纳米光催化技术在大气污染治理中的应用论文
在学习和工作中,大家都跟论文打过交道吧,论文是学术界进行成果交流的工具。如何写一篇有思想、有文采的论文呢?下面是我整理的纳米光催化技术在大气污染治理中的应用论文,欢迎大家分享。
摘要: 现如今,环境污染问题已成为全球性的问题,加大环境保护力度,促进环境与经济的协调发展是世界经济发展的主要手段。大气污染作为环境污染中的一种,加大大气污染的治理力度,缓解温室效应给社会发展带来的难题,有利于实现和谐社会的建设。基于此,文章主要对纳米光催化技术进行了分析,并对其在大气污染治理中的应用进行了研究,以供相关人士参考。
关键词: 纳米光催化技术;大气污染;治理应用
纳米光催化技术在大气污染中的应用,可以提高大气污染的治理水平。由于纳米光催化技术的光敏效果较好,容易达到其反应条件,效率高,对环境及人体具有无害的特点,所以,纳米光催化技术已成为当前社会最先进的空气净化技术。对纳米光催化技术进行分析与研究,充分了解其在大气污染治理中的应用,有利于解决我国严重的.雾霾问题,优化人们的生活环境,促进经济的快速发展。
一、纳米光催化技术理论
太阳能作为“取之不尽,用之不竭”的清洁能源之一,在能源短缺和环境污染日趋严重的今天,其有效利用显得尤为重要。而光催化污染物降解技术既能充分利用太阳能,又能解决大气污染物的处理难题。纳米光催化技术作为一种新型的大气污染物治理方法,在大气污染控制方面具有巨大的应用潜力。与传统的物理吸附法(活性炭)相比,利用纳米光催化技术净化空气具有以下优势:催化降解反应可以在常温常压下进行;操作简便;在太阳光的激发下,能有效去除大气中的污染物如NOx和VOCs,不会造成二次污染。
光催化技术理论主要基于“Fu-jishima-Honda”效应,20世纪70年代后期,Frank和Bard关于水中氰化物在TiO2表面的光分解研究及Carey等关于多氯联苯在TiO2紫外光下的降解研究,极大推动了光催化技术在环境污染治理方面的研究。半导体材料的催化氧化机理如下:当能量大于禁带宽度的光照射半导体催化剂时,价带(va-lenceband,VB)上的电子被激发,跃过禁带进入导带(conductionband,CB),而在价带上产生与电子()对应的空穴(),即产生自由电子-空穴对,活泼的电子、空穴在电场作用下可以分别从半导体的导带、价带迁移至半导体/吸附物界面,而且跃过界面,使被吸附物还原和氧化;同时也存在着电子、空穴的复合。价带空穴()将吸附的H2O氧化为羟基自由基(),导带电子()将空气中的O2还原为超氧自由基()。这两个自由基(),是降解污染物的关键活性基团。其反应原理如下:
二、纳米光催化技术的实际应用
纳米光催化技术在大气污染治理中的应用比较广泛,TiO2作为应用效果较好的光催化剂,具有较好的抗酸碱性、耐光腐蚀性,其化学性质稳定性较好,来源丰富,能源较大,具有产生的光生电子和空穴的电势电位较高等优势。但是,在实际的纳米光催化技术应用过程中,容易受到催化剂、有机物浓度的影响。因此,在大气污染治理过程中,相关人员应重视这些因素对光催化技术的影响。
(一)催化剂对纳米光催化技术的影响。纳米光催化技术的原理,是利用催化剂净化大气的。在反应过程中,催化剂的表面积、粒径等等,都会影响纳米光催化反应。如:当催化剂的粒径不断缩小时,溶液中的单位质量粒子就会增多,虽然光的吸附效率有所增加,但是,光吸收不易饱和;当催化剂系统的表面积增加时,就意味着催化剂参加反应的面积增大,有利于催化反应的进行,反之,则不利于催化反应的进行。另外,催化剂的表面羟基及混晶效应,也是影响纳米光催化反应的另一因素。
(二)光源与光强对大气污染的影响。纳米光催化技术常用的光源有黑光灯、高低压汞灯、紫外灯、杀菌灯等,波长在200-400nm的范围内。一般情况下,在纳米光催化反应过程中,其光的强度越强,催化反应速度就会逐渐趋于常数,但是,光量子效率则会随着光强度的变化而变化。此外,PH值不同,外加助催化剂及无机盐等等,在一定程度上也会影响纳米光催化技术的反应。
三、纳米光催化大气污染控制技术与其他技术的联用
(一)室内污染控制与通风技术。目前常用室内环境净化与通风技术有主动式和被动式2种。前者是将室内环境净化装置与机械通风系统有机结合起来成为一个整体,而后者采用空气净化过滤器结合自然通风系统。这两种技术均涉及高效通风技术,前者主要针对外源性污染,可采用高效低阻过滤的方式;而后者主要针对内源式污染,比较有效的方式为各种室内净化技术。目前主要通风方式包括混合通风、置换通风和个性化送风。混合通风和置换通风均以营造室内可感风环境为目的,若将空调设定温度调高必然会引起室内人员热舒适性的降低;个性化送风由于其实际使用中制约较多,在实际工程中较少。
(二)过滤技术。过滤技术主要包括纳米纤维过滤技术、光催化纤维过滤技术、膜过滤技术。纳米纤维过滤技术具有一定梯度结构的复合过滤材料可大大提高过滤性能,已用于室内空气净化、水体有机物净化等领域,有望实现大规模工程化应用;纳米光催化技术是一种新型的处理大气污染物的方法,在大气污染控制方面具有巨大的应用潜力。
四、结语
在大气污染治理过程中,单独利用纳米光催化技术的效果并不是特别明显,因此,在治理大气污染过程中,相关人员应将纳米光催化技术与其他先进的大气净化技术进行有效结合,提高大气污染治理效果,保证人们生活健康。
参考文献:
[1]曹军骥,黄宇.纳米光催化技术在大气污染治理中的应用[J].科技导报,2016,17:64-71.
[2]王韶昱.光催化技术在室内空气净化器中的应用研究[D].浙江大学,2013.
喜欢就 关注我们吧,订阅更多最新消息
第一作者:钮峰
通讯作者:涂文广教授,周勇教授,邹志刚教授
通讯单位:香港中文大学(深圳)理工学院
论文DOI:
全文速览
通过醇和胺的C-N偶联是工业中合成不同有机胺的重要反应路径,而这一过程往往需要在高温高压等较苛刻的条件下进行。因此,本工作中,我们设计了一种基于CdS-Pd单原子体系催化剂用于实现高效可光催化苯甲醇和苯胺的C-N偶联反应获得二级胺。通过实验研究发现,Pd与CdS表面的悬挂S原子原位配位形成单一Pd-Sx物种。该催化剂的可见光催化C-N偶联的二级胺产率接近100%,同时释放出可观的绿色能源氢气( mmol gcat-1h-1)。机理研究与分析表明,苯甲醇上脱去的H+较容易吸附到长寿命的•Pd-Sx中间态物种而形成H-Pd-Sx中间体。最后,吸附的H又容易脱附,加成到苄烯苯胺的N上,实现氢转移,完成亚胺的加氢过程,得到最后所需要的二级胺产物苄基苯胺。整个过程中,H的吸脱附可以循环进行,因此Pd-Sx配位物种可以作为有效的氢转移的桥梁实现加氢过程。此外,该光催化剂体系具有较好的底物适应性和循环能力。这一工作将为温和条件下实现高效C-N偶联反应提供一种新的思路。
背景介绍
随着工业的发展与进步,有机胺广泛应用于农业、医药、家居、军工等领域,其合成在工业生产中有着越来越明显的重要性。基于“借氢机制(氢转移)”,通过胺与醇的C-N偶联被认为是一种较为绿色的合成有机胺的理想路径。这一过程主要包含醇的脱氢、亚胺的生成以及亚胺的加氢这三个主要步骤。其中醇的脱氢是整个反应的决速步骤。然而,基于这一机制,在热催化合成有机胺的过程中存在一些缺点:(1)醇的脱氢决速步骤需要较苛刻的条件(高温高压);(2)易发生过度偶联,使得产物分布广,不利于分离;(3)反应中使用的催化剂多为高负载量的负载型贵金属催化剂(如Ru/Al2O3、Pd/Al2O3、Rh/Al2O3等),成本较高。因此,开发出高效低成本的催化剂具有一定的挑战性。近年来,利用光氧化还原技术实现常温常压条件下有机胺的合成引起了广泛的关注。研究者们通常采用一些贵金属有机配合物分子进行均相催化反应,但反应后催化剂难以进行分离,在实际工业生产中难以大规模应用。而采用传统的半导体光催化剂进行多相催化反应,则可以有效解决这一难题。然而仅仅依靠半导体本身的催化能力,很难达到较高的催化活性,实际应用过程中往往需要通过负载一些助催化剂或表面修饰来提高催化性能。近些年,单原子催化被认为是较有前景的领域。单原子催化剂由于其独特的电子结构和较高的原子利用效率而表现出优异的催化活性,被广泛应用于光催化水分解制氢、二氧化碳还原、固氮和有机物降解等领域。因此,我们课题组设计开发了一种单原子光催化剂CdS-Pd,该催化剂可以有效地用于可光催化苯甲醇和苯胺的C-N偶联反应,获得具有工业应用价值的二级胺。同时反应过程中释放出清洁能源氢气。这一工作将为温和条件下实现C-N偶联反应提供一种新的途径。
本文亮点
1. 本工作通过Pd原子与CdS表面的悬挂S原子原位配位制备了一种CdS-Pd的单原子光催化剂,该催化剂可以实现高效可光催化苯甲醇和苯胺的C-N偶联反应获得近100%产率的二级胺N-苄基苯胺以及较高的产氢活性。
2. 实验和理论计算结果证实了,相比于Pd纳米颗粒助催化剂负载的CdS,单一Pd-Sx物种能够有效捕获光生电子,使其具有较长的寿命,而且氢在Pd-Sx物种上的吸脱附能力较强,从而可以作为有效的氢转移载体实现亚胺的加氢,得到目标产物二级胺。
3. 此外,在优化的反应条件下,该催化剂具有较好的稳定性,以及对不同醇类和取代胺的C-N偶联反应具有良好的底物适应性。
图文解析
本工作中,首先我们采用水热法制备了六方晶系结构,颗粒尺寸约为50 nm的纳米球形CdS,其带宽约为( 图1 a )。随后,在可见光催化C-N偶联反应过程中加入PdCl2溶液原位合成单原子催化剂CdS-Pd SAs。作为对比,我们采用浸渍法制备了Pd纳米颗粒负载的CdS催化剂CdS-Pd NPs。从图1b的XPS图谱可以看出,光催化反应后的CdS中事实上存在Pd元素。结合能 eV和342 eV分别对应Pd 3d5/2和Pd 3d3/2,表明Pd以2+价态形式存在,而非单质态。因此,我们可以初步推测反应后,Pd与CdS进行了一定的配位。
图1 CdS和CdS-Pd SAs单原子催化剂的结构表征
为了进一步确定反应后Pd的状态以及与CdS的配位环境,我们对样品分别进行了X射线精细结构谱(XAFS)和球差电镜的表征。从图3d可以明显看出反应后的CdS表面上的Pd物种既不是二价态也不是单质态,而是以一定配位的形式存在。通过对样品CdS-Pd SAs中Pd的K-edge EXAFS图谱进行拟合,可以得出Pd-S的配位数约为3( 表1 )。通过进一步的HAADF-STEM和 EDS mapping图可以清晰地看到Pd以单原子形式均匀地分散在CdS上( 图1 e-j )。因此,综合上述表征方法,我们可以初步证实在光催化反应过程中,PdCl2以Pd-S配位键的形式将Pd原子锚定在了CdS载体上,为光催化反应过程提供一定的反应活性中心。
表1 样品CdS-PdSAs中Pd的EXAFS拟合数据
CN , coordination number; R , bonding distance; σ 2, Debye-Waller factor; Δ E0 , inner potential shift.
为了进一步研究CdS表面的S对催化反应的影响,我们首先对CdS进行了不同程度的表面修饰(400 oC高温煅烧:CdS-400;双氧水表面腐蚀:CdS-H2O2)。从图2 a可以看出,采用不同的手段修饰后,CdS的结构并未发生明显变化,仍然是结晶度较好的六方晶系结构。CdS、CdS-400和CdS-H2O2的能带分别为、和 eV,即能带结构也未发生明显变化( 图2 b )。从图2 c和d可以明显看出, CdS通过表面修饰之后,Cd 3d和S 2p均向高结合能偏移,而且偏移程度随着修饰强度增强而增大。这主要是由于CdS修饰后产生了一定的S空位,使得表面部分Cd暴露,从而改变了Cd和S的周边电子云密度分布。
图2 修饰前后的CdS结构表征
在常温常压氮气气氛下,我们采用苯甲醇和苯胺的C-N偶联作为模型反应对所制备的催化剂进行可见光催化活性评价( 图3 )。首先我们确定了暗反应、无光催化剂以及只有PdCl2的情况下该模型反应没有任何催化活性。在添加PdCl2的条件下,我们对不同的半导体光催化剂进行了活性筛选,发现只有CdS能有效地进行光催化C-N偶联生成二级胺(N-苄基苯胺),产率高达 mmolgcat-1h-1。而其他半导体催化剂在反应过程中只能催化生成亚胺(N-苄烯苯胺),且普遍产率较低(< mmolgcat-1h-1)。
图3 可见光催化C-N偶联反应的催化剂活性筛选
基于CdS对该反应的催化特异性,我们测试了其苯胺的转化率及产物的选择性随时间的变化曲线。从图4b可以看出,随着反应的进行,苯胺的转化率不断提高,当反应达到16 h后,底物苯胺几乎完全转化。随着反应的进行,亚胺(N-苄烯苯胺)的选择性不断降低,而二级胺(N-苄基苯胺)的选择性不断提高,表明反应过程中逐步完成了亚胺的加氢过程。
为了进行对比,我们采用浸渍法提前将Pd纳米颗粒沉积到CdS表面上并进行光催化活性评价。从图4c我们发现,沉积Pd纳米颗粒的CdS催化活性是单一CdS活性的4倍。这主要是由于Pd纳米颗粒作为助催化剂可以有效地提高光生载流子的分离效率。而当我们将Pd以PdCl2的形式加入到反应体系中时,催化活性是单一CdS活性的约倍。而且产物中出现了二级胺(N-苄基苯胺)。也就是说反应体系中原位加入PdCl2能够促使该反应完成加氢过程,有效实现氢转移。因此,我们可以初步推断,光催化反应过程中Pd和CdS表面悬挂的S作用产生的Pd-S物种对实现C-N偶联起到至关重要的作用。此外,在反应过程中我们可以检测到氢气的生成。从图4d可以看出,单一的CdS在反应过程中几乎不产生氢气。而CdS-Pd SAs产氢速率达到 mmolgcat-1h-1,是CdS-Pd NPs的约倍,CdS的近10倍。这一结果也与苯胺转化率的差异相吻合。
为了验证CdS表面的S与Pd作用形成了Pd-S物种,从而提高了C-N偶联反应性能,我们对CdS进行了不同程度的表面修饰。从图4e可以明显看出,随着表面修饰的增强,反应的活性逐渐下降,而且产物苄基苯胺的选择性也随之下降。这也就意味着,当我们遮盖或者去除部分S位点,反应底物在催化剂表面的吸附性能下降,从而导致反应活性降低。另一方面,由于S空位的增多,使得Pd原子很难与S进行配位产生Pd-S物种,从而无法完成C-N偶联反应过程中的氢转移,也就不能得到饱和的目标产物二级胺N-苄基苯胺。
图4 可见光催化活性评价
为了研究在光催化反应过程中不同自由基的作用,我们进行了捕获实验。从图5a可以看出,当体系中加入叔丁醇和苯醌来分别捕获•OH和•O2-,反应的活性基本没有发生变化,说明体系中的这两种自由基对反应基本没有贡献。而当体系中加入草酸铵捕获光生空穴后,产率降为原来的1/3,加入过硫酸钾捕获光生电子后,产率降为0。这一结果表明,光生电子和空穴在光催化C-N偶联反应中有着重要作用。
接着,我们采用超快光谱(TAS)来揭示光照下不同催化剂的载流子衰减动力学。图5b为不同催化剂的瞬态吸收图谱以及拟合曲线。采用双指数模型拟合可获得两个弛豫时间τ1和τ2。Τ1代表导带电子到过渡态的捕获时间,τ2代表电子与过渡态或者价带空穴复合的时间。通过对比,CdS-Pd Sas的弛豫时间明显要长,也就是说,在反应过程中CdS表面单原子态的Pd配位物种Pd-Sx可以作为电子陷阱来捕获光生电子,提高载流子的分离效率,从而加速光催化C-N偶联。另外,从CdS导带转移到过渡态Pd-Sx中间体的弛豫时间更长,更利于氢原子的吸附。
为了研究不同催化剂对于H的吸附以及转移能力,我们做了一个N-苄烯苯胺加氢的模型反应。从图5c可以明显看出,对于单原子态的CdS-Pd SAs催化剂,N-苄烯苯胺较容易实现光催化加氢到苄基苯胺产物,而单质态的Pd(CdS-Pd NPs)催化剂无法实现加氢过程。这也证明了单原子态的CdS-Pd SAs可以很好地吸附H并完成氢转移,从而实现加氢过程得到二级胺N-苄基苯胺。
基于以上的机理表征分析,我们可以给出一个可能的反应机理和路径( 图5d )。光催化反应前,当体系中同时加入CdS催化剂和PdCl2时,PdCl2很快吸附到CdS表面上与表面悬挂的S原子形成Pd-Sx的配位物种。当CdS被光激发后,表面的Pd-Sx配位物种可以有效捕获光生电子,形成•Pd-Sx中间态物种,同时光生空穴能够脱去苯甲醇上的质子,将其氧化成苯甲醛。然后生成的苯甲醛与苯胺进行亲核加成反应,产生醇胺中间体。由于醇胺非常不稳定,很快脱水生成亚胺。苯甲醇上脱去的H+较容易吸附到长寿命的•Pd-Sx中间态物种形成H-Pd-Sx。最后,吸附的H又容易脱附,加成到N-苄烯苯胺的N上,实现氢转移,完成亚胺的加氢过程,得到最后的目标产物N-苄基苯胺。整个过程中,H的吸脱附可以循环进行,因此Pd-Sx物种可以作为有效的氢转移的桥梁实现加氢过程。此外,过多的吸附H可以从H-Pd-Sx上脱附产生H2。
图5 反应机理表征及推测
我们通过DFT模拟计算进一步验证了为什么单原子态的CdS催化剂CdS-Pd SAs可以很好地实现光催化C-N偶联生成N-苄基苯胺( 图6 )。结合EXAFS拟合结果,我们以Pd-S三配位的形式作为计算模型来研究H吸附和反应过程。对于催化剂CdS-Pd NPs来说,在位点1和2的H吸附能分别为 eV和,而催化剂CdS-Pd SAs的H吸附能为 eV。通过过渡态能量搜索,可以得出,Pd纳米颗粒负载的CdS-Pd NPs的加氢能垒为 eV,而对于单原子态的CdS-Pd SAs来说,由于形成的Pd-Sx配位物种能够有效地吸附和脱附H,因此脱附的H直接加成到亚胺的不饱和C上,完成加氢过程。
图6 DFT模拟计算
总结与展望
总的来说,我们设计开发了一种CdS-Pd单原子光催化剂,该催化剂可以有效地用于可光催化苯甲醇和苯胺的C-N偶联反应,获得具有工业应用价值的二级胺。同时反应过程中释放出清洁能源氢气。结合实验以及模拟计算,我们推测Pd在光催化反应过程中与CdS表面的S原位配位形成Pd-Sx中间物种,而这一中间体可以提高载流子分离效率以及有效地进行H的吸脱附,构成Pd-Sx •Pd-Sx H-Pd-Sx Pd-Sx的循环过程,实现氢转移,完成亚胺的加氢过程,得到目标产物N-苄基苯胺。整个过程中,Pd-Sx中间体可以作为有效氢转移的桥梁实现加氢过程。此外,该催化剂体系具有较好循环能力和底物适应性。这一工作将为温和条件下实现C-N偶联反应提供一种新的思路。
作者介绍
钮峰 ,博士毕业于法国里尔大学(法国国家科学研究中心)(导师Andrei Khodakov教授和Vitaly Ordomsky研究员)。2020年8月加入香港中文大学(深圳)邹志刚院士团队从事博士后研究。以第一作者在ACS Catalysis,Green Chemistry,Solar Energy Materials & Solar Cells等期刊上发表SCI论文12篇。目前主要研究方向为多相热催化、光催化能源转化。
涂文广 ,2015年获南京大学物理学院博士学位。2015至2020年在新加坡南洋理工大学从事研究博士后研究工作。2020年6月起任职于香港中文大学(深圳)理工学院。主要从事于低维光电材料表界面结构的精准设计与构建,实现太阳能驱动下的小分子转换,取得了一系列重要成果,迄今为止已在Nature Communications, Advanced Material, Advanced functional Material, ACS Catalysis, ACS Energy Letters等期刊上发表论文70余篇, SCI被引超过8000次,H指数为44。
周勇 ,香港中文大学(深圳)兼职教授。2009 年9月被南京大学物理学院按海外人才引进回国工作,加入南京大学环境材料与再生能源研究中心,聘为教授。主要从事:1、人工光合成二氧化碳转化为可再生碳氢燃料;2、光电材料的设计和构建;3、高效、低成本钙钛矿太阳能电池产业化应用研究。近五年来,以第一作者或通讯作者在 国际重要期刊上发表论文超过 60 篇,其中包括 J. Am. Chem. Soc. (1 篇)、Adv. Mater. (2 篇)、Adv. Funct. Mater. (1 篇)和 Nano Lett. (1 篇),受邀以第一作者或通讯作者撰写 2 篇综述论文。近五年论文他引超过 1600 次,5 篇论文入选 Web of Science 统计的“过去十年高被引论文”, H 指数 46。光催化还原 CO2 研究成果作为主要研究内容,荣获 2014 年国家自然科学二等奖(排名第四)。主编三本英文专著(Springer 等出版社出版)。多次受邀在国内外相关学术会议上做邀请报告或主持会议。担任 Current Nanoscience 中国地区编辑和 Mater. Res. Bull.编委。主持承担国家基金委、 科技 部 973 项目等项目。入选教育部新世纪人才(2010 年)、江苏省首届杰出青年基金(2012年)。
邹志刚 ,2003年凭为教育部“长江学者奖励计划”特聘教授,国家重点基础研究发展计划“973”项目首席科学家,教育部创新团队带头人,2015 年当选中国科学院院士,2018 年当选发展中国家科学院院士。主要从事新型可再生能源与环境材料方面的研究,邹院士在光催化领域做出了卓越的贡献,被媒体称为“光催化领域的前行者”。邹志刚院士已在 Nature等国际一流期刊上发表论文 602 多篇,H指数 74,连续 5年入选爱思唯尔材料科学高被引学者,是材料领域有国际影响力的学术带头人。申请中国发明专利 200 多项,其中 83 项已获授权;承担两届国家重大基础研究计划 973 项目、国家自然科学基金中日合作项目、 科技 部国际合作重大项目等多项科研项目;获国家自然科学二等奖 1 项、江苏省科学技术一等奖 2 项,作为第一完成人获第 46 届日内瓦国际发明展金奖及阿卜杜拉国王大学特别奖各 1项。
AAU3D打印很高兴为您解答本科的时候接触过一段时间微生物燃料电池,给一点个人建议,仅供参考,可能很多表述不够专业,请见谅关键词:半导体、微生物、光催化意思大概是微生物燃料电池中,将光催化与微生物催化耦合在一起,促使微生物光电系统产生电子转移并产氢。针对微生物燃料电池处理废水产电的优点,以及光催化技术在制氢过程中效率低和需要添加牺牲剂的缺点,提出一种新的低成本、无污染的微生物光电化学系统产电制氢技术,阴极光生电子与阳极生物氧化产生的电子在还原制氢中的协同作用机制。
一般来说,溶胶中的颗粒就是纳米级的,胶体嘛。溶胶凝胶(sol-gel)法一般不会改变颗粒的尺度的,所以依旧是纳米级。
近日,《催化学报》在线发表了中国石油大学(北京)戈磊教授团队在光催化解水领域的最新研究成果。该工作报道了结合动力学和热力学对PtPd修饰硫化镉锌纳米棒高效光催化制氢的机理研究。论文第一作者:张临河硕士,论文通讯作者:戈磊教授。02背景介绍双金属合金是目前最有效的共催化剂之一。与单金属纳米粒子相比,双金属纳米粒子由于其独特的微观结构和优良的催化性能而具有巨大的催化潜力。Pt具有较高的功函数和较低的质子还原能力,被认为是最有效的贵金属助催化剂。本课题组研究发现,在氢气生产过程中,PtPd合金作为助催化剂的光催化性能高于Pt。这一现象可以通过PtPd合金的热力学结果来理解,而反应动力学在光催化制氢中也起着重要作用。因此,利用热力学和动力学相结合的方法来研究改进析氢活性的PtPd共催化剂的性质和机理是很有必要的。
光催化法制氢半导体TiO2及过渡金属氧化物、层状金属化合物,如K4Nb6O17、K2La2TiO10、Sr2Ta2O7等,以及能利用可见光的催化材料,如CdS、Cu-ZnS等,都能在一定的光照条件下,催化分解水,从而产生氢气。然而到目前为止,利用催化剂光解水的效率还很低,只有1% ~2%。已经研究过的用于光解水的氧化还原催化体系主要有半导体体系和金属配合物体系两种,其中以半导体体系的研究最为深入。 半导体光催化在原理上类似于光电化学池,细小的光半导体颗粒可以被看作是一个个微电极悬浮在水中,他们像光阳极一样在起作用,所不同的是它们之间没有像光电化学池那样被隔开,甚至阴极也被设想是在同一粒子上,水分解成氢气和氧气的反应同时发生。当小于387nm 的紫外光照射到TiO2时,价带上电子吸收能量后发生跃迁到导带,在价带和导带分别产生了空穴与电子,吸附在TiO2的水分子被氧化性很强的空穴氧化成为氧气,同时产生的氢离子在电解液中迁移后被电子还原成为氢气。和光电化学池比较,半导体光催化分解水放氢的反应大大简化,但通过光激发在同一个半导体微粒上产生的电子空穴对极易复合。因此为了抑制氢和氧的逆反应及光激发半导体产生的电子和空穴的再结合,可加入电子给体作为空穴清除剂,以提高放氢效率。废水中许多有机物是良好的电子给体,如果把废水处理与光催化制氢结合起来,可同时实现太阳能制氢和太阳能去污 。工程热力学是热力学最先发展的一个分支,它主要研究热能与机械能和其他能量之间相互转换的规律及其应用,是机械工程的重要基础学科之一。通过对热力系统、热力平衡、热力状态、热力过程、热力循环和工质的分析研究,改进和完善热力发动机、制冷机和热泵的工作循环,提高热能利用率和热功转换效率。为此,必须以热力学基本定律为依据,探讨各种热力过程的特性;研究气体和液体的热物理性质,以及蒸发和凝结等相变规律;研究工质特性也是分析某些类型制冷机所必需的。现代工程热力学还包括诸如燃烧等化学反应过程,溶解吸收或解吸等物理化学过程,这就又涉及化学热力学方面的基本知识。
如下:
【摘要】:综述了分子氧氧化环己烷制取环己酮的催化剂的研究进展,重点介绍了光催化剂、纳米催化剂、仿生催化剂、分子筛催化剂和复合催化剂在环己烷催化氧化方面的应用,其中,负载在分子筛上的纳米金催化剂具有较高的催化活性、选择性及稳定性。
【关键词】:环己烷氧化,环己酮,催化剂的认识。
环己酮是重要的有机化工原料和工业溶剂,广泛应用于医药、油漆、涂料、橡胶、农药行业、印刷和塑料回收方面。目前,工业上制取环己醇和环己酮的方法主要为苯酚加氢法、苯部分加氢法和环己烷液相氧化法,环己烷氧化法的应用最为普遍,占90%以上。
由于环己醇和环己酮比环己烷更易于被氧化,为获得适宜的环已醇和环已酮的选择性,工业上环己烷氧化转化率通常控制在,氧化选择性为90%左右。
但环己烷的大量循环造成能耗上的巨大浪费。目前,环己烷氧化工艺研究的热点主要集中在对传统工艺的改造优化、氧化剂的选择及高效催化剂的开发。开发高性能和环境友好的催化剂成为研究热点,近年来开发的一些氧化催化剂在改善环己烷转化率和产物选择性方面表现出较好的性能。
本文主要综述分子氧氧化环己烷制环己酮催化剂的研究进展。
喜欢就 关注我们吧,订阅更多最新消息
第一作者及通讯作者:李伟(陕西 科技 大学(西安))
共同通讯作者:王传义(陕西 科技 大学(西安))
通讯单位:陕西 科技 大学
论文DOI:
研究亮点
1. 通过简单可控的方法将单原子Pd成功修饰在了CdS NPs表面。
2. 单原子Pd与CdS NPs表面的S原子形成强配位作用,通过协同金属-半导体配位相互作用促进了光诱导载流子自体相向表面的迁移,抑制了CdS光腐蚀现象,提高了光诱导电子利用效率。
3. 单原子Pd修饰CdS NPs后降低了催化水分解产氢能垒,显著增强了其全分解水产氢活性。
研究背景
随着双碳目标的提出,国家对氢能源的发展做出了重要指导,有效推进氢能源的发展。传统产氢手段能耗高,且伴随有二次污染。由于太阳光能来源广泛、使用方便、绿色可持续性等优点,将太阳能转变为方便使用的高附加值化学能无疑是新能源开发的有效途径,具有潜在应用价值。日光诱导全分解水产氢是一种开发氢能源的潜在技术,然而较低的效率阻碍了该项技术的大规模应用推广。因此,开发高效稳定的全分解水产氢催化剂具有理论与实际研究意义。
硫化镉(CdS)是一种低功函且具有优异可见光响应的过渡金属硫化物,在光催化和电催化领域有着广泛的应用。被用于光催化材料时,长时间光诱导容易导致其结构发生严重光腐蚀,极大地影响其光催化性能。如何在提高CdS基光催化剂催化活性的同时,有效抑制其光腐蚀影响,增强其结构稳定性,是需要研究者不断 探索 和解决的关键科学问题。
拟解决的关键问题
本课题通过一步简单诱导还原策略,将单原子Pd修饰在CdNPs表面,实现了协同的金属-半导体配位相互作用,抑制了载流子复合,提高了催化剂量子产率。更为重要的是,高度缓解了CdS光腐蚀影响,赋予其以长时间光电流稳定性,一定程度上解决了光腐蚀导致其催化剂结构不稳定的科学问题。
成果简介
针对CdS光催化剂在光诱导下光腐蚀严重影响其催化性能的科学问题, 陕西 科技 大学(西安)李伟副教授及王传义教授 等人通过一步简单光诱导还原手段将单原子Pd修饰在六方相CdS NPs表面,制备出一种CdS-Pd纳米光催化剂。由于CdS主体催化剂与单原子Pd活性位点间协同的半导体-金属配位相互作用,其光响应性及界面电荷传导特性均显著增强,有效抑制了其光腐蚀,增强了催化剂结构稳定性。同时,CdS-Pd催化剂表面全分解水产氢过程能垒相较于纯CdS NPs明显降低,从而在模拟日光诱导下达到了纯CdS纳米催化剂110倍的全分解水产氢活性,且表现出良好的耐光性能。
要点1:CdS-Pd复合光催化剂合成
通过简单的一步诱导还原法将单原子Pd修饰在六方相CdSNPs表面,优化并制备出一种CdS-Pd纳米光催化剂。
图复合光催化剂的合成示意图及结构表征。
要点2:CdS-Pd复合光催化剂结构、组成及形貌表征
通过XRD、Raman、XPS、XAFS和ac-STEM等表征研究发现:贵金属Pd是以单原子状态均匀分布在CdS 纳米催化剂表面,且单原子Pd与CdS 纳米催化剂表面的S原子形成了S-Pd配位作用,这有利于促进光诱导载流子的传导。
图复合光催化剂的形貌、晶型及组成分析。
要点3:CdS-Pd复合催化剂模拟日光诱导产氢活性及稳定性
当反应体系pH = 10时,优化后的CdS-Pd纳米催化剂在模拟太阳光诱导下全分解水析氢速率为 μmol·g -1 ·h -1 ,是纯CdS的110倍。如果进一步加入牺牲剂,其半分解水析氢速率可达到 μmol·g -1 ·h -1 。在λ = 420 nm的光波诱导下,其全分解水和半分解水的表观量子产率分别为和。即使在室外日光辐照下,也可以清晰地观察到大量气泡的产生。以上研究表明单原子Pd修饰后的纳米催化剂模拟日光诱导产氢活性显著提高。另外,通过评价该改性催化剂进行模拟日光诱导催化产氢的持久性及再生性,证明Pd单原子修饰后的CdS纳米催化剂具有稳定的光诱导催化活性和良好的结构稳定性。
图复合光催化剂的催化产氢性能、持久性和重复使用性。
要点4:CdS-Pd复合光催化剂的协同作用增强光-电化学性能及机理分析
通过光-电化学各项表分析可知:Pd单原子修饰后的CdS纳米催化剂表现出良好的电子-空穴对分离特性,且由于协同的半导体(CdS)-金属(Pd)配位相互作用加快了载流子自体相向表面的迁移,有效抑制了CdS的光腐蚀,延长了光生载流子寿命,从而在长时间光诱导下呈现高密度且稳定的光电流信号。
图4. CdS-Pd复合光催化剂的光-电化学性能表征及机理分析。
要点5:CdS-Pd复合光催化剂的DFT计算及催化机制分析
通过DFT计算分析可知:CdS-Pd纳米催化剂表面全分解水产氢能垒相较于纯CdS NPs明显降低,且支撑了S-Pd配位键形成的可能性。最终证明氢气生成的主要活性位点为催化剂表面的S位点,而表面单原子Pd则促进了水分子的分解。综上所述,在模拟日光诱导下,CdS基体生成大量光诱导载流子,并快速迁移至表面。H 2 O分子首先在催化剂表面Pd位点处被分解为氢质子中间体和OH-离子,氢质子进一步在S位点处获得电子被还原成氢气,而OH - 离子则在CdS表面被光生空穴氧化为O 2 分子。由于该催化剂协同的金属-半导体作用机制,O 2 分子与部分光诱导电子作用被快速转化为超氧自由基(O 2 +e - O 2•- ),所以该催化剂更适合于在模拟日光诱导下催化水分解产氢应用。
图5. CdS-Pd复合光催化剂的DFT计算及全分解水机制
小结与展望
综上所述,针对纯CdS半导体光诱导过程中光腐蚀影响导致其结构稳定性较差的科学问题,本研究通过一步简单光诱导还原手段将单原子Pd修饰在六方相CdS NPs表面,制备出一种CdS-Pd纳米光催化剂。由于CdS主体催化剂与单原子Pd活性位点间协同配位作用,其光响应性及界面电荷传导特性均显著增强,光诱导电子-空穴对复合抑制效果明显。同时,单原子Pd修饰后的纳米催化剂明显降低了全分解水产氢过程的能垒,从而在模拟日光诱导下达到纯CdS纳米催化剂近110倍的全分解水产氢活性,并表现出优良的催化活性与结构稳定性。本研究对于通过简单有效的制备方法合成稳定且高效的全分解水产氢CdS基光催化剂具有理论与实际研究意义。
参考文献
W. Li, X. Chu, F. Wang, Y. Dang, X. Liu, T. Ma, J. Li, C. Wang, Pd single-atom decorated CdS nanocatalyst for highly efficient overall watersplitting under simulated solar light. Appl. Catal. B-Environ . 2021, DOI: .
作者介绍
李伟 ,陕西 科技 大学 化学与化工学院,副教授。从事光催化剂结构设计及合成、光催化污水处理、太阳能光伏氢能源生产相关研究。目前已发表国际SCI论文30余篇,总被引频次1000余次。部分研究被《Appl. Catal. B-Environ.》、《J. Mater. Chem. A》、《Environ. 》、《ACS Sustainable .》、《Chem. Eng. J.》、《ChemCatChem》、《Electrochim. Acta》等期刊报导。
王传义 ,陕西 科技 大学特聘教授。德国洪堡学者、英国皇家化学会会士、国家外专局高端外国专家创新团队负责人、德国洪堡基金会联合研究小组中方负责人、陕西 科技 大学特聘教授、武汉大学兼职教授、博士生导师。应邀担任中国可再生能源学会光化学专业委员会委员、中国感光学会光催化专业委员会委员及中国环境科学学会特聘理事、国家 科技 奖励和国家重点研发计划项目会评专家及国家基金委等机构项目评审专家。从事光催化技术在环境与能源领域的应用研究。
声明
应用化学是介于理科与工科之间的一门理工结合型学科,应用化学专业的毕业生可服务的社会领域非常广泛。下面是我为大家整理的应用化学毕业论文,供大家参考。
摘要:在完善应用化学实验教学内容改革的同时,继续加大了对实验教学设备的调研与采购。着重按照现行企业运行模式中的方式,采用一些先进的小型化设备与仪器,让学生在实验操作技能锻炼的同时,熟悉设备与仪器的使用,这为学生进入企业能尽快投入到工作中奠定一定的基础。
关键词:应用化学;实验
1应用化学实验课程现状
从实验教学内容来看,大体上分为三个部分:其一,典型的物质合成,占实验教学内容的,从教学范畴上属于有机化学实验教学内容,不利于学生应用化学实验的开展;其二,系列产品的配制实验偏多,占实验教学内容的,咋一眼看上去,内容较为丰富,但都属于同一范畴,造成实验类型单一;其三,提取类实验,占实验教学内容的20%,操作方法基本上相同,很难体现出应用化学实验的真正目的。另外,从学科与地方经济发展的角度考虑,包头隶属于稀土产业的主产地,国家中长期发展纲要中,把内蒙古定位成国家重要的能源基地,尤其是在化工行业中尤为突出。然而,从应用化学实验教学内容来看,并没有突出化工行业中典型流程的分离,脱离了地方产业的发展,违背了应用化学实验在人才培养方法中的重要地位。同时,从大的环境来看,高校从事应用化学专业相关的人员很多,但在这个领域中具有技术型的人才偏少,往往因设备、技术和资金等原因只停留在理论阶段,很难实现校企合作,时间长了,理论就会偏离实践。鉴于以上原因,我校化学学院在12版人才培养方案修订的同时,着重对应用化学实验教学内容进行了改革,强化高校与地方产业的联系,重点突出校企合作平台建设,丰富应用化学实验教学内容。
2应用化学实验课教学内容改革
实验教学课时的变动
按照化学学院12版人才培养方案的修订,对于应用化学实验教学内容修订正处于尝试与完善阶段,在人才培养方案修订的同时,兼顾多方面考虑,将原有应用化学实验90课时,缩减为35课时,并且由原来的两学期变成一学期。在应用化学实验教学内容完善并走向正常化运行时,进一步修订补充应用化学实验教学课时,真正实现应用化学实验教学对应用化学专业学生走向社会的需求。
实验教学内容的转换
对于应用化学实验教学内容的改革,我们在吸收原有实验教学内容的基础上,积极与周边化工企业、煤化工企业和环保局等多次接触,一方面了解这些企业岗位群体的实际需求以及对毕业生的要求,另一方面积极学习这些企业对化工原料、煤化工以及环境监测等方面的技术,组织相关专业任课教师依据应用化学实验课程改革要求,结合企业生产环节,充分调研,再通过相关文献检索与其他院校开设应用化学实验教学内容进行对比,初步对应用化学实验教学内容梳理为四个方面。就稀土元素分离与提取模块而言,学生在掌握基本无机化学实验的基础上,通过分层次教学手段,强化学生实验技能的培养,建立与地方稀土企业的密切联系,如与当地金蒙稀土集团有限公司和稀土研究院搭建校企合作平台,让学生形成实验—实践—再实验三者循环模式(见图1),杜绝因课堂实验教学的单一性和程序化给学生实验造成不良的惯性学习习惯。煤化工实验模块,也是应用化学实验尝试引入教学环节的新举措。最近几年来,随着包头新型煤化工企业相继入驻,对煤化工类的人才需求越来越多,学校也非常重视与这些企业的联系,每年利用化工专业见习和专业实习机会,加大拓展实习基地的建设,目前已经与内蒙古乌海化工、鄂尔多斯大陆新区的煤制天然气和煤制油等大型企业建立了良好的合作关系。有必要尽快将煤化工实验模块引入到课堂教学中,除建立以理论教学促进实验教学体系以外,还应建立以实践基地建设来完善实验教学的新模式。既丰富学生教学实验内容,又能为相关用人企业培养具有专业背景的人才,实现学校与企业,企业与学生,学生与学校互利双赢的金三角格局。环境检测与分析模块是结合当前国家重视环境保护,促进生态环境建设而提出的。包头具有丰富的煤炭资源,新型的能源化工企业规模正在逐步扩大,对节约资源、实现环境与效益双赢的意识也越来越高,环境治理与检测相关专业的人才也逐步受到重视。但从现实来看具有这方面的专业人才相对匮乏。为此我们在应用化学实验教学中加大环境监测与分析方面的教学内容,进一步拓宽学生视野,掌握一定的专业技能,为社会输送可用人才。
实验教学设备的完善
在完善应用化学实验教学内容改革的同时,继续加大了对实验教学设备的调研与采购。着重按照现行企业运行模式中的方式,采用一些先进的小型化设备与仪器,让学生在实验操作技能锻炼的同时,熟悉设备与仪器的使用,这为学生进入企业能尽快投入到工作中奠定一定的基础。对于一些大型的、一时无法满足教学实验的仪器,采取积极与临近科研院所沟通的形式,转移课堂教学,通过现场学习的方式进一步完善应用化学实验教学体系。目前,按照我校12版人才培养方案的修订,结合多方面的努力,应用化学实验教学内容已经修订完成。以11级的学生作为研究对象,正在实施运行当中,根据学生的反馈与实际教学效果,反响很理想。当然,在实际实验教学中也发现一些问题,正在积极总结经验,争取进一步完善应用化学实验教学改革。
参考文献
1、应用化学专业建设与实践研究张群正化工高等教育2004-09-30
2、走理工融合之路 培养应用化学专业高素质创新人才杨屹; 陈咏梅; 白守礼; 许家喜; 李蕾; 李保山中国大学教学2013-07-15
摘要:经过近几年的建设,我们制定了明确的课程建设目标和规划,建立了较为完善、科学的课程体系,做到了理论联系实际,课内课外结合,既传授知识和技能,又培养学生的应用能力和综合素质。
关键词:应用化学;仪器
1仪器分析实验课程设置
课程设计理念
“仪器分析实验”是应用化学专业必修的基础课程之一,它是分析化学不可分割的重要组成部分。通过本课程的学习,学生比较系统地掌握仪器分析的基本理论和操作,能根据不同仪器的性能、不同分析对象选择合适的分析方法。能够运用分析技术解决生产和科研的实际问题,并初步具备从事仪器分析方面研究工作的方法与能力。为此,我们的设计理念是“夯实基础,综合训练,创新提高,实践应用”。“夯实基础”要求所有学生都要完成基础性实验,加深理解仪器分析的基本原理,掌握大型仪器的使用方法;“综合训练”是指每个学生必须完成部分综合性实验,能够综合运用所学的知识和各种仪器分析测定实际样品,掌握常用的样品前处理方法;“创新提高”是指学生自主选择1-2个创新性实验,课下完成,针对生产生活实际中的某个问题,查阅文献,设计实验方案,优化实验条件,得到产品,进行表征或测定,并评价其使用效果,无论成功与否,都要给出合理的解释。通过这样的训练,可以培养学生的问题意识和创新能力,为下一步毕业论文和今后的研究生学习奠定基础。“实践应用”是指学生通过见习实习,加深理解课堂上所学的知识;更重要的是利用学到的基本理论和分析方法去解决生产生活中遇到的实际问题,增强综合应用能力。
课时安排
在2011版应用化学专业培养方案中,仪器分析实验在第5学期与仪器分析课同时开设,安排在无机化学及实验、有机化学及实验、分析化学及实验等基础课程之后,48学时,开设12个实验项目,教学大纲提供了26个项目,其他实验项目作为开放实验,供有兴趣的学生课下完成。
课程体系
近年来,我们紧紧围绕应用型人才和创新型人才培养目标,按照仪器分析实验的要求,课程组以教育部精品课程建设宗旨为指导,以学生实验能力和创新能力培养为切入点,对仪器分析实验课程目标和教学内容进行了一系列改革,形成了相对独立的由基础性、综合性与创新性实验以及实践实训构成的课程新体系,体现了从易到难、从简单到综合、从基本技能训练到创新能力养成的认知发展规律。
(1)基础性实验
共有8个基础性实验,其中6个为必做实验。该类实验针对基本的分析方法,选择常用的仪器,开设较为简单的实验,目的是让学生学习和掌握大型仪器的使用方法和基本操作,了解仪器的基本结构,学会记录和分析处理数据,为养成良好的科学素养打下基础。通过第一层次的实验,强化了学生的动手能力和操作技能,并为后续实验奠定了基础。
(2)综合性实验
2个综合性实验为学生必做实验,其余10个为选做实验。综合性实验包括样品前处理和分析测定两部分。目的是让学生进一步熟悉原有仪器的使用,学习新型仪器的操作,如气质联用仪、液质联用仪、X-射线衍射仪等,掌握常用的样品前处理方法,培养学生综合运用知识解决问题的能力。
(3)创新性实验
该类实验难度较大,教师精选生产生活实际中的问题,只给出实验要求。学生必须进行社会调查、查阅文献、设计方案、独立完成实验、分析数据、得出结论。这类实验以开放性实验开出,与大学生创新训练项目、教师科研课题相结合,培养学生的创新能力和科研意识。
(4)实践实训
为了实现应用型人才的培养目标,课程组非常重视学生的实践实训工作,积极开展第二课堂。结合环保主题开展临沂市水质调研、土壤中重金属污染情况的调查,对水质的各种指标和土壤中重金属离子的含量进行测定。学生查阅文献设计方案,不同小组可以选用不同的仪器进行测定,进一步熟悉气相色谱仪、液相色谱仪、ICP-OES光谱仪、原子吸收光度计和原子荧光光度计的使用,掌握样品的前处理方法。比较不同小组的测定结果,并与国家标准对照,确定水或土壤是否被污染。2011年,我们组织的临沂大学沂河水质调研团获山东省暑期“三下乡”社会实践优秀服务队。充分利用现有的实习基地组织学生进行参观学习或实习,在实践中开阔视野,学习了解先进的分析仪器。学生在学习仪器分析之前,接触到的分析仪器都是玻璃仪器,复杂一点的就是紫外-可见分光光度计,所以对于大型仪器非常陌生。开始新课前,我们组织学生分组到仪器分析实验室和分析测试中心,见识将要用到的大型仪器,对于学校没有的较先进的仪器,就带学生去实习单位参观,了解分析化学的应用领域,大型仪器在现代分析中的重要地位,明确仪器分析要解决的问题,让学生带着实际问题学习,增强学习的目的性和针对性,提高学习效果。教学结束时,部分有兴趣的学生,可以再去实习基地见习或实习1~2周,用学到的知识去解决问题,对实际样品进行处理和测定,深刻体会学有所用、学有所成的道理。大四下学期,所有的学生都要去基地实习2-3个月,实习期间,学生进行系统的训练,从设计方案,到优化条件,最终建立一种灵敏度较高、选择性较好的分析方法,或者对已有的方法进行改进,在校内教师和基地老师的指导下完成毕业论文。
2仪器分析实验课程内容
为了适应不断发展变化的社会需求和人才培养需要,我们积极吸收行业企业参与课程内容和课程体系改革,临沂市环境监测站、临沂市出入境检验检疫局、临沂市产品质量监督检验所、临沂市药品检验所等监测部门、山东金正大生态工程股份有限公司、鲁南制药集团股份有限公司、天津药明康德新药开发有限公司、山东潍坊润丰化工有限公司等企业对仪器分析实验项目的设置提出了修改建议。我们主要从以下几方面对实验内容进行了修订。
从生产生活实际出发选择实验内容
仪器分析实验教学的内容要贴近生活、生产实际,强调知识的应用和内容的开放性,这样才能激发学生的好奇心,从而引起对实验的兴趣。讨论问题不能一味地从理论知识开始,应注重从与知识相关的应用和技术以及社会的角度进行思考,从项目(主题)及应用性的问题出发,根据需要合理选择实验内容。例如:在原子吸收分光光度法中就可以选择头发中微量元素含量的测定,双波长紫外分光光度法测定复方磺胺甲恶唑片中磺胺甲恶唑含量,循环伏安法可以选择各种饮料中葡萄糖含量的测定,既保证了实用性,又增加了前处理的内容。对于社会上出现的一些热点问题将其有选择性地融入仪器分析实验教学中,如假药的检测、苏丹红及三聚氰胺的分析等此类探索研究性实验,作为开放性实验,对一些有浓厚兴趣且基础较好的学生单独开放。学生通过实验可以体会到仪器分析实验在社会生产和生活中的巨大作用,以及给社会生活带来的便利,并且认识到,如果不合理地利用科学技术,它会给人类带来危害,甚至是灾难,让学生关注与科学有关的社会问题,增强社会责任感。
删除陈旧的内容,增加新技术新方法
传统的仪器分析实验内容多是一些验证性和低层次的常规实验,与现代实验方法技术和现实应用等相差较远,无法调动学生学习实验课的兴趣和积极性。在实验课的教学过程中,必须结合科学发展前沿介绍本学科的新理论、新方法,以及本学科与其他相关学科的关系。以基础理论为主线,以典型的实验为重点,以实际操作为核心,在集中讲授研究成熟、应用性广泛的仪器方法的同时,要让学生通过查阅文献,掌握现代仪器理论的最新动态,了解本学科涌现的新知识、新技术、新方法,使学生受到现代科学技术的熏陶。基于这一想法,我们增加了有关新仪器、新方法、新技术的实验,如“吹扫捕集-气相色谱/质谱法测定水中苯系物的组成”、“松果菊中组分的LC/MS分析”、“流动注射化学发光法检测DNA”、“基于纳米金比色分析法测定中药材中的汞离子”等。
提高综合性实验和创新性实验的比例
不少学生希望老师把更多的思维空间留给他们,让他们有独立思考的机会。为此我们尝试把学生的一些基础实验设计成研究型实验,把科学前沿领域的知识引入学生实验中来,增加创新性实验,旨在调动学生的积极性,培养学生的综合能力。例如“HPLC法测定中药材提取物和克林霉素磷酸酯注射液中抑菌剂含量”、“叶绿素的提取分离及叶绿素金属络合物的合成与鉴定”、“固相萃取-HPLC检测土壤中的三嗪类除草剂”等。通过实验,学生很好的掌握了样本的提取与预处理,以及气相色谱、液相色谱、紫外-可见分光光度计、原子吸收分光光度计等仪器的使用和注意事项,初步具备了实验方案制定的能力,并对现代仪器的原理、结构和操作有了更深一步的了解。
及时将教师的科研成果转化为实验内容
课程组教师坚持以教学为中心,教学与科研相互促进,积极开展科研工作,形成了几个较为稳定的研究方向:生命化学分析、纳米改性与传感、环境分析、天然产物分离与分析。课程组充分利用科研优势推动教学改革和实验内容的更新,部分教师的研究成果已经成为仪器分析实验的重要组成部分。例如,“流动注射化学发光法检测DNA”来源于生命化学分析研究方向,“毛细管电泳法测定阿司匹林中水杨酸的含量”、“松果菊中组分的LC/MS分析”等实验项目来源于天然产物分离与分析方向,“基于纳米金比色分析法测定水中的汞离子”、“稀土掺杂TiO2光催化剂制备及光催化活性的研究”来源于纳米改性与传感方向,“土壤中砷的形态分析”,“金属离子印迹聚合物的制备及水中镉离子的测定”等实验项目来源于环境分析化学方向。这些实验项目的实施,既完善了实验教学体系,又充实了实验内容,有助于学生了解科学研究的过程,激发参与教师科研课题的热情。
3结语
经过近几年的建设,我们制定了明确的课程建设目标和规划,建立了较为完善、科学的课程体系,做到了理论联系实际,课内课外结合,既传授知识和技能,又培养学生的应用能力和综合素质。紧跟学科发展前沿,力求教学内容科学先进,及时把新型的仪器手段、分析方法和教师的教学科研成果引入教学。教学过程中灵活运用多种教学方法,调动学生学习的积极性和主动性,学生的学习兴趣明显增强,动手能力和解决问题的综合能力显著提高,在各种大赛和科技活动中取得了优异的成绩。在山东省大学生化学实验技能大赛中获一等奖4人、二等奖7人、三等奖1人;在“挑战杯”山东省大学生课外学术科技作品竞赛中获二等奖5人、三等奖6人;6名学生获山东省优秀学士学位论文;27人在省级以上期刊发表学术论文;2012年,14人获国家级大学生创新训练计划项目,16人获校级大学生创新训练计划项目。
参考文献
1、浅谈应用化学专业实验教学改革与实践李凡修; 孙首臣; 邓仕英; 李克华实验室研究与探索2014-04-15
1.分子催化内容侧重于配位催化、酶催化、光肋催化、催化过程中的立体化学问题、催化反应机理与动力学、催化剂表面态的研究及量子化学在催化学科中的应用等。《分子催化》工业催化过程中均相催化剂、固载化的均相催化剂、固...主管主办:中国科学院 中国化学会;中国科学院兰州化学物理研究所快捷分类:科技化学 工程科技i出版发行:甘肃 双月刊 a4期刊刊号:1001-3555,62-1039/o6创刊时间:1987年 影响因子审稿时间:1-3个月期刊级别: cscd核心期刊 北大核心期刊 统计源期刊2.催化学报《催化学报》(月刊)创刊于1980年,由中国化学会和中国科学院大连化学物理研究所主办。《催化学报》主要报道能源、环境、有机化工、新材料、多相催化、均相催化、生物催化、光催化、电催化、表面化学、催化动力...主管主办:中国科学院 中国化学会;中国科学院大连化学物理研究所快捷分类:工业化学 工程科技i出版发行:辽宁 月刊 a4期刊刊号:0253-9837,21-1195/o6创刊时间:1980 影响因子审稿时间:1-3个月期刊级别: cscd核心期刊 北大核心期刊 统计源期刊3.工业催化《工业催化》主要报道我国化工、石化、炼油、生物工程、医药、环保、新能源等方面催化新技术、新工艺,催化剂和工业助剂的研制,催化剂性能的测试与表征,催化反应器的开发,催化剂新成果、新产品的应用技术等。...主管主办:陕西延长石油(集团)有限责任公司 西北化工研究院快捷分类:化工有机化工 工程科技i出版发行:陕西 月刊 a4期刊刊号:1008-1143,61-1233/tq创刊时间:1992 影响因子审稿时间:3-6个月期刊级别: 统计源期刊4.化学反应工程与工艺化学反应动力学、催化剂及催化反应工程、反应工程技术及其分析、反应装置中的传递过程、流态化及多相流反应工程、聚合反应工程、生化反应工程、反应过程和反应器的数学模型及仿真、工业反应装置结构特性的研究、反...主管主办:中石化集团公司 联合化学反应工程研究所;中石化上海石油化工研究院快捷分类:化工有机化工 工程科技i出版发行:浙江 双月刊 a4期刊刊号:1001-7631,33-1087/tq创刊时间:1985 影响因子审稿时间:1-3个月期刊级别: cscd核心期刊 北大核心期刊 统计源期刊
不是。1、am期刊涉猎面积广杂志从材料的角度关注能源的研究,涉及广泛的研究范围,涵盖与能源相关的研究,热电,光催化,太阳能技术,磁致冷和压电材料等领域。子刊涉猎内容少只有光催化,太阳能技术。所以子刊没有am期刊好。2、am期刊更具有认可性,子刊发布时间较短。
近日,三峡大学材料与化工学院叶立群教授团队,在共价有机框架材料(COFs材料)用于光催化合成过氧化氢(H2O2)领域取得突破。成果“分子水平工程助力COF光催化合成H2O2”(Molecularly Engineered Covalent Organic Frameworks for Hydrogen Peroxide Photosynthesis)在线发表于《德国应用化学》(Angew. Chem. Int. Ed)。该期刊是目前国际化学领域颇具影响力的期刊。 H2O2是一种绿色的氧化剂,在环境保护、化工生产、日常消毒等领域应用广泛。传统的蒽醌法合成H2O2存在高能耗和易产生有毒副产物等缺点,光催化技术虽然具备零能耗合成H2O2的优点,但是其低的2电子水氧化能力严重的抑制了由水和空气直接全合成H2O2的效率。基于此,叶立群教授发展了一种基于联吡啶构建的COF光催化剂,用于由水和空气作为原料直接光催化合成H2O2。在25度和60度下的太阳能-化学能转换效率分别达到和,8小时(1天平均日照时间)光照后的H2O2浓度超过5mM,能够直接应用于有机污染物的分解和致病性微生物的灭活。 成果得到国家自然科学基金、“111”创新引智基地基金的支持及黄应平教授的指导。 叶立群,博士,中国感光学会青年理事会理事,《先进粉末材料》(Adv. Powder Mater)杂志编委。研究方向为环境光催化,主持国家自然科学基金3项,以第一/通讯作者在《德国应用化学》(Angew. Chem. Int. Ed)、《环境科学与技术》(Environ. Sci. Technol)、《先进功能材料》(Adv. Funct. Mater)、《先进能源材料》(Adv. Energy. Mater)、《ACS催化》(ACS Catal)等国际学术期刊上发表SCI论文90余篇,h因子52,共被引10000余次。(通讯员:三峡大学易娜 雷勇)
1.分子催化内容侧重于配位催化、酶催化、光肋催化、催化过程中的立体化学问题、催化反应机理与动力学、催化剂表面态的研究及量子化学在催化学科中的应用等。《分子催化》工业催化过程中均相催化剂、固载化的均相催化剂、固...主管主办:中国科学院 中国化学会;中国科学院兰州化学物理研究所快捷分类:科技化学 工程科技i出版发行:甘肃 双月刊 a4期刊刊号:1001-3555,62-1039/o6创刊时间:1987年 影响因子审稿时间:1-3个月期刊级别: cscd核心期刊 北大核心期刊 统计源期刊2.催化学报《催化学报》(月刊)创刊于1980年,由中国化学会和中国科学院大连化学物理研究所主办。《催化学报》主要报道能源、环境、有机化工、新材料、多相催化、均相催化、生物催化、光催化、电催化、表面化学、催化动力...主管主办:中国科学院 中国化学会;中国科学院大连化学物理研究所快捷分类:工业化学 工程科技i出版发行:辽宁 月刊 a4期刊刊号:0253-9837,21-1195/o6创刊时间:1980 影响因子审稿时间:1-3个月期刊级别: cscd核心期刊 北大核心期刊 统计源期刊3.工业催化《工业催化》主要报道我国化工、石化、炼油、生物工程、医药、环保、新能源等方面催化新技术、新工艺,催化剂和工业助剂的研制,催化剂性能的测试与表征,催化反应器的开发,催化剂新成果、新产品的应用技术等。...主管主办:陕西延长石油(集团)有限责任公司 西北化工研究院快捷分类:化工有机化工 工程科技i出版发行:陕西 月刊 a4期刊刊号:1008-1143,61-1233/tq创刊时间:1992 影响因子审稿时间:3-6个月期刊级别: 统计源期刊4.化学反应工程与工艺化学反应动力学、催化剂及催化反应工程、反应工程技术及其分析、反应装置中的传递过程、流态化及多相流反应工程、聚合反应工程、生化反应工程、反应过程和反应器的数学模型及仿真、工业反应装置结构特性的研究、反...主管主办:中石化集团公司 联合化学反应工程研究所;中石化上海石油化工研究院快捷分类:化工有机化工 工程科技i出版发行:浙江 双月刊 a4期刊刊号:1001-7631,33-1087/tq创刊时间:1985 影响因子审稿时间:1-3个月期刊级别: cscd核心期刊 北大核心期刊 统计源期刊
喜欢就 关注我们吧,订阅更多最新消息
第一作者:钮峰
通讯作者:涂文广教授,周勇教授,邹志刚教授
通讯单位:香港中文大学(深圳)理工学院
论文DOI:
全文速览
通过醇和胺的C-N偶联是工业中合成不同有机胺的重要反应路径,而这一过程往往需要在高温高压等较苛刻的条件下进行。因此,本工作中,我们设计了一种基于CdS-Pd单原子体系催化剂用于实现高效可光催化苯甲醇和苯胺的C-N偶联反应获得二级胺。通过实验研究发现,Pd与CdS表面的悬挂S原子原位配位形成单一Pd-Sx物种。该催化剂的可见光催化C-N偶联的二级胺产率接近100%,同时释放出可观的绿色能源氢气( mmol gcat-1h-1)。机理研究与分析表明,苯甲醇上脱去的H+较容易吸附到长寿命的•Pd-Sx中间态物种而形成H-Pd-Sx中间体。最后,吸附的H又容易脱附,加成到苄烯苯胺的N上,实现氢转移,完成亚胺的加氢过程,得到最后所需要的二级胺产物苄基苯胺。整个过程中,H的吸脱附可以循环进行,因此Pd-Sx配位物种可以作为有效的氢转移的桥梁实现加氢过程。此外,该光催化剂体系具有较好的底物适应性和循环能力。这一工作将为温和条件下实现高效C-N偶联反应提供一种新的思路。
背景介绍
随着工业的发展与进步,有机胺广泛应用于农业、医药、家居、军工等领域,其合成在工业生产中有着越来越明显的重要性。基于“借氢机制(氢转移)”,通过胺与醇的C-N偶联被认为是一种较为绿色的合成有机胺的理想路径。这一过程主要包含醇的脱氢、亚胺的生成以及亚胺的加氢这三个主要步骤。其中醇的脱氢是整个反应的决速步骤。然而,基于这一机制,在热催化合成有机胺的过程中存在一些缺点:(1)醇的脱氢决速步骤需要较苛刻的条件(高温高压);(2)易发生过度偶联,使得产物分布广,不利于分离;(3)反应中使用的催化剂多为高负载量的负载型贵金属催化剂(如Ru/Al2O3、Pd/Al2O3、Rh/Al2O3等),成本较高。因此,开发出高效低成本的催化剂具有一定的挑战性。近年来,利用光氧化还原技术实现常温常压条件下有机胺的合成引起了广泛的关注。研究者们通常采用一些贵金属有机配合物分子进行均相催化反应,但反应后催化剂难以进行分离,在实际工业生产中难以大规模应用。而采用传统的半导体光催化剂进行多相催化反应,则可以有效解决这一难题。然而仅仅依靠半导体本身的催化能力,很难达到较高的催化活性,实际应用过程中往往需要通过负载一些助催化剂或表面修饰来提高催化性能。近些年,单原子催化被认为是较有前景的领域。单原子催化剂由于其独特的电子结构和较高的原子利用效率而表现出优异的催化活性,被广泛应用于光催化水分解制氢、二氧化碳还原、固氮和有机物降解等领域。因此,我们课题组设计开发了一种单原子光催化剂CdS-Pd,该催化剂可以有效地用于可光催化苯甲醇和苯胺的C-N偶联反应,获得具有工业应用价值的二级胺。同时反应过程中释放出清洁能源氢气。这一工作将为温和条件下实现C-N偶联反应提供一种新的途径。
本文亮点
1. 本工作通过Pd原子与CdS表面的悬挂S原子原位配位制备了一种CdS-Pd的单原子光催化剂,该催化剂可以实现高效可光催化苯甲醇和苯胺的C-N偶联反应获得近100%产率的二级胺N-苄基苯胺以及较高的产氢活性。
2. 实验和理论计算结果证实了,相比于Pd纳米颗粒助催化剂负载的CdS,单一Pd-Sx物种能够有效捕获光生电子,使其具有较长的寿命,而且氢在Pd-Sx物种上的吸脱附能力较强,从而可以作为有效的氢转移载体实现亚胺的加氢,得到目标产物二级胺。
3. 此外,在优化的反应条件下,该催化剂具有较好的稳定性,以及对不同醇类和取代胺的C-N偶联反应具有良好的底物适应性。
图文解析
本工作中,首先我们采用水热法制备了六方晶系结构,颗粒尺寸约为50 nm的纳米球形CdS,其带宽约为( 图1 a )。随后,在可见光催化C-N偶联反应过程中加入PdCl2溶液原位合成单原子催化剂CdS-Pd SAs。作为对比,我们采用浸渍法制备了Pd纳米颗粒负载的CdS催化剂CdS-Pd NPs。从图1b的XPS图谱可以看出,光催化反应后的CdS中事实上存在Pd元素。结合能 eV和342 eV分别对应Pd 3d5/2和Pd 3d3/2,表明Pd以2+价态形式存在,而非单质态。因此,我们可以初步推测反应后,Pd与CdS进行了一定的配位。
图1 CdS和CdS-Pd SAs单原子催化剂的结构表征
为了进一步确定反应后Pd的状态以及与CdS的配位环境,我们对样品分别进行了X射线精细结构谱(XAFS)和球差电镜的表征。从图3d可以明显看出反应后的CdS表面上的Pd物种既不是二价态也不是单质态,而是以一定配位的形式存在。通过对样品CdS-Pd SAs中Pd的K-edge EXAFS图谱进行拟合,可以得出Pd-S的配位数约为3( 表1 )。通过进一步的HAADF-STEM和 EDS mapping图可以清晰地看到Pd以单原子形式均匀地分散在CdS上( 图1 e-j )。因此,综合上述表征方法,我们可以初步证实在光催化反应过程中,PdCl2以Pd-S配位键的形式将Pd原子锚定在了CdS载体上,为光催化反应过程提供一定的反应活性中心。
表1 样品CdS-PdSAs中Pd的EXAFS拟合数据
CN , coordination number; R , bonding distance; σ 2, Debye-Waller factor; Δ E0 , inner potential shift.
为了进一步研究CdS表面的S对催化反应的影响,我们首先对CdS进行了不同程度的表面修饰(400 oC高温煅烧:CdS-400;双氧水表面腐蚀:CdS-H2O2)。从图2 a可以看出,采用不同的手段修饰后,CdS的结构并未发生明显变化,仍然是结晶度较好的六方晶系结构。CdS、CdS-400和CdS-H2O2的能带分别为、和 eV,即能带结构也未发生明显变化( 图2 b )。从图2 c和d可以明显看出, CdS通过表面修饰之后,Cd 3d和S 2p均向高结合能偏移,而且偏移程度随着修饰强度增强而增大。这主要是由于CdS修饰后产生了一定的S空位,使得表面部分Cd暴露,从而改变了Cd和S的周边电子云密度分布。
图2 修饰前后的CdS结构表征
在常温常压氮气气氛下,我们采用苯甲醇和苯胺的C-N偶联作为模型反应对所制备的催化剂进行可见光催化活性评价( 图3 )。首先我们确定了暗反应、无光催化剂以及只有PdCl2的情况下该模型反应没有任何催化活性。在添加PdCl2的条件下,我们对不同的半导体光催化剂进行了活性筛选,发现只有CdS能有效地进行光催化C-N偶联生成二级胺(N-苄基苯胺),产率高达 mmolgcat-1h-1。而其他半导体催化剂在反应过程中只能催化生成亚胺(N-苄烯苯胺),且普遍产率较低(< mmolgcat-1h-1)。
图3 可见光催化C-N偶联反应的催化剂活性筛选
基于CdS对该反应的催化特异性,我们测试了其苯胺的转化率及产物的选择性随时间的变化曲线。从图4b可以看出,随着反应的进行,苯胺的转化率不断提高,当反应达到16 h后,底物苯胺几乎完全转化。随着反应的进行,亚胺(N-苄烯苯胺)的选择性不断降低,而二级胺(N-苄基苯胺)的选择性不断提高,表明反应过程中逐步完成了亚胺的加氢过程。
为了进行对比,我们采用浸渍法提前将Pd纳米颗粒沉积到CdS表面上并进行光催化活性评价。从图4c我们发现,沉积Pd纳米颗粒的CdS催化活性是单一CdS活性的4倍。这主要是由于Pd纳米颗粒作为助催化剂可以有效地提高光生载流子的分离效率。而当我们将Pd以PdCl2的形式加入到反应体系中时,催化活性是单一CdS活性的约倍。而且产物中出现了二级胺(N-苄基苯胺)。也就是说反应体系中原位加入PdCl2能够促使该反应完成加氢过程,有效实现氢转移。因此,我们可以初步推断,光催化反应过程中Pd和CdS表面悬挂的S作用产生的Pd-S物种对实现C-N偶联起到至关重要的作用。此外,在反应过程中我们可以检测到氢气的生成。从图4d可以看出,单一的CdS在反应过程中几乎不产生氢气。而CdS-Pd SAs产氢速率达到 mmolgcat-1h-1,是CdS-Pd NPs的约倍,CdS的近10倍。这一结果也与苯胺转化率的差异相吻合。
为了验证CdS表面的S与Pd作用形成了Pd-S物种,从而提高了C-N偶联反应性能,我们对CdS进行了不同程度的表面修饰。从图4e可以明显看出,随着表面修饰的增强,反应的活性逐渐下降,而且产物苄基苯胺的选择性也随之下降。这也就意味着,当我们遮盖或者去除部分S位点,反应底物在催化剂表面的吸附性能下降,从而导致反应活性降低。另一方面,由于S空位的增多,使得Pd原子很难与S进行配位产生Pd-S物种,从而无法完成C-N偶联反应过程中的氢转移,也就不能得到饱和的目标产物二级胺N-苄基苯胺。
图4 可见光催化活性评价
为了研究在光催化反应过程中不同自由基的作用,我们进行了捕获实验。从图5a可以看出,当体系中加入叔丁醇和苯醌来分别捕获•OH和•O2-,反应的活性基本没有发生变化,说明体系中的这两种自由基对反应基本没有贡献。而当体系中加入草酸铵捕获光生空穴后,产率降为原来的1/3,加入过硫酸钾捕获光生电子后,产率降为0。这一结果表明,光生电子和空穴在光催化C-N偶联反应中有着重要作用。
接着,我们采用超快光谱(TAS)来揭示光照下不同催化剂的载流子衰减动力学。图5b为不同催化剂的瞬态吸收图谱以及拟合曲线。采用双指数模型拟合可获得两个弛豫时间τ1和τ2。Τ1代表导带电子到过渡态的捕获时间,τ2代表电子与过渡态或者价带空穴复合的时间。通过对比,CdS-Pd Sas的弛豫时间明显要长,也就是说,在反应过程中CdS表面单原子态的Pd配位物种Pd-Sx可以作为电子陷阱来捕获光生电子,提高载流子的分离效率,从而加速光催化C-N偶联。另外,从CdS导带转移到过渡态Pd-Sx中间体的弛豫时间更长,更利于氢原子的吸附。
为了研究不同催化剂对于H的吸附以及转移能力,我们做了一个N-苄烯苯胺加氢的模型反应。从图5c可以明显看出,对于单原子态的CdS-Pd SAs催化剂,N-苄烯苯胺较容易实现光催化加氢到苄基苯胺产物,而单质态的Pd(CdS-Pd NPs)催化剂无法实现加氢过程。这也证明了单原子态的CdS-Pd SAs可以很好地吸附H并完成氢转移,从而实现加氢过程得到二级胺N-苄基苯胺。
基于以上的机理表征分析,我们可以给出一个可能的反应机理和路径( 图5d )。光催化反应前,当体系中同时加入CdS催化剂和PdCl2时,PdCl2很快吸附到CdS表面上与表面悬挂的S原子形成Pd-Sx的配位物种。当CdS被光激发后,表面的Pd-Sx配位物种可以有效捕获光生电子,形成•Pd-Sx中间态物种,同时光生空穴能够脱去苯甲醇上的质子,将其氧化成苯甲醛。然后生成的苯甲醛与苯胺进行亲核加成反应,产生醇胺中间体。由于醇胺非常不稳定,很快脱水生成亚胺。苯甲醇上脱去的H+较容易吸附到长寿命的•Pd-Sx中间态物种形成H-Pd-Sx。最后,吸附的H又容易脱附,加成到N-苄烯苯胺的N上,实现氢转移,完成亚胺的加氢过程,得到最后的目标产物N-苄基苯胺。整个过程中,H的吸脱附可以循环进行,因此Pd-Sx物种可以作为有效的氢转移的桥梁实现加氢过程。此外,过多的吸附H可以从H-Pd-Sx上脱附产生H2。
图5 反应机理表征及推测
我们通过DFT模拟计算进一步验证了为什么单原子态的CdS催化剂CdS-Pd SAs可以很好地实现光催化C-N偶联生成N-苄基苯胺( 图6 )。结合EXAFS拟合结果,我们以Pd-S三配位的形式作为计算模型来研究H吸附和反应过程。对于催化剂CdS-Pd NPs来说,在位点1和2的H吸附能分别为 eV和,而催化剂CdS-Pd SAs的H吸附能为 eV。通过过渡态能量搜索,可以得出,Pd纳米颗粒负载的CdS-Pd NPs的加氢能垒为 eV,而对于单原子态的CdS-Pd SAs来说,由于形成的Pd-Sx配位物种能够有效地吸附和脱附H,因此脱附的H直接加成到亚胺的不饱和C上,完成加氢过程。
图6 DFT模拟计算
总结与展望
总的来说,我们设计开发了一种CdS-Pd单原子光催化剂,该催化剂可以有效地用于可光催化苯甲醇和苯胺的C-N偶联反应,获得具有工业应用价值的二级胺。同时反应过程中释放出清洁能源氢气。结合实验以及模拟计算,我们推测Pd在光催化反应过程中与CdS表面的S原位配位形成Pd-Sx中间物种,而这一中间体可以提高载流子分离效率以及有效地进行H的吸脱附,构成Pd-Sx •Pd-Sx H-Pd-Sx Pd-Sx的循环过程,实现氢转移,完成亚胺的加氢过程,得到目标产物N-苄基苯胺。整个过程中,Pd-Sx中间体可以作为有效氢转移的桥梁实现加氢过程。此外,该催化剂体系具有较好循环能力和底物适应性。这一工作将为温和条件下实现C-N偶联反应提供一种新的思路。
作者介绍
钮峰 ,博士毕业于法国里尔大学(法国国家科学研究中心)(导师Andrei Khodakov教授和Vitaly Ordomsky研究员)。2020年8月加入香港中文大学(深圳)邹志刚院士团队从事博士后研究。以第一作者在ACS Catalysis,Green Chemistry,Solar Energy Materials & Solar Cells等期刊上发表SCI论文12篇。目前主要研究方向为多相热催化、光催化能源转化。
涂文广 ,2015年获南京大学物理学院博士学位。2015至2020年在新加坡南洋理工大学从事研究博士后研究工作。2020年6月起任职于香港中文大学(深圳)理工学院。主要从事于低维光电材料表界面结构的精准设计与构建,实现太阳能驱动下的小分子转换,取得了一系列重要成果,迄今为止已在Nature Communications, Advanced Material, Advanced functional Material, ACS Catalysis, ACS Energy Letters等期刊上发表论文70余篇, SCI被引超过8000次,H指数为44。
周勇 ,香港中文大学(深圳)兼职教授。2009 年9月被南京大学物理学院按海外人才引进回国工作,加入南京大学环境材料与再生能源研究中心,聘为教授。主要从事:1、人工光合成二氧化碳转化为可再生碳氢燃料;2、光电材料的设计和构建;3、高效、低成本钙钛矿太阳能电池产业化应用研究。近五年来,以第一作者或通讯作者在 国际重要期刊上发表论文超过 60 篇,其中包括 J. Am. Chem. Soc. (1 篇)、Adv. Mater. (2 篇)、Adv. Funct. Mater. (1 篇)和 Nano Lett. (1 篇),受邀以第一作者或通讯作者撰写 2 篇综述论文。近五年论文他引超过 1600 次,5 篇论文入选 Web of Science 统计的“过去十年高被引论文”, H 指数 46。光催化还原 CO2 研究成果作为主要研究内容,荣获 2014 年国家自然科学二等奖(排名第四)。主编三本英文专著(Springer 等出版社出版)。多次受邀在国内外相关学术会议上做邀请报告或主持会议。担任 Current Nanoscience 中国地区编辑和 Mater. Res. Bull.编委。主持承担国家基金委、 科技 部 973 项目等项目。入选教育部新世纪人才(2010 年)、江苏省首届杰出青年基金(2012年)。
邹志刚 ,2003年凭为教育部“长江学者奖励计划”特聘教授,国家重点基础研究发展计划“973”项目首席科学家,教育部创新团队带头人,2015 年当选中国科学院院士,2018 年当选发展中国家科学院院士。主要从事新型可再生能源与环境材料方面的研究,邹院士在光催化领域做出了卓越的贡献,被媒体称为“光催化领域的前行者”。邹志刚院士已在 Nature等国际一流期刊上发表论文 602 多篇,H指数 74,连续 5年入选爱思唯尔材料科学高被引学者,是材料领域有国际影响力的学术带头人。申请中国发明专利 200 多项,其中 83 项已获授权;承担两届国家重大基础研究计划 973 项目、国家自然科学基金中日合作项目、 科技 部国际合作重大项目等多项科研项目;获国家自然科学二等奖 1 项、江苏省科学技术一等奖 2 项,作为第一完成人获第 46 届日内瓦国际发明展金奖及阿卜杜拉国王大学特别奖各 1项。