首页

> 期刊论文知识库

首页 期刊论文知识库 问题

基于lda主题模型的论文

发布时间:

基于lda主题模型的论文

本次实验使用基于 LDA 主题聚类和主题分布可视化的方式研究顾客评论中的主题分布情况,并参考 《旅游民宿基本要求与评价》 标准中的评级指标辅助定义用户评价主题,具体的评价参考指标如下图所示。

使用 Pandas 加载在线数据表格,并查看数据维度和第一行数据。

数据属性如下表所示

分词器预热,加快 jieba 分词。

jieba 词性标注预热,使用 jieba 中的词性标注模块对输入的句子进行处理,产生每个词和对应的词性。

批量提取每句用户评论中的长度大于 1 的名词,需要一些时间,请耐心等待。

LDA 模型是一个统计模型,所以我们需要进行词频统计和建立词典。CountVectorizer 是属于常见的特征数值计算类,是一个文本特征提取方法,对于每一个训练文本,它只考虑每种词汇在该训练文本中出现的频率,CountVectorizer 会将文本中的词语转换为词频矩阵,它通过 fit_transform 函数计算各个词语出现的次数。

LDA(Latent Dirichlet Allocation)称为隐含狄利克雷分布,是一种以词、主题和文档三层贝叶斯概率为核心结构的主题模型,我们在 LDA 模型训练前不需要进行任何手工标注,LDA 在文本挖掘领域有广泛应用。本次实验我们使用 LDA 主题模型进行用户评论的主题提取。LDA 模型是一个概率模型,直观来讲,如果一篇文章有一个中心思想,那么一些特定词语会更频繁的出现。例如一篇文章中出现很多体育类的词,比如,篮球,足球之类的,那么主题模型就会把它划分为体育类的文章。

将数据处理成 LDA 模型要求的输入格式。

聚类个数选取 因为 LDA 算法需要一个初始的聚类个数,我们可以通过控制变量下的一致性分数进行定量评估来寻找最佳的主题数。Coherence Score 简称一致性分数,就是评估 LDA 主题模型在生成的各个主题下的主题词相关程度指标,该指标越大越好,说明主题内的主题词越相关,主题内部的歧义越少。gensim 提供了 CoherenceModel 模块进行 Coherence Score 的计算,本实验不讨论参数调节,使用默认参数进行模型评估和训练,参数寻找需要耗费一些时间,请耐心等待。

画出主题数对 LDA 模型一致性分数的影响,并选择在展平之前得出最高一致性分数下的主题数为当前语料下最佳的主题数。

通过趋势图观察最佳的主题个数不适合自动化的聚类,因为评价指标较为简单,只需要求得最大的一致性分数下的主题数即可自动化的确定最佳主题个数。

训练主题聚类模型 将上述步骤求得的 best_topic_numbers 作为 LDA 模型初始化的模型主题数,并开始我们的主题模型训练。计算需要一些时间,请耐心等待。

将主题词通过 LDA 算法进行抽象的主题归纳,真正的主题词需要人工进行命名。从 LDA 模型分析结果看,每个主题中的每个词语都分配了相应的权重,我们可以粗略的从主题和对应的主题词进行抽象,主题模型就是从大量语料中找出附属的关键词,并依照关键词之间的相似度提炼成主题,下面我们下面打印各个主题下的主题词,看一下各个主题下的主题词情况。

本实验对 LDA 主题分布进行可视化,通过图像的方式直观查看主题和主题词的分布情况。pyLDAvis 是主题模型交互式可视化库,我们可以直接在 notebook 内部使用主题可视化模块 pyLDAvis 对处理之后的 LDA 用户评论进行可视化,使用 pyLDAvis 可以交互式的显示不同主题,及每个主题的相关词语。

开始对主题分布进行可视化,需要一些时间,请耐心等待。

开启 notebook 中支持画图的控件。

主题模型的可视化结果给出了包括所有主题在内的全局视图,可以看到,输出结果分为左右两部分,左侧为“主题距离地图”,展示各个主题之间的差异,图中带有数字编号的圆形即代表各个主题,圆形的面积与该主题出现的可能性成正比,并且按照面积大小自动进行编号,右侧为各个主题前 30 个最为相关的词汇,对各个主题进行解释说明,以水平柱状图的形式展示,蓝色表示整体词频,红色表示主题词频,当将鼠标光标移至某个主题圆形上方时,右侧将会显示该主题对应的词汇,也可以在左上角 “Selected Topic” 输入框中输入主题编号得到同样的效果。我们可以在可视化上进行参数微调,实时的显示不同主题和每个主题下的相关词语,通过对图中的特征词分布进行理解,将抽象的主题词进行具体化,根据其中的主题词进行命名主题,主题各自包含的词数以及它们之间距离的远近,使聚类效果具有可解释性,通过观察 LDA 主题可视化下的主题词,可以通过 LDA 去扩充主题词典。

我们描述潜在的狄利克雷分配(LDA),它是一种用于离散数据集合(如文本语料库)的生成概率模型。 LDA是一个三层次的贝叶斯模型,其中一个集合中的每个项目都被建模为一组潜在的话题(主体)类型的有限混合。反过来,每个主题都被建模为一组潜在主题概率的无限混合。 在文本建模的背景下,主题概率提供了文档的明确表示。我们提出了基于变分方法和经验贝叶斯参数估计的EM算法的高效近似推理技术。 我们会报告LDA在文档建模,文本分类和协作过滤上的实验结果,并与一元混合模型( unigrams model)和概率LSI模型相比较。

在本文中,我们考虑建模文本语料库和其他离散数据集合的问题。我们的目标是找到对一个集合的成员的简短描述,它不仅可以高效处理大型集合,同时保留对分类,异常检测,摘要(概括)以及相似性和相关性判断等基本任务有用的必要统计关系。

信息检索(IR)领域的研究人员已经在这个问题上取得了重大进展(Baeza-Yates和Ribeiro-Neto,1999)。IR研究人员为文本语料库提出的基本方法 (一种在现代互联网搜索引擎中成功部署的方法)将语料库中的每个文档变为实数表示的向量,每个实数都表示(词汇的)计数比率。流行的tf-idf方案(Salton和McGill,1983),对于文集中的每个文档选择了“词”或“术语”作为基本单位,并且计数由每个词的出现次数。在适当的归一化之后,将该术语频率计数与逆向文档频率计数进行比较,该逆向文档频率计数度量整个语料库中的词的出现次数(通常以对数刻度,并且再次适当标准化)。 最终结果是文档术语矩阵X,其列包含文档集中每个文档的tf-idf值。 因此,tf-idf方案将任意长度的文档缩减为固定长度的数字列表。

尽管tf-idf规约具有一些吸引人的特征 - 特别是(在对集合中的文档进行区分的)单词集合的基本识别中,但是在(对文档的)描述长度上,该方法并没有减少多少,并且揭示出很少的文档内或文档间的统计结构。为了解决这些缺点,IR研究人员提出了其他几种降维技术,其中最著名的是潜在语义索引(LSI)(Deerwester等,1990)。LSI使用X矩阵的奇异值分解来标识tf-idf特征空间中的线性子空间,该子空间捕获集合中的大部分变异数(variance)。这种方法可以在大型集合中实现显着压缩。此外,Deerwester等人 认为LSI的衍生特征(即原始tf-idf特征的线性组合),可以捕捉基本语言学概念的某些方面,比如同义词和多义词等。

为了证实关于LSI的主张,并研究其相对的优缺点,开发文本语料库的生成概率模型和研究LSI从数据中恢复生成模型方面的能力是有用的(Papadimitriou et al。,1998)。然而,目前尚不清楚,考虑文本的生成模型的时候,为什么应该采用LSI方法 - (其实)可以尝试更直接地进行,(比如)使用最大似然法或贝叶斯方法将模型与数据相匹配(即得到数据的模型)。

Hofmann(1999)在这方面迈出了重要的一步,他将LSI的概率LSI(pLSI)模型(也称为特征模型aspect model)作为LSI的替代品。我们在第节中详细描述的pLSI方法将文档中的每个单词作为混合模型中的样本进行建模,其中混合组件是多项随机变量,可以将其视为“主题topics”的表示。因此,每个单词都是从单个主题生成的,而文档中的不同单词可以从不同的主题生成。每个文档都被表示为这些混合组件的混合比例列表,从而将其简化为一组固定主题的概率分布。 这种分布是与文档相关的“简化描述”。

虽然霍夫曼的工作是向文本概率建模迈出的有用的一步,但它并不完整,因为它没有提供文档层面的概率模型。在pLSI中,每个文档都被表示为一个数字列表(数字的值是主题的混合比例),并且这些数字没有生成概率模型。这导致了几个问题:(1)模型中参数的数量与语料库的大小成线性增长,这导致过度拟合的严重问题;(2)不清楚如何将概率分配给训练集之外的文档。

要了解如何超越pLSI,让我们考虑包括LSI和pLSI在内的一类降维方法的基本概率假设。所有这些方法都基于“词袋”的假设 - 文档中的单词顺序可以忽略不计。此外,尽管不经常正式说明,但这些方法也假定文档是可相互交换的; 文集中文档的具体排序也可以忽略不计。

受益于Finetti(1990),一个经典表示理论认为:任何可交换随机变量的集合都具有混合分布(通常是无限混合)的表示。因此,如果我们想考虑文件和单词的可交换表示,我们需要考虑能捕获单词和文档的可交换性的混合模型。这一思路促使我们在当前论文中提出潜在狄利克雷分配(LDA)模型。

需要强调的是,可交换性的假设并不等同于随机变量独立同分布的假设。相反,可交换性本质上可以被解释为“条件独立且分布相同”,其中的条件是与概率分布的潜在隐参数有关的。在一定条件下,随机变量的联合分布是简单的,但如果围绕隐参数考虑,联合分布可能相当复杂。因此,虽然可交换性的假设是文本建模领域的一个主要的简化假设,并且其主要理由是它是一种会导致计算效率较高的方法,但可交换性假设对简单频率的计数或线性操作并不是一个必要的条件。在当前的论文中,我们的目标是,通过认真考虑de Finetti定理,可以通过混合分布获取重要的文档内统计结构。

同样值得注意的是,可交换性的基本概念有大量的总结概括,包括各种形式的部分可交换性,并且上面提到的表示法也可用于部分可交换的情况(Diaconis,1988)。因此,虽然我们在当前论文中讨论的工作集中在简单的“词袋”模型上(这表现为单个单词(unigrams)的混合分布),但我们的方法也适用于涉及较大结构混合的更丰富的模型,如n-grams或段落。

本文的结构如下: 在第2节中,我们介绍基本的表示法和术语。 LDA模型在第3节中介绍,并与第4节中的相关潜变量模型进行比较。我们在第5节讨论LDA的推理和参数估计。第6节提供了LDA拟合数据的一个说明性例子。文本建模,文本分类和协作过滤的实验结果在第7节中给出。最后,第8节给出我们的结论。

我们在整篇论文中使用 文本集合 的说法,指的是诸如“单词”,“文档”和“语料库”等实体。这很有用,因为它有助于指导靠直觉来感知的知识的处理(intuition),特别是当我们引入旨在捕捉抽象概念(如主题)的潜在变量时(潜在变量和隐变量说的是一回事)。然而,需要指出的是,LDA模型不一定与文本相关,并且可应用于涉及数据集合的其他问题,包括来自诸如协同过滤,基于内容的图像检索和生物信息学等领域的数据。 事实上,在节中,我们将呈现在协同过滤领域的实验结果。

在形式上,我们定义下列术语: • 单词是离散数据的基本单位,假设有一个V个词组成的词汇表(词典),索引通过{1......V}表示,里面每一项代表一个单词。我们使用单位向量表示单词,它里面一项等于1其他项等于零。我们使用上标来表示第几个成分,因此第v个词在V维向量w中表示为:w v = 1 and w u = 0 for u ≠ v • 文档中的词来自一个包含N个词的词典,一个文档可以表示成N个词组成的序列,可以表示为 w = (w 1 ,w 2 ......w N ),下标表示第几个词。(注意,每个词用一个V维的向量表示,每篇文档有最多有N个不同的词,不要搞混了) • 一个语料库是含有M个文档的集合,用 D = ( w 1 , w 2 ...... w M )----注意有加粗

我们希望找到一个语料库的概率模型,它不仅为语料库成员分配高概率,而且为其他“类似”文档分配高概率。(意思就是说,语料库中某一文档的某个topic概率比较高,那么测试相似文档。也能得到相同的概率分布)

隐在狄利克雷分配(LDA)是语料库的生成概率模型。 其基本思想是文档被表示为潜在主题的随机混合,每个主题都是有不同的文字(词)分布特征的。

LDA为语料库 D 中的每个文档 w 假定以下生成过程:

在这个基本模型中做了几个简化的假设,其中一些我们在后面的章节中会删除。首先,Dirichlet分布的维度k(以及主题变量z的维度)被假定为已知并且是固定的。其次,单词概率通过k×V矩阵 β 进行参数化,其中 β ij = p(w j = 1 | z i = 1)(猜测:它表示在某个主题中索引为i的词出现的条件下,文档中第j个词出现的概率),现在我们将其视为待估计的固定量。最后,泊松假设对随后的任何事情都不是关键的,并且可以根据需要使用更真实的文档长度分布。此外,请注意,N与所有其他数据生成变量(θ和z)无关。 因此它是一个辅助变量,我们通常会忽略它在随后发展中的随机性。

一个k维Dirichlet随机变量θ可以从(k − 1)-simplex(单形或单纯形)中取值,并且在这个单纯形中有以下概率密度:

α 参数是一个k维向量,并且 α 的每一项都满足α i > 0,另外Γ(x)是 伽马函数 。狄利克雷分布在单形(属于指数族)上是一种实用的分布,具有有限维数的充分统计量,并且与多项分布共轭。

在第5节中,这些属性将有助于开发LDA的推理和参数估计算法。

给定参数α和β,主题混合分布θ、主题 z 和文档 w 的联合分布为:

上式表示给定参数α和β的条件下,文档的概率分布。

最后,利用单个文档边际概率的乘积,得到一个语料库的概率分布:

区分LDA和简单的Dirichlet多项式聚类模型很重要。 经典的聚类模型会涉及到一个两层模型:其中,一个Dirichlet为一个语料库抽样一次,一个多项式聚类变量为语料库中的每个文档选择一次,并且以聚类变量为条件,为文档选择一组词语 。与许多聚类模型一样,这种模型将文档限制为与单个主题相关联。另一方面,LDA涉及三个层次,特别是主题节点在文档中被重复采样。在这种模式下,文档可以与多个主题相关联。

图1所示类似结构通常在贝叶斯统计建模中研究,它们被称为分层模型(Gelman等,1995),或者更准确地说,是条件独立的分层模型(Kass和Steffey,1989)。这种模型通常也被称为参数经验贝叶斯模型(parametric empirical Bayes models),这个术语不仅指特定的模型结构,而且还指用于估计模型参数的方法(Morris,1983)。事实上,正如我们在第5节中讨论的那样,我们采用经验贝叶斯方法来估计一个LDA简单实现中的参数(比如,α和β等),但我们也考虑了更充分的贝叶斯方法。

如果联合分布对于置换是不变的,那么一个有限的随机变量集{z 1 ......z N }被认为是可交换的。 如果π(此π非彼π)表示某种整数从1到N的置换规则,则:

p(z 1 ......z N ) = p(z π(1) ......z π(N) )

如果每个有限的子序列是可交换的,则无限序列的随机变量是无限可交换的。

De Finetti的表示定理指出,随机变量的无限可交换序列的联合分布就好像从一些分布中抽取的一个随机参数,以该参数为条件,所讨论的随机变量是独立同分布的。

在LDA中,我们假设单词是由主题(通过固定的条件分布)生成的,而且这些主题在文档中是无限可交换的。根据菲内蒂定理,一组词汇和话题的概率必须具有以下这种形式:

θ是关于主题的多项式的随机参数。通过边缘化主题变量并赋予θ狄利克雷分布,在公式(3)中,我们获得了文档的LDA分布。

图1所示的LDA模型比传统分层贝叶斯文献中经常研究的两层模型要复杂得多。然而,通过边缘化隐藏的主题变量z,我们可以将LDA理解为两层模型。

特别是,让我们来构造单词分布p(w|θ,β):

请注意,这是一个随机量,因为它取决于θ。

我们现在为文档 w 定义下面的生成过程:(对每篇文档)

该过程将文档的边际分布定义为连续混合分布:(注意下式表示的是语料库,而非一篇文档 的分布)

图2说明了LDA的这种解释。 它描绘了LDA模型的一个特定实例引发的p(w| θ,β)的分布。请注意,在(V-1) - simplex中的这种分布仅通过k + kV个参数实现,但展现出非常有趣的多模式结构。

在本节中,我们将LDA与文本的简单潜(隐)变量模型(一元模型,一元模型的混合模型和pLSI模型)进行比较。 此外,我们提出了这些模型的统一几何解释,突出了它们的主要区别和相似之处。

在一元模型下,每个文档的单词都是独立的按照某个多项分布而绘制的,生成文档的概率为:

如果我们用一个离散的随机主题变量z(图3b)来扩充一元模型,我们就可以得到一个混合一元模型(Nigam et al.,2000)。在这个混合模型下,首先选择一个主题z,然后从条件多项式p(w | z)独立的生成N个单词,从而生成每个文档(该文档中的所有词都来自一个主题)。一篇文档的概率分布:

在每个文档仅显示一个主题的假设背景下,当从语料库做概率估计时,可以将词语分布视为主题的表示。正如第7节的实证结果所示,这种假设通常限制性太强,以至于无法有效地建模量大的文献。

相反,LDA模型允许文档在不同程度上展示多个主题。这是以(增加)一个额外参数为代价实现的:在混合一元模型中有与p(z)相关的参数有k-1个,而在LDA中与p(θ | α)有关的参数有k个。

概率潜在语义索引(pLSI)是另一个广泛使用的文档模型(Hofmann,1999)。 如图3c所示,给定了未知的主题z,pLSI模型假设文档标签d和单词w n 是条件独立的:

使用pLSI的另一个困难(也是来自于通过训练文档进行索引的分布的使用)是必须估计的参数数量与训练文档的数量呈线性增长。k-主题pLSI模型的参数是在k个未知主题上,V和M混合大小的k个多项式分布。这给出了kV + kM个参数,因此在M中线性增长。参数的线性增长表明该模型容易出现过度拟合,并且根据经验确定,过拟合确实是一个严重的问题(参见第节)。在实践中,使用回火试探来平滑模型的参数以获得可接受的预测性能。 然而,已经表明,即使在使用回火时也可能发生过度拟合(Popescul et al.,2001)。

LDA通过将主题混合权重视为一个k个参数的隐藏的随机变量,而不是大量与训练集明确关联的单个参数,来克服这两个问题。如第3节所述,LDA是一个良好定义的生成模型,可轻松推广到新文档。此外,k-topic LDA模型中的k + kV个参数不会随着训练语料库的大小而增长。我们将在节看到,LDA不会遇到与pLSI相同的过度拟合问题。

说明LDA和其他潜在主题模型之间差异的一种好方法是考虑潜在空间的几何形状,并了解每个模型下文档在该几何体中的表示方式。

上述所有四种模型(unigram, mixture of unigrams, pLSI, and LDA)都是在单词分布空间中进行操作的。每个这样的分布可以被看作是(V-1) - simplex上的一个点,我们称之为词单纯形(the word simplex)。

一元模型在词单纯形上找到一个单一的点,并假定文集中的所有单词来自相应的分布。潜变量模型考虑词单纯形上的k个点,并根据这些点构成子单形体,我们称之为主题单纯形。请注意,主题单纯形上的任何一点也是单词单纯形上的一个点。不同的潜在变量模型以不同的方式使用主题单纯形来生成文档。

• 混合一元模型假设,对于每个文档,词单纯形中的k个点(即,主题单纯形的那些角中的一个)中的一个一旦随机选择后,文档的所有单词都从对应于那一点的分布中获取。

• pLSI模型假定训练文档的每个单词来自随机选择的主题。这些主题本身来自于文档在主题上的特征分布,也就是主题单纯形上的一个角点。每个文件有一个这样的分布,训练文档集因此定义了关于主题单纯形的经验分布。

• LDA假定观察到的(训练集)和未看到的(验证集)文档中的每个词都是由随机选择的主题生成的,该主题是从具有一个随机选择参数的分布中抽取的。 从主题单纯形的平滑分布中,每个文档对此参数进行一次采样。

这些差异在图4中突出显示。

我们描述了使用LDA背后的动机,并说明了其与其他潜在主题模型相比的概念优势。在本节中,我们将注意力转向LDA下的推理和参数估计。

为了使用LDA我们需要解决的关键推理问题是计算给定文档的隐藏变量的后验分布:

不幸的是,这种分布通常难以计算。 实际上,为了规范化分布,我们将忽视隐藏变量并根据模型参数重写方程(3):

这是一个由于在潜在主题的总和中θ和β之间的耦合,而难以处理的函数(Dickey,1983)。Dickey表示这个函数是在Dirichlet分布的特定扩展下的期望,可以用特殊的超几何函数表示。它在贝叶斯环境中可用于删除(或审查,censored 暂时不明白怎么翻译)离散数据,以表示θ的后验(在该设置中,θ是随机参数)(Dickey等,1987)。

尽管后验分布对于精确推断是难以处理的,但是对于LDA可以考虑各种各样的近似推理算法,包括拉普拉斯近似,变分近似和马尔可夫链蒙特卡罗(Jordan,1999)。在本节中,我们描述了一个简单的基于凸性的变分算法,用于推断LDA,并讨论了第8节中的一些替代方案。

基于凸性的变分推理的基本思想是利用Jensen不等式来获得对数似然的可调下界(Jordan et al。,1999)。本质上,人们考虑一系列下界,它们由一组变分参数索引。变分参数由优化程序选择,该程序试图找到最可能的下限。

获得易处理的下界族的简单方法是考虑原始图形模型的简单修改,原始图形模型中一些边和节点已被移除。特别考虑图5(左)中所示的LDA模型。 θ和β之间的有问题的耦合是由于θ,z和w之间的边界而产生的。 通过丢弃这些边和w节点,并赋予所得到的简化图形模型以及自由变分参数,我们获得了潜在变量的一个分布族。这个分布族以下面这个变分分布为特征:

已经指定了简化的概率分布族,下一步是建立一个确定变分参数γ和Φ的值的优化问题。 正如我们在附录A中所示,找到对数似然的紧密下界的期望直接转化为以下优化问题:

因此,通过最小化变分分布和真实后验p(θ, z | w,α,β)之间的KullbackLeibler(KL)发散来找到变分参数的优化值。这种最小化可以通过迭代定点方法实现。 特别是,我们在附录中表明,通过计算KL散度的导数并将它们设置为零,我们得到以下一对更新方程:

最近有新的项目做,没时间翻译啦,以后有时间再填坑,此处省略3000字......

主题模型lda的论文

我们描述潜在的狄利克雷分配(LDA),它是一种用于离散数据集合(如文本语料库)的生成概率模型。 LDA是一个三层次的贝叶斯模型,其中一个集合中的每个项目都被建模为一组潜在的话题(主体)类型的有限混合。反过来,每个主题都被建模为一组潜在主题概率的无限混合。 在文本建模的背景下,主题概率提供了文档的明确表示。我们提出了基于变分方法和经验贝叶斯参数估计的EM算法的高效近似推理技术。 我们会报告LDA在文档建模,文本分类和协作过滤上的实验结果,并与一元混合模型( unigrams model)和概率LSI模型相比较。

在本文中,我们考虑建模文本语料库和其他离散数据集合的问题。我们的目标是找到对一个集合的成员的简短描述,它不仅可以高效处理大型集合,同时保留对分类,异常检测,摘要(概括)以及相似性和相关性判断等基本任务有用的必要统计关系。

信息检索(IR)领域的研究人员已经在这个问题上取得了重大进展(Baeza-Yates和Ribeiro-Neto,1999)。IR研究人员为文本语料库提出的基本方法 (一种在现代互联网搜索引擎中成功部署的方法)将语料库中的每个文档变为实数表示的向量,每个实数都表示(词汇的)计数比率。流行的tf-idf方案(Salton和McGill,1983),对于文集中的每个文档选择了“词”或“术语”作为基本单位,并且计数由每个词的出现次数。在适当的归一化之后,将该术语频率计数与逆向文档频率计数进行比较,该逆向文档频率计数度量整个语料库中的词的出现次数(通常以对数刻度,并且再次适当标准化)。 最终结果是文档术语矩阵X,其列包含文档集中每个文档的tf-idf值。 因此,tf-idf方案将任意长度的文档缩减为固定长度的数字列表。

尽管tf-idf规约具有一些吸引人的特征 - 特别是(在对集合中的文档进行区分的)单词集合的基本识别中,但是在(对文档的)描述长度上,该方法并没有减少多少,并且揭示出很少的文档内或文档间的统计结构。为了解决这些缺点,IR研究人员提出了其他几种降维技术,其中最著名的是潜在语义索引(LSI)(Deerwester等,1990)。LSI使用X矩阵的奇异值分解来标识tf-idf特征空间中的线性子空间,该子空间捕获集合中的大部分变异数(variance)。这种方法可以在大型集合中实现显着压缩。此外,Deerwester等人 认为LSI的衍生特征(即原始tf-idf特征的线性组合),可以捕捉基本语言学概念的某些方面,比如同义词和多义词等。

为了证实关于LSI的主张,并研究其相对的优缺点,开发文本语料库的生成概率模型和研究LSI从数据中恢复生成模型方面的能力是有用的(Papadimitriou et al。,1998)。然而,目前尚不清楚,考虑文本的生成模型的时候,为什么应该采用LSI方法 - (其实)可以尝试更直接地进行,(比如)使用最大似然法或贝叶斯方法将模型与数据相匹配(即得到数据的模型)。

Hofmann(1999)在这方面迈出了重要的一步,他将LSI的概率LSI(pLSI)模型(也称为特征模型aspect model)作为LSI的替代品。我们在第节中详细描述的pLSI方法将文档中的每个单词作为混合模型中的样本进行建模,其中混合组件是多项随机变量,可以将其视为“主题topics”的表示。因此,每个单词都是从单个主题生成的,而文档中的不同单词可以从不同的主题生成。每个文档都被表示为这些混合组件的混合比例列表,从而将其简化为一组固定主题的概率分布。 这种分布是与文档相关的“简化描述”。

虽然霍夫曼的工作是向文本概率建模迈出的有用的一步,但它并不完整,因为它没有提供文档层面的概率模型。在pLSI中,每个文档都被表示为一个数字列表(数字的值是主题的混合比例),并且这些数字没有生成概率模型。这导致了几个问题:(1)模型中参数的数量与语料库的大小成线性增长,这导致过度拟合的严重问题;(2)不清楚如何将概率分配给训练集之外的文档。

要了解如何超越pLSI,让我们考虑包括LSI和pLSI在内的一类降维方法的基本概率假设。所有这些方法都基于“词袋”的假设 - 文档中的单词顺序可以忽略不计。此外,尽管不经常正式说明,但这些方法也假定文档是可相互交换的; 文集中文档的具体排序也可以忽略不计。

受益于Finetti(1990),一个经典表示理论认为:任何可交换随机变量的集合都具有混合分布(通常是无限混合)的表示。因此,如果我们想考虑文件和单词的可交换表示,我们需要考虑能捕获单词和文档的可交换性的混合模型。这一思路促使我们在当前论文中提出潜在狄利克雷分配(LDA)模型。

需要强调的是,可交换性的假设并不等同于随机变量独立同分布的假设。相反,可交换性本质上可以被解释为“条件独立且分布相同”,其中的条件是与概率分布的潜在隐参数有关的。在一定条件下,随机变量的联合分布是简单的,但如果围绕隐参数考虑,联合分布可能相当复杂。因此,虽然可交换性的假设是文本建模领域的一个主要的简化假设,并且其主要理由是它是一种会导致计算效率较高的方法,但可交换性假设对简单频率的计数或线性操作并不是一个必要的条件。在当前的论文中,我们的目标是,通过认真考虑de Finetti定理,可以通过混合分布获取重要的文档内统计结构。

同样值得注意的是,可交换性的基本概念有大量的总结概括,包括各种形式的部分可交换性,并且上面提到的表示法也可用于部分可交换的情况(Diaconis,1988)。因此,虽然我们在当前论文中讨论的工作集中在简单的“词袋”模型上(这表现为单个单词(unigrams)的混合分布),但我们的方法也适用于涉及较大结构混合的更丰富的模型,如n-grams或段落。

本文的结构如下: 在第2节中,我们介绍基本的表示法和术语。 LDA模型在第3节中介绍,并与第4节中的相关潜变量模型进行比较。我们在第5节讨论LDA的推理和参数估计。第6节提供了LDA拟合数据的一个说明性例子。文本建模,文本分类和协作过滤的实验结果在第7节中给出。最后,第8节给出我们的结论。

我们在整篇论文中使用 文本集合 的说法,指的是诸如“单词”,“文档”和“语料库”等实体。这很有用,因为它有助于指导靠直觉来感知的知识的处理(intuition),特别是当我们引入旨在捕捉抽象概念(如主题)的潜在变量时(潜在变量和隐变量说的是一回事)。然而,需要指出的是,LDA模型不一定与文本相关,并且可应用于涉及数据集合的其他问题,包括来自诸如协同过滤,基于内容的图像检索和生物信息学等领域的数据。 事实上,在节中,我们将呈现在协同过滤领域的实验结果。

在形式上,我们定义下列术语: • 单词是离散数据的基本单位,假设有一个V个词组成的词汇表(词典),索引通过{1......V}表示,里面每一项代表一个单词。我们使用单位向量表示单词,它里面一项等于1其他项等于零。我们使用上标来表示第几个成分,因此第v个词在V维向量w中表示为:w v = 1 and w u = 0 for u ≠ v • 文档中的词来自一个包含N个词的词典,一个文档可以表示成N个词组成的序列,可以表示为 w = (w 1 ,w 2 ......w N ),下标表示第几个词。(注意,每个词用一个V维的向量表示,每篇文档有最多有N个不同的词,不要搞混了) • 一个语料库是含有M个文档的集合,用 D = ( w 1 , w 2 ...... w M )----注意有加粗

我们希望找到一个语料库的概率模型,它不仅为语料库成员分配高概率,而且为其他“类似”文档分配高概率。(意思就是说,语料库中某一文档的某个topic概率比较高,那么测试相似文档。也能得到相同的概率分布)

隐在狄利克雷分配(LDA)是语料库的生成概率模型。 其基本思想是文档被表示为潜在主题的随机混合,每个主题都是有不同的文字(词)分布特征的。

LDA为语料库 D 中的每个文档 w 假定以下生成过程:

在这个基本模型中做了几个简化的假设,其中一些我们在后面的章节中会删除。首先,Dirichlet分布的维度k(以及主题变量z的维度)被假定为已知并且是固定的。其次,单词概率通过k×V矩阵 β 进行参数化,其中 β ij = p(w j = 1 | z i = 1)(猜测:它表示在某个主题中索引为i的词出现的条件下,文档中第j个词出现的概率),现在我们将其视为待估计的固定量。最后,泊松假设对随后的任何事情都不是关键的,并且可以根据需要使用更真实的文档长度分布。此外,请注意,N与所有其他数据生成变量(θ和z)无关。 因此它是一个辅助变量,我们通常会忽略它在随后发展中的随机性。

一个k维Dirichlet随机变量θ可以从(k − 1)-simplex(单形或单纯形)中取值,并且在这个单纯形中有以下概率密度:

α 参数是一个k维向量,并且 α 的每一项都满足α i > 0,另外Γ(x)是 伽马函数 。狄利克雷分布在单形(属于指数族)上是一种实用的分布,具有有限维数的充分统计量,并且与多项分布共轭。

在第5节中,这些属性将有助于开发LDA的推理和参数估计算法。

给定参数α和β,主题混合分布θ、主题 z 和文档 w 的联合分布为:

上式表示给定参数α和β的条件下,文档的概率分布。

最后,利用单个文档边际概率的乘积,得到一个语料库的概率分布:

区分LDA和简单的Dirichlet多项式聚类模型很重要。 经典的聚类模型会涉及到一个两层模型:其中,一个Dirichlet为一个语料库抽样一次,一个多项式聚类变量为语料库中的每个文档选择一次,并且以聚类变量为条件,为文档选择一组词语 。与许多聚类模型一样,这种模型将文档限制为与单个主题相关联。另一方面,LDA涉及三个层次,特别是主题节点在文档中被重复采样。在这种模式下,文档可以与多个主题相关联。

图1所示类似结构通常在贝叶斯统计建模中研究,它们被称为分层模型(Gelman等,1995),或者更准确地说,是条件独立的分层模型(Kass和Steffey,1989)。这种模型通常也被称为参数经验贝叶斯模型(parametric empirical Bayes models),这个术语不仅指特定的模型结构,而且还指用于估计模型参数的方法(Morris,1983)。事实上,正如我们在第5节中讨论的那样,我们采用经验贝叶斯方法来估计一个LDA简单实现中的参数(比如,α和β等),但我们也考虑了更充分的贝叶斯方法。

如果联合分布对于置换是不变的,那么一个有限的随机变量集{z 1 ......z N }被认为是可交换的。 如果π(此π非彼π)表示某种整数从1到N的置换规则,则:

p(z 1 ......z N ) = p(z π(1) ......z π(N) )

如果每个有限的子序列是可交换的,则无限序列的随机变量是无限可交换的。

De Finetti的表示定理指出,随机变量的无限可交换序列的联合分布就好像从一些分布中抽取的一个随机参数,以该参数为条件,所讨论的随机变量是独立同分布的。

在LDA中,我们假设单词是由主题(通过固定的条件分布)生成的,而且这些主题在文档中是无限可交换的。根据菲内蒂定理,一组词汇和话题的概率必须具有以下这种形式:

θ是关于主题的多项式的随机参数。通过边缘化主题变量并赋予θ狄利克雷分布,在公式(3)中,我们获得了文档的LDA分布。

图1所示的LDA模型比传统分层贝叶斯文献中经常研究的两层模型要复杂得多。然而,通过边缘化隐藏的主题变量z,我们可以将LDA理解为两层模型。

特别是,让我们来构造单词分布p(w|θ,β):

请注意,这是一个随机量,因为它取决于θ。

我们现在为文档 w 定义下面的生成过程:(对每篇文档)

该过程将文档的边际分布定义为连续混合分布:(注意下式表示的是语料库,而非一篇文档 的分布)

图2说明了LDA的这种解释。 它描绘了LDA模型的一个特定实例引发的p(w| θ,β)的分布。请注意,在(V-1) - simplex中的这种分布仅通过k + kV个参数实现,但展现出非常有趣的多模式结构。

在本节中,我们将LDA与文本的简单潜(隐)变量模型(一元模型,一元模型的混合模型和pLSI模型)进行比较。 此外,我们提出了这些模型的统一几何解释,突出了它们的主要区别和相似之处。

在一元模型下,每个文档的单词都是独立的按照某个多项分布而绘制的,生成文档的概率为:

如果我们用一个离散的随机主题变量z(图3b)来扩充一元模型,我们就可以得到一个混合一元模型(Nigam et al.,2000)。在这个混合模型下,首先选择一个主题z,然后从条件多项式p(w | z)独立的生成N个单词,从而生成每个文档(该文档中的所有词都来自一个主题)。一篇文档的概率分布:

在每个文档仅显示一个主题的假设背景下,当从语料库做概率估计时,可以将词语分布视为主题的表示。正如第7节的实证结果所示,这种假设通常限制性太强,以至于无法有效地建模量大的文献。

相反,LDA模型允许文档在不同程度上展示多个主题。这是以(增加)一个额外参数为代价实现的:在混合一元模型中有与p(z)相关的参数有k-1个,而在LDA中与p(θ | α)有关的参数有k个。

概率潜在语义索引(pLSI)是另一个广泛使用的文档模型(Hofmann,1999)。 如图3c所示,给定了未知的主题z,pLSI模型假设文档标签d和单词w n 是条件独立的:

使用pLSI的另一个困难(也是来自于通过训练文档进行索引的分布的使用)是必须估计的参数数量与训练文档的数量呈线性增长。k-主题pLSI模型的参数是在k个未知主题上,V和M混合大小的k个多项式分布。这给出了kV + kM个参数,因此在M中线性增长。参数的线性增长表明该模型容易出现过度拟合,并且根据经验确定,过拟合确实是一个严重的问题(参见第节)。在实践中,使用回火试探来平滑模型的参数以获得可接受的预测性能。 然而,已经表明,即使在使用回火时也可能发生过度拟合(Popescul et al.,2001)。

LDA通过将主题混合权重视为一个k个参数的隐藏的随机变量,而不是大量与训练集明确关联的单个参数,来克服这两个问题。如第3节所述,LDA是一个良好定义的生成模型,可轻松推广到新文档。此外,k-topic LDA模型中的k + kV个参数不会随着训练语料库的大小而增长。我们将在节看到,LDA不会遇到与pLSI相同的过度拟合问题。

说明LDA和其他潜在主题模型之间差异的一种好方法是考虑潜在空间的几何形状,并了解每个模型下文档在该几何体中的表示方式。

上述所有四种模型(unigram, mixture of unigrams, pLSI, and LDA)都是在单词分布空间中进行操作的。每个这样的分布可以被看作是(V-1) - simplex上的一个点,我们称之为词单纯形(the word simplex)。

一元模型在词单纯形上找到一个单一的点,并假定文集中的所有单词来自相应的分布。潜变量模型考虑词单纯形上的k个点,并根据这些点构成子单形体,我们称之为主题单纯形。请注意,主题单纯形上的任何一点也是单词单纯形上的一个点。不同的潜在变量模型以不同的方式使用主题单纯形来生成文档。

• 混合一元模型假设,对于每个文档,词单纯形中的k个点(即,主题单纯形的那些角中的一个)中的一个一旦随机选择后,文档的所有单词都从对应于那一点的分布中获取。

• pLSI模型假定训练文档的每个单词来自随机选择的主题。这些主题本身来自于文档在主题上的特征分布,也就是主题单纯形上的一个角点。每个文件有一个这样的分布,训练文档集因此定义了关于主题单纯形的经验分布。

• LDA假定观察到的(训练集)和未看到的(验证集)文档中的每个词都是由随机选择的主题生成的,该主题是从具有一个随机选择参数的分布中抽取的。 从主题单纯形的平滑分布中,每个文档对此参数进行一次采样。

这些差异在图4中突出显示。

我们描述了使用LDA背后的动机,并说明了其与其他潜在主题模型相比的概念优势。在本节中,我们将注意力转向LDA下的推理和参数估计。

为了使用LDA我们需要解决的关键推理问题是计算给定文档的隐藏变量的后验分布:

不幸的是,这种分布通常难以计算。 实际上,为了规范化分布,我们将忽视隐藏变量并根据模型参数重写方程(3):

这是一个由于在潜在主题的总和中θ和β之间的耦合,而难以处理的函数(Dickey,1983)。Dickey表示这个函数是在Dirichlet分布的特定扩展下的期望,可以用特殊的超几何函数表示。它在贝叶斯环境中可用于删除(或审查,censored 暂时不明白怎么翻译)离散数据,以表示θ的后验(在该设置中,θ是随机参数)(Dickey等,1987)。

尽管后验分布对于精确推断是难以处理的,但是对于LDA可以考虑各种各样的近似推理算法,包括拉普拉斯近似,变分近似和马尔可夫链蒙特卡罗(Jordan,1999)。在本节中,我们描述了一个简单的基于凸性的变分算法,用于推断LDA,并讨论了第8节中的一些替代方案。

基于凸性的变分推理的基本思想是利用Jensen不等式来获得对数似然的可调下界(Jordan et al。,1999)。本质上,人们考虑一系列下界,它们由一组变分参数索引。变分参数由优化程序选择,该程序试图找到最可能的下限。

获得易处理的下界族的简单方法是考虑原始图形模型的简单修改,原始图形模型中一些边和节点已被移除。特别考虑图5(左)中所示的LDA模型。 θ和β之间的有问题的耦合是由于θ,z和w之间的边界而产生的。 通过丢弃这些边和w节点,并赋予所得到的简化图形模型以及自由变分参数,我们获得了潜在变量的一个分布族。这个分布族以下面这个变分分布为特征:

已经指定了简化的概率分布族,下一步是建立一个确定变分参数γ和Φ的值的优化问题。 正如我们在附录A中所示,找到对数似然的紧密下界的期望直接转化为以下优化问题:

因此,通过最小化变分分布和真实后验p(θ, z | w,α,β)之间的KullbackLeibler(KL)发散来找到变分参数的优化值。这种最小化可以通过迭代定点方法实现。 特别是,我们在附录中表明,通过计算KL散度的导数并将它们设置为零,我们得到以下一对更新方程:

最近有新的项目做,没时间翻译啦,以后有时间再填坑,此处省略3000字......

社会网络分析理论: 在社会网络[63]由人类学家Barnes最早提出的概念,他在社会网络的分析基础上统地研究挪威一个小渔村的跨亲缘与阶级的关系。在社会网络分析中,存在一些经典的理论。这些理论主要包括:六度分割理论、弱关系理论、150法则、小世界网络理论、马太效应等。基于社会网络有关的研究方向和内容,在不同的领域着发挥着各自的作用,例如,社会影响力分析,社区发现,信息传播模型,链接预测,基于社会网络的推荐。 150法则是指一个人能保持稳定社交关系的人数上限通常为150人。1929年由英国罗宾•邓巴教授(Robin Dunbar)提出了经典的”150定律”理论,该定律同时也被称为“邓巴数字”[64]。这个定律在我们的实际日常生活中的应用是相当普遍的,SIM卡中只能存储150个联系人的电话,微软的MSN中也只可以最多把150位联系人的信息添加到自己的名单中[64]等等。 小世界网络是一种具有特殊结构的复杂网络,在这种网络中大部份的节点是不相邻的,但绝大部份节点之间是连通的且距离很短。六度分割理论也是小世界网络理论的一种体现。在多数现实世界的社会网络中,尽管网络中的节点数量巨大,网络中相邻的节点相对较少,但每两个节点间往往只需要很短的距离便能连通。 六度分割就是指一个人与其他任何一个人之间建立起联系,最多都只需要经过六个人。所以,即便邓巴数字告诉我们,我们是能力上维持一个特别大的社交圈的,但是六度分割理论却可以告诉我们,通过我们现有的社交人脉圈以及网络可以无限扩张我们的人脉圈,在需要的时候都能够和地球中想要联系的任何人取得联系。 弱关系理论弱关系(Weak Tie)是指需要较少或不需要情感联系的人们之间的社会联系,这种联系几乎不需要耗费个人的时间或精力来维系,但这种联系却很有作用。美国社会学家Mark Granovetter在研宄人们在求职过程中如何获取工作信息时发现[65],由家人、好友等构成的强关系在获取工作信息过程中起到的作用很有限,而那些关系较疏远的同学、前同事等反而能够提供更加有用的求职信息。 马太效应可以理解为达尔文进化论中适者生存的理念。在社交网络的发展过程如同生物进化的过程,存在强者越强、弱者越弱的现象。也就是说,在社交网络中越是处于网络核心的节点很大可能会变来越核心,而那些处于社交网络中边缘地带的节点或许会越来越不重要甚至直至消失。那些在社交网络中相比其他节点拥有更大影响力的节点,其带给该网络的影响也要比那些拥有弱影响力的节点所带来的影响要强。 从不同角度探索节点影响力挖掘算法: 1.基于邻节点中心性的方法。这类方法最简单最直观,它根据节点在网络中的位置来评估节点的影响力。度中心性[13]考察网络中节点的直接邻居数目,半局部中心性[14]考察网络中节点四层邻居的信息,ClusterRank[15]同时考虑了网络中节点的度和聚类系数。 2.基于路径中心性的方法。这类方法考察了节点在控制信息流方面的能力,并刻画节点的重要性。这类方法包括子图中心性[16]、数中心性[17](一些演化算法包括:路由介数中心性[18],流介数中心性[19],连通介数中心性[20],随机游走介数中心性[21]等)及其他基于路径的挖掘方法。 3.迭代寻优排序方法。这类方法不仅考虑了网络中节点邻居的数量,并且考虑邻居质量对节点重要性的影响,包括了特征向量中心性[13],累积提名[22],PageRank算法[23]及其变种[24-32]。 4.基于节点位置的排序算法。这类方法最显著的特点是,算法并没有给出一个计算节点重要性的定义,而是通过确定节点在网络中的位置,以此来确定节点的重要程度。在网络核心位置的节点,其重要性就相对较高,相反的,若节点处于网络边缘,那么它的重要性就会比较低。基于节点位置的以及不同应用场景的推荐算法具有重要的研究意义[34-37]。 节点影响力评估方法: 在社交网络节点影响力的评估方法主要可以分为三类,基于静态统计量的评估方法、基于链接分析算法的评估方法,基于概率模型的评估方法。 众学者在静态统计量的方法上,结合不同社交网络中相关信息,借鉴链接分析法以及建立概率模型来评估节点影响力,对社交网络节点影响力可以做到更有效的评估[66]。 1)基于静态统计量度量方法 主要是通过网络中节点的一些静态属性特征来简单直接地体现节点的影响力,但面对社交网络中复杂信息以及不同平台,并不能有效地度量不同社交网络中节点影响力。如度中心性,主观认为节点的重要性取决于与其他节点连接数决定,即认为一个节点的邻居节点越多,影响力越大。在有向网络中,根据边的方向,分为入度和出度,在有权网络中,节点的度可以看作强度,即边的权重之和。度中心性刻画了节点的直接影响力,度中心性指标的特点是简单、直观、计算复杂度低,也具有一定合理性。 但针对不同平台的网络结构中,度中心性的影响力效果未必能达到目标效果,而且社交网络中用户间关系的建立具有一定的偶然性,而且不同的用户间的关系强度也不同。度中心性没有考虑了节点的最局部信息,虽然对影响力进行了直接描述,但是没有考虑周围节点处所位置以及更高阶邻居。众学者在静态统计量的方法上,结合不同社交网络中相关信息,借鉴链接分析法以及建立概率模型来评估节点影响力,对社交网络节点影响力可以做到更有效的评估[66-67]。 2)基于链接分析算法的方法 链接分析算法(Link Analysis)主要应用在万维网中用来评估网页的流行性。通过超链接,万维网中的网页连接成一个网络,同时这个网络也具备了小世界网络的特征,且微博平台中的关注和粉丝关系与网页的链入与链出十分相似,因此链接分析法的思想也被应用在了微博社交网络中节点影响力的评估中。经典的算法是PageRank[68]和HITS算法[69](Hyperlink-Induced Topic Search)。 PageRank算法模型,是Google在搜索引擎结果中对网站排名的核心算法,核心思想通过计算页面链接的数量和质量,来确定网站的重要性的粗略估计,即节点的得分取决于指向它的节点的数量和这些节点的本身得分。即有越多的优质节点指向某节点时它的得分越高。 HITS算法是由Jon Kleinberg于1997年提出的。HITS算法模型中,有两类节点,权威(Authority)节点,和枢纽(Hub)节点。权威节点在网络中具有高权威性,枢纽节点具有很个指向边的节点。通过计算网络中每个节点的Authority权威值和Hub枢纽值来寻找高权威性的节点。即求值过程是在迭代中计算Authority和Hub值,直到收敛状态。Hub值和Authority值计算公式。 通过多数研究者发现,将链接分析法结合社交网络特性可以更好的对用户影响力进行评估,由于技术的快速发展,社交网络的多变性,因此如何将社交网络中的复杂数据和用户行为与相关算法进行结合,仍是需要我们继续研究的方向。 3)基于概率模型的方法 主要是建立概率模型对节点影响力进行预测。这么多学者将用户影响力作为参数对社交网络中的节点用户行为建立概率模型,并根据社交网络中已有的用户数据求解概率模型,得出用户影响力。 文献[70]认为用户间影响力越大、被影响用户的活跃度和转发意愿越高,则其转发另一个用户的信息的概率越大,所以利用用户影响力、转发意愿和活跃度等构建转发概率模型。通过用户发布的tweet数量、转发的tweet数和用户的历史转发行为数据,计算出用户活跃度、转发意愿和转发概率,进而社交网络中用户影响力。 文献[71]在度量影响力时融合了用户发布信息的主题生成过程,认为兴趣相似或经常联系的用户间影响力较强,用户的行为受其朋友的影响也受其个人兴趣的影响。基于这些假设,结合文本信息和网络结构对LDA模型进行扩展,在用户发布信息的基础上建立模型,通过解模型计算得出用户间基于主题的影响力。 文献[72]认为转发概率同样可以体现用户间的影响力,根据用户间的关注关系。历史转发记录,利用贝叶斯模型预测用户间的转发概率。 文献[73]考虑了用户建立关注关系的原因,用户被关注可能是与关注者兴趣投,也可能受用户的影响力影响。将基于用户的主题建模和基于主题的影响力评估相结合,并在同一个生成模型中进行计算,提出基于LDA算法模型的扩展算法模型FLDA模型(Followship-LDA)。[13] P. Bonacich. Factoring and weighting approaches to status scores and clique identification[J]. Journal of Mathematical Sociology, 1972, 2(1): 113-120 [14]ü,[J]. Physica A, 2012, 391(4): 1777-1787 [15] D. B. Chen, H. Gao, L. Lü, et al. Identifying influential nodes in large-scale directed networks: The role of clustering[J]. PLoS One, 2013, 8(10): e77455 [16], . [J].Physical Review E, 2005, 71(5): 122-133 [17][J].Sociometry,1977, 40(1): 35-41 [18] S. Dolev, Y. Elovici, R. Puzis. Routing betweenness centrality[J].Journal of the ACM, 2010, 57(4): 710-710 [19] Y. Gang,, H. Bo,etal. Efficientroutingoncomplexnetworks[J].PhysicalReviewE, 2005, 73(4): 46108 [20] E. Estrada, D. J. Higham, N. Hatano. Communicability betweenness in complex networks[J]. Physica A, 2009, 388(5): 764-774 [21][J].Social networks, 2005, 27(1): 39-54 [22] networks[J]. Social networks, 2000, 22(3): 187-200 [23] B. S. Brin, L. Page. The anatomy of a large scale hypertextual Web search engine[J]. Computer Networks & ISDN Systems, 1998, 30: 107-117 [24] P. Jomsri, S. Sanguansintukul, W. Choochaiwattana. CiteRank: combination similarity and static ranking with research paper searching[J]. International Journal of Internet Technology & Secured Transactions, 2011, 3(2): 161-177 [13][25][D].California: University of California. 2012 [26] J. Weng, E. P. Lim, J. Jiang, et al. Twitterrank: finding topic-sensitive influential twitterers[C]. Third International Conference on Web Search & Web Data Mining, ACM, 2010, 261-270 [27]: distinguishingbetweenprestigeandpopularity[J].NewJournalofPhysics,2012,14(14): 33033-33049 [28] J. Xuan, H. Jiang, , et al. Developer prioritization in bug repositories[C]. International Conference on Software Engineering, 2012, 25-35 [29]ü,[J]. Physica A, 2013, 404(24)47-55 [30] L. Lü, Y. C. Zhang, C H Yeung, et in social networks, the delicious case[J]. PLoS One, 2011, 6(6): e21202 [31][J].Authoritative sources in a hyperlinked environmen, 1999, 46(5): 604-632 [32](SALSA)andthe TKC effect[J]. Computer Networks, 2000, 33(2): 387-401 [33][J].Physical Review E, 2014, 90(5): 052808 [34] A. Banerjee, A. G. Chandrasekhar, E. Duflo, et al. Gossip: Identifying central individuals in a social network[R]. National Bureau of Economic Research, 2014. [35] percolation in social networks[J]. arXiv preprint arXiv:, 2015. [36] S. Y. Tan, J. Wu, L. Lü, et al. Efficient network disintegration under incomplete information: the comic effect of link prediction[J]. Scientific Reports, 2016, 6. [37]任晓龙,吕琳媛.网络重要节点排序方法综述[J].科学通报, 2014,59(13): 1175-1197 [63]贝克,晓冬.社会资本制胜:如何挖掘个人与企业网络中的隐性资源[M].上海交通大学出版社,2002. [64]天涯.六度分隔理论和150法则[EB/OL].|.[2010-07-14]. [65]Granovetter M Strength of Weak Ties[J]. American journal of sociology, 1973: 1360-1380. [66]王梓.社交网络中节点影响力评估算法研究[D].北京邮电大学, 2014. [67] Meeyoung Cha, Hamed Haddadi,Fabricio Benevenutoets. Measuring User Influence in Twitter: The Million Follower Fallacy[C]. Proceedings of the 4th International AAAI Conference on Weblogs and Social Media (ICWSM),2010:10-17 [3][68]  Page, Lawrence, Brin, et al. The PageRank citation ranking[C]// BringingOrder to the Web. Stanford InfoLab. 1998: 1-14. [4][69]Kleinberg J M. Authoritative sources in a hyperlinked environment[J]. Journal of the ACM, 1999, 46(5): 604-632. [70]Zibin Yin, Ya Zhang. Measuring Pair-Wise Social Influence inMicroblog[C], 2012 ASE/IEEE International Conference on SocialComputing and 2012 ASE/IEEE International Conference on Privacy,Security, Risk and Trust, 2012: 502-507. [71]Lu Liu, Jie Tang, Jiawei Han, Meng Jiang, Shiqiang Yang. Mining topic-level influence in heterogeneous networks[C]. Proceedings of the 19th ACMinternational conference on information and knowledge management, 2010: 199-208. [72] Qianni Deng, Yunjing Dai. How Your Friends Influence You: Quantifying Pairwise Influences on Twitter[C], International Conference on Cloud and Service Computing, 2012:185-192. [73] Bi, Bin, et al. Scalable Topic-Specific Influence Analysis on Microblogs[C], Proceedings of the 7th ACM international conference on Web search and data mining,2014: 513-522.

关于主题模型的一个论文笔记

本文是滴滴发在KDD2020的paper。 文中指出用户响应预测的困难在于模型需要考虑真实物理环境中的历史信息和实时事件信息。 本文提出了使用动态构建的异构图来编码事件的属性和事件发生的周围环境。除此之外,文中提出了一种多层图神经网络模型来学习历史行为和周围环境对于当前事件的影响,生成有效的事件表示来改善相应模型的准确性。 首先文中定义了几个术语:PreView, Request, Cancel_Order, Finish_Order PreView指的是用户确定起点和终点,页面上会显示出路线,服务类型,估计价格。Request指的是用户点击按钮,触发打车事件。Cancel_Order指的是司机到达前用户取消订单。Finish_Order指的是司机将用户送到目的地,用户付钱,完成整个交易流程。 本文的目标是对PreView事件建模,估计用户点击Request按钮的概率。 上图表示一个用户的打车流程。 文中使用名词POI(Point Of Interest)来表示地图上所有可能的上车和下车点。如上图所示,不同的用户行为同时发生在各个不同的POIs. 用户是否会点击Request按钮会由很多因素来决定。一些因素是显式的,可以直接从数据源中获取,比如用户当前位置和上车点位置的距离,天气,时间等;一些因素是隐式的,比如用户对于等待的意愿,用户对于这笔花销的意愿,用户对于路线的满意程度等等,这些特征很难直接获取。 一种解决方案是从历史数据和当前时间的观测中引入一些代替的特征,比如用户行为历史中和交易相关的行为,当前实时物理环境中发生的一些事件等等。 比如用户在当前PreView之前可能已经完成了多个订单,我们可以使用这些历史信息来捕捉用户的潜在特征,比如用户对于服务类型的偏好,用户对于花销的意愿程度等等。 具体的,用户更倾向于对那些和之前已经完成的PreView类似的PreView发起Request。同样的,我们也可以从用户没有完成的PreView中来抽取负特征。 为了计算PreView之间的相似性,文中提出使用从历史数据中学习到的embedding。除此之外,我们希望embedding能够捕捉当时周围环境的供求情况。为了达到这一目的,文中提出利用周边地区同时发生的一些事件。比如周边地区有许多需求没有被满足,那么当前的供求关系是不平衡的。再比如周边地区有许多取消订单,那么路况可能是拥挤的,或者期望等待时间很长。由此可见,一些历史数据和当前正在发生的实时数据都能为预测模型提供信息。 然而,历史数据和实时数据对于当前分析事件的相关程度是不同的,因此引入异构图来表示这些关系。 在动态异构图中embed实时事件的挑战在于: 1)对于每个新发生的事件,需要对于这个时间动态构建一个图,包括收集相关乘客的历史事件,以及周边区域发生的事件。 2)图中的实体和关系是异构的。比如时间有PreView,Request等,事件之间的关系有相同的乘客,相同的起点等。 3)对于我们关注的事件,不同的实体和不同的关系的影响的重要性程度也是不同的。 4)对于大规模实时事件进行建模。 文中并没有采用在训练阶段embed item的做法,而是提出了一种新的框架来实时生成事件的表示,使得能够捕捉用户行为和周围环境的动态变化。 每个实体的embedding以一种基于GNN的inductive的方式生成。(实体包括事件,物品,用户行为等) 整个方法主要包括以下几个步骤: 1)为每个事件构建一个动态异构图。 2)使用文中提出的异构图embedding算法来生成事件的embedding。 3)基于实体的embedding进行实时预测。 文中提出了一个概念叫heterogeneous session(h-session)。比如在一次打车的行为过程中,在PreView事件之后,可能会有Request, Finish_Order, Cancel_Order等,这些事件就属于一个h-session,描述了用户一次完整的打车行为。 构建完异构图后,文中提出了一种新的图学习算法REGNN(Real-time Event Graph Neural Network)来生成事件的embedding。 对于每个需要预测的实时事件,动态创建一个异构图,图中包括了相关h-session中的事件和其他相关的实体。图中的边表示了节点之间各种复杂的关系,包括时间顺序上的关系,空间位置的关系,以及其他的逻辑关系。 上图记录了文中用到的一些符号表示。 定义图G=(VG,EG,OV,RE),节点映射函数VG->OV,边映射函数EG->RE,VG中的每个节点对应OV中的一种类型,EG中的每条边对应RE中的一种类型。当|OV|=1并且|RE|=1时,图为同构图;否则,图为异构图。 问题定义,PreView Conversion Prediction. given PreView事件 PT = (p,o,d,T), T表示时间,o表示起点,d表示终点,p表示用户。目标是估计用户p触发事件Request的概率yT,通过embedding一系列历史的动态异构图[G_PT, G_PT-1,..., G_PT-N+1],G_Pt表示事件Pt的动态异构图,t=T-N+1,...,T. G_P中包含了不同类型的事件和物品,embedding模型的目标是学习一个函数 给出一个时间序列信息和(1)中获得的embedding,上层模型的目标是学习一个模型Gθ,其中θ是参数来预测yT。 T为timestamp,Et表示时间t事件的embedding,N表示时间序列的长度。 首先介绍real-time event embedding框架。 考虑对于PreView最相关的属性:乘客,时间戳,起点,终点。 从乘客的角度,可以从其历史行为事件中获得信息。从起点和终点的角度,可以通过综合这两个地点的事件信息获得空间的表示。 整个工作流图如上所示。 •given PreView事件PT=(p,o,d,T),根据下面的流程生成异构图: 1)乘客视角:挑选乘客一周内在时间T之前最近的Np个PreView事件(包括Request, Finish_Order, Cancel_Order)。对于这些事件在图中创建相关的邻居节点,关于乘客p的这个子图记为HetGp,T。 2)起点和终点视角:在同时发生的PreView事件中,挑选在时间戳T之前x分钟内的和PT相同起点的PreView事件,包括它们相关的Request, FInish_Order, Cancel_Order事件。这些事件添加到图中作为起点子图HetGo,T.另一方面,以相同的方式构建终点子图HetGd,T. 3)为了整合历史PreViews的时空信息,用RNN学习历史事件序列的hidden state,以键值对的方式存储它们。因此,事件序列的下一个序列能够快速的预测和更新。 •根据这些事件和当前事件PT之间的关系,添加相关类型的边。比如属于同一个h-session这种关系,或者是各自属于的h-session之前有序列关系等。 •在构造的异构子图上,使用REGNN来生成PT的实时事件embedding。 •最后,生成的事件embedding作为下游预测任务的输入。 上图展示了PreView模型的具体细节。最下面三层是三个GAT,分别对应不同的粒度(GAT within h-session, GAT across h-sessions within the same subgraph, GAT across subgraphs),之后接GRU层,接MLP层,最后给出预测。 PT的动态异构图G_PT由三种子图组成 分别表示乘客子图,起点子图和终点子图。+表示图的join操作,定义为G=G1+G2, G1=(V1,E1), G2=(V2,E2),那么G的节点为V1∪V2,G的边为E1∪E2. 三个子图的构建过程如下: •inside h-session.连接同一session中的事件来构建子图。 •across h-session.为了分析前面的h-session对于目标PreView的影响,添加前面h-session到目标PreView之间的边。然而,不同的h-session起到的影响效果是不同的,因此边的类型也是不同的, PT表示在时间T的PreView,使用最近的N个h-session来构建关于PT的图。 对于三种level,使用了三种不同的embedding模型。 •GATs inside h-session. 上式中○+符号表示concatenate,OV表示一个h-session中不同类型的事件,K表示heads的总数(GAT中的head,即一条边上做几次attention)。h(1)h_s表示做一次GAT之后h-session的隐状态,h(0)h_s表示h-session的初始状态,用PreView事件的节点特征进行初始化。(P,R,F,C分别代表PreView,Request,finish,cancel) •GATs across h-session. 在不同的h-session之间执行attention操作。对于不同子图中的h-session,GAT如下 Np,No,Nd分别表示乘客子图,起点子图,终点子图中不同的时间戳的总数。 需要注意的是t从0开始,即加上了self attention. GATp的操作如下,GATo和GATd类似。 各符号的意义和前面类似。 •GATs across subgraphs. 最终综合三个子图,计算最后的embedding。 具体式子如下, OG表示不同类型的异构子图。其余符号和前面的类似。 利用RNN对用户过去的PreView之间的时序依赖建模。文中使用了GRU ET是在时间T进行global attention得到的最终embedding,也就是(7)中的hgPT. 最终的损失函数

本文主要复述论文["Exploring Pre-trained Language Models for Event Extraction and Generation"] 的内容,以便自我回顾,也希望可以给大噶带来帮助~ 这篇文章研究事件抽取的角度是从有标签的训练数据描述的,以往的EE任务依赖于人工标注数据,而不充分的训练数据会影响模型的效果。文章采用了一个预训练语言模型来提取事件触发词,通过角色预测分离方法来处理角色抽取任务中的角色重叠问题,并利用Bert模型的Masked LM来自动生成标签数据。该模型在ACE05数据集上的表现,事件抽取任务上达到了的F1值,角色抽取任务上达到了的F1值。 ACE05数据集上10%的事件有角色重叠问题,例句 The explosion killed the bomber and three shoppers 中 killed 触发事件 ,元素 the bomber 既可以触发角色 ,又有角色 。之前的工作中会将该元素第一次被预测到的角色类型判定为分类好的角色标签,而没有考虑该角色在多个角色类型中的概率。 监督学习下的事件抽取依赖于大量人工标注的数据集,而ACE数据集当中给出的事件标签数量有限。为了解决这一问题,之前也有工作通过远程监督的方法来生成事件类型标签扩充训练集,但这一方法也是依赖于源数据集的数量与质量。 论文提出了预训练语言模型,利用从语料库中获得的知识来进行事件生成。预训练语言模型包括事件抽取模型与角色抽取模型,角色重叠问题通过计算角色类型与事件类型之间的关系,来重置角色分类的概率值。事件类型标签也是通过这个预训练语言模型实践,将原训练集作为样本,通过参数替换和辅助token重置这两步生成新的事件类型。事件抽取部分是直接用Bert模型得到词向量表示,最后加个分类器完成触发词的提取。值得说明的是,这里每个token的输入由三部分组成: word embedding + segment + position ,整个模型基于句子级别,这里的 segments 设为0。其他设定则与Bert保持一致。 对于第一阶段提取到的触发词,这里会提取与其相关的成分的所有可能角色。作者总结的元素提取有三个难点:1.元素对触发词的依赖性;2.元素大多由长名词短语构成;3.角色重叠。模型框架设定与前一阶段相似,也是需要注意的一点:特征表示输入的 segment 将触发词所在的span设为1。 分类器则是设为所有角色标签的集合,即为对每个元素判断所有角色类型的概率,并在其分类器上设置一个二元组,用来判定该角色下的token的span,该跨度由 (start, end) 组成。通过对每种可能的角色标签进行计算,改善角色重叠问题。 判定角色的span,也就是如何更准确得到每个token的 (start, end) 域值。首先,对于每一个token ,经softmax分别计算在角色 下的起始点的概率 与结束点的概率 :论文中处理一个元素有多种角色时应该被分类的角色标签,依据了同一事件中每种角色出现的可能性会大不相同这一事实。因此文中给出了当前角色在一个事件中的重要性判定条件:RF-IEF(这一定义与词频的TF-IDF类似),。由这一指标可以得到角色 在事件类型 中的重要程度 :生成新的标签是将原有数据集作为样本,通过模型学习到新的之前没有标签的词并加入到训练集中,以起到扩充语料的作用。这里是采用了Bert的Mask预训练方法,通过两个步骤:1.句中的元素替换为有相同角色标签的其他元素;2.利用Bert的fine-tune替换触发词的辅助token。这里需要注意的几点: 1.辅助token是原有样本数据集里未被识别成触发词或角色的token,除了词、数字,还可以包括标点。 2.元素替换是将具有相同角色标签的元素进行代换。因此需要预先统计所有的实体以及对应标签构成 {arg : role} 字典集,并且这个字典集不包括有角色重叠的元素。 3.这里的数据集扩充并非给没有标签的数据加上标签,而是保持触发词与角色的个数不变,通过辅助元素的替换将触发词与角色所在句子的成分做更改,获得同样有标签的句子,以达到数据集的扩充。这篇论文比较有趣的一点是他统计了所有角色与事件类型之间的关系RF-IEF,虽然相较于以前的工作,这里会需要把多种不同标签都给计算一遍,但通过人为处理也是一个不错的选择。我认为理解这篇文章的难度在于需要掌握Bert的原理,由于我之前也没好好研究过这个,所以看起来也特别费劲,事实证明Bert是真的很优秀,这里的触发词识别与分类模块就将F1值提高了10个百分点。句子生成这块我觉得也是和Bert的Masked预训练原理结合的很巧妙,大多与Bert有关的我就没有描述了,这里贴一个 Bert模型讲解 ,可以迅速上手~ 还是新手,水平有限,若有错误还望不吝赐教~

本文主要复述论文["Modeling Relational Data with Graph Convolutional Networks"] 的主要内容,以便自我回顾,也希望可以给大噶带来帮助~ 感谢小姐妹带我读论文~

本论文介绍的是关系图卷积网络模型(R-GCN),并在两个已知的知识库上实现关系预测与实体分类。R-GCN是在GCN的基础上优化得到的神经网络模型,原来的GCN处理的是具有拓扑结构的数据集之间的单关系,R-GCN则可以处理知识库中的多关系数据特征。与仅解码器的基准对比,改模型在FB15K-237上有的改进。

论文中考虑两个基本的SRL任务:关系预测(丢失三元组的恢复)和实体分类(为实体分配类型或分类属性)。 在这两种情况下,通过图结构编译器可以获得丢失的信息。比如,知道Mikhail Baryshnikov是在Vaganova学院接受教育的,这意味着Mikhail Baryshnikov应该有标签person,其三元组 (Mikhail Baryshnikov, lived in, Russia)属于知识图。

图卷积神经网络应用在具有拓扑结构的图数据集上,其与CNN的计算方式类似,滤波器参数在图中的所有位置或者说所有局部位置都可共享,目标是学习图 G=(V, E) 上的特征映射。 定义卷积网络中的第 层,其向前传播的非线性激活方程可表示为 其中 H(0)=X,H(L)=Z 。 X∈(N×D) 是节点特征向量的输入矩阵,N为节点数,D为特征维数。 Z∈(N×F) 为输出矩阵, 为图结构的邻接矩阵,描述每个节点的度数。 是非线性激活函数,比如 ReLu 。 是当前层的权重矩阵。 上式的传播规则有两个限制:一是节点本身的信息量未被计入,二是A本身未被正则化,直接进行矩阵运算会改变特征向量的域。 Kipf & Welling (ICLR 2017)提出了矩阵的对称归一化,对第一个问题引入节点自环,即此时的 ;对第二个问题引入节点度的对角化矩阵,由 可以实现节点特征的归一化。实际上,借鉴对拉普拉斯矩阵的标准化公式 可以更好的描述邻接矩阵的动态特性,其中 。

此处引入拉普拉斯矩阵进行归一化的行为我不是很理解,关于谱论的知识我也没有补,想要深入探讨的旁友可以参阅其他资料,此处发一个GCN传播规则的解释的链接,大嘎可以参考参考---- GCN的空间域理解

那么带入之后我们就可以得到下列的前向传播公式: 其中 , 是 的节点度矩阵。 再应用Weisfeiler-Lehman算法到这个GCN模型上,可以得到下式中以向量形式表示的传播规则。 是边 的归一化常数,也就是经该算法得到的对邻接矩阵进行对称归一化的变体。 则是对当前节点i得到的邻居节点j的特征向量,并经过 hash(·) 进行特征更新。

GCNs可以有效获取局部图特征,在图分类、基于图的半监督学习模型中得到改进。作者对于R-GCNs定义了下述的传播准则:

多关系模型中的参数数量和关系数量增长很快,在计算过程中很容易导致稀疏关系矩阵的过度拟合。论文中引入了两种正则化权重矩阵的方式:基函数分解和块对角分解。 奇函数分解 可以看做是不同关系类型之间有效权重共享的一种形式,对于每个 定义形式为(3)式,其 作为基础变换,仅系数 依赖于 。

整个模型采用堆叠层,即上一级的输出作为下一级的输入。作者在初始化时仅考虑了无特征向量方法,选择图节点的独热编码作为第一层的节点向量输入,对于块表示,通过线性变换将one-hot编码映射为密集表示。

基于plc控制的论文主题

在电气行业的实际工作中,PLC技术的加入对其发展起到了很大的促进作用,在改进完善电气系统的同时更提高了电气控制的工作质量,对电气行业今后的发展有着重大影响。 下面是我整理的电气控制与plc技术论文,希望你能从中得到感悟!

电气控制与PLC技术研究

在现今高科技水平的带动下,所有技术设备都在不断的升级,对电气控制系统的要求也变得越来越高。在电气行业的实际工作中,PLC技术的加入对其发展起到了很大的促进作用,在改进完善电气系统的同时更提高了电气控制的工作质量,对电气行业今后的发展有着重大影响。

【关键词】电气控制 PLC技术 探析

PLC从外观来讲,具有体积小质量轻的特点,小型的PLC底部尺寸一般不超过100mm,质量不超过150g,所以在安装方便,和电气系统组装容易。PLC应用范围广泛,一般的电气控制场所都可以使用,尤其是数据应用能力在数字控制方面的运用更为广泛。另外,抗干扰技术的应用更使电气控制系统运行的安全性和可靠性提供了有力保障。PLC外部检测系统的设置,为自身内部和系统外部的故障检验提供了良好的条件。而且,PLC的安装操作简单易懂,对于从事电气控制方面的人员来说掌握起来也比较容易。储存逻辑是PLC技术在实际应用中所使用的,接线比较简单,这样也方便日后维修和改造,在减少工作量的同时又提高了工作效率。

1 PLC技术与电气控制融合后的工作流程

电气控制主要是通过对电气设备一次和二次回路控制来确保设备正常运行,其在现代工业自动化方面已经成为一个不可缺少的重要角色,更是推进工业自动化发展的重要武器。而PLC技术的实质就是一个控制器,专门用于专业控制,主要利用计算机、通讯技术、自动化等技术发展起来的通讯控制器。PLC技术与电气控制技术融合可以生成强大的抗干扰能力和自我诊断能力,完善电气的控制系统的同时有效排除系统中故障。

目前,PLC技术在电气控制行业的应用十分广泛,很多企业开始逐渐重视这些外来技术的引进,作为现代电控行业中的重要角色,PLC技术的应用将会在很大程度上推动电气控制行业的发展。同时,想要PLC技术与电气控制合理融合就必须要对PLC技术有一定的掌握和了解,这是PLC技术能够更好的运用于实际的前提条件和重要基础。此外,PLC技术在工业体系中也有着广泛应用,如石油、建材、钢铁、化工、电力、机械制造、汽车、交通运输等。

结合PLC的工作流程,根据实际工作经验,将PLC技术与电气控制融合后的工作流程划分为三个阶段。主要有收集和输入原始数据、用户程序执行、刷新输出。

(1)采取收集数据是PLC工作进程的第一步。通过扫描的方式依次读取并存储输入状态点和数据,同时存入I/O映像区中的相应单元。完成后,进入用户程序执行和输出的刷新阶段。在这一阶段,I/O映像区中相应单元的状态和数据不发生改变。

(2)在第一步完成的基础上,对用户程序按照由上到下的顺序扫描。用户程序是执行阶段,具体的实施中,先扫描用户程序左边的控制线路,同时依然遵守由上到下和由左到右的顺序对触点构成的的控制线路进行逻辑运算。同样,在I/O映像区内单元中的状态和数据也不会发生变化,但其他输出点和软设备在I/O映像单元区域或系统RAM存储区域的状态和数据都可能会发生变化。

(3)PLC工作流程的最后阶段,即输出刷新阶段。在用户程序扫描结束后,PLC就会进入输出刷新阶段。此阶段中,CPU按照I/O映像区相应的状态和数据刷新所有输出锁存电路之后再由输出电路完成相应设备的驱动设置是PLC的最后输出过程。

PLC的工作流程与大部分其他的机械设备相似,是一个周期循环的过程。这三个工作阶段是循环运行的,每进行三个阶段为一个周期。PLC技术与电气控制技术的融合在提高工作效率的同时又节省了故障和开发研究的开销。

2 PLC技术在电气控制应用中常见的问题

系统控制出现故障。可能由于线路老化、周围环境破坏等原因造成控制出现故障,进而无法将信号传递给系统内部,也就无法完成对数据的接收、加载和转换,同时对系统发出的其他执行命令也没办法接收。

数据收集和传输故障也可能是由于开关一类的设备操作不到位造成的,例如打开、闭合不彻底,致使无法接收或接收错误信息,造成控制运作出现错误,系统无法正常运行,即造成了PLC无法接收信号控制系统出现故障。

设备开关和现场变送器的自身故障也是使PLC技术无法正常工作的原因,引发故障的原因可能是接线接触不良,出现破损等,同样也会造成以上PLC控制分析系统无法接收数据和进一步的处理。此外,人为操作出错也是造成系统故障的原因之一。

3 PLC技术问题相应的解决方法

对输入PLC控制系统信号的可靠性加强注意。保证所有的现场设备和相关部件的性能完好,杜绝由于设备自身零部件问题造成信号无法正常传送和接收的现象发生。此外,更新改进主界面功能模块设置也有利于减少控制的出错。

完善系统设置,使其更加具有可靠性、自动化、网络一体化。在PLC电气控制系统遭受破坏或出错时,起到预警系统的报警作用,这项功能在PLC系统控制里十分重要,能够有效的对工作情况进行监控,减少了由于指令出错带给系统的损失。确保PLC周围的运行环境,及时排除干扰因素,实施24小时监控。

加强人员的技术培训,提高业务能力和自身素质修养,鼓励员工学习新技术、新的方法和技巧来提高工作质量。

4 总结

面对如今高科技迅猛发展的形势,在任何领域如果想要健康长远的发展,就必须不断的学习掌握新的技术,只有对新技术和设备做好充分的了解和学习并合理应用,才会真正的有所收获。PLC在电气控制方面发挥着巨大的推动作用,二者的融合将会在很大程度上促进电气控制行业的进步发展。

参考文献

[1]牛云.先进飞机电气系统计算机控制与管理系统主处理机关键技术研究[D].西北工业大学,2006.

[2]陈实. MW级风力发电系统单机电气控制技术研究――无功补偿和偏航控制系统[D].南京航空航天大学,2004.

[3]周石强,郭强,朱涛,刘旭东.电气控制与PLC应用技术的分析研究[J].中华民居(下旬刊),2014,01:199.

[4]付焕森,李元贵.基于工程应用型人才培养的项目驱动教学与研究――以电气控制与PLC技术项目课程为例[J].大众科技,2012.

作者简介

张车(1981-),男,江苏省张家港市人。本科学历。中级工程师。研究方向为电气自动化控制。

作者单位

张家港沙钢集团 江苏省张家港市 215600

电气控制与PLC技术的应用

摘 要:针对传统数控车床在自动化控制功能方面的薄弱,以CK6140普通数控车床为对象,详细探讨了数控车床的电气控制,基于PLC实现了数控车床的自动化改造功能,给出了详细的电气化、自动化改造的方案和控制结构,对于进一步提高PLC自动化控制技术在电气控制领域中的应用具有较好的借鉴意义。

关键词:电气控制;PLC技术;自动化;无人值守

1 引言

随着可编程逻辑控制器(PLC)技术的逐渐发展,很多工业生产要求实现自动化控制的功能,都采用PLC来构建自动化控制系统,尤其是对于一些电气控制较为复杂的电气设备和大型机电装备,PLC在电气化和自动化控制方面具有独到的优势,如顺序控制,可靠性高,稳定性好,易于构建网络化和远程化控制,以及实现无人值守等众多优点。基于此,PLC技术逐渐成为工业电气自动化控制的主要应用技术。

本论文主要结合数控机床的电气化功能的改造,详细探讨数控机床电气化改造过程中基于PLC技术的应用,以及PLC技术在实现数控机床自动化控制功能上的应用,以此和广大同行分享。

2 数控机床的电气化改造概述

数控机床的主要功能

数控机床是实现机械加工、制造和生产中应用的最为广泛的一类机电设备。数控机床依托数控化程序,实现对零部件的自动切削和加工。但是目前我国仍然有超过近1000万台的数控机床,主要依靠手动控制完成切削加工,无法实现基本的电气化和自动化控制。为此,本论文的主要的目的是基于PLC控制技术,实现数控机床的电气化改造,主要实现以下功能:

(1) 数控机床的所有电机、接触器等实现基于PLC的自动化控制;

(2)数控机床的进给运动由PLC控制自动完成,无需人工手动干预;

(3) 自动检测零部件切削过程中的相关参数,如加工参数、状态参数等等;

(4) 结合上位机能够实现对数控机床的远程控制,以达到无人值守的目的。

电气化改造的总体方案

结合上文对于数控车床的电气化、自动化改造的功能要求,确定了采用上位机与下位机结合的自动化改造方案。该方案总体结构分析如下:

(1) 上位机借助于工控机,利用工控机强大的图像处理能力,重点完成数控车床的生产组态画面显示,以及必要的生产数据的传输、保存、输出,同时还要能够实现相关控制指令的下达,确保数控车床能够自动完成所有切削加工生产任务。

( 2)下位机采用基于PLC技术的电气控制模式,由传感器、数据采集板卡负责采集数控车床的生产数据、环境数据、状态数据等所有参数,由PLC实现对相关数据的计算,并传输给上位机进行相关数据的图形化显示和保存;另一方面,PLC控制系统还接收来自于上位机的控制指令,实现对数控车床的远程控制。

(3) 对于数控车床最为关键的控制――进给运动的控制,利用PLC+运动控制板卡的模式实现电气化和自动化的控制。具体实现方式为:选用合适的运动控制板卡,配合PLC的顺序控制,对进给轴电机实现伺服运动控制,从而实现对数控车床进给运动的自动化控制。

3 数控车床电气化自动控制改造的实现

系统改造结构设计

数控车床的电气化自动控制改造,其整体结构如下图1所示,其整体结构主要由以下几个部分构成:

底层设备

底层设备主要包括两个方面,首先是实现数控车床自动切削加工运转等基本功能的必要电气、机电设备,如电源模块、电机模块等,这些机电设备能够保证数控车床的基本功能的稳定可靠的实现;其次,底层设备还包括各类传感器,比如监测电机转速、温度的速度传感器和温度传感器,监测进给轴运动进给量的光栅尺等,这些传感类和数据采集类设备为实现数控车床自动化控制提供了基础数据源。

本地PLC站

本地PLC站主要负责接收底层传感设备传送过来的传感参数、状态参数及其他检测参数,通过内部程序的运算,判断整个数控车床的工作状态,并将其中的重点参数上传到远程控制终端进行数据的图形化显示、存储、输出打印等操作;另一方面,本地PLC站同时还接收来自于远程控制终端所下达的控制指令,比如停机、启动等控制指令,PLC站通过对相应执行器(比如电机)的控制,从而实现自动化控制的功能。

远程控制终端

远程控制终端主要是依赖于工控机实现的上位机数据管理和状态监控,需要专门开发一套面向数控车床加工、生产和自动控制的软件程序,以实现对数控车床的远程化、网络化、自动化控制,真正实现无人值守的功能。

PLC电气控制系统的设计实现

本研究论文以CK6140普通数量机床为具体研究对象,详细探讨其电气化、自动化控制的改造。通过上文对机床改造方案和结构功能的分析,可以确定整个机床电气化、自动化改造,一共需要实现14个系统输入,9个系统输出。结合控制要求,这里选用日本三菱公司的FX2N-48MR型PLC,输入回路采用24V直流电源供电方式。根据对数控机床的各模块控制功能的分析,选用合适的接触器、继电器、开关、辅助触点等电气控制元件,与PLC共同实现对电气设备的控制,比如PLC通过接触器控制电机模块,PLC通过继电器控制电磁阀等部件,从而完成基于PLC控制的数控车床电气化改造。

4 结语

随着电气设备的越来越复杂,工业生产对于电气控制的要求也越来越高,基于PLC的自动化控制技术得到了广泛的应用,逐渐成为了当前工业自动化生产控制中的主流技术之一。采用PLC技术最大的优势在于实现自动化控制同时具有较高的可靠性和抗干扰能力,极大的避免了由于采用单片机技术而造成的系统不稳定现象。本论文结合电气控制详细探讨了PLC自动化技术的应用,给出了具体的系统设计实例,对于进一步提高PLC自动化技术的工业化应用具有很好的指导和借鉴意义。

参考文献:

这个太大了,随便挑一个啊,PLC堆垛系统,PLC数据采集控制

无非就是:红绿灯,电梯,霓虹灯这类……

1. 基于FX2N-48MRPLC的交通灯控制 \x0d\x0a2. 西门子PLC控制的四层电梯毕业设计论文 \x0d\x0a3. PLC电梯控制毕业论文 \x0d\x0a4. 基于plc的五层电梯控制 \x0d\x0a5. 松下PLC控制的五层电梯设计 \x0d\x0a6. 基于PLC控制的立体车库系统设计 \x0d\x0a7. PLC控制的花样喷泉 \x0d\x0a8. 三菱PLC控制的花样喷泉系统 \x0d\x0a9. PLC控制的抢答器设计 \x0d\x0a10. 世纪星组态 PLC控制的交通灯系统 \x0d\x0a11. X62W型卧式万能铣床设计 \x0d\x0a12. 四路抢答器PLC控制 \x0d\x0a13. PLC控制类毕业设计论文 \x0d\x0a14. 铁路与公路交叉口护栏自动控制系统 \x0d\x0a15. 基于PLC的机械手自动操作系统 \x0d\x0a16. 三相异步电动机正反转控制 \x0d\x0a17. 基于机械手分选大小球的自动控制 \x0d\x0a18. 基于PLC控制的作息时间控制系统 \x0d\x0a19. 变频恒压供水控制系统 \x0d\x0a20. PLC在电网备用自动投入中的应用 \x0d\x0a21. PLC在变电站变压器自动化中的应用 \x0d\x0a22. FX2系列PCL五层电梯控制系统 \x0d\x0a23. PLC控制的自动售货机毕业设计论文 \x0d\x0a24. 双恒压供水西门子PLC毕业设计 \x0d\x0a25. 交流变频调速PLC控制电梯系统设计毕业论文 \x0d\x0a26. 基于PLC的三层电梯控制系统设计 \x0d\x0a27. PLC控制自动门的课程设计 \x0d\x0a28. PLC控制锅炉输煤系统 \x0d\x0a29. PLC控制变频调速五层电梯系统设计 \x0d\x0a30. 机械手PLC控制设计 \x0d\x0a31. 基于PLC的组合机床控制系统设计 \x0d\x0a32. PLC在改造z-3040型摇臂钻床中的应用 \x0d\x0a33. 超高压水射流机器人切割系统电气控制设计 \x0d\x0a34. PLC在数控技术中进给系统的开发中的应用 \x0d\x0a35. PLC在船用牵引控制系统开发中的应用 \x0d\x0a36. 智能组合秤控制系统设计 \x0d\x0a37. S7-200PLC在数控车床控制系统中的应用 \x0d\x0a38. 自动送料装车系统PLC控制设计 \x0d\x0a39. 三菱PLC在五层电梯控制中的应用 \x0d\x0a40. PLC在交流双速电梯控制系统中的应用 \x0d\x0a41. PLC电梯控制毕业论文 \x0d\x0a42. 基于PLC的电机故障诊断系统设计 \x0d\x0a43. 欧姆龙PLC控制交通灯系统毕业论文 \x0d\x0a44. PLC在配料生产线上的应用毕业论文 \x0d\x0a45. 三菱PLC控制的四层电梯毕业设计论文 \x0d\x0a46. 全自动洗衣机PLC控制毕业设计论文 \x0d\x0a47. 工业洗衣机的PLC控制毕业论文 \x0d\x0a48. 《双恒压无塔供水的PLC电气控制》 \x0d\x0a49. 基于三菱PLC设计的四层电梯控制系统 \x0d\x0a50. 西门子PLC交通灯毕业设计 \x0d\x0a51. 自动铣床PLC控制系统毕业设计 \x0d\x0a52. PLC变频调速恒压供水系统 \x0d\x0a53. PLC控制的行车自动化控制系统 \x0d\x0a54. 基于PLC的自动售货机的设计 \x0d\x0a55. 基于PLC的气动机械手控制系统 \x0d\x0a56. PLC在电梯自动化控制中的应用 \x0d\x0a57. 组态控制交通灯 \x0d\x0a58. PLC控制的升降横移式自动化立体车库 \x0d\x0a59. PLC在电动单梁天车中的应用 \x0d\x0a60. PLC在液体混合控制系统中的应用 \x0d\x0a61. 基于西门子PLC控制的全自动洗衣机仿真设计 \x0d\x0a62. 基于三菱PLC控制的全自动洗衣机 \x0d\x0a63. 基于plc的污水处理系统 \x0d\x0a64. 恒压供水系统的PLC控制设计 \x0d\x0a65. 基于欧姆龙PLC的变频恒压供水系统设计 \x0d\x0a66. 西门子PLC编写的花样喷泉控制程序 \x0d\x0a67. 欧姆龙PLC编写的全自动洗衣机控制程序 \x0d\x0a68 景观温室控制系统的设计 \x0d\x0a69. 贮丝生产线PLC控制的系统 \x0d\x0a70. 基于PLC的霓虹灯控制系统 \x0d\x0a71. PLC在砂光机控制系统上的应用 \x0d\x0a72. 磨石粉生产线控制系统的设计 \x0d\x0a73. 自动药片装瓶机PLC控制设计 \x0d\x0a74. 装卸料小车多方式运行的PLC控制系统设计 \x0d\x0a75. PLC控制的自动罐装机系统 \x0d\x0a76. 基于CPLD的可控硅中频电源 \x0d\x0a77. 西门子PLC编写的花样喷泉控制程序 \x0d\x0a78. 欧姆龙PLC编写的全自动洗衣机控制程序 \x0d\x0a79. PLC在板式过滤器中的应用 \x0d\x0a80. PLC在粮食存储物流控制系统设计中的应用 \x0d\x0a81. 变频调速式疲劳试验装置控制系统设计 \x0d\x0a82. 基于PLC的贮料罐控制系统 \x0d\x0a83. 基于PLC的智能交通灯监控系统设计 \x0d\x0a\x0d\x0a1.基于labVIEW虚拟滤波器的设计与实现 \x0d\x0a2.双闭环直流调速系统设计 \x0d\x0a3.单片机脉搏测量仪 \x0d\x0a4.单片机控制的全自动洗衣机毕业设计论文 \x0d\电梯控制的设计与实现 \x0d\x0a6.恒温箱单片机控制 \x0d\x0a7.基于单片机的数字电压表 \x0d\x0a8.单片机控制步进电机毕业设计论文 \x0d\x0a9.函数信号发生器设计论文 \x0d\变电所一次系统设计 \x0d\x0a11.报警门铃设计论文 \x0d\单片机交通灯控制 \x0d\x0a13.单片机温度控制系统 \x0d\通信系统中的接入信道部分进行仿真与分析 \x0d\x0a15.仓库温湿度的监测系统 \x0d\x0a16.基于单片机的电子密码锁 \x0d\x0a17.单片机控制交通灯系统设计 \x0d\x0a18.基于DSP的IIR数字低通滤波器的设计与实现 \x0d\x0a19.智能抢答器设计 \x0d\x0a20.基于LabVIEW的PC机与单片机串口通信 \x0d\设计的IIR数字高通滤波器 \x0d\x0a22.单片机数字钟设计 \x0d\x0a23.自动起闭光控窗帘毕业设计论文 \x0d\x0a24.三容液位远程测控系统毕业论文 \x0d\x0a25.基于Matlab的PWM波形仿真与分析 \x0d\x0a26.集成功率放大电路的设计 \x0d\x0a27.波形发生器、频率计和数字电压表设计 \x0d\x0a28.水位遥测自控系统 毕业论文 \x0d\x0a29.宽带视频放大电路的设计 毕业设计 \x0d\x0a30.简易数字存储示波器设计毕业论文 \x0d\x0a31.球赛计时计分器 毕业设计论文 \x0d\数字滤波器的设计毕业论文 \x0d\机与单片机串行通信毕业论文 \x0d\x0a34.基于CPLD的低频信号发生器设计毕业论文 \x0d\变电站电气主接线设计 \x0d\序列在扩频通信中的应用 \x0d\x0a37.正弦信号发生器 \x0d\x0a38.红外报警器设计与实现 \x0d\x0a39.开关稳压电源设计 \x0d\x0a40.基于MCS51单片机温度控制毕业设计论文 \x0d\x0a41.步进电动机竹竿舞健身娱乐器材 \x0d\x0a42.单片机控制步进电机 毕业设计论文 \x0d\x0a43.单片机汽车倒车测距仪 \x0d\x0a44.基于单片机的自行车测速系统设计 \x0d\x0a45.水电站电气一次及发电机保护 \x0d\x0a46.基于单片机的数字显示温度系统毕业设计论文 \x0d\x0a47.语音电子门锁设计与实现 \x0d\x0a48.工厂总降压变电所设计-毕业论文 \x0d\x0a49.单片机无线抢答器设计 \x0d\x0a50.基于单片机控制直流电机调速系统毕业设计论文 \x0d\x0a51.单片机串行通信发射部分毕业设计论文 \x0d\x0a52.基于VHDL语言PLD设计的出租车计费系统毕业设计论文 \x0d\x0a53.超声波测距仪毕业设计论文 \x0d\x0a54.单片机控制的数控电流源毕业设计论文 \x0d\x0a55.声控报警器毕业设计论文 \x0d\x0a56.基于单片机的锁相频率合成器毕业设计论文 \x0d\x0a57.基于Multism/protel的数字抢答器 \x0d\x0a58.单片机智能火灾报警器毕业设计论 \x0d\x0a59.无线多路遥控发射接收系统设计毕业论文 \x0d\x0a60.单片机对玩具小车的智能控制毕业设计论文 \x0d\x0a61.数字频率计毕业设计论文 \x0d\x0a62.基于单片机控制的电机交流调速毕业设计论文 \x0d\x0a63.楼宇自动化--毕业设计论文 \x0d\x0a64.车辆牌照图像识别算法的实现--毕业设计 \x0d\x0a65.超声波测距仪--毕业设计 \x0d\x0a66.工厂变电所一次侧电气设计 \x0d\x0a67.电子测频仪--毕业设计 \x0d\x0a68.点阵电子显示屏--毕业设计 \x0d\x0a69.电子电路的电子仿真实验研究 \x0d\x0a70.基于51单片机的多路温度采集控制系统 \x0d\x0a71.基于单片机的数字钟设计 \x0d\x0a72.小功率不间断电源(UPS)中变换器的原理与设计 \x0d\x0a73.自动存包柜的设计 \x0d\x0a74.空调器微电脑控制系统 \x0d\x0a75.全自动洗衣机控制器 \x0d\x0a76.电力线载波调制解调器毕业设计论文 \x0d\x0a77.图书馆照明控制系统设计 \x0d\x0a78.基于AC3的虚拟环绕声实现 \x0d\x0a79.电视伴音红外转发器的设计 \x0d\x0a80.多传感器障碍物检测系统的软件设计 \x0d\x0a81.基于单片机的电器遥控器设计 \x0d\x0a82.基于单片机的数码录音与播放系统 \x0d\x0a83.单片机控制的霓虹灯控制器 \x0d\x0a84.电阻炉温度控制系统 \x0d\x0a85.智能温度巡检仪的研制 \x0d\x0a86.保险箱遥控密码锁 毕业设计 \x0d\变电所的电气部分及继电保护 \x0d\x0a88.年产26000吨乙醇精馏装置设计 \x0d\x0a89.卷扬机自动控制限位控制系统 \x0d\x0a90.铁矿综合自动化调度系统 \x0d\x0a91.磁敏传感器水位控制系统 \x0d\x0a92.继电器控制两段传输带机电系统 \x0d\x0a93.广告灯自动控制系统 \x0d\x0a94.基于CFA的二阶滤波器设计 \x0d\x0a95.霍尔传感器水位控制系统 \x0d\x0a96.全自动车载饮水机 \x0d\x0a97.浮球液位传感器水位控制系统 \x0d\x0a98.干簧继电器水位控制系统 \x0d\x0a99.电接点压力表水位控制系统 \x0d\x0a100.低成本智能住宅监控系统的设计 \x0d\x0a101.大型发电厂的继电保护配置 \x0d\x0a102.直流操作电源监控系统的研究 \x0d\x0a103.悬挂运动控制系统 \x0d\x0a104.气体泄漏超声检测系统的设计 \x0d\x0a105.电压无功补偿综合控制装置 \x0d\型无功补偿装置控制器的设计 \x0d\电机调速 \x0d\频段窄带调频无线接收机 \x0d\x0a109.电子体温计 \x0d\x0a110.基于单片机的病床呼叫控制系统 \x0d\x0a111.红外测温仪 \x0d\x0a112.基于单片微型计算机的测距仪 \x0d\x0a113.智能数字频率计 \x0d\x0a114.基于单片微型计算机的多路室内火灾报警器 \x0d\x0a115.信号发生器 \x0d\x0a116.基于单片微型计算机的语音播出的作息时间控制器 \x0d\x0a117.交通信号灯控制电路的设计 \x0d\x0a118.基于单片机步进电机控制系统设计 \x0d\x0a119.多路数据采集系统的设计 \x0d\x0a120.电子万年历 \x0d\x0a121.遥控式数控电源设计 \x0d\降压变电所一次系统设计 \x0d\变电站一次系统设计 \x0d\x0a124.智能数字频率计 \x0d\x0a125.信号发生器 \x0d\x0a126.基于虚拟仪器的电网主要电气参数测试设计 \x0d\x0a127.基于FPGA的电网基本电量数字测量系统的设计 \x0d\x0a128.风力发电电能变换装置的研究与设计 \x0d\x0a129.电流继电器设计 \x0d\x0a130.大功率电器智能识别与用电安全控制器的设计 \x0d\x0a131.交流电机型式试验及计算机软件的研究 \x0d\x0a132.单片机交通灯控制系统的设计 \x0d\x0a133.智能立体仓库系统的设计 \x0d\x0a134.智能火灾报警监测系统 \x0d\x0a135.基于单片机的多点温度检测系统 \x0d\x0a136.单片机定时闹钟设计 \x0d\x0a137.湿度传感器单片机检测电路制作 \x0d\x0a138.智能小车自动寻址设计--小车悬挂运动控制系统 \x0d\x0a139.探讨未来通信技术的发展趋势 \x0d\x0a140.音频多重混响设计 \x0d\x0a141.单片机呼叫系统的设计 \x0d\x0a142.基于FPGA和锁相环4046实现波形发生器 \x0d\x0a143.基于FPGA的数字通信系统 \x0d\x0a144.基于单片机的带智能自动化的红外遥控小车 \x0d\x0a145.基于单片机AT89C51的语音温度计的设计 \x0d\x0a146.智能楼宇设计 \x0d\x0a147.移动电话接收机功能电路 \x0d\x0a148.单片机演奏音乐歌曲装置的设计 \x0d\x0a149.单片机电铃系统设计 \x0d\x0a150.智能电子密码锁设计 \x0d\x0a151.八路智能抢答器设计 \x0d\x0a152.组态控制抢答器系统设计 \x0d\x0a153.组态控制皮带运输机系统设计 \x0d\x0a154..基于单片机控制音乐门铃 \x0d\x0a155.基于单片机控制文字的显示 \x0d\x0a156.基于单片机控制发生的数字音乐盒 \x0d\x0a157.基于单片机控制动态扫描文字显示系统的设计 \x0d\x0a158.基于LMS自适应滤波器的MATLAB实现 \x0d\功率放大器毕业论文 \x0d\x0a160.无线射频识别系统发射接收硬件电路的设计 \x0d\x0a161.基于单片机PIC16F877的环境监测系统的设计 \x0d\x0a162.基于ADE7758的电能监测系统的设计 \x0d\x0a163.智能电话报警器 \x0d\x0a164.数字频率计 课程设计 \x0d\x0a165.多功能数字钟电路设计 课程设计 \x0d\x0a166.基于VHDL数字频率计的设计与仿真 \x0d\x0a167.基于单片机控制的电子秤 \x0d\x0a168.基于单片机的智能电子负载系统设计 \x0d\x0a169.电压比较器的模拟与仿真 \x0d\x0a170.脉冲变压器设计 \x0d\仿真技术及应用 \x0d\x0a172.基于单片机的水温控制系统 \x0d\x0a173.基于FPGA和单片机的多功能等精度频率计 \x0d\x0a174.发电机-变压器组中微型机保护系统 \x0d\x0a175.基于单片机的鸡雏恒温孵化器的设计 \x0d\x0a176.数字温度计的设计 \x0d\x0a177.生产流水线产品产量统计显示系统 \x0d\x0a178.水位报警显时控制系统的设计 \x0d\x0a179.红外遥控电子密码锁的设计 \x0d\x0a180.基于MCU温控智能风扇控制系统的设计 \x0d\x0a181.数字电容测量仪的设计 \x0d\x0a182.基于单片机的遥控器的设计 \x0d\电话卡代拨器的设计 \x0d\x0a184.数字式心电信号发生器硬件设计及波形输出实现 \x0d\x0a185.电压稳定毕业设计论文 \x0d\x0a186.基于DSP的短波通信系统设计(IIR设计) \x0d\x0a187.一氧化碳报警器 \x0d\x0a188.网络视频监控系统的设计 \x0d\x0a189.全氢罩式退火炉温度控制系统 \x0d\x0a190.通用串行总线数据采集卡的设计 \x0d\x0a191.单片机控制单闭环直流电动机的调速控制系统 \x0d\x0a192.单片机电加热炉温度控制系统 \x0d\x0a193.单片机大型建筑火灾监控系统 \x0d\接口设备驱动程序的框架设计 \x0d\x0a195.基于Matlab的多频率FMICW的信号分离及时延信息提取 \x0d\x0a196.正弦信号发生器 \x0d\x0a197.小功率UPS系统设计 \x0d\x0a198.全数字控制SPWM单相变频器 \x0d\x0a199.点阵式汉字电子显示屏的设计与制作 \x0d\x0a200.基于AT89C51的路灯控制系统设计 \x0d\x0a200.基于AT89C51的路灯控制系统设计 \x0d\x0a201.基于AT89C51的宽范围高精度的电机转速测量系统 \x0d\x0a202.开关电源设计 \x0d\x0a203.基于PDIUSBD12和K9F2808简易USB闪存设计 \x0d\x0a204.微型机控制一体化监控系统 \x0d\x0a205.直流电机试验自动采集与控制系统的设计 \x0d\x0a206.新型自动装弹机控制系统的研究与开发 \x0d\x0a207.交流异步电机试验自动采集与控制系统的设计 \x0d\x0a208.转速闭环控制的直流调速系统的仿真与设计 \x0d\x0a209.基于单片机的数字直流调速系统设计 \x0d\x0a210.多功能频率计的设计 \x0d\信息移频信号的频谱分析和识别 \x0d\x0a212.集散管理系统—终端设计 \x0d\x0a213.基于MATLAB的数字滤波器优化设计 \x0d\x0a214.基于AT89C51SND1C的MP3播放器 \x0d\x0a215.基于光纤的汽车CAN总线研究 \x0d\x0a216.汽车倒车雷达 \x0d\x0a217.基于DSP的电机控制 \x0d\x0a218.超媒体技术 \x0d\x0a219.数字电子钟的设计与制作 \x0d\x0a220.温度报警器的电路设计与制作 \x0d\x0a221.数字电子钟的电路设计 \x0d\x0a222.鸡舍电子智能补光器的设计 \x0d\x0a223.高精度超声波传感器信号调理电路的设计 \x0d\x0a224.电子密码锁的电路设计与制作 \x0d\x0a225.单片机控制电梯系统的设计 \x0d\x0a226.常用电器维修方法综述 \x0d\x0a227.控制式智能计热表的设计 \x0d\x0a228.电子指南针设计 \x0d\x0a229.汽车防撞主控系统设计 \x0d\x0a230.单片机的智能电源管理系统 \x0d\x0a231.电力电子技术在绿色照明电路中的应用 \x0d\x0a232.电气火灾自动保护型断路器的设计 \x0d\x0a233.基于单片机的多功能智能小车设计 \x0d\x0a234.对漏电保护器安全性能的剖析 \x0d\x0a235.解析民用建筑的应急照明 \x0d\x0a236.电力拖动控制系统设计 \x0d\x0a237.低频功率放大器设计 \x0d\x0a238.银行自动报警系统

lda论文范文

社会网络分析理论: 在社会网络[63]由人类学家Barnes最早提出的概念,他在社会网络的分析基础上统地研究挪威一个小渔村的跨亲缘与阶级的关系。在社会网络分析中,存在一些经典的理论。这些理论主要包括:六度分割理论、弱关系理论、150法则、小世界网络理论、马太效应等。基于社会网络有关的研究方向和内容,在不同的领域着发挥着各自的作用,例如,社会影响力分析,社区发现,信息传播模型,链接预测,基于社会网络的推荐。 150法则是指一个人能保持稳定社交关系的人数上限通常为150人。1929年由英国罗宾•邓巴教授(Robin Dunbar)提出了经典的”150定律”理论,该定律同时也被称为“邓巴数字”[64]。这个定律在我们的实际日常生活中的应用是相当普遍的,SIM卡中只能存储150个联系人的电话,微软的MSN中也只可以最多把150位联系人的信息添加到自己的名单中[64]等等。 小世界网络是一种具有特殊结构的复杂网络,在这种网络中大部份的节点是不相邻的,但绝大部份节点之间是连通的且距离很短。六度分割理论也是小世界网络理论的一种体现。在多数现实世界的社会网络中,尽管网络中的节点数量巨大,网络中相邻的节点相对较少,但每两个节点间往往只需要很短的距离便能连通。 六度分割就是指一个人与其他任何一个人之间建立起联系,最多都只需要经过六个人。所以,即便邓巴数字告诉我们,我们是能力上维持一个特别大的社交圈的,但是六度分割理论却可以告诉我们,通过我们现有的社交人脉圈以及网络可以无限扩张我们的人脉圈,在需要的时候都能够和地球中想要联系的任何人取得联系。 弱关系理论弱关系(Weak Tie)是指需要较少或不需要情感联系的人们之间的社会联系,这种联系几乎不需要耗费个人的时间或精力来维系,但这种联系却很有作用。美国社会学家Mark Granovetter在研宄人们在求职过程中如何获取工作信息时发现[65],由家人、好友等构成的强关系在获取工作信息过程中起到的作用很有限,而那些关系较疏远的同学、前同事等反而能够提供更加有用的求职信息。 马太效应可以理解为达尔文进化论中适者生存的理念。在社交网络的发展过程如同生物进化的过程,存在强者越强、弱者越弱的现象。也就是说,在社交网络中越是处于网络核心的节点很大可能会变来越核心,而那些处于社交网络中边缘地带的节点或许会越来越不重要甚至直至消失。那些在社交网络中相比其他节点拥有更大影响力的节点,其带给该网络的影响也要比那些拥有弱影响力的节点所带来的影响要强。 从不同角度探索节点影响力挖掘算法: 1.基于邻节点中心性的方法。这类方法最简单最直观,它根据节点在网络中的位置来评估节点的影响力。度中心性[13]考察网络中节点的直接邻居数目,半局部中心性[14]考察网络中节点四层邻居的信息,ClusterRank[15]同时考虑了网络中节点的度和聚类系数。 2.基于路径中心性的方法。这类方法考察了节点在控制信息流方面的能力,并刻画节点的重要性。这类方法包括子图中心性[16]、数中心性[17](一些演化算法包括:路由介数中心性[18],流介数中心性[19],连通介数中心性[20],随机游走介数中心性[21]等)及其他基于路径的挖掘方法。 3.迭代寻优排序方法。这类方法不仅考虑了网络中节点邻居的数量,并且考虑邻居质量对节点重要性的影响,包括了特征向量中心性[13],累积提名[22],PageRank算法[23]及其变种[24-32]。 4.基于节点位置的排序算法。这类方法最显著的特点是,算法并没有给出一个计算节点重要性的定义,而是通过确定节点在网络中的位置,以此来确定节点的重要程度。在网络核心位置的节点,其重要性就相对较高,相反的,若节点处于网络边缘,那么它的重要性就会比较低。基于节点位置的以及不同应用场景的推荐算法具有重要的研究意义[34-37]。 节点影响力评估方法: 在社交网络节点影响力的评估方法主要可以分为三类,基于静态统计量的评估方法、基于链接分析算法的评估方法,基于概率模型的评估方法。 众学者在静态统计量的方法上,结合不同社交网络中相关信息,借鉴链接分析法以及建立概率模型来评估节点影响力,对社交网络节点影响力可以做到更有效的评估[66]。 1)基于静态统计量度量方法 主要是通过网络中节点的一些静态属性特征来简单直接地体现节点的影响力,但面对社交网络中复杂信息以及不同平台,并不能有效地度量不同社交网络中节点影响力。如度中心性,主观认为节点的重要性取决于与其他节点连接数决定,即认为一个节点的邻居节点越多,影响力越大。在有向网络中,根据边的方向,分为入度和出度,在有权网络中,节点的度可以看作强度,即边的权重之和。度中心性刻画了节点的直接影响力,度中心性指标的特点是简单、直观、计算复杂度低,也具有一定合理性。 但针对不同平台的网络结构中,度中心性的影响力效果未必能达到目标效果,而且社交网络中用户间关系的建立具有一定的偶然性,而且不同的用户间的关系强度也不同。度中心性没有考虑了节点的最局部信息,虽然对影响力进行了直接描述,但是没有考虑周围节点处所位置以及更高阶邻居。众学者在静态统计量的方法上,结合不同社交网络中相关信息,借鉴链接分析法以及建立概率模型来评估节点影响力,对社交网络节点影响力可以做到更有效的评估[66-67]。 2)基于链接分析算法的方法 链接分析算法(Link Analysis)主要应用在万维网中用来评估网页的流行性。通过超链接,万维网中的网页连接成一个网络,同时这个网络也具备了小世界网络的特征,且微博平台中的关注和粉丝关系与网页的链入与链出十分相似,因此链接分析法的思想也被应用在了微博社交网络中节点影响力的评估中。经典的算法是PageRank[68]和HITS算法[69](Hyperlink-Induced Topic Search)。 PageRank算法模型,是Google在搜索引擎结果中对网站排名的核心算法,核心思想通过计算页面链接的数量和质量,来确定网站的重要性的粗略估计,即节点的得分取决于指向它的节点的数量和这些节点的本身得分。即有越多的优质节点指向某节点时它的得分越高。 HITS算法是由Jon Kleinberg于1997年提出的。HITS算法模型中,有两类节点,权威(Authority)节点,和枢纽(Hub)节点。权威节点在网络中具有高权威性,枢纽节点具有很个指向边的节点。通过计算网络中每个节点的Authority权威值和Hub枢纽值来寻找高权威性的节点。即求值过程是在迭代中计算Authority和Hub值,直到收敛状态。Hub值和Authority值计算公式。 通过多数研究者发现,将链接分析法结合社交网络特性可以更好的对用户影响力进行评估,由于技术的快速发展,社交网络的多变性,因此如何将社交网络中的复杂数据和用户行为与相关算法进行结合,仍是需要我们继续研究的方向。 3)基于概率模型的方法 主要是建立概率模型对节点影响力进行预测。这么多学者将用户影响力作为参数对社交网络中的节点用户行为建立概率模型,并根据社交网络中已有的用户数据求解概率模型,得出用户影响力。 文献[70]认为用户间影响力越大、被影响用户的活跃度和转发意愿越高,则其转发另一个用户的信息的概率越大,所以利用用户影响力、转发意愿和活跃度等构建转发概率模型。通过用户发布的tweet数量、转发的tweet数和用户的历史转发行为数据,计算出用户活跃度、转发意愿和转发概率,进而社交网络中用户影响力。 文献[71]在度量影响力时融合了用户发布信息的主题生成过程,认为兴趣相似或经常联系的用户间影响力较强,用户的行为受其朋友的影响也受其个人兴趣的影响。基于这些假设,结合文本信息和网络结构对LDA模型进行扩展,在用户发布信息的基础上建立模型,通过解模型计算得出用户间基于主题的影响力。 文献[72]认为转发概率同样可以体现用户间的影响力,根据用户间的关注关系。历史转发记录,利用贝叶斯模型预测用户间的转发概率。 文献[73]考虑了用户建立关注关系的原因,用户被关注可能是与关注者兴趣投,也可能受用户的影响力影响。将基于用户的主题建模和基于主题的影响力评估相结合,并在同一个生成模型中进行计算,提出基于LDA算法模型的扩展算法模型FLDA模型(Followship-LDA)。[13] P. Bonacich. Factoring and weighting approaches to status scores and clique identification[J]. Journal of Mathematical Sociology, 1972, 2(1): 113-120 [14]ü,[J]. Physica A, 2012, 391(4): 1777-1787 [15] D. B. Chen, H. Gao, L. Lü, et al. Identifying influential nodes in large-scale directed networks: The role of clustering[J]. PLoS One, 2013, 8(10): e77455 [16], . [J].Physical Review E, 2005, 71(5): 122-133 [17][J].Sociometry,1977, 40(1): 35-41 [18] S. Dolev, Y. Elovici, R. Puzis. Routing betweenness centrality[J].Journal of the ACM, 2010, 57(4): 710-710 [19] Y. Gang,, H. Bo,etal. Efficientroutingoncomplexnetworks[J].PhysicalReviewE, 2005, 73(4): 46108 [20] E. Estrada, D. J. Higham, N. Hatano. Communicability betweenness in complex networks[J]. Physica A, 2009, 388(5): 764-774 [21][J].Social networks, 2005, 27(1): 39-54 [22] networks[J]. Social networks, 2000, 22(3): 187-200 [23] B. S. Brin, L. Page. The anatomy of a large scale hypertextual Web search engine[J]. Computer Networks & ISDN Systems, 1998, 30: 107-117 [24] P. Jomsri, S. Sanguansintukul, W. Choochaiwattana. CiteRank: combination similarity and static ranking with research paper searching[J]. International Journal of Internet Technology & Secured Transactions, 2011, 3(2): 161-177 [13][25][D].California: University of California. 2012 [26] J. Weng, E. P. Lim, J. Jiang, et al. Twitterrank: finding topic-sensitive influential twitterers[C]. Third International Conference on Web Search & Web Data Mining, ACM, 2010, 261-270 [27]: distinguishingbetweenprestigeandpopularity[J].NewJournalofPhysics,2012,14(14): 33033-33049 [28] J. Xuan, H. Jiang, , et al. Developer prioritization in bug repositories[C]. International Conference on Software Engineering, 2012, 25-35 [29]ü,[J]. Physica A, 2013, 404(24)47-55 [30] L. Lü, Y. C. Zhang, C H Yeung, et in social networks, the delicious case[J]. PLoS One, 2011, 6(6): e21202 [31][J].Authoritative sources in a hyperlinked environmen, 1999, 46(5): 604-632 [32](SALSA)andthe TKC effect[J]. Computer Networks, 2000, 33(2): 387-401 [33][J].Physical Review E, 2014, 90(5): 052808 [34] A. Banerjee, A. G. Chandrasekhar, E. Duflo, et al. Gossip: Identifying central individuals in a social network[R]. National Bureau of Economic Research, 2014. [35] percolation in social networks[J]. arXiv preprint arXiv:, 2015. [36] S. Y. Tan, J. Wu, L. Lü, et al. Efficient network disintegration under incomplete information: the comic effect of link prediction[J]. Scientific Reports, 2016, 6. [37]任晓龙,吕琳媛.网络重要节点排序方法综述[J].科学通报, 2014,59(13): 1175-1197 [63]贝克,晓冬.社会资本制胜:如何挖掘个人与企业网络中的隐性资源[M].上海交通大学出版社,2002. [64]天涯.六度分隔理论和150法则[EB/OL].|.[2010-07-14]. [65]Granovetter M Strength of Weak Ties[J]. American journal of sociology, 1973: 1360-1380. [66]王梓.社交网络中节点影响力评估算法研究[D].北京邮电大学, 2014. [67] Meeyoung Cha, Hamed Haddadi,Fabricio Benevenutoets. Measuring User Influence in Twitter: The Million Follower Fallacy[C]. Proceedings of the 4th International AAAI Conference on Weblogs and Social Media (ICWSM),2010:10-17 [3][68]  Page, Lawrence, Brin, et al. The PageRank citation ranking[C]// BringingOrder to the Web. Stanford InfoLab. 1998: 1-14. [4][69]Kleinberg J M. Authoritative sources in a hyperlinked environment[J]. Journal of the ACM, 1999, 46(5): 604-632. [70]Zibin Yin, Ya Zhang. Measuring Pair-Wise Social Influence inMicroblog[C], 2012 ASE/IEEE International Conference on SocialComputing and 2012 ASE/IEEE International Conference on Privacy,Security, Risk and Trust, 2012: 502-507. [71]Lu Liu, Jie Tang, Jiawei Han, Meng Jiang, Shiqiang Yang. Mining topic-level influence in heterogeneous networks[C]. Proceedings of the 19th ACMinternational conference on information and knowledge management, 2010: 199-208. [72] Qianni Deng, Yunjing Dai. How Your Friends Influence You: Quantifying Pairwise Influences on Twitter[C], International Conference on Cloud and Service Computing, 2012:185-192. [73] Bi, Bin, et al. Scalable Topic-Specific Influence Analysis on Microblogs[C], Proceedings of the 7th ACM international conference on Web search and data mining,2014: 513-522.

计算机组成原理是计算机专业一门重要的主干课程,以数字逻辑为基础的课程。同时也是计算机结构、 操作系统 等专业课的学习基础。下面是我给大家推荐的计算机组成原理论文,希望大家喜欢!

计算机组成原理论文篇一

《计算机组成原理课程综述》

摘要:计算机组成原理是计算机专业一门重要的主干课程,以数字逻辑为基础的课程。同时也是计算机结构、操作系统等专业课的学习基础。课程任务是使学生掌握计算机组成部件的工作原理、逻辑实现、设计 方法 及将各部件接连成整机的方法,建立CPU级和硬件系统级的整机概念,培养学生对计算机硬件系统的分析、开发与设计能力。同时该课程也是学好计算机硬件系列课程的重要基础。所以,我们需要了解计算机的基本概念、计算机硬件系统以及软件系统的组成及其基本功能。学习计算机的各个基本组成部件及控制单元的工作原理,掌握有关软件、硬件的基本知识,尤其是各基本组成部件有机连接构成整机的方法。

关键词:计算机系统;硬件结构;软件结构;控制单元

一、计算机组成原理课程综述

顾名思义,计算机组成原理就是介绍计算机的组成,冯-诺依曼计算机由五大部件组成,分别是运算器、存储器、控制器、输入设备和输出设备。现今绝大部门都是此类型计算机。通过对这么课的学习对计算机的组成有个整体的概念。计算机组成原理从内容上看一、虽然计算机的五大部件自成体系,较为独立,但是从整体来看,还是具有明显的整体性;二、某些设计思想可应用于不同的部件,具有相通性,例如并行性思想。

二、课程主要内容和基本原理

(一)计算机系统

计算机系统是由“硬件”和“软件”两大部分组成。所谓硬件是指计算机的实体部分,它由看得见摸的着的各种电子元器件,各类光、电、机设备的实物组成,如主机、外部设备等。所谓软件,它看不见摸不着,由人们事先编制的具有各类特殊功能的程序组成。通常把这些程序寄寓于各类媒体(如RAM、ROM、磁带、磁盘、光盘、甚至纸袋),他们通常存放在计算机的主存或辅存内。

(二)系统总线

计算机系统的五大部件之间的互连方式有两种,一种是各部件之间使用单独的连线,称为分散连接;另一种是将各部件连到一组公共信息传输线上,称为总线连接。

总线是连接多个部件的信息传输线,是各部件共享的传输介质。当多个部件相连时,如果出现两个或两个以上部件同时向总线发送信息,势必导致信号冲突,传输无效。因此,在某一时刻,只允许有一个部件向总线发送信息,而多个部件可以同时从总线上接收相同的信息。

总线分为片内总线、系统总线和通信总线。片内总线是指芯片内部的总线;系统总线又可分为三类:数据总线、地址总线和控制总线。

总线的周期可分为四个阶段:申请分配阶段、寻址阶段、传数阶段、结束阶段。

总线与计算机所有的器件数据传输都离不开关系,是计算机工作的基础。

(三)存储器

存储器按存储介质分类:半导体存储器、磁表面存储器、磁芯存储器、光盘存储器。按存取方式分类:随机存储器RAM、只读存储器ROM、串行访问存储器。按在计算机中的作用分类:主存储器、辅助存储器。按在计算机系统中的作用分类:主存储器、辅助存储器、高速缓冲存储器Cache、控制存储器。其中静态RAM是用触发器工作原理存储信息,因此即使信息读出后,他仍然保持其原状,不需要再生,但是电源掉电时,原存储信息丢失。动态RAM是靠电容存储电荷的原理来寄存信息。但是电容上的电荷只能维持1~2ms,因此即使电源不掉电,信息也会因此自动消失,为此,必须在2ms内对其所有存储单元恢复一次原状态,这个过程称为再生或刷新。

由于单个存储芯片的容量总是有限的,很难满足实际的需要,因此要进行位扩展和字扩展。存储芯片的容量不同,其地址线也不同,通常将CPU地址线的低位与存储芯片的低址线相连。

同样,CPU的数据线数与存储芯片的数据线也不一定相等。此时,必须对存储芯片扩位,使其位数与CPU的数据线相等。

高速缓冲存储器cache主要解决主存与CPU速度不匹配的问题。主存与cache地址映射关系有:直接相联映射、全相联映射、组相联映射。

(四)输入输出系统

I/O设备与主机的联系方式:统一编址和不统一编址。统一编址就是将I/O地址看做是存储器地址的一部分。不统一编址是指I/O地址和存储器地址是分开的,所有对I/O设备的访问必须有专用的I/O指令。传送方式有串行传送和并行传送。I/O设备与主机信息传送的控制方式有三种:程序查询方式(主机与设备是串行工作的),程序中断方式(程序与主机是并行工作的)和DMA方式(主机与设备是并行工作的)。DMA方式工作:1、中断 cpu 访存,2、挪用周期,3、与CPU交互访存。输出设备有打印机, 显示器 等。

(五)计算方法

计算机的运行需要有运算的参与,参与运算的数有无符号类和有符号类。掌握二进制原码和补码的加减乘除运算。

(六)指令系统

指令由操作码和地址码两部分组成,操作码用来指明该指令所要完成的操作,例如加减,传送,移位,转移等;其位数反映了操作的种类也即机器允许的指令条数。地址码用来指出该指令的源操作数的地址(一个或两个)、结果的地址以及下一条指令的地址。指令寻址分为顺序寻址和跳跃寻址两种。其寻址方式分为10种,分别是:立即寻址,直接寻址,隐含寻址,间接寻址,寄存器寻址,寄存器间接寻址,基址寻址,变址寻址,相对寻址,堆栈寻址。指令格式有零地址,一地址,二地址,三地址等。需能分析指令格式所含的意义。

(七)CPU的结构与功能

CPU实质包括运算器和控制器两大部分,基本功能是取指令,分析指令,执行指令。CPU的寄存器有用户可见寄存器:通用寄存器,数据寄存器,地址寄存器,条件码寄存器。控制和状态寄存器:存储器地址寄存器,存储器数据寄存器,程序寄存器,指令寄存器。指令流水处理减少了运行时间,提高机器效率。中断系统在前面章节介绍过,此处在简单补充一些,引起中断的有很多种因素:人为设置的中断,程序性事故,硬件故障,I/O设备,外部事件。中断判优可用硬件实现,也可用软件实现。中断服务程序入口地址的寻找方法:硬件向量方法和软件查询法。中断响应的过程:响应中断的条件,响应中断的时间,中断隐指令和关中断。其中中断隐指令就是机器指令系统中没有的指令,他是CPU在中断周期内由硬件自动完成的一条指令。在中断响应之前需要对现场进行保护,中断结束之后需要对现场进行恢复。中断屏蔽技术主要用于多级中断,屏蔽技术可以改变优先级。

(八)控制单元的功能

控制单元具有发出各种微操作(即控制信号)序列的功能。取指周期可以归纳为以下几个操作,>>(MAR)->>(IR)->CU6(PC)+1->PC。间址周期:(IR)->>(MAR)->>AD(IR).执行周期中不同执行周期的微操作是不同的:1、非访存类指令2、访存指令3、转移类指令。非访存类指令:1、清除累加器指令CLA----0->ACC;2、累加器取反指令、算数右移一位指令SHRL(ACC)->R(ACC),ACC0->ACC0;4、循环左移一位指令CSLR(ACC)->L(ACC)ACCo->ACCn;5、停机指令0->G。访存指令:这类指令在执行阶段都需要访存存储器。

1、加法指令ADDX。

2、存数指令STAX(3)取值指令LDAX。转移类指令:

(1)无条件转移指令JMPX。

(2)条件转移指令BANX。在执行周期结束时刻,cpu要查询是否有请求中断的事件发生,如果有则进入中断周期。在中断周期,由中断隐指令自动完成保护断点、寻找中断服务程序入口地址以及硬件关中断的操作。控制信号的外特性:a.输入信号:时钟,指令寄存器,标志,来自系统总线的控制信号。b.输出信号:CPU内的控制信号,送至系统总线的信号。

常见的控制方式有同步控制,异步控制,联合控制和人工控制。

(九)控制单元的设计

组合逻辑的设计又称硬布线控制器,由门电路和触发器构成的复杂树形网络形成的逻辑电路。安排微操作节拍时注意以下三点:1、有些微操作的次序是不容改变的,故安排微操作的节拍时必须注意微操作的先后顺序。2、凡是控制对象不同的微操作,若能在一个节拍内执行,应尽可能安排在同一个节拍内,以节省时间。3、如果有些微操作所占的时间不长,应该将它们安排在一个节拍内完成,并且允许这些微操作有先后次序。微程序的设计:采用微程序设计方法设计控制单元的过程就是编写每一条机器指令的微程序,他是按执行每一条机器指令所需要的微操作命令的先后顺序而编写的,因此,一条机器指令对应一个微程序。微指令的基本格式共分为两个字段,一个为操作控制字段,该字段发出各种控制信号;另一个为顺序控制字段,它可以指出下条微指令的地址(简称下地址),以控制微指令序列的执行顺序。工作原理:取指阶段:取微指令---产生微操作命令---形成下一条微指令的地址---取下一条微指令---产生微操作命令---形成下一条微指令的地址。执行阶段:取数指令微程序首地址的形成---取微指令---产生微操作命令---形成下一条微指令的地址---取微命令.........循环。微指令的编码方式:直接编码方式,字段直接编码方式,字段间接编码方式,混合编码。后序微指令地址的形成方式:断定方式,根据机器指令的操作码形成,增量计数器法,分支转移,通过测试网络形成,由硬件产生微程序入口地址。微指令格式:水平型微指令,垂直型微指令。

三、实际应用

自ENIAC问世后将近30余年的时间里,计算机一直被作为大学和研究机构的娇贵设备。在20世纪70年代中后期,大规模集成工艺日趋成熟,微芯片上集成的晶体管数一直按每3年翻两番的Moore定律增长,微处理器的性能也按此几何级数提高,而价格也以同样的几何级数下降,以至于以前需花数百万美元的机器(如80MFLOPS的CRAY)变得价值仅为数千美元(而此类机器的性能可达200MFLOPS),至于对性能不高的微处理器芯片而言,仅花数美元就可购到。正因为如此,才使得计算机走出实验室而渗透到各个领域,乃至走进普通百姓的家中,也使得计算机的应用范围从科学计算,数据处理等传统领域扩展到办公自动化,多媒体,电子商务,虚拟工厂,远程 教育 等,遍及社会,政治,经济,军事,科技以及个人 文化 生活和家庭生活的各个角落。

四、 心得体会

计算机科学与技术的发展日新月异,但是都离不开计算机组成原理,这门课不要死记硬背,重在理解,工科类的学习不是死记硬背就会的,还是要理解记忆才会牢靠。在做完这次课程论文后,让我再次加深了对计算机的组成原理的理解,对计算机的构建也有更深层次的体会。计算机的每一次发展,都凝聚着人类的智慧和辛勤劳动,每一次创新都给人类带来了巨大的进步。计算机从早期的简单功能,到现在的复杂操作,都是一点一滴发展起来的。

五、结语

通过对计算机组成原理这门课程的学习,使我对计算机软件和硬件技术有了一个更深入的了解,包括各种计算机的基本原理以及计算机的艰难发展历程,这门课程注重理论知识,理论知识是一切技术的最基本,也是我们必须要掌握好的。在这次课程综述论文过程中,我到图书馆查阅资料,上网查资料,让我深刻认识到计算机组成原理的重要性,也了解了许多书上没有的知识,受益匪浅。

六、参考文献

1、唐朔飞《计算机组成原理》高等教育出版社第2版

计算机组成原理论文篇二

《计算机组成原理的探讨》

摘要:计算机组成原理是计算机专业人员必须掌握的基础知识。显而易见《计算机组成原理》是计算机科学与技术专业的一门核心的专业必修课程。本课程侧重于讲授计算机基本部件的构造和组织方式、基本运算的操作原理以及部件和单元的设计思想等。但计算机硬件技术的发展十分迅速,各类新器件、新概念和新内容不断涌现,这就要求我们要与时俱进,自主学习新知识。计算机是一门应用广泛、使用面积广、技术含量高的一门学科和技术,生活中的任何一个角落都离不开计算机的应用,生活中的无处不在需要我们了解和清楚计算机的相关知识。本文从《计算机组成原理》基础课程的各个方面对计算机组成原理做了详细的解释。

关键字:构造组织方式;基本运算;操作原理;设计思想

(一)、计算机组成原理课程综述

随着计算机和通信技术的蓬勃发展,中国开始进入信息化时代,计算机及技术的应用更加广泛深入,计算机学科传统的专业优势已经不再存在。社会和应用对学生在计算机领域的知识与能力提出了新的要求。专家们指出,未来10~15年是我国信息技术发展的窗口期、关键期。

《计算机组成原理》是计算机科学与技术专业必修的一门专业主干课程。课程要求掌握计算机系统各部件的组成和工作原理、相互联系和作用,最终达到从系统、整机的角度理解计算机的结构与组成,并为后续课程的学习奠定基础。因此掌握计算机的组成原理就显得尤为重要,这就要求课程的编写要深入浅出、通俗易懂。本课程在体系结构上改变了自底向上的编写习惯,采用从外部大框架入手,层层细化的叙述方法。这样便更容易形成计算机的整体观念。

该课程总共分为四篇十章,第一篇(第1、2章)主要介绍计算机系统的基本组成、应用与发展。第二篇(第3、4、5章)详细介绍了出CPU外的存储器、输入输出系统以及连接CPU、存储器和I/O之间的通信总线。第三篇(第6、7、8、章)详细介绍了CPU(除控制单元外)的特性、结构和功能,包括计算机的基本运算、指令系统和中断系统等。第四篇(9、10章)专门介绍控制单元的功能,以及采用组合逻辑和微程序方法设计控制单元的设计思想和实现 措施 。

(二)、课程主要内容和基本原理

《计算机组成原理》是“高等学校计算机基础及应用教材”中的一本硬件基础教材,系统地介绍了计算机单处理机系统的组成及其工作原理。

主要内容包括:计算机系统概论,运算方法和运算器,存储系统,指令系统,中央处理器,总线及其互联机构,输入/输出系统。它是一门理论性强,而又与实际结合密切的课程,其特点是内容覆盖面广,基本概念多,并且比较抽象,特别是难以建立计算机的整机概念。本书以冯·诺依曼计算机结构为主线,讲授单处理机系统各大部件的组成、工作原理以及将各大部件连接成整机的工作原理。从教学上,本课程是先导课程和后续课程之间承上启下的主干课程,是必须掌握的重要知识结构。

(三)实际应用:科学计算和数据处理

科学计算一直是计算机的重要应用领域之一。其特点是计算量大和数值变化范围大。在天文学、量子化学、空气动力学和核物理学等领域都要依靠计算机进行复杂的运算。例如,人们生活难以摆脱的天气预报,要知道第二天的气候变化,采用1MIPS的计算机顷刻间便可获得。倘若要预报一个月乃至一年的气候变化,是各地提前做好防汛、防旱等工作,则100MIPS或更高的计算机才能满足。现代的航空、航天技术,如超音速飞行器的设计、人造卫星和运载火箭轨道的计算,也都离不开高速运算的计算机。

此外,计算机在 其它 学科和工程设计方面,诸如数学、力学、晶体结构分析、石油勘探、桥梁设计、建筑、土 木工 程设计等领域内,都得到了广泛的应用。

数据处理也是计算机的重要应用领域之一。早在20世纪五六十年代,人们就把大批复杂的事务数据交给了计算机处理,如政府机关公文、报表和档案。大银行、大公司、大企业的财务、人事、物料,包括市场预测、情报检索、经营决策、生产管理等大量的数据信息,都有计算机收集、存储、整理、检索、统计、修改、增删等,并由此获得某种决策数据或趋势,供各级决策指挥者参考。

(四)心得体会

这学期我们学习了计算机组成原理这门课,通过对这门课程的学习,让我对计算机的基本结构,单处理机的系统的组成与工作原理有了更加深入的了解和体会。下面我就对这学期的学习做个 总结 ,讲讲有关学习计算机组成原理的心得。

《计算机组成原理》是计算机科学与技术专业一门核心专业基础课,在专业课程内起着承上启下的作用。这门课程是要求我们通过学习计算机的基本概念、基本结构,对组成计算机的各个部件的功能和工作过程、以及部件间的连接有较全面、较系统的认识,形成较完整的计算机组成与工作原理模型。

计算机组成原理第一章——计算机系统的概论。计算机是由硬件和软件组成的,计算机的硬件包括运算器,存储器,控制器,适配器,输入输出设备的本质所在。计算机系统是一个有硬件和软件组成的多层次结构,它通常由微程序级,一般机器级,操作系统级,汇编语言级,高级语言级组成,每一级都能进行程序设计,且得到下面各级的支持。

计算机组成原理第二章——计算机的发展与应用;简要介绍了计算机的发展史以及它的应用领域。计算机的应用领域很广泛,应用于科学计算和数据处理;工业控制和实时控制;办公自动化和管理信息系统等等。

计算机组成原理第三章——总线系统。计算机总线的功能与组成,总线的概念、连接方式、总线的仲裁、总线的定时以及总线接口的概念的基本功能都需要有深入的了解。

计算机组成原理第四章——存储系统。应重点掌握随机读写存储器的字位扩张情况,主存储器的组成与设计,cache存储器的运行原理以及虚拟存储器的概念与实现。

计算机组成原理第五章——输入/输出系统以及外围设备。计算机输入/输出设备与输入/输出系统综述,显示器设备,针式打印机设备,激光印字机设备;以及磁盘设备的组成与运行原理,磁盘阵列技术。输入/输出系统的功能与组成;教学机的总线与输入/输出系统实例。几种常用的输入/输出方式,中断与DMA的请求、响应和处理。

计算机组成原理第六章——运算方法和相关的运算器。尽管有些计算比较麻烦,可这些是学习的基础。以及相关的指令系统和处理器的工作原理。使我们在概论的基础上对计算机组成原理有了更深一步的了解。

计算机组成原理第七章——指令系统。控制单元必须要发出相应的指令,机器才能完成相应的操作。本章介绍了指令的一般格式和寻址方式,不同的寻址方式操作数的有效地址计算也是不同的。

计算机组成原理第八章,是重点的重点——中央处理器。重点掌握到内容很多:CPU的功能与基本组成,微程序控制器的相关与微程序设计技术。

计算机组成原理第九章——控制单元的功能。指令周期分为4个阶段,即取指周期、间址周期、执行周期和中断周期。控制单元会为完成不同指令所发出的各种操作命令。

计算机组成原理第十章——控制单元的设计。有两种设计方法:组合逻辑设计和微程序设计。

通过本课程让我了解到,本课程是计算机专业本科生必修的硬件课程中重要核心课程之一。基本要求是使学生掌握计算机常用的逻辑器件、部件的原理、参数及使用方法,学懂简单、完备的单台计算机的基本组成原理。当我第一次接触这门课程时有些枯燥、乏味,学起来很吃力,但我还是决心努力学好这门课程。因为它不仅是专业课,而且以后也是 考研 科目,而且它的具有重要的承上启下的作用,如果学不好,那在以后专业课的学习中就会遇到更多的难点和困惑,很容易形成破罐子破摔的情形。

现在一个学期就快要过去了,基本的课程也已结束。由于老师细致全面的讲授和我自己课下的反复学习,这门课已经在我心里形成了一个大概的理解和知识体系,有种“山重水复疑无路,柳暗花明又一村”的感觉。

结语

计算机组成原理是计算机专业本科生必修的硬件课程中重要核心课程之一。基本要求是使我们掌握计算机常用的逻辑器件、部件的原理、参数及使用方法,学懂简单、完备的单台计算机的基本组成原理,学习计算机设计中的入门性知识,掌握维护、使用计算机的技能。计算机组成原理是计算机专业的基础课。

通过对计算机组成原理知识的整理和实际应用,我深刻了解到掌握计算机组成原理的重要姓,了解到了计算机组成原理学基础在生活、工作等生活各个方面的重要姓和不可缺少姓。另一方面,通过学习也认识到了计算机组成原理学在一些微小方面一些不足和亟待于解决的问题或者小缺陷,这是我通过整理计算机组成原理而获得的极大收获。我相信这次的学习会对我以后的学习和工作产生非常大的影响力。

这门课对于使我们了解现代计算机的各个组成部分及其工作原理具有重要作用,对于我们后续课程的学习无疑也具有积极的意义。

(六)参考文献

[1]唐朔飞.计算机组成原理[M].北京:高等教育出版社,2000.

[2]唐朔飞.计算机组成原理:学习指导与习题解答[M].北京:高等教育出版社,2005.

[3]孙德文,等.微型计算机技术[M].修订版.北京:高等教育出版社,2006.

[4]张晨曦,等.计算机体系结构[M].2版.北京:高等教育出版社,2006.

[5]白中文,等.计算机组成原理[M].3版.北京:高等教育出版社,2002.

[6][M].,2005

相关百科

热门百科

首页
发表服务