与医学结合起来学习,那么在医学学科的很多方面的学习可以起到事半功倍的效果。当然要培养起学生这样的意识和老师的努力是分不开的,老师在教授物理学时能够将医学知识结合起来,两者进行渗透教学,就会让学生明白学习物理学对于他们学习医学的的意义所在,也会在学习医学的过程中应用到物理学课堂中的知识。
一、在教学中启发学生明白二者联系
物理学是自然科学的一个分支,它研究中的许多方面与医学理论有着密切的联系。比如通过学习物理学的能量转换和代谢的热学知识,就能很好的理解体温调节的原理。还有通过学习力学知识也能更好的理解肌肉收缩、血液循环、呼吸运动、听觉功能。物理学中有电磁学,这与人体的神经传导、细胞生理、心电脑电等等都有共通之处。物理学的研究领域还有自然界中的温度、湿度、压强、放射线等等都会对人体造成影响,这和人的身体健康是密切相关的。在医学中不仅是病理、生理、药理知识的学习,还包括对医学仪器使用。这些先进的医学仪器例如核磁共振仪、X射线透视、超声波、激光等等都是物理学研究的成果在医学上的使用,因此在进行这些学科的教学中物理学不只是单单讲物理学的知识,而是把物理学的原理运用到医学上,这样学生才会更明白为什么在学习医学的过程中要学习物理学课程。
二、在教学中将各个模块与医学知识结合教学
(一)从力学教学的角度来说
力学是物理学中很重要的一个模块。在医学领域,外科对于骨折患者的治疗都会用一定大小和方向的力牵引患部来以平衡伤部的肌肉的恢复力,这其实和力学中的平行四边形法则息息相关。在护理和抢救伤员时,为了一般都会要求让伤员采取卧位,这是因为血液在重力的作用下会向下流淌,采取卧位可以防止伤员失血过多引起昏迷。在面对心力衰竭的病人时采取端坐位,这样可以减轻心脏的负担。这些都涉及到力学中的重力部分的知识。在讲到摩擦力时,可以结合人体的关节也都是有摩擦力的,为了让人的肢体更加的灵活,骨头和骨头的连接囊中都会有少量的滑液。体重大的人在运动时关节直接的摩擦力也会更大,这都是与力学息息相关的,所以在讲授力学的时候可以将这样的例子结合起来讲,这样学生就会听的更加的明白,也对今后的实践更有帮助。
(二)从流体力学的教学角度来说
在讲授流体力学时,可以结合医学中血液这一领域的知识。众多周知,动脉瘤多发于血液的交叉处,发于脑动脉的概率更大,血液到了此处由层流变为淌流,因此在检测动脉瘤时看看此处是否有湍流的噪音对于检测动脉瘤具有很大的意义。在教授流体力学时还应该结合体位对于血压测量的影响。这样学生就能够很好理解为什么针对不同的病人要采取不同的体位。
(三)从声学教学的角度来说
在声学的教学过程中,不应该仅仅只是介绍声学的例子,单纯的从物理的.角度去教授,而应该结合医学中对于声学的利用。比如在医学领域应用广泛的超声波检测,超声波不仅可以用于疾病的检察,例如利用A型超声波来检测人脑的中线,一般情况下正常人的脑中线在人颅骨的几何中心,最大的距离也不超过3CM.但是如果脑中有受伤或者有肿瘤则中线就会移位,用这样的方式去检查脑部的健康,可以让检查者没有痛苦,并且准确率也比较高。这就是物理中声学在医学中的应用,超声波不仅可以用来检测疾病,还可以用来加热身体的某些部分,人体通过吸收超声波得到热量,可以用于透热治疗腰肌疼痛和扭伤或者关节炎。这就是声学和能量转换学相结合的应用。可以说对于医学来讲物理学是其理论基础,而医学是物理学的理论操作。所以只有将二者结合起来学习才能够得到非常好的效果,但是现在很多物理学的教学是和医学分开教学的,各自有自己的主干和枝节,看起来似乎没有什么联系。但其实物理学和医学教学是有很多相辅相成之处,所以把二者结合起来教学,在讲授物理学的大模块时将医学理论穿插其中,就能够得到更好的效果。
三、医学院的物理学老师必须多掌握医学相关理论知识
医学院的物理学老师和其他的物理学老师不同的是对于这里的学生来说学医学才是自己的主修课程,但是其实对于医学院的学生来说学好物理学的知识才能真正理解医学中很多情况下为什么会采取截然不同的方法。这其中的原理何在。要让学生明白这一系列的问题,首先是老师自己必须也要是知道很多的医学理论知识和扎实的物理学知识,经常与医学基础课教师和临床课教师保持密切的联系,从而,拓宽自己的知识领域,以便在物理教学中纵横比较,左右逢源产挥洒自如,来促进物理教学质量的提高.这样在课堂教授的过程中才有能力将二者合二为一。将物理学与医学知识进行渗透教学。所以其实将物理学与医学渗透教学是对医学院的物理学老师提出了更高的要求,也是将医学院的物理学老师与其他学校的物理学老师区分开来的标志,医学院的物理学老师不仅是一名物理学上的优秀学者,也应该是一位医学上的爱好者,对于医学的知识领域也有着广泛的了解。
文名称: X光图像处理研究及基于FPGA+DSP的硬件实现 全文提供: 购买充值卡,就可下载本篇论文全文>>> 论文编号: 3604755【收藏本论文】【我的收藏】【我要投稿】 英文名称: 无英文名称 学位类型: 硕士毕业论文 作者: 涉及隐私,隐去***作者本人请参看权力声明>> 导师: 涉及隐私,隐去*** 毕业学校: 涉及隐私,隐去*** 专业: 生物医学工程 毕业年份: 涉及隐私,隐去*** 关键字: X光图像 实时处理 DSP FPGA 图像增强 噪声处理 简介和目录: 点击此处 免费索取本论文简介和目录>> 全文提供: 购买充值卡,就可下载本篇论文全文>>>【收藏本论文】【我的收藏】【
科技论文的分类:科技论文可按几种不同的方法进行分类。按其学科分类,如物理学论文、化学论文、医学论文、数学论文等。
物作用(drug action)是指药物与机体细胞间的初始作用,是动因,是分子反应机制,有其特异性(specificity)。药理效应(pharmacological effect)是药物作用的结果,是机体反应的表现,对不同脏器有其选择性(selectivity)。因此,药理效应实际上是机体器官原有功能水平的改变,功能的提高称为兴奋(excitation)、亢进(augmentation),功能的降低称为抑制(inhibition)、麻痹(paralysis)。过度兴奋转入衰竭(failure),是另外一种性质的抑制。近年来生命科学的迅速发展,能引起细胞形态与功能发生质变的药物受到注意,例如某些物质可以引起细胞癌变,基因疗法能使机体引出遗传缺陷时或原来没有的特殊功能。药物作用特异性强的药物不一定引起选择性高的药理效应,二者不一定平行。例如阿托品特异性阻断M-胆碱受体,但药理效应选择性并不高,对心脏、血管、平滑肌、腺体及中枢神经功能都有影响,而且有的兴奋、有的抑制。作用特异性强及(或)效应选择性高的药物应用时针对性较好。反之,效应广泛的药物副反应较多。但广谱药物在多种病因或诊断未明时也有其方便之处,例如广谱抗生素、广谱抗心律失常药等。药理效应与治疗效果,后者简称疗效(therapeutic effect)并非同义词,例如具有扩张冠脉效应的药物不一定都是抗冠心病药,抗冠心病药也不一定都会取得缓解心绞痛临床疗效,有时还会产生不良反应(adverse reaction),这就是药物效应的两重性:药物既能治病也能致病。二、治疗效果1.对因治疗(etiological treatment) 用药目的在于消除原发致病因子,彻底治愈疾病称为对因治疗,或称治本,例如抗生素消除体内致病菌。2.对症治疗(symptomatic treatment) 用药目的在于改善症状称为对症治疗,或称治标。对症治疗未能根除病因,但在诊断未明或病因未明暂时无法根治的疾病却是必不可少的。在某些重危急症如休克、惊厥、心力衰竭
差热分析啊,网上有吧
我倒,看看你的悬赏分
药剂学和物理的关系比较多。比如说药物的形状有颗粒剂、汤剂、注射剂、粉针剂、栓剂、片剂、胶囊剂等等,之所以把药物设置成不同的剂型,就是和物理有关。有些药物易挥发,所以煎煮不能过久;有的药物溶解性不好,所以不能制成针剂;为了保护药物,使药物慢慢释放,可以制成胶囊;痔疮灵栓是栓剂,呈流线型,以便于塞进肛门。等等。
在医药学中有X射线透视、B超、磁共振断层或像(MBI)在生活中比如洗衣粉,84消毒液。随着近代物理学的迅速发展,人们对生命现象的认识逐步深入,医学的各分支学科也越来越多地把它们的理论建立在精确的物理学基础上,物理学的技术和方法在医学研究和医疗实践中的应用也越来越广泛,X射线对医学的巨大贡献是大家早已熟悉的,超声波、扫描仪(B超)、和磁共共振断层成像(MBI)等的制成和应用,不仅大大地减少病人的痛苦和创作,也提高了诊断的准确度,而且直接促进了现代医学影像学的建立和发展,使临床诊断技术发生质的飞跃。X射线透视是根据不同组织或脏器对X射线的衰减本领不同,强度均匀的X射线透过身体不同部位后的强度不同,透过人体的X射线投射到照相底片上,显像后就可以观察到各处明暗不同的像。X射线透视可以清楚地观察到骨折的程度、肺结核病灶、体内肿瘤的位置和大小、脏器形状以及断定体内异物的位置等。X射线透视机已成为医院的基本设备之一。B超是超声波B型显示断层或像的简称,之所以称为B超显示是因不对过去显示超声波检查结果的方法又创立了一种方案而增加的新名称,把已有的那种一维显示一串脉冲动的方案称为A型显示,而新的这种二维纵向断层显示称为B型显示。时间T1T2的成像,其基本原理是利用一定频率的电磁波向牌磁场中的人体照射,人体中各种不同组织的氢核在电磁波作用下,会发生核磁共振,吸收电磁波的能量,随后又发射电磁波,MRI系统探测到这些来自人体的氢核发射出来的电磁波信号后,经计算机处理和图像重建得到人体的断层图像,由于氢核吸收和发射电磁波时,受周围环境的影响,所以由磁共振信号得到人体断层图像,不仅可以反映形态学的信息,还可以从图像中得到与病理有关的信息,经过比较和判断就可以知道成像部分人体组织是否正常。因此MRI被认为是一种研究活动组织诊断早期病变的医学影像技术。
1、制药方面:胶体、乳浊液、悬浊液的制备、稳定性;助溶剂的应用……表面现象及表面活性剂的应用。提取、……浸润、扩散与传质浓缩、……相变过程干燥……喷雾干燥……表面现象2、分析方面:萃取:分配系数;色谱原理和效率公式;等等。
物理化学在药学中的作用分析
物理化学,即用物理的方法来解决化学学科中的问题,又被称为化学的灵魂,那么,物理化学在药学中的作用是?
物理化学是药学专业基础理论的重要组成部分,对于提高药学研发水平,具有非常重要的作用。首先阐述了物理化学的内涵,然后对其在药学中的重要作用进行了具体分析,旨在提高药学中物理化学的教学质量,充分发挥其作用。
物理化学药学作用物理化学在药学专业中占据着重要地位,不仅能为新型药物的研究和开发提供理论指导,还可以采用实验的方法来促进药物研究和病变检验,已经渗透到药学的各个环节,所以我们在药学教学中,一定要对物理化学引起足够的重视。为了最大化的发挥物理化学在药学中的作用,本文从如下几点展开了具体综述。
一、物理化学概述
物理化学,即用物理的方法来解决化学学科中的问题,又被称为化学的灵魂。因为它的主要准则源于自然现象,是总结实践结果而来,没有假设,虽然无法用数学公式加以证明,但是能够利用假设和数学推理,得到大量的原理。目前吗,物理化学被广泛应用于社会的各个领域,例如化学、化工、生物工程、建筑材料、环境以及制药等,在药学专业中,它不仅是一门基础理论,还具有承上启下的作用,能为后续课程的学习提供指导和方法论。
物理化学中包含了很多公式推导和公式,而且不同的公式,其使用条件和范围也存在一定的差异,具有极强的概念性、理论性和逻辑性。对于化学运动中普遍性规律的研究,需要综合运用物理、数学等基础科学的相关理论和实验方法,在四大基础化学中,学习难度最大。
二、物理化学在药学中的重要作用
1.为研究新的药物剂型提供理论指导
通常,固体的分散体都具有较高的生物利用程度,根据物理化学中的低共熔相图原理,让药物体和其载体在较低共熔的比例中同时存在。在这种条件下制作而成的药物,其微细的分散结构非常均匀,这样有助于极大地提高药物溶解的速度,快速发挥药物的效果。
例如,当灰黄霉素-酒石酸在较低共熔的比例中时,生成的混合物就能快速溶出,和高纯度的灰黄霉素溶出相比,速度高出倍。又例如,和高纯度的磺胺噻唑的溶出速度比较,将浓度为48%的尿素和52%的磺胺噻唑制作而成的低共熔混合物,其溶出的速度可以提升11倍。
2.有助于促进药物研究以及病变检验实验方法的改进
人体内的体液均为胶质形态,其中含有丰富的胶体粒子,能够带电。根据这一特点,可以采用电泳方法对体液予以分离,并作为判断某脏器是否存在病变反应的主要依据和衡量指标。
例如,在药学研究中,为了将消化酶从人体的唾液中有效分离出来,研发者可以充分利用电场的作用,而这一内容属于物理化学的范畴。由此可知,物理化学的应用可以为单独研究酶的生物活性提供良好的条件。又例如,如果机体的脂质代谢过程遭到破坏,那么血液中红细胞的电泳率就会迅速下降,超出标准值范围,所以只需要测量其中的电泳率,就可以判断肝功能是否正常。所以,电泳率检测是衡量肝功能的一项重要指标。
3.新药研究和开发的`理论基础
以胆结石为例。胆结石在临床中是一种常见病和多发病,其发病原因是临床学术研究的重要课题之一,至今尚无统一结论。很多专家通过研究发现,当胆汁中的胆固醇含量过量时,就极有可能形成胆固醇结石。这是胆结石形成的必要条件,但并不是唯一条件。根据物理化学中的表面现象这一理论可知,在附加压力的作用下,很难形成新相种子。换句话说,如果没有肝脏异常、胆管病变等诱导因素,即使具备结石的晶核,也无法形成结石。而且,胆固醇的高低是相对于胆汁中的卵磷脂含量来说的。在物理化学领域中,卵磷脂属于表面活性剂的范畴,主要负责携带胆固醇。一旦胆汁中的卵磷脂含量降低,无法溶于胆汁中的胆固醇就会发生游离,形成结石。
根据上述理论,要避免和预防胆固醇结石,开发出能够溶解结石或者有效治疗高血脂的药物,可以从提高卵磷脂的合成能力或者增加其摄入量等方面入手,做好胆囊病变的预防工作。
4.贯穿于药学的各个环节
(1)在药物合成中的作用。在酸性或者碱性环境中,反应物很容易被分解。根据物理化学的这一知识点,在药物合成的过程中,可以添加一些辅料,为合成的顺利完成提供可靠保障。例如,可以和反应物生成胶团的表面活性剂,可以有效保护反应物,避免合成受到其他因素的干扰。
(2)在药物生产环节中的作用。我们可以将物理化学中的化学动力原理应用在药物的生产环节,这样可以设计出最佳的反应条件,便于寻找合适的催化剂,极大地提高了药物的生产率,而且还降低了生产的成本。当药物合成之后,还可以根据物理化学中的相关规律对药品的分离进行科学指导。
(3)在测量比表面积中的作用。在固体类药品的物理参数中,比表面积是其中的一项重要评价指标。在测量时,可以根据物理化学中,气体在固体表面的多层吸附理论,这样有助于提高测量的精确度。
(4)在评价药品稳定性方面的作用。物理化学中包含了化学动力学的相关知识,运用这一知识点可以对固体类药品的稳定性进行研究。例如,根据加速实验的相关理论,可以确定药品分解反应的具体等级。然后再对不同温度环境下,药品反应速率的常数进行测量,这样就能够计算出,在常温环境下,10%药品完成分解反应速需要的时间,也就是药品的保质时间,即储存期。
(5)其他方面的作用:①为了确定每次给药需要的时间,可以对药品的生物半衰期进行测量。②充分利用电化学的相关知识和理论,检测体液的pH数值,为药物的使用环境提供参考数据。③在提取天然药物中的有效成分时,需要运用到物理化学中的蒸馏和萃取等知识。同时,在中草药的提炼过程中,也需要使用乳化、消沫等方面的物理化学知识。另外,在透皮吸收技术以及外用膏药中,新型表面活性剂的发现对于此类药品的生产会产生决定性的影响。从中草药有效成分的提取,药品的合成、药品的临床使用,到新型药物的开发无不需要物理化学为它提供原理和方法。物理化学已渗透到药学的各个领域,物理化学的教学将对药学专业发展起至关重要的作用。
物理化学在要药学中具有重要作用,但是要充分发挥却并不简单。这是因为,物理化学包含了很多学科的内容,如无机化学、高分子化学、物理学和生物化学等,具有较强的综合性、复杂性和系统性,增加了理解和学习的难度。为了提高物物理化学的教学效果,就要求教师必须有扎实的基础理论,还要有科研开发和创新的意识,并在实践基础上不断拓宽思路,理论联系实际,把物化理论应用于药学实践,在专业课的学习和课题研究中真正发挥其指导和预测的功能。
1.物理学知识是了解生命现象不可缺少的基础,任何生命过程都是和物理过程密切相联系的。2.物理学所提供的技术和方法为医学研究和实践开辟了新途径,极大推动了包括生命科学和医学在内的其它自然科学的发展。物理学的性质1、真理性:物理学的理论和实验揭示了自然界的奥秘,反映出物质运动的客观规律。2、和谐统一性:神秘的太空中天体的运动,在开普勒三定律的描绘下,显出多么的和谐有序。物理学上的几次大统一,也显示出美的感觉。牛顿用三大定律和万有引力定律把天上和地上所有宏观物体统一了。3、简洁性:物理规律的数学语言,体现了物理的简洁明快性。如:牛顿第二定律,爱因斯坦的质能方程,法拉第电磁感应定律。
物作用(drug action)是指药物与机体细胞间的初始作用,是动因,是分子反应机制,有其特异性(specificity)。药理效应(pharmacological effect)是药物作用的结果,是机体反应的表现,对不同脏器有其选择性(selectivity)。因此,药理效应实际上是机体器官原有功能水平的改变,功能的提高称为兴奋(excitation)、亢进(augmentation),功能的降低称为抑制(inhibition)、麻痹(paralysis)。过度兴奋转入衰竭(failure),是另外一种性质的抑制。近年来生命科学的迅速发展,能引起细胞形态与功能发生质变的药物受到注意,例如某些物质可以引起细胞癌变,基因疗法能使机体引出遗传缺陷时或原来没有的特殊功能。药物作用特异性强的药物不一定引起选择性高的药理效应,二者不一定平行。例如阿托品特异性阻断M-胆碱受体,但药理效应选择性并不高,对心脏、血管、平滑肌、腺体及中枢神经功能都有影响,而且有的兴奋、有的抑制。作用特异性强及(或)效应选择性高的药物应用时针对性较好。反之,效应广泛的药物副反应较多。但广谱药物在多种病因或诊断未明时也有其方便之处,例如广谱抗生素、广谱抗心律失常药等。药理效应与治疗效果,后者简称疗效(therapeutic effect)并非同义词,例如具有扩张冠脉效应的药物不一定都是抗冠心病药,抗冠心病药也不一定都会取得缓解心绞痛临床疗效,有时还会产生不良反应(adverse reaction),这就是药物效应的两重性:药物既能治病也能致病。二、治疗效果1.对因治疗(etiological treatment) 用药目的在于消除原发致病因子,彻底治愈疾病称为对因治疗,或称治本,例如抗生素消除体内致病菌。2.对症治疗(symptomatic treatment) 用药目的在于改善症状称为对症治疗,或称治标。对症治疗未能根除病因,但在诊断未明或病因未明暂时无法根治的疾病却是必不可少的。在某些重危急症如休克、惊厥、心力衰竭
1、制药方面:胶体、乳浊液、悬浊液的制备、稳定性;助溶剂的应用……表面现象及表面活性剂的应用。提取、……浸润、扩散与传质浓缩、……相变过程干燥……喷雾干燥……表面现象2、分析方面:萃取:分配系数;色谱原理和效率公式;等等。
物理研究的原理有助于医学技术的应用和突破。物理学是研究物质运动最一般规律和物质基本结构的学科。作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。
物理学的理论结构充分地运用数学作为自己的工作语言,以实验作为检验理论正确性的唯一标准,它是当今最精密的一门自然科学学科。
注:医学,是通过科学或技术的手段处理生命的各种疾病或病变的一种学科,促进病患恢复健康的一种专业。它是生物学的应用学科,分基础医学、临床医学。从生理解剖、分子遗传、生化物理等层面来处理人体疾病的高级科学。
扩展资料:
物理学的六大性质:
1、真理性:物理学的理论和实验揭示了自然界的奥秘,反映出物质运动的客观规律。
2、和谐统一性:神秘的太空中天体的运动,在开普勒三定律的描绘下,显出多么的和谐有序。物理学上的几次大统一,也显示出美的感觉。牛顿用三大定律和万有引力定律把天上和地上所有宏观物体统一了。
麦克斯韦电磁理论的建立,又使电和磁实现了统一。爱因斯坦质能方程又把质量和能量建立了统一。光的波粒二象性理论把粒子性、波动性实现了统一。爱因斯坦的相对论又把时间、空间统一了。
3、简洁性:物理规律的数学语言,体现了物理的简洁明快性。如:牛顿第二定律,爱因斯坦的质能方程,法拉第电磁感应定律。
4、对称性:对称一般指物体形状的对称性,深层次的对称表现为事物发展变化或客观规律的对称性。如:物理学中各种晶体的空间点阵结构具有高度的对称性。竖直上抛运动、简谐运动、波动镜像对称、磁电对称、作用力与反作用力对称、正粒子和反粒子、正物质和反物质、正电和负电等。
5、预测性:正确的物理理论,不仅能解释当时已发现的物理现象,更能预测当时无法探测到的物理现象。例如麦克斯韦电磁理论预测电磁波存在,卢瑟福预言中子的存在,菲涅尔的衍射理论预言圆盘衍射中央有泊松亮斑,狄拉克预言电子的存在。
6、精巧性:物理实验具有精巧性,设计方法的巧妙,使得物理现象更加明显。
参考资料来源:百度百科-物理学(自然科学学科)
参考资料来源:百度百科-医学
我猜你是桂医的 还是刘老师教的 - -