首页

> 期刊论文知识库

首页 期刊论文知识库 问题

细胞遗传学的研究技术论文

发布时间:

细胞遗传学的研究技术论文

遗传携带者的检出 遗传携带者(genetic carrier)是指表型正常,但带有致病遗传物质的个体。一般包括: ①隐生遗传杂合子;②显性遗传病的未显者;③表型尚正常的迟发外显者;④染色体平衡易位的个体。 遗传携带者的检出对遗传病的预防具有积极的意义。因为人群中,虽然许多隐性遗传病的发病率不高,但杂合子的比例却相当高。例如苯酮尿症的纯合子在人群中如为1:1000,携带者(杂合子)的频率为2:50,为纯合子频率的200倍。对发病率很低的遗传病,一般不做杂合子的群体筛查,仅对患者亲属及其对象进行筛查,也可以收到良好效果。对发病率高的遗传病,普查携带者效果显著。例如我国南方各省的α及β地中海贫血的发病率特别高(共占人群8%-12%,有的省或地区更高),因此检出双方同为α或同为β地贫杂合子的机会很多,这时,进行婚姻及生育指导,配合产前诊断,就可以从第一胎起防止重型患儿出生,从而收到巨大的社会效益和经济效益,不仅降低了本病的发病率,而且防止了不良基因在群体中播散。 染色体平衡易位携带者生育死胎及染色体病患儿的机会很大(参阅第二章),因此,对染色体平衡易位的亲属进行检查十分重要。 隐性致病基因杂合子检出方法的理论根据是基因的剂量效应,即基因产物的剂量,杂合子介于纯合子与正常个体之间,约为正常个体的半量,但因机体内外环境各种因素对基因表达的影响,以及检测方法的不同(直接测定基因产物或测定基因间接产物),使测定值在正常与杂合子之间,杂合子与纯合子之间发生重叠,造成判断的困难。 杂合子携带者的检测方法大致可分为:临床水平、细胞水平、酶和蛋白质水平及分子水平。从临床水平,一般只能提供线索,不能准确检出,故已基本弃用。细胞水平主要是染色体检查,多用于平衡易位携带者的检出。酶和蛋白质水平的测定(包括代谢中间产物的测定),目前对于一些分子代谢病杂合子检测尚有一定的意义,但正逐渐被基因水平的方法所取代。即随着分子遗传学的发展,可以从分子水平即利用DNA或RNA分析技术直接检出杂合子,而且准确,特别是对一些致病基因的性质和异常基因产物还不清楚的遗传病,或用一般生化方法不能准确检测的遗传病,例如慢性进行舞蹈病、甲型和乙型血友病、DMD、苯酮尿症等;最后,对一些迟发外显携带者还可作症状前诊断,因而有可能采取早期预防性措施,如成人多囊肾病等(参阅第十三章)。目前,用基因分析检测杂合子的方法日益增多,并逐步向简化、快速、准确的方向发展,以求扩大到高危人群的筛查。

遗传与变异 ---新形式下的基因突变 ( 2005动物科学院 X X X ) 摘要:染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 关键词:遗传;变异;基因突变 遗传从现象来看是亲子代之间的相似的现象,即俗语所说的“种瓜得瓜,种豆得豆”。它的实质是生物按照亲代的发育途径和方式,从环境中获取物质,产生和亲代相似的复本。 遗传是相对稳定的,生物不轻易改变从亲代继承的发育途径和方式。因此,亲代的外貌、行为习性,以及优良性状可以在子代重现,甚至酷似亲代。而亲代的缺陷和遗传病,同样可以传递给子代。 遗传是一切生物的基本属性,它使生物界保持相对稳定,使人类可以识别包括自己在内的生物界。 变异是指亲子代之间,同胞兄弟姊妹之间,以及同种个体之间的差异现象。俗语说“一母生九子,九子各异”。世界上没有两个绝对相同的个体,包括挛生同胞在内,这充分说明了遗传的稳定性是相对的,而变异是绝对的。 生物的遗传与变异是同一事物的两个方面,遗传可以发生变异,发生的变异可以遗传,正常健康的父亲,可以生育出智力与体质方面有遗传缺陷的子女,并把遗传缺陷(变异)传递给下一代。 遗传和变异的物质基础 生物的遗传和变异是否有物质基础的问题,在遗传学领域内争论了数十年之久。 在现代生物学领域中,一致公认生物的遗传物质在细胞水平上是染色体,在分子水平上是基因,它们的化学构成是脱氧核糖核酸(DNA),在极少数没有DNA的原核生物中,如烟草花叶病毒等,核糖核酸(RNA)是遗传物质。 真核生物的细胞具有结构完整的细胞核,在细胞质中还有多种细胞器,真核生物的遗传物质就是细胞核内的染色体。但是, 细胞质在某些方面也表现有一定的遗传功能。人类亲子代之间的物质联系是精子与卵子,而精子与卵子中具有遗传功能的物质是染色体,受精卵根据染色体中DNA蕴藏的遗传信息,发育成和亲代相似的子代。 一、遗传与变异的奥秘 俗话说“种瓜得瓜,种豆得豆”,这是生物遗传的根本特征。人类与其他生物一样,在世代的交替中,子女(子代)总是保持着父母(亲代)的某些基本特征,这种现象就是遗传。但子代又会与亲代有所差异,有的差异还很明显。子代与亲代的这植钜炀褪潜湟臁R糯�捅湟焓巧��淖罨�咎卣髦�唬�ü��镆淮��姆敝程逑殖隼础?遗传和可以遗传的变异都是由遗传物质决定的。这种遗传物质就是细胞染色体中的基因。人类染色体与绝大多数生物一样,是由DNA(脱氧核糖核酸)链构成的,基因就是在DNA链上的特定的一个片段。由于亲代染色体通过生殖过程传递到子代,这就产生了遗传。染色体在生物的生活或繁殖过程中也可能发生畸变,基因内部也可能发生突变,这都会导致变异。 如遗传学指出:患色盲的父亲,他的女儿一般不表现出色盲,但她已获得了其亲代的色盲基因,她的下一代中,儿子将因获得色盲基因而患色盲。 我们观察我们身边很多有生命的物种:动物、植物、微生物以及我们人类,虽然种类繁多,但在经历了很多年后,人还是人,鸡还是鸡,狗还是狗,蚂蚁、大象、桃树、柳树以及各种花草等等,千千万万种生物仍能保持各自的特征,这些特征包括形态结构的特征以及生理功能的特征。正因为生物界有这种遗传特性,自然界各种生物才能各自有序地生存、生活,并繁衍子孙后代。 大家可能会问,生物是一代一代遗传下来,每种生物的形态结构以及生理功能应该是一模一样的,但为什么父母所生子女,一人一个样,一人一种性格,各有各自的特征。又如把不同人的皮肤或肾脏等器官互相移植,还会发生排斥现象,彼此不能接受,这又如何解释呢?科学家研究的结果告诉我们,生物界除了遗传现象以外还有变异现象,也就是说个体间有差异。例如,一对夫妇所生的子女,各有各的模样,丑陋的父母生出漂亮的孩子,平庸的父母生出聪明的孩子,这类情况也并不罕见。全世界恐怕很难找出两个一模一样的人,既使是单卵双生子,外人看起来好像一模一样,但是与他们朝夕相处的父母却能分辨出他们之间的微细差异,这种现象就是变异。人类中多数变异现象是由于父母亲遗传基因的不同组合。每个孩子都从父亲那里得到遗传基因的一半,从母亲那里得到另一半,每个孩子所得到的遗传基因虽然数量相同,但内容有所不同,因此每个孩子都是一个新的组合体,与父母不一样,兄弟姐妹之间也不一样,而形成彼此间的差异。正因为有变异现象,人类才有众多的民族。人们可以很容易地从人群中认出张三、李四,如果没有变异,大家全都是一个样子,社会上的麻烦事就多了。除了外形有不同,变异还包括构成身体的基本物质--蛋白质也存在着变异,每个人都有他自己特异的蛋白质。所以,如果皮肤或器官从一个人移植到另一个人身上便会发生排斥现象,这就是因为他们之间的蛋白质不一样的缘故。 还有一类变异是遗传基因的突变,这类突变往往是由环境中的条件所诱发的,这种突变的基因还可以遗传给下一代。许多基因突变的结果会造成遗传病。 变异也可以完全由环境因素所造成,例如患小儿麻痹症后遗的跛足,感染大脑炎后形成的痴呆等这些性状都是由环境因素所造成的,是因为病毒感染使某些组织受损害,造成生理功能的异常,不是遗传物质的改变,所以不是遗传的问题,因此也不会遗传给下一代。 总之,遗传与变异是遗传现象中不可分离的两个方面,我们有从父母获得的遗传物质,保证我们人类的基本特征经久不变。在遗传过程中还不断地发生变异,每个人又在一定的环境下发育成长,才有了人类的多种多样。 二、遗传变异的科学理论 遗传的分子基础 (一)遗传物质的存在形式 (1)染色体是遗传物质的载体,遗传信息以基因的形式蕴藏于DNA分子中; (2)每个人体体细胞含两个染色体组,每个染色体组的DNA构成一个基因组; (3)广义的基因组包括细胞核染色体基因组和线粒体基因组; (4)人类细胞核染色体基因组中90%左右为DNA重复序列,10%为单一序列; (5)多基因家族是真核基因组中重要的结构之一。 (二)基因的结构及其功能 、真核生物基因的分子结构 (1)、基因的DNA序列由编码序列和非编码序列两部分构成,编码序列是不连续的,被非编码序列分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因;编码序列称为外显子,非编码序列称为内含子; (2)、在每个外显子和内含子的接头区存在高度保守的一致序列,称为外显子-内含子接头,即在每个内含子的5’端开始的两个核苷核为GT,3’端末尾是AG,特称之为GT-AG法则; (3)、真核生物基因的大小相关悬殊,外显子和内含子的关系也不是固定不变的; (4)、DNA分子两条链中,5’→3’链称为编码链,其碱基排列序列中储存着遗传信息;3’→5’链称为反编码链,是RNA合成的模板; (5)、每个断裂基因中第一个外显子和最后一个外显子的外侧都有一段不被转录的非编码区,称为侧翼序列,其上有一系列调控序列,对基因的表达起调控作用。这些结构包括: ①启动子:位于基因转录起始处,是RNA聚合酶的结合部位,能启动基因转录。 ②增强子:位于基因转录起始点的上游或下游,能增强启动子转录,提高转录效率; ③终止子:位于3’端非编码区下游的一段序列,在转录中提供转录终止信号。 、基因的复制 (1)、基因的复制是以DNA复制为基础的,每个DNA分子上有多个复制单位(复制子); (2)、每个复制子有一个复制起点,从起点开始双向复制,在起点两侧各形成一复制叉; (3)、DNA聚合酶只能使DNA链的3’端加脱氧核苷核,故复制只能沿5’→3’方向进行; (4)、与复制叉同向的新链复制是连续的,速度也较快,称为前导链;与复制叉反向的新链复制是不连续的(先要在RNA引物存在下合成一个个冈崎片段,然后在DNA连接酶作用下补上一段DNA),速度也较慢,称为后随链;故DNA的复制是半不连续复制; (5)、复制后的DNA分子都含有一条旧链和一条新链,故DNA的复制又是半保留复制。 、基因的表达 基因表达是DNA分子中所蕴藏的遗传信息通过转录和翻译形成具有生物活性的蛋白质或通过转录形成RNA发挥功能作用的过程。 (1)、转录:是在RNA聚合酶催化下,以DNA为模板合成RNA的过程。 ①新合成好的RNA称为不均一核RNA(也叫核内异质RNA,hnRNA); ②hnRNA要经过“戴帽”和“加尾”以及剪接等加工过程才能形成成熟的mRNA。 (2)、翻译:是以mRNA为模板指导蛋白质合成的过程。 ①mRNA分子中每3个相邻的碱基为三联体,能决定一种氨基酸,称为密码子; ②翻译后的初始产物大多无功能,需经进一步加工才可成为有一定活性的蛋白质。 、基因表达的调控(了解操纵子学说) 、基因的突变 (1)、基因突变的概念:基因突变是DNA分子中的核苷核序列发生改变,导致遗传密码编码信息改变,造成基因表达产物蛋白质的氨基酸变化,从而引起表型的改变。 (2)、基因突变的方式 ①碱基替换 也叫点突变,包括转换和颠换两种方式。其后果可以造成同义突变、错义突变、无义突变或终止密码突变(延长突变)等生物学效应。 ②移码突变 是DNA分子中某一位点增加或减少一个或几个碱基对,造成该位点以后的遗传编码信息全部发生改变。 ③动态突变 微卫星DNA或短串联重复序列,尤其是三核苷酸的重复,在靠近基因或位于基因序列中时,其重复次数在一代一代的传递中会出现明显增加的现象,导致某些遗传病的发生。 (3)、基因突变的修复 ①切除修复 是一种多步骤的酶反应过程,首先将受损的DNA部位切除,然后再合成一个片段连接到切除的部位以修补损伤。 ②重组修复 又称复制后修复,是在DNA受损产生胸腺嘧啶二聚体(T-T)以后,当DNA复制到损伤部位时,再与T-T相对应的部位出现切口,完整的DNA链上产生一个断裂点。此时,在重组蛋白作用下,完整的亲链与有重组的子链发生重组,亲链的核苷酸片段补充了子链上的缺失。重组后亲链的切口在DNA聚合酶作用下,以对侧子链为模板,合成单链DNA片段来填补,随后在DNA连接酶作用下,以磷酸二酯键使新片段与旧链相连接,而完成修复过程。 2、遗传的细胞基础 染色质:在间期细胞核,染色质的功能状态不同,折叠程度也不同,分为常染色质和异染色质两种。1、常染色质 在细胞间期处于解螺旋状态,具有转录活性,呈松散状,染色较浅;2、异染色质 在细胞间期处于凝缩状态,很少进行转录或无转录活性,染色较深;3、性染色质 在间期细胞核中染色体的异染色质部分显示出来的一种特殊结构,有两种:(1)、X染色质 正常女性间期细胞核中有一个染色较深,大小约为10nm的椭圆形小体(了解Lyon假说)。(2)、Y染色质 正常男性间期细胞核用荧光染料染色后,核内可见一个圆形或椭圆形的强荧光小体,直径为3nm左右。 染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 (三)人类的正常核型:色体数目、形态结构特征的分析叫核型分析。1、非显带核型 根据丹佛体制,将正常人类体细胞的46条染色体分为23对7个组(A、B、C、D、E、F和G组)。在描述一个核型时,首先写出染色体总数(包括性染色体),然后是一个“,”号,最后是性染色体。正常男性核型描述为46,XY;女性为46,XX。2、显带核型 用各种特殊的染色方法使染色体沿长轴显现出一条条明暗交替或深浅相间的带,故又叫带型。根据ISCN规定,描述一特定带时,需要写明4项内容:①染色体号;②臂号;③区号;④带号。 遗传的基本规律:孟德尔提出的分离定律和自由组合定律以及摩尔根提出的连锁与交换定律构成了遗传的基本规律,通称为遗传学三大定律。分离律说的是遗传性状有显隐性之分,这样具有明显显隐性差异的一对性状称为相对性状。相对性状中的显性性状受显性基因控制,隐性性状由一对纯合隐性基因决定。杂合体往往表现显性基因的性状。基因在体细胞中成对存在,在形成配子时,彼此分离,进入不同的子细胞。减数分裂时同源染色体彼此分离,分别进入不同的生殖细胞是分离律的细胞学基础。自由组合律是说生物在形成配子时,不同对基因独立行动,可分可合,以均等的机会组合到同一个配子中去。减数分裂过程中非同源染色体随机组合于生殖细胞是自由组合律的细胞学基础。连锁与交换律是说位于同一条染色体上的基因是互相连锁的,它们常一起传递(连锁律),但有时也会发生分离和重组,是因为同源染色体上的各对等位基因进行了交换。减数分裂中,同源染色体联会和交换是交换律的细胞学基础。 单基因性状的遗传:遗传性状受一对基因控制的,称单基因性状的遗传。单基因性状又叫质量性状。1、决定某种遗传性状的等位基因,在传递时服从分离律;2、当决定两种遗传性状的基因位于不同对染色体上时,这两种单基因性状的传递符合自由组合律。3、如果决定两种遗传性状的基因位于同一对染色体上时,它们的传递将从属于连锁与交换律。 多基因性状的遗传:由多基因控制的性状往往与单基因性状不同,其变异往往是连续的量的变异,称为数量性状。每对基因对多基因性状形成的效应是微小的,称为微效基因。微效基因的效应往往是累加的。多基因遗传性状除受多基因遗传基础影响外,也受环境因素影响。(熟悉多基因遗传假说,了解多基因遗传的特点) 遗传的变异:(一)染色体异常与疾病;染色体异常类;形成机; 数目畸变 整倍性改变 单倍体 多倍体 双雄受精,双雄受精,核内复制 非整倍性改变 亚二倍体 染色体不分离,染色体丢失 超二倍体 结构畸变 缺失(del) 受多种因素影响,如物理因素、化学因素和生物因素等 重复(dup) 倒位(inv) 易位(t) 环状染色体 双着丝粒染色体 等臂染色体 1、一个个体内同时存在两种或两种以上核型的细胞系,这种个体称嵌合体。 2、染色体结构畸变的描述方式有简式和详式两种。 (二)人类的单基因遗传病1、常染色体显性遗传(AD)病 (1)、AD系谱特点:①致病基因位于常染色体上,遗传与性别无关;②患者双亲中至少有一方是患者,但多为杂合体;③患者与正常个体结婚,后代有1/2的发病风险;④系谱中可看到连续传递现象。 (2)、其它AD类型:①不完全显性或半显性,是指杂合体的表现型介于显性纯合体与隐性纯合体的表现型之间;②不规则显性,是指杂合体由于某种原因不一定表现出相应的症状,即使发病,但病情程度也有差异;③共显性,是指一对等位基因无显隐性之分,杂合状态下,两种基因的作用都能表现出来;④延迟显性,有显性致病基因的杂合体在生命早期不表现出相应症状,当到一定年龄后,其作用才表达出来。 2、常染色体隐性遗传(AR)病 (1)、AR系谱特点:①致病基因的遗传与性别无关,男女发病机会均等;②患者双亲往往表型正常,但都是致病基因的携带者,患者的同胞中约有1/4的可能将会患病,3/4表型正常,但表型正常者中2/3是可能携带者;③系谱中看不到连续传递现象,常为散发;④近亲婚配后代发病率比非近亲婚配后代发病率高。 (2)、常见AR病:苯丙酮尿症、白化病、先天性聋哑、高度近视和镰状细胞贫血等。 3、X连锁显性遗传(XD)病 (1)、XD系谱特点:①系谱中女性患者多于男性患者,且女患者病情较轻;②患者双亲中至少有一方是患者;③男性患者后代中,女儿都为患者,儿子都正常;女性患者后代中,子女各有1/2的患病风险;④系谱中可看到连续传递现象。 (2)、常见XD病:抗维生素D性佝偻病。 4、X连锁隐性遗传(XR)病 (1)、XR系谱特点:①人群中男性患者远多于女性患者;②双亲无病时,儿子可能发病,女儿则不会发病;③由于交叉遗传,患者的兄弟、舅父、姨表兄弟和外甥各有1/2的发病风险;④如果女性是患者,父亲一定是患者,母亲一定是携带者或患者。 (2)、常见XR病:甲型血友病、红绿色盲。 5、Y连锁遗传(YL)病 全男性遗传 (三)多基因遗传病 1、有关多基因遗传病的几个重要概念 (1)、易感性 在多基因遗传病中,由多基因遗传基础决定某种多基因病发病风险高低。 (2)、易患性 由遗传基础和环境因素共同作用,决定了一个个体是否易于患病。 (3)、发病阈值 当一个个体的易患性高达一定水平即达到一个限度时,这个个体就将患病,这个易患性的限度称为阈值。 (4)、遗传度 在多基因遗传病中,易患性受遗传基础和环境因素的双重影响,其中遗传基础所起作用大小的程度称为遗传度或遗传率。一般用百分率(%)来表示。 2、多基因遗传病的特点 (1)、有家族聚集倾向,患者亲属的发病率高于群体发病; (2)、随着亲属级别的降低,患者亲属的发病风险迅速降低; (3)、近亲婚配时,子女患病风险增高; (4)、发病率有种族(或民族)差异。 三、遗传与变异在当代 人类基因组计划的工作草图已于今年的6月26日绘制完成,但要将全部30多亿个碱基完全装配完成还需要一段时间,预计要到明年的6月份。即使完成了人类基因组计划的“精图”,也只是我们认识人类基因功能的开始,完全弄清基因的功能及其相互间的作用,至少还要40年的时间。毋庸赘言,这是一项浩繁巨大的工程。 迄今为止,人们对整个人类基因组中所含有的基因数目尚存争议,有人说是3万,有人说是14万,相差非常大。在整个人类基因组序列中,只存在1%的差异,就是这1%的差异导致了人种、肤色、身高、眼睛、胖瘦以及疾病的易感性等方面的不同。科学家除继续研究基因的数量和功能外,基因在多大程度上受外界环境和体内因素的影响以及这种改变是否可以一代代地延续下去,也是需要解决的问题。 上述问题涉及到后成说(epigenetics)这一范畴。后成说是研究通过其他的化学途径,而不是通常所说的碱基突变,使基因活性发生半永久性改变的一门科学。后成说的重要性一直存有很大争议。如果后成说真有科学依据的话,那么它将是解释不同个体之间,甚至不同物种之间存在差异的关键所在,同时还将是疾病发生的一个重要机制。 不同基因的表达:基因含有合成蛋白质的指令,蛋白质合成的过程称为基因表达。但是遗传学家们很早以前就知道通过对DNA链碱基上的化学基团进行修饰来调控基因表达、影响蛋白质的合成。最常见的修饰方式是基因的甲基化(甲基是由一个碳原子和三个氢原子组成的基团),即在基因上添加甲基基团,结果常常会终止基因表达。 科研人员通过对某些哺乳动物的研究发现,此类修饰只存在于个体中,而不遗传给后代,因为这种修饰在精子和卵子细胞中常常被清除。最近有人发现,后成特征在小鼠中可以遗传。在悉尼大学生化学家怀特劳博士所做的实验中,遗传学相同的小鼠,同其父母相比,更像它们的母亲。因为它们继承了其母亲的卵子DNA的甲基化类型。该型甲基化在决定小鼠毛色中起着非常重要的作用。 怀特劳博士小组的大量的研究数据表明,要探明动物是如何把物理特征或疾病易感性传给后代的,有必要先搞清可遗传的后成特征。如果后成特征可遗传,那么这些特征所引起的疾病应能够像普通的基因突变一样在家系之间传递。该研究小组对小鼠的后成标记在传代过程中如何关闭和表达进行了深入地研究。研究人员将一个可以产生特异类型红细胞的基因(称为转基因)导入具有相同遗传学特征小鼠的基因组中(接受该基因的小鼠称之为转基因鼠)。研究发现这些转基因小鼠体内的转基因正以不同的方式表达。有些转基因小鼠体内40%的红细胞表达该基因,而另一些则根本就不表达。同时该小组还对小鼠毛色进行了研究,发现与毛色有关的DNA甲基化增高与转基因的不表达(或称为“沉默”表达)有关。但是在这种情况下,后成性改变可来自父方,也可以来自母方。 令人费解的是,虽然这种基因表达的沉默现象至少可以维持三代,但不是不可逆转的。在该型的后代小鼠与非同类小鼠交配时,发现在后代小鼠中不存在甲基化和表达沉默现象,转基因又可在小鼠的幼崽中获得表达。如果这种基因沉默和再活化现象是自然发生的话,那么就可以解释个体之间和代与代之间差异的原因。 后成说还可以解释物种之间的差异。最近普林斯顿大学的迪尔格曼通过两种相近小鼠的交配,将多个小鼠基因上的后成特征破坏。这些小鼠相互之间不能进行正常的交配,并且它们杂交的后代表现为生长异常。研究人员认为这种生长异常与杂交后代基因上的甲基化模式破坏有关。他们推测后成性效应非常显著,仅靠改变这些特征就可以造就新物种。 大家都知道,物种的产生是遗传变异逐渐积累的结果。但是,迪尔格曼认为有些物种出现之快不是该假说所能解释的。所以物种后成说的假设有一定优势。例如,甲基化可以迅速地关闭整条基因的表达,并引起根本的改变。这种改变足以阻止新的品种与旧品种之间的杂交,尤其是阻止新物种的产生。 四、结论 变异基因的表达:许多生物学家对此种假说表示不屑。基因序列虽不能完全解释动物的特征,但是至少可以解释一些由基因突变所引起的疾病。 疾病基因突变假说的倡导者把癌症作为经典的实例,来说明在个体DNA水平上,到底有多少碱基差错才能导致肿瘤。但加州大学伯克利分校的杜斯博格博士不同意这一观点,认为癌症并不是由基因异常引起的,而是由另一形式的后成现象 染色体异常引起的。 根据癌症基因突变假说,指导细胞分裂和死亡的基因突变使正常的细胞分裂和死亡过程遭到破坏,导致细胞不受控制地生长。但是,最近杜斯博格博士领导的研究小组报道,至今还没有人证实突变的基因会使正常的细胞变为癌细胞。他还指出,如果突变基因对细胞分裂具有显著影响的话,为什么有些情况下,突变发生的数月甚至数年后才发展为癌症,这是非常奇怪的现象。他认为可以用后成性非整倍现象对上述问题加以解释,非整倍性是指细胞具有错误的染色体个数。 在细胞分裂时,染色体排列整齐,通过纺锤体(一种蛋白质的支架)分配到子代细胞中。杜斯博格推测,致癌的化学物质可以影响纺锤体,因此,造成子代细胞具有或多或少的染色体。由于这种错误分配的染色体不稳定,细胞分裂时染色体之间相互混合并发生非自然的重组。 大多数重组对细胞而言是至关重要的,但最终会产生一个分裂异常的细胞。产生这种异常细胞的概率非常小,这种低概率事件可以解释为什么从接触致癌物质到细胞发生癌变,要经过这么长时间。细胞的非整倍性是5000多种肿瘤的一种显著特征。 与个体碱基突变相比,染色体数的增加或减少使细胞表征发生显著改变。因为染色体数目的改变(即非整倍性),可以导致成千上万种蛋白质活性发生改变,而不仅仅是一种或两种蛋白质,导致细胞分裂的失控。假如这种假说成立的话,那么现在试图通过定点修复癌基因来治疗癌症的策略将毫无效果。 杜斯博格博士10年前曾因自己的假说而声名狼藉,他认为人类免疫缺陷病毒(HIV)并不能引起艾滋病。一系列的HIV和艾滋病的研究表明,杜斯博格的理论是极其荒谬的。这严重地损害了他的声誉,因此,他的其他理论也很容易被人忽视。但是,他的非整倍性假说似乎非常有价值。癌症中非整倍体的普遍性尚需进一步阐明。

疾病简介 遗传病是指由遗传物质发生改变而引起的或者是由致病基因所控制的疾病。[编辑本段]疾病类型 由于遗传物质的改变,包括染色体畸变以及在染色体水平上看不见的基因突变而导致的疾病,统称为遗传病。根据所涉及遗传物质的改变程序,可将遗传病分为三大类: 其一是染色体病或染色体综合征,遗传物质的改变在染色体水平上可见,表现为数目或结构上的改变。由于染色体病累及的基因数目较多,故症状通常很严重,累及多器官、多系统的畸变和功能改变。 其二是单基因病,目前已经发现 5余种单基因病,主要是由单个基因的突变导致的疾病,分别由显性基因和隐性基因突变所致。所谓显性基因是指等位基因中(一对染色体上相同座位上的基因)只要其中之一发生了突变即可导致疾病的基因。隐性基因是指只有当一对等位基因同时发生了突变才能致病的基因。 第三是多基因病,顾名思义,这类疾病涉及多个基因起作用,与单基因病不同的是这些基因没有显性和隐性的关系,每个基因只有微效累加的作用,因此同样的病不同的人由于可能涉及的致病基因数目上的不同,其病情严重程度、复发风险均可有明显的不同,如唇裂就有轻有重,有些人同时还伴有腭裂。值得注意的是多基因病除与遗传有关外,环境因素影响也相当大,故又称多因子病。很多常见病如哮喘、唇裂、精神分裂症、高血压、先心病、癫痫等均为多基因病。 遗传病是指完全或部分由遗传因素决定的疾病,常为先天性的,也可后天发病。如先天愚型、多指(趾)、先天性聋哑、血友病等,这些遗传病完全由遗传因素决定发病,并且出生一定时间后才发病,有时要经过几年、十几年甚至几十年后才能出现明显症状。如假肥大型肌营养不良要到儿童期才发病;慢性进行性舞蹈病一般要在中年时期才出现疾病的表现。有些遗传病需要遗传因素与环境因素共同作用才能发病,如孝喘病,遗传因素占80%,环境因素占20%;胃及十二指肠溃疡,遗传因素占30%~40%,环境因素占60%~70%。遗传病常在一个家族中有多人发病,为家族性的,但也有可能一个家系中仅有一个病人,为散发性的,如苯丙酮尿症,因其致病基因频率低,又是常染色体隐性遗传病,只有夫妇双方均带有一个导致该疾病的基因时,子女才会成为这种隐性致病基因的纯合子(同一基因座位上的两个基因都不正常)而得病,因此多为散发,特别在只有一个子女的家庭,偶有散发出现的遗传病患者,就不足为奇了。 那么,遗传病能够治疗吗? 以前,人们认为遗传病是不治之症。近年来,随着现代医学的发展,医学遗传学工作者在对遗传病的研究中,弄清了一些遗传病的发病过程,从而为遗传病的治疗和预防提供了一定的基础,并不断提出了新的治疗措施。家族遗传病 遗传性疾病是由于遗传物质改变而造成的疾病。 遗传病具有先天性、家族性、终身性、遗传性的特点。 遗传病的种类大致可分为三类: 一、单基因病。 单基因常常表现出功能性的改变,不能造出某种蛋白质,代谢功能紊乱,形成代谢性遗传病。单基因病又分为三种: 1.显性遗传:父母一方有显性基因,一经传给下代就能发病,即有发病的代代,必然有发病的子代,而且世代相传,如多指,并指,原发性青光眼等。 2.隐生遗传:如先天性聋哑,高度近视,白化病等,之所以称隐性遗传病,是因为患儿的双亲外表往往正常,但都是致病基因的携带者。 3.性链锁遗传又称伴性遗传发病与性别有关,如血友病,其母亲是致病基因携带者。又如红绿色盲是一种交叉遗传儿子发病是来自母亲,是致病基因携带者,而女儿发病是由父亲而来,但男性的发病率要比女性高得多。 二、多基因遗传:是由多种基因变化影响引起,是基因与性状的关系,人的性状如身长、体型、智力、肤色和血压等均为多基因遗传,还有唇裂、腭裂也是多基因遗传。此外多基因遗传受环境因素的影响较大,如哮喘病、精神分裂症等。 三、染色体异常:由于染色体数目异常或排列位置异常等产生;最常见的如先天愚型,这种孩子面部愚钝,智力低下,两眼距离宽、斜视、伸舌样痴呆、通贯手、并常合并先天性心脏病。 上述遗传病并非携带致病基因就肯定会发病。 其实几乎所有的疾病都与基因有关系,也和环境有密切联系!遗传按生物体的照性状分,还可以分为质量性状和数量性状!所谓质量性状就是白种人和黄种人的差别,这主要是遗传决定的,受环境因数影响小。也就是男女的差别!数量性状即稻谷的重量,人的身高,颜色深浅等等,这些都叫数量性状。数量性状是多基因决定的,基因数一般不易测算,因为误差可以相差一个数量级。所以主要讲基因的总效应!数量性状受环境的影响非常大。可以说超过遗传因子! 总之,绝大部分疾病是环境因子和遗传因子共同作用的结果由于受精卵形成前或形成过程中遗传物质的改变造成的疾病。有人认为只有受父母遗传因素决定的疾病才是遗传病,这一认识不够全面。例如有一些染色体畸变并非由父母遗传因素决定,而是在受精卵形成过程中产生,习惯上染色体畸变都包括在遗传病的范畴内。还有人认为凡是受遗传因素影响的疾病都是遗传病,这一概念也不确切,因为在人类所有疾病中,除了少数几种(如外伤造成骨折)完全由环境因素所致,不受遗传因素影响外,几乎绝大多数疾病都是环境和遗传两方面因素互相作用的结果,只是两者影响疾病发生的程度可不相同。即使细菌感染、外伤后癫痫等环境因素十分明显的疾病,不同个体之间也存在着易感性的差异,而这种差异也是受遗传因素影响的,不可能把这些病都包括在遗传病的范畴之中。完全由遗传因素决定的疾病(A类,如21三体综合征)和完全由环境因素决定的疾病(D类, 如外伤性骨折)都是少数,而大多数人类疾病都居于B类和C类。B类指基本上由遗传因素决定,但需要环境中一定的诱因才发病,如苯丙酮酸尿症患儿在出生后摄入苯丙氨酸就会发病。 C类指遗传因素和环境因素都对发病起作用的疾病,如高血压病、感染等;但不同疾病的遗传度不同,即遗传因素影响越大,则遗传度就越高。所以从理论上来说, A、B、C等三类均属遗传病,但C类如感染、外伤后癫痫等在习惯上不包括在遗传病的范畴中。遗传病不同于先天性疾病,后者是指出生时就已表现出来的疾病。虽然不少遗传病在出生时就已表现出来,但也有些遗传病在出生时表现正常,而是在出生数日、数月,甚至数年、数十年后才开始逐渐表现出来,这显然不属于先天性疾病。另一方面,先天性疾病也并不都是遗传因素造成的,例如孕期母亲受放射线照射时所致的先天畸形,就不属于遗传病。遗传病也不同于家族性疾病。虽然有些由于同一个家族成员具有相同的遗传基础可表现遗传病的家族发病,但是不同的遗传病在亲代、子代之间的传递规律是复杂多样的,有些遗传病(如白化病等隐性遗传病)就可能没有家族史,另一方面,家族性疾病也可能由非遗传因素(如相同的生活条件)造成,如饮食中缺乏维生素 A使多个家族成员出现夜盲。 过去认为遗传病是一个较罕见的疾病,但随着医学的发展和人民生活水平的提高,一些过去严重威胁人类健康的传染病、营养性疾病得以控制,而遗传病成为比较突出的问题。如英国1914年的一项儿童死因调查表明,非遗传性疾病(如感染、肿瘤等)占%,而遗传性疾病只占%,但到20世纪70年代后期,两类疾病各占50%。国内的情况也同样,1951年北京市儿童的死亡原因中,感染性疾病占重要地位,但在1974~1976年儿童死因分析中,先天畸形占全部死因的%,居首位,而在这些畸形中,属遗传病的达3~10名。另一方面,遗传病的病种非常多,随着生物学和医学的发展,近年发现新的遗传病更是层出不穷。表1 表明1958~1982年人类认识的单基因病的病种,至今已有4000种左右的遗传病被人们所认识。 简史 18 世纪法国人莫佩尔蒂第一个对遗传病作了家系调查,他分析了白化病的遗传方式。1814年亚当斯发表有关临床疾病遗传性质的论文,这被认为是近代最早的一篇系统论述遗传病的文章。1908年.加罗德首次提出“先天代谢异常”的概念,将遗传与代谢联系起来,并认为尿酸尿症等先天代谢异常的遗传规律可以用孟德尔定律来解释,为医学遗传学作出了划时代的贡献。1949年L.波林提出了“分子病”的概念。1944年比克尔首先提出控制新生儿营养,可有效防止苯丙酮酸尿症的发展,为遗传病的有效治疗开创了新的一章。1958年J.勒热纳发现先天愚型患儿为三条21号染色体,这是第一次报道了遗传病的染色体异常。 1969年拉布斯发现了 X染色体的脆性部位,为染色体的畸变的研究开辟了一个新的领域。从60年代起,遗传病的产前诊断开始应用于临床。1978年卡恩和多齐首次将 DNA重组技术应用于遗传病的诊断,他们诊断了一例镰刀状细胞性贫血,此后这一诊断技术发展极为迅速。 分类 按照目前对遗传物质的认识水平,可将遗传病分为单基因遗传病、多基因遗传病和染色体病三大类。 单基因遗传病 同源染色体中来自父亲或母亲的一对染色体上基因的异常所引起的遗传病。这类疾病虽然种类很多,3000种以上(见表[1958~1982年全世界报告的单基因遗传病的病种数]1958~1982年全世界报告的单基因遗传病的病种数),但是每一种病的患病率较低,多属罕见病。欧美国家统计,约1%的新生儿患有较严重的基因病。按照遗传方式又可将单基因病分为四类:①常染色体显性遗传病。人类的23对染色体中,一对与性别有关,称为性染色体,其余22对均称常染色体。同源常染色体上某一对等位基因彼此相同的,称为纯合子,一对基因彼此不同的称杂合子。如果在杂合状态下,异常基因也能完全表现出遗传病的,称为常染色体显性遗传病,如多指并指、先天性肌强直,这类遗传病的发生与性别无关,男女患病率相同。父母中有一位患此疾病,其子女中就可能出现患者。据估计,约7‰新生儿患有常显体显性遗传病。②常染色体隐性遗传病。常染色体上一对等位基因必须均是异常基因纯合子才能表现出来的遗传病。大多数先天代谢异常均属此类。父母双方虽然外表正常,但如果均为某一常显体隐性遗传基因的携带者,其子女仍有可能患该种遗传病。近亲婚配时容易产生纯合状态,所以其子女隐性遗传病的发病率也高。③常染色体不完全显性遗传病。这是当异常基因处于杂合状态时,能且仅能在一定程度上表现出症状的遗传病。如地中海贫血,引起该病的异常基因为,纯合子 表现为重症贫血,杂合子则表现为中等程度的贫血④ 伴性遗传病。分为X连锁遗传病和Y连锁遗传病两种。有些遗传病的基因位于X染色体上,Y染色体过于短小,无相应的等位基因,因此,这些异常基因将随X染色体传递,所以称为X连锁遗传病。也分为显性和隐性两种,前者是指有一个X染色体的异常基因就可表现出来的遗传病,由于女性拥有两条X染色体而男性只有一条,所以女性获得该显性基因的机会较多,发病率高于男性,但这类遗传病为数很少,至今仅知10余种。如Xg血型,又如抗维生素D佝偻病是 X连锁不完全显性遗传病。X连锁隐性遗传病是指X染色体上等位基因在纯合状态下才发病者,在女性,只有当两条X染色体上的一对等位基因都属异常时才患病,如果其中有一条 X染色体的等位基因正常就不会患有此病。但是男性只有一条X染色体,只要X染色体上的基因异常,就会表现出遗传病,所以男性发病率高于女性发病率。这种伴性隐性遗传病占伴性遗传病的绝大部分,例如红绿色盲、血友病等都比较常见。据估计约1‰新生儿患有X连锁遗传病。 Y连锁遗传病的致病基因位于Y染色体上,X染色体上则无相应的等位基因,因此这些基因随着Y染色体在上下代间传递,也叫全男性遗传。在人类中属于 Y连锁遗传病的有外耳道多毛症等。 多基因遗传病 与两对以上基因有关的遗传病。每对基因之间没有显性或隐性的关系,每对基因单独的作用微小,但各对基因的作用有积累效应。一般说来,多基因遗传病远比单基因遗传病多见。受环境因素的影响,不同的多基因遗传病,受遗传因素和环境因素影响的程度也不同。遗传因素对疾病发生的影响程度,可用遗传度来说明,一般用百分数来表示,遗传度越高,说明这种多基因遗传病受遗传因素的影响越大。例如唇裂、腭裂是多基因遗传病,其遗传度达76%,而溃疡病仅37%。多基因遗传病还包括一些糖尿病、高血压病、高脂血症、神经管缺陷、先天性心脏病、精神分裂症等。在人群中,多基因遗传病的患病率在2~3%以上。 染色体病 指由于染色体的数目或形态、结构异常引起的疾病。新生儿中染色体异常的发病率为 %。染色体异常称为染色体畸变,包括常染色体的异常和性染色体的异常。但是染色体病在全部遗传病中所占的比例不大,仅约1/10。 遗传病的研究和诊断 要研究判断某一疾病是否为遗传病可通过以下几个途径:家系调查及分析、挛生子分析、种族比较,伴随性状研究、动物模型和 DNA分析。通过家系调查、分析并与人群发病情况比较,不仅可以判断某病是否为遗传病,如果是遗传病的话,还可进一步确定其遗传方式。通过单卵孪生和双卵孪生同胞发病的一致率分析,可能判断某种病受遗传因素及环境因素影响的程度。不同种族和民族发病情况的比较,尤其是对同样生活环境不同种族的发病率的研究可能为遗传病的判断提供重要线索。在伴随症状分析中,目前应用最多的是同种白细胞抗原(HLA)系统,应用这一系统作为遗传病标志。研究作为某一遗传的伴随性状,进行连锁分析,则也能为遗传病的判断提供依据。目前已建立了数十种染色体畸变和单基因遗传病的动物模型,为遗传病的研究提供了有力手段。 DNA分析是近年来发展的重要手段,其中以限制片断长度多态性(RFLP)分析在遗传病判断中应用最多。 遗传病的临床诊断比其他疾病更困难。一方面遗传病的种类极多,另一方面每一种遗传病的单独发病率很低,所以临床医师在遗传病的诊断上不容易取得经验。除了一般疾病的诊断方法(如病史、体格检查、实验室和仪器检查)外,遗传病的诊断还可能需要依靠一些特殊的诊断手段,如染色体检查,特殊的生化学测定及系谱分析。遗传病的临床表现是最重要的诊断线索,每一种遗传病都有一些症状、体征同时存在,被称为“综合征”,这是提示诊断的最初线索,也是选择实验室检查和其他遗传学检查的依据。对遗传病患者必须要详细询问家族史并绘制准确可靠的家系谱,对家系谱的分析不仅是遗传病诊断的一项依据,而且对遗传方式的判明及进行遗传咨询也是极为重要的。皮纹分析是遗传病诊断的另一种特殊手段,主要对染色体病最有价值,对其他个别单基因遗传病也可能有一定意义,常用于临床检查的是指纹、掌纹、掌褶纹、指褶纹和脚掌纹。许多遗传病的最后诊断,还有赖于染色体检查和特殊的生化测定或DNA分析。 产前诊断是遗传病诊断的一个重要方面,在婴儿出生以前通过穿刺取得羊水或绒毛组织。进行染色体检查、特异的酶活性或代谢产物测定,或进行DNA分析对胎儿的发病情况作出判断,决定是否需要进行人工流产以终止妊娠,这在减少遗传病患儿的出生,提高人口素质方面具有重要意义,尤其在目前人类对大多数遗传病还不能进行有效治疗的条件下,用终止妊娠来防止遗传病患儿的出生更具有突出的意义。近年来由于 B型超声扫描仪的广泛应用和技术的提高,在产前诊断,尤其是发育畸形的诊断上有很大的价值。胎儿镜也开始应用于产前诊断。 基因诊断是新发展起来的一项重要技术,也能对近百种遗传病作出准确的诊断,但是由于这些遗传病大多数还不能作有效治疗,所以从医学伦理学的观点来看,除应用于产前诊断外,基因诊断的推广仍存在很大问题。 治疗和预防,要根治遗传病,应该从基因水平或染色体水平来纠正已发生的缺陷,这种方法称为基因治疗,属于基因工程的范畴。但是基因治疗在理论上、技术上还存在着极大的困难,目前谈不上临床应用。目前对遗传病所能进行的治疗只是在早期诊断的前提下,通过控制环境条件(如饮食成分等),调节代谢过程,防止症状的出现,称为“环境工程”。目前能应用于环境工程的治疗包括饮食控制疗法(如苯丙酮尿症用低或无苯丙酮酸奶粉喂养)、药物疗法(如用维生素B6治疗B6 依赖症,用别嘌呤醇治疗痛风等)、手术治疗(如脾切除术治疗遗传性球形红细胞增多症)、酶的补充(如异体骨髓移植治疗戈谢氏病)和对症疗法(如用抗癫痫药物控制苯丙酮酸尿症的惊厥)等。环境工程虽然可以减轻或消除一些遗传病的症状,对个体来说是有利的,但是治疗结果却使带有致病基因的患者不仅存活下来,甚至还能继续繁殖后代,而这些患者如果不经治疗本来可以自然淘汰,至少不会繁衍后代。所以环境工程对整个人类的影响可能是有害的,它将使致病基因的频率在人群中逐代提高,从而导致遗传病发病率的增高。 正因为目前对大多数遗传病尚无有效治疗方法,所以遗传病的预防就有特别重要的意义。预防措施包括新生儿筛查、环境保护、携带者的检出和遗传咨询等方面。新生儿筛查是指对所有出生的婴儿进行某项遗传病的简单检查,以便在症状出现以前就开始治疗,防止症状发生。只有那些在症状出现以前就可以通过检查发现生化异常,而且已有治疗措施,而不给予治疗日后又会造成严重残疾的遗传病才进行新生儿筛查。苯丙酮酸尿症和先天性甲状腺功能低下在许多国家已列为法定新生儿筛查项目。中国自1982年以来在北京、上海、天津、武汉等地也进行了一些筛查。其中1985年发表的全国12省市的苯丙酮酸尿症筛查是中国第一次报告的较大规模的新生儿筛查。生物素基酶缺陷的新生儿筛查在国际上也还是一个新课题,中国从1987年开始已在北京开始了这项筛查工作。环境保护是指减少或消除环境中的致畸剂、致癌剂、致染色体畸变剂和致基因突变剂,主要是工农业生产中产生的污染。携带者检出是指将那些外表正常,但带有致病基因或异常染色体的个体从人群中检出,对其婚姻和生育进行指导,防止其后代发生这种遗传病,检出的方法主要是染色体检查、特异的酶活性测定或代谢产物测定以及DNA分析,目前已能对染色体平衡易位及百余种单基因病作携带者的检出,对这些遗传病的预防有重要意义。遗传咨询, 1952年首先出现在美国,中国70年代以后才开展起来,是医务人员对遗传病患者及其家属对该遗传病的病因、遗传方式、防治、预后,以及提出的各项问题进行解答,并对患者的同胞子女再患此病的危险率作出估计,给予建议和指导。可以认为遗传咨询、产前诊断和终止妊娠三者为防止遗传病患者出生的“三部曲”。有人把婚姻咨询和生育咨询也纳入遗传咨询的范畴内,这些工作对优生优育具有重大意义。

细胞遗传稳定性研究进展论文

李宝键教授在“展望21世纪的生命科学”一文中谈到基因组研究计划研究重要性时,引用《Scinence》上“第三次技术命革”中的一句话:“下一个传大时代将是基因组革命时代,它正处于初期阶段。”在当前的研究水平上,只要涉及生命体重要现象的课题,几乎离不开对基因及其作用的分析。2000年6月26日,英美两国首脑会同公私两大人基因组测序集团向世人正式宣告,人基因组的工作草图已绘制完成。科学家把这作为生命科学进入新时代的标志,即后基因组时代(post-genome era)。因此有必要对基因组及其研究内容和进展作一个了解。1基因组学及其研究内容基因组(GENOME)一词是1920年Winkles从GENes和chromosOMEs组成的,用于描述生物的全部基因和染色体组成的概念。1953年Watson和Crick发现DNA双螺旋结构,标志分子生物学的诞生,随着各学科的发展,当前生物学研究进入新的进代,在生物大分子水平上将不同的研究技术和手段有机的结合以攻克生物学难题。基因组研究可以理解为:(1)基因表达概况研究,即比较不同组织和不同发育阶段、正常状态与疾病状态,以及体外培养的细胞中基因表达模式的差异,技术包括传统的RTPCR,RNase保护试验,RNA印迹杂交,但是其不足是一次只能做一个。新的高通量表达分析方法包括微点阵(microarrary),基因表达序列分析(serial analysis of gene expression,SAGE),DNA芯片(DNA chip)等;(2)基因产物-蛋白质功能研究,包括单个基因的蛋白质体外表达方法,以及蛋白质组研究;(3)蛋白质与蛋白质相互作用的研究,利用酵母双杂交系统,单杂交系统(one-hybrid system),三杂交系统(thrdee-hybrid system)以及反向杂交系统(reverse hybrid system)等。1986年美国科学家Thomas Roderick提出了基因组学(Genomics),指对所有基因进行基因组作图(包括遗传图谱、物理图谱、转录图谱),核苷酸序列分析,基因定位和基因功能分析的一门科学。因此,基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(structural genomics)和以基因功能鉴定为目标的功能基因组学(functional genomics)。结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨率遗传、物理和转录图谱为主。功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息系统地研究基因功能,它以高通量、大规模实验方法以及统计与计算机分析为特征。随着1990年人类基因组计划(Human Genome Project,HGP)的实施并取得巨大成就,同时模式生物(model organisms)基因组计划也在进行,并先后完成了几个物种的序列分析,研究重心从开始揭示生命的所有遗传信息转移到从分子整体水平对功能的研究上。第一个标志是功能基因组学的产生,第二个标志是蛋白质组学(proteome)的兴起。2 结构基因组学研究内容结构基因组学(structural genomics)是基因组学的一个重要组成部分和研究领域,它是一门通过基因作图、核苷酸序列分析确定基因组成、基因定位的科学。遗传信息在染色体上,但染色体不能直接用来测序,必须将基因组这一巨大的研究对象进行分解,使之成为较易操作的小的结构区域,这个过程就是基因作图。根据使用的标志和手段不同,作图有三种类型,即构建生物体基因组高分辨率的遗传图谱、物理图谱、转录图谱。遗传图谱通过遗传重组所得到的基因在具体染色体上线性排列图称为遗传连锁图。它是通过计算连锁的遗传标志之间的重组频率,确定他们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)来表示。绘制遗传连锁图的方法有很多,但是在DNA多态性技术未开发时,鉴定的连锁图很少,随着DNA多态性的开发,使得可利用的遗传标志数目迅速扩增。早期使用的多态性标志有RFLP(限制性酶切片段长度多态性)、RAPD(随机引物扩增多态性DNA)、AFLP(扩增片段长度多态性);80年代后出现的有STR(短串联重复序列,又称微卫星)DNA遗传多态性分析和90年代发展的SNP(单个核苷酸的多态性)分析。物理图谱物理图谱是利用限制性内切酶将染色体切成片段,再根据重叠序列确定片段间连接顺序,以及遗传标志之间物理距离[碱基对(bp)或千碱基(kb)或兆碱基(Mb)的图谱。以人类基因组物理图谱为例,它包括两层含义,一是获得分布于整个基因组30 000个序列标志位点(STS,其定义是染色体定位明确且可用PCR扩增的单拷贝序列)。将获得的目的基因的cDNA克隆,进行测序,确定两端的cDNA序列,约200bp,设计合成引物,并分别利用cDNA和基因组DNA作模板扩增;比较并纯化特异带;利用STS制备放射性探针与基因组进行原位杂交,使每隔100kb就有一个标志;二是在此基础上构建覆盖每条染色体的大片段:首先是构建数百kb的YAC(酵母人工染色体),对YAC进行作图,得到重叠的YAC连续克隆系,被称为低精度物理作图,然后在几十个kb的DNA片段水平上进行,将YAC随机切割后装入粘粒的作图称为高精度物理作图.转录图谱利用EST作为标记所构建的分子遗传图谱被称为转录图谱。通过从cDNA文库中随机条区的克隆进行测序所获得的部分 cDNA的5'或3'端序列称为表达序列标签(EST),一般长300~500bp左右。一般说,mRNA的3' 端非翻译区(3'-UTR)是代表每个基因的比较特异的序列,将对应于3'-UTR的EST序列进行RH定位,即可构成由基因组成的STS图。截止到1998年12月底,在美国国家生物技术信息中心(NCBI)数据库中分布的植物EST的数目总和已达几万条,所测定的人基因组的EST达180万条以上。这些EST不仅为基因组遗传图谱的构建提供了大量的分子标记,而且来自不同组织和器官的EST也为基因的功能研究提供了有价值的信息。此外,EST计划还为基因的鉴定提供了候选基因(candidantes)。其不足之处在于通过随机测序有时难以获得那些低丰度表达的基因和那些在特殊环境条件下(如生物胁迫和非生物胁迫)诱导表达的基因。因此,为了弥补EST计划的不足,必须开展基因组测序。通过分析基因组序列能够获得基因组结构的完整信息,如基因在染色体上的排列顺序,基因间的间隔区结构,启动子的结构以及内含子的分布等。3功能基因组学研究功能基因组学(functional genomics)又往往被称为后基因组学(postgenomics),它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。这是在基因组静态的碱基序列弄清楚之后转入基因组动态的生物学功能学研究。研究内容包括基因功能发现、基因表达分析及突变检测。基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的分析。新的技术应运而生,包括基因表达的系统分析,cDNA微阵列,DNA芯片等。鉴定基因功能最有效的方法是观察基因表达被阻断或增加后在细胞和整体水平所产生的表型变异,因此需要建立模式生物体。比较基因组学(Comparative Genomics)是基于基因组图谱和测序基础上,对已知的基因和基因组结构进行比较,来了解基因的功能、表达机理和物种进化的学科。利用模式生物基因组与人类基因组之间编码顺序上和结构上的同源性,克隆人类疾病基因,揭示基因功能和疾病分子机制,阐明物种进化关系,及基因组的内在结构。目前从模式生物基因组研究中得出一些规律:模式生物基因组一般比较小,但编码基因的比例较高,重复顺序和非编码顺序较少;其G+C%比较高;内含子和外显子的结构组织比较保守,剪切位点在多种生物中一致;DNA 冗余,即重复;绝大多数的核心生物功能由相当数量的orthologous蛋白承担;Synteny连锁的同源基因在不同的基因组中有相同的连锁关系等。模式生物基因组研究揭示了人类疾病基因的功能,利用基因顺序上的同源性克隆人类疾病基因,利用模式生物实验系统上的优越性,在人类基因组研究中的应用比较作图分析复杂性状,加深对基因组结构的认识。 此外,可利用诱变技术测定未知基因,基因组多样性以及生物信息学(Bioinformatics)的应用。4蛋白质组学研究基因是遗传信息的携带者,而全部生物功能的执行者却是蛋白质,它有自身的活动规律,因而仅仅从基因的角度来研究是远远不够的,必须研究由基因转录和翻译出蛋白质的过程,才能真正揭示生命的活动规律,由此产生了研究细胞内蛋白质组成及其活动规律的新兴学科——蛋白质组学(proteomics)。蛋白质组(proteome)是由澳大利亚Macquarie大学的Wilkins和Williams于1994首先提出,并见于1995年7月的“Electrophonesis”上,指全部基因表达的全部蛋白质及其存在方式,是一个基因、一个细胞或组织所表达的全部蛋白质成分,蛋白质组学是对不同时间和空间发挥功能的特定蛋白质群体的研究。它从蛋白质水平上探索蛋白质作用模式、功能机理、调节控制以及蛋白质群体内相互作用,为临床诊断、病理研究、药物筛选、药物开发、新陈代谢途径等提供理论依据和基础。 蛋白质组学旨在阐明生物体全部蛋白质的表达模式及功能模式,内容包括鉴定蛋白质表达、存在方式(修饰形式)、结构、功能和相互作用方式等。它不同于传统的蛋白质学科,是在生物体或其细胞的整体蛋白质水平上进行的,从一个机体或一个细胞的蛋白质整体活动来揭示生命规律。但由于蛋白质具有多样性和可变性,复杂性,低表达蛋白质难以检测等,应该明确其研究的艰难性。总体上研究可以分为两个方面:对蛋白质表达模式(或蛋白质组成)研究,对蛋白质功能模式(目前集中在蛋白质相互作用网络关系)研究。对蛋白质组研究可以提供如下信息:从基因序列预测的基因产物是否以及何时被翻译;基因产物的相对浓度;翻译后被修饰的程度等。由于蛋白质数目小于基因组中开放阅读框(ORF, open reading frame)数目,因此提出功能蛋白质组学(functional proteomics),功能蛋白质指在特定时间、特定环境和试验条件下基因组活跃表达的蛋白质,只是总蛋白质组的一部分。功能蛋白质组学研究是位于对个别蛋白质的传统蛋白质研究和以全部蛋白质为研究对象的蛋白质研究之间的层次,是细胞内与某个功能有关或某种条件下的一群蛋白质。对蛋白质组成分析鉴定,要求对蛋白质进行表征化,即分离、鉴定图谱化,包括两个步骤:蛋白质分离和鉴定。双向凝胶电泳(2-DGE)和质谱(MS)是主要的技术。近年来,有关技术和生物信息学在不断并迅速开发和发展中。蛋白质组研究技术体系包括:样品制备;双向聚丙烯酰胺凝胶电泳(two-dimensional polyacrylamide gel electrophoresis,2-D PAGE);蛋白质的染色;凝胶图像分析;蛋白质分析;蛋白质组数据库。其中三大关键是:双向凝胶电泳技术、质谱鉴定、计算机图像数据处理与蛋白质数据库。5与基因组学相关学科诞生随着基因组学研究的不断深入,人类有望揭示生命物质世界的各种前所未知的规律,完全揭开生命之谜,进而驾驶生命,使之为人类的社会经济服务。基因组研究和其它学科研究交叉,促进一些学科诞生,如营养基因组学(nutritional genomics),环境基因组学(environmental genomics),药物基因组学(phamarcogenomics),病理基因组学(pathogenomics),生殖基因组学(reproductive genomics),群体基因组学(population genomics)等。其中,生物信息学正成为备受关注的新型产业的支撑点。生物信息学是以生物大分子为研究,以计算机为工具,运用数学和信息科学的观点、理论和方法去研究生命现象、组织和分析呈指数级增长的生物信息数据的一门科学。研究重点体现在基因组学和蛋白质两个方面。首先是研究遗传物质的载体DNA及其编码的大分子量物质,以计算机为工具,研究各种学科交叉的生物信息学的方法,找出其规律性,进而发展出适合它的各种软件,对逐步增长的DNA 和蛋白质的序列和结构进行收集、整理、发布、提取、加工、分析和发现。由数据库、计算机网络和应用软件三大部分组成。其关注的研究热点包括:序列对比,基因识别和DNA序列分析,蛋白质结构预测,分子进化,数据库中知识发现(Knowledge Discovery in Database, KDD)。这一领域的重大科学问题有:继续进行数据库的建立和优化;研究数据库的新理论、新技术、新软件;进行若干重要算法的比较分析;进行人类基因组的信息结构分析;从生物信息数据出发开展遗传密码起源和生物进化研究;培养生物信息专业人员,建立国家生物医学数据库和服务系统[5]。20世纪末生物学数据的大量积累将导致新的理论发现或重大科学发现。生物信息学是基于数据库与知识发现的研究,对生命科学带来革命性的变化,对医药、卫生、食品、农业等产业产生巨大的影响。邹承鲁教授在谈论21世纪的生命科学时讲到,生物学在20世纪已取得巨大的发展,数理科学广泛而又深刻地深入生物学的结果在新的高度上揭示了生命的奥妙,全面改变了生物学的面貌。生物学不仅是当前自然科学发展的热点,进入21世纪后将仍然如此。科学家称21世纪是信息时代。生物科学和信息科学结合,无疑是多个学科发展的必然结果。

细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!

细胞因子的生物学活性

关键字: 细胞因子

细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。

一、免疫细胞的调节剂

免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)

二、免疫效应分子

在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。

三、造血细胞刺激剂

从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。

四、炎症反应的促进剂

炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。

五、其它

许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。

细胞衰老的分子生物学机制

摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。

关键词:细胞衰老;分子生物学;机制研究

细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。

细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。

衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。

1 细胞衰老的特征

科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。

衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。

2 分子水平的变化

①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。

3 细胞衰老原因

迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。

差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。

自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。

英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。

生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。

端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。

遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。

参考文献:

[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.

[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.

[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.

流式细胞技术的研究进展论文

目前,流式细胞术广泛应用于细胞表面和细胞内分子表达特征的分析,界定不同种类的细胞群,测定分离出的亚类纯度,分析细胞的大小和总量,它可以同时分析单个细胞的多个参数。国内的发展群体一直在扩大流式细胞仪现在市场上主要以国外的仪器为主,具体说是BD和BCI两家独大,国家的品牌很少,这两年有好几年国内厂商都开始做了,但市场份额可以说是微乎其微,甚至不能养活自己的团队,国内使用流式细胞仪的都是三甲高端医院,三甲医院一般都不差钱,敢开流式项目的一般都不愿意选择国内的品牌,总的来说,前途是光明的,道路是曲折的。

流式细胞技术作为一个科学研究的一个手段,在国内的业务增长已经进入到稳步上升阶段。分析仪方面个人化小型分析仪的市场刚近两年刚被点燃,前期是AccuriC6铺路,CytoFlex以高性价比特征入场后收割果实,Millipore以Guava和Acea以Novocyte分食剩余市场。目前这个细分市场仍能保持年增长率30%以上,因此吸引了更多厂家进场,如美国的Cytek,其主营业务原本是为美国市场的存量BD用户提高供性价比的改装升级服务,高层以华人为主,发现了中国市场的巨大潜力,所以在2015年开始涉水中国市场,推出CytoFlex的对标产品Athena,也是主打性价比和小型易用。分选仪方面,近几年分选仪开始放下身段,从原先普通用户难以企及的高价位使用复杂的形象逐渐分化出个人化易用型流式分选仪。BD公司作为目前流式市场的最大供应商,最先主动拓展个人化小型分选仪的细分市场,这个市场要求产品必须方便易操作、上手门槛低、人人都能轻松使用。目前这个细分在欧美已经成熟,主要用户是Biotech和Biopharma类公司,以及对流式分选使用较多的Individuallab;但在国内情况不同,一来公司数量少且大都还在早期成长阶段,产品和药物开发还没发展到对流式大量需求,二来是funding问题,有足够经费自己购买一台分选仪的individuallab是少之又少。所以这部分市场需求在国内与corefacility相比几乎可以忽略。但BD公司在国内基本上复制在欧美的策略。其最早推出的产品是FACSJazz,声称其是一款个人型易操作的流式分选仪,但Jazz是基于Influx简配而来,无奈受限于原理和设计,操作依然非常繁琐,普通使用者面对这样的仪器还是无所适从,因而Jazz名不副实,是一次失败的试水,从2011年推出到2015年黯然停产退市。Biorad有款分选仪产品S3也是针对这个细分,价格做到100万人民币以下,在分选仪市场算是比较亲民了,只不过完成度欠佳及国内渠道缺乏的原因,使得它在国内没有真正被推广开。

中国优生与遗传杂志2003年第11卷第4期・145・ 流式细胞术的原理及临床应用 马洪星1张春斌2汪晶冰1庞玉军1张丽岩2 (1.黑龙江省大庆油田总医院检验科,1630012.黑龙江省佳木斯大学基础医学院生物教研室) 中图分类号:R331文献标识码:A文章编号:1006-9534(2003)04-0145-02流式细胞术(flowcytometry)是20世纪70年代发展起 来的对单细胞定量分析的一种新技术,它借鉴了荧光标记技术、激光技术、单抗技术和计算机技术,具有极高的检测速度与统计精确性,而且从单一细胞可以同时测得多个参数,为生物医学与临床检验提供了一个全新视角和强有力的手段。目前,随着单克隆抗体技术的发展,流式细胞仪检测技术已经广泛使用在基础研究和临床实践的各个方面,在细胞生物学、肿瘤学、血液学、免疫学、药理学、遗传学及临床检验学等领域内发挥着重要作用 [1] 排异,CD4/CD8持续下降,表明有感染发生,当其比值小于 012时必须停用免疫抑制剂。 (4)免疫性疾病分析:SLE患者的淋巴细胞变化可以反 映该病的活动情况和器官侵犯程度,活动或非活动性伴有多系统疾病,但无肾脏损害的患者可出现CD4/CD8T比值增高,伴有严重肾脏损害的SLE者可出现低CD4+。高 CD8+(5)),(GPI) 。 一、流式细胞仪检测的原理[2,3] 动系统、被制成单细胞悬液,流动室充满流动的鞘液,,当两者的压力差异达到一定程度时,鞘液裹挟着的样品流中细胞排成单列逐个经过激光聚焦区。若将细胞中感兴趣的部分特异性地标上荧光染料,那么这些染料将在细胞通过激光检测区时受激发产生特定波长的荧光,通过一系列信号转换、放大、数字化处理、就可以在计算机上直观地统计染上各种荧光染料的细胞各自的百分率。选择不同的单克隆抗体及荧光染料,可以利用流式细胞仪同时测定一个细胞上的多个不同的特征,如果对具有某种特征的细胞有兴趣,还可以利用流式的分选功能将其分选出来,以便进一步培养、研究。 二、流式细胞仪在免疫学中的应用 (1)淋巴细胞亚群分析:淋巴细胞是正常机体免疫系统功能最重要的一大细胞群,在免疫应答过程中,末梢血淋巴细胞发育成为功能不同的亚群。各亚群的数量和功能发生异常时,就能导致机体免疫紊乱并产生病理变化。FCM可以同时检测一种或几种淋巴细胞表面抗原,将不同的淋巴细胞亚群(包括CD3+、CD4+、CD8+、CD19+、CD16++56+)区分开来,并计算出CD4+/CD8+的比例,可通过对患者淋巴细胞各亚群数量的测定来监控患者的免疫状态,指导治疗。 (2)感染及其疗效观察:由于T淋巴细胞在人体的免疫系统中承担着重要功能,因此当感染发生时,T淋巴细胞各亚群的变化往往能很敏感地反映感染的状态和程度。当病毒感染发生时(如乙型肝炎.EB病毒和巨细胞病毒)CD8+细胞增多,对CD8+T细胞测定有助于对感染的诊断、治疗效果的动态观察。 (3)流式细胞仪可以对器官移植和骨髓移植后的患者进行监控。当患者CD3+、、CD25+持续增加提示已开始发生 [4] DFA(CD55)与MIRI(CD59),来确诊此病,。 (6)HLA群体分析:FCM运用HLA-B27特异性单克隆抗体检测抗原,其敏感性较传统的微量细胞毒实验大大提高,有助于强直性脊柱炎的辅助诊断。 (7)AIDS中的应用:用于CD4+细胞的绝对计数(CD4+阳性细胞是HIV病毒特异侵染细胞),另外还可以监测病程和治疗过程中患者的免疫状态,估计预后。 三、FCM在细胞生物学中的应用(1)细胞周期分析 在细胞周期内,DNA含量随时相发生周期性的变化。通过荧光探针对细胞进行相对DNA含量测定,可分析细胞周期各时相细胞的百分比,周期动力学参数以及DAN异倍体。 (2)可利用与钙离子特异结合的荧光染料和激发光谱 或发射光谱是pH值依赖荧光染料进行细胞内钙离子浓度测定和细胞内pH值测定。 四、FCM在肿瘤中的应用(1)肿瘤诊断 DNA非整倍体的出现是癌变的一个重要标志。细胞的 增值能力大小也可反映肿瘤的生物学特征。因此临床上可利用流式细胞仪进行细胞周期分析和DNA倍体分析。辅助肿瘤诊断,包括监测癌前病变、肿瘤的早期诊断、交界性肿瘤诊断和肿瘤细胞学诊断等各方面[5]。 (2)肿瘤预后估计 异倍体肿瘤恶性度、复发率、转移率和死亡率都较二倍体肿瘤高。已有文献报道,在乳腺、结肠、直肠、前列腺和膀胱肿瘤中,异倍体和/或较高的S期比率都是不良的预后标志。同样地,在肺癌、头颈部肿瘤、卵巢癌、肾癌、子宫内膜癌、黑色素瘤和白血病中,亦有类似发现。因此在病理组织学分级、临床分期等指标基础上,用流式细胞仪监测肿瘤 ・146・ DNA倍体可更客观地预测预后。 (3)监测癌基因和抑癌基因表达在肿瘤发生发展过程 中国优生与遗传杂志2003年第11卷第4期 血小板有关的抗原的临床意义有: (1)诊断遗传性血小板功能缺陷疾病:巨血小板综合征(BBS)患者血小板CD42a/CD42b复合物先天缺陷,FCM中表现CD42a与CD42b不仅严重缺乏,而且其平均荧光强度显著低于阴性对照,CD61代偿性增加。血小板无力症(GT)患者FCM表现血小板GPIIb、GPIIIa(CD41、CD61)明显缺乏,CD42a和CD42b基本正常或稍高,并可出现异常血小板亚群。 (2)血栓性病与血栓前状态:由于活化血小板是血栓的主要成分之一,也是引起血栓形成的主要原因,所以血小板活化程度的增高与疾病的发生发展有关。CD62p和CD63是血小板活化最特异和灵敏的分子标志物,正常人只有低水平活化,外周血CD62p只有3%~5%。 八、FCM,同时FCM分、。 ,该技术对基础医学和。 、流式细胞术在优生遗传领域中的应用 上世纪,一些学者相继证实母血循环中存在胎儿细胞,应用流式细胞术可使其中含量极微的胎儿有核红细胞得到富集,因为有核红细胞含有胎儿的全部基因,并具有不影响多胎妊娠等优点,结合FISH,PCR等技术,使之具有应用于无创性产前诊断的广阔前景。 参考文献 [1]王淑鹃,王建中,等.现代血细胞学图鉴[J].人民卫生出版社, 2000,(光盘的流式细胞术部分) [2]左连富,等.流式细胞术与生物医学[J].辽宁科学技术出版社, 1996:25-32 [3]李家增,等.血液实验学[J].上海科学技术出版社,1997:530-540 [4]龚非力,等.基础免疫学[J].湖北科学技术出版社,1998:10-26[5]FrankfurtOS,RobJA,[J].ExpCellRes,1996,226:387 [6][M].La Jolla,CA1994 中的作用 用流式细胞仪可以通过特异性的单克隆抗体监测肿瘤细胞中癌基因表达产物的水平以研究肿瘤调控因素。如有文献报道,p53蛋白在乳腺癌细胞中的表达与肿瘤的预后有关。而ras基因的产物P21蛋白的表达从萎缩性胃炎、癌前病变、胃癌依次增加,证实P21蛋白在癌变过程中起着重要作用。 五、流式细胞术在细胞凋亡研究中的应用[6] 传统的光镜和电镜技术研究细胞凋亡不能进行定量,并且不能对单细胞进行分析。FCM对细胞凋亡进行分析和检测是目前应用较多的方法,结合荧光染色,可对单细胞做多参数分析,尤其适合于分析淋巴细胞、血细胞、骨髓细胞、培养细胞等。FCM除可定量监测凋亡细胞数和凋亡指数外,可同时测定凋亡细胞发生于某个特定的细胞周期;可同时测定细胞的增值率与死亡率,从而了解肿瘤细胞的生长/死亡速率,早期测知药物疗效。FCM分开来。 FCM变,(PS)暴露于细胞膜的外面;白表达如Bcl-2、Bax、ICE、c-myc、ras、p53、cyclin、TNF、Fas等,以探讨凋亡分子机制与凋亡细胞周期的关系;还可测定线粒体膜电位的改变。 六、FCM在药理学中的应用 多重耐药性(multidrugresistance,MDR)MDR是由多药耐药基因编码的P糖蛋白(P-gp)亲脂化合物,包括多种抗癌药物和荧光染料的跨膜性排出泵。从人淋巴细胞排除荧光染料与细胞内P-gp的含量直接相关。当淋巴细胞出现MDR阳性细胞时,患者对化疗药物开始出现耐药性,需要考虑其他治疗方式。 七、流式细胞仪在血小板功能评价方面的应用血小板糖蛋白(GP)是参与止血、血栓形成的重要分子基础,这些膜糖蛋白是一类重要的黏附分子。用GP单克隆抗体对血小板进行免疫荧光标记,用FCM分析单个血小板或血小板亚群,是血小板膜糖蛋白检测分析方法的重大发展,该方法简便、快速、标本用量少,灵敏度高,结果准确。与 (上接第107页) 收稿日期:2002-05-12 [4]ToyoakiM,JefferyR,HorowitzBS, growthfactor/Vascularpermeabilityfactorenhancesvascularper2meabilityvianitricoxideandprostacyclin[J].Circulation,1998,97:99-107 [5]HyderSM, thefemalereproductivetractbyestrogensandprogestins[J].MolEndocrinol,1999,13(6):806-811 [6]GargettCE,[J].Repro2 duction,2001,121(2):181-186 Intrauterinecontraceptionintheyear2001:canintrauterinedevice useberevivedwithnewimprovedcontraceptivetechnology[J]?EurJContraceptReprodHealthCare,2000,5(4):295-304 [2]TaylorRN,LebovicDI,HornungD, regulationofendometrialangiogenesis[J].AnnNYAcadSci,2001,943:109-121 [3]冯力民,夏恩兰,丛捷,等.应用月经失血图评估月经量[J].中 华妇产科杂志,2001,36(1):51 收稿日期:2002-10-18

细胞毒理学研究方法和技术论文

预防医学研究毕业论文

医学就是处理及治疗预防生理疾病和提高人体生理机体健康为目的。下面是我为你带来的预防医学研究毕业论文 ,欢迎阅读。

浅析预防医学研究的现状及趋势

摘要:近些年,我国的工业和经济都得到了飞速的发展,科学技术水平也上了一个新台阶,同时预防医学也得到了不断深入的研究和发展,其理论研究结果早已应用到我国的卫生事业当中,为我国甚至全球人类的健康预防作出了不可忽视的贡献。本文主要对预防医学的研究现状和趋势进行分析总结。

关键词:预防医学;发展趋势;现状;研究

1 引言

预防医学是一门独立的医学学科群,并划分为多个分支学科。预防医学的研究对象是整个人类组成,医学应用理论包括社会医学、环境医学以及生物医学,

并结合微观以及宏观的方法,研究疾病分布规律、发生规律以及有害健康的多项因素,从而决策预防措施及对策,实现提高生命质量、有利健康以及预防疾病的一门学科。根据预防医学的相关学科资料显示,其学科群有环境卫生学、少年与儿童卫生学、营养与食品卫生学、职业病与劳动卫生学、社会医学、毒理学、医学统计与卫生学、地方病学、性传播疾病学、媒介生物学、卫生检验学、流行病学、消毒学、寄生虫学、传染病学等学科。

2 预防医学的研究现状分析

预防医学理论的研究现状

当前,新的健康观以及新的医学模式都一定程度上促使了预防医学在理论研究上的不断深入和发展。生物医学模式在过去相当长时间内对医学的研究意义重大,然而随着医学研究的进步和社会的快速发展,慢慢暴露出了该模式的消极影响以及局限性,因为比如社会心理因素引发的疾病或艾滋病不能应用该模式来解决的。因此,出现了生物―心理―社会医学这个新的医学模式,积极的影响了预防医学在理论研究上的不断发展,使得预防医学从社会心理因素这个新的角度来研究影响健康的因素,让预防医学的理论研究上升到了一个新的台阶。WTO指到“健康是社会适应能力上精神上、以及身体上的良好状态,而不单单是没有虚弱或者疾病”,这个新的钙奶,让“没有病就是健康”这个就观念消失不见,同时也推动了预防医学的发展层次更高一级。临床前期预防、病因预防以及临床预防等提前预防的工作早已在实践中逐渐成为预防医学的重要举措。

新的生物学方法让毒理学的研究更上一层楼

目前对于致癌作用机理的关键研究方法就是分析癌基因问题。细胞学方法中的传代和原代细胞培养法现在还被污染物代谢致癌或者致突变的研究广泛应用。近些年,利用生物学方法来研究毒性试验的方法得到了快速的发展,如一些传统的毒性慢性试验可以用生物标志物来代替。生物学毒性量效、活性与污染物化学结构关系通过数学方程式来表示的研究是近些年毒理学的研究前沿。上述新技术、新方法以及新概念的不断深入的应用和发展为环境污染物作用机理研究注入了新鲜的血液。在膜毒理学领域,污染物对生物膜及细胞膜功能结构的影响研究是目前来看进步比较明显的学科。在皮肤以及粘膜的研究领域,掌握了大气污染物在一般情况下都需要借助呼吸道侵蚀机体。以上的器官组织水平以及细胞组织相关的毒理学研究也渐入佳境。由于环境因素而导致的癌细胞或者突变的研究现在已经有了很大程度的提高。上述这些都使得预防医学的基础研究不断进步。

现代生物技术应用让预防医学研究进入了一个疾病控制的新阶段

目前比较先进的基因研究技术,比如核酸杂交、DNA测序、基因克隆技术、DNA重组等已经逐渐运用到预防医学的实际应用上,疾病控制在研究的道路上又有了新途径。比如目前来说,我国已经广泛应用的乙肝重组亚单位疫苗。生物传感器、PCR技术、抗HBsAg单抗等先进技术的应用大大的.提高了监测技术以及诊断技术的灵敏度和特异性。工程菌比如含抗DDT基因菌、“超级菌”等的开始运用在净化环境上,显著的提高了我们的生活环境质量,意义重大。上述先进生物技术的广泛应用让预防医学的研究上了一个新的台阶。

信息技术的高速发展推动了预防医学的发展

当代社会信息业高速发展,以因特网为标志的通信技术和计算机得到了广泛的应用,正在或者早已改变了人民的工作、生活方式和先进的科学研究。信息网应用在医学上,让我们没一个人同国际的先进研究机构取得畅通的连接变成现实,让全球范围内的远程专题讨论和会诊、信息交流与文献检索及疫情通报查询等带来了巨大的便利,有力的推动了预防医学的发展。

3 预防医学的发展趋势分析

进入21世纪以来,预防医学会向着一个全新的道路前进。第一,预防医学正在进入一个社会预防为主的全新的发展阶段。随着我国的生物―心理―社会医学模式慢慢的代替原有的生物医学模式,我们大众也开始认识到促进健康,预防疾病在一定程度上更加依赖于社会。要想达到“人人享有卫生保健”的理想,就必须让医学彻底的社会化。进行健康的生活方式,推动人们合理消费,广泛的宣传健康教育是完成医学社会化道路上的一项关键任务。第二,其次,预防医学朝着促进健康、防治结合、提高人口素质以及生活质量的道路前进。随着我国文化水平以及国民经济的不断提高,广大群众不仅在得病的时候得到及时治疗,并且还应该了解并掌握保健和预防常识,丰富自我保健知识,保障身体健康。因此,医学发展的必然趋势临床医学以及预防医学的相互结合。第三,健康和环境问题会成为预防医学研究发展的新动向。人类在21世纪所面临的四大问题:能源匮乏、控制疾病、人口*炸、环境污染。其中得到全球关注的是环境污染问题,预防医学需在这个关键的时刻积极解决参与到健康和环境问题上来。最后,预防医学也很有可能朝着注重行为、精神以及心理原因对健康的影响的方向发展。现代社会工业化程度加深,也从另一个层面给人们带来了新的精神和心理问题,都需要得到社会的关心、卫生心理教育、国家政策的支持。相信,在不久的将来,预防医学会为我们人类控制疾病做出巨大贡献,让我们健康的生活在美丽的大地上。

参考文献:

[1]杨德富.我国预防医学研究浅析[J].中外医疗,2009(09).

[2]林琳,叶冬青.定性研究方法在预防医学研究中的应用[J].中华疾病控制杂志,2011(03).

[3]孙士杰.预防医学研究性教学模式的实践与探索[J].中国高等医学教育,2010(11).

[4]朱惠莲,洪微,张作文.我国预防医学研究面临的机遇与挑战[J].生命科学,2006(02).

[5]李君文,袭著革,晁福寰.科索沃战争对环境的破坏及对我军军事预防医学研究的启示[J].解放军预防医学杂志,2009(12).

[6]赵西龙.预防医学研究与公共卫生服务的社会责任[J].宁夏医学杂志,2012(07).

[7]蓝毓营.壮医预防医学研究概述[J].中国民族医药杂志,2006(02).

细胞毒性是化学物质(药物)作用于细胞基本结构和/或生理过程,如细胞膜或细胞骨架结构,细胞的新陈代谢过程,细胞组分或产物的合成、降解或释放,离子调控及细胞分裂等过程,导致细胞存活、增殖和/或功能的紊乱,所引发的不良反应。按作用机制可分3种类型:①基本细胞毒性,涉及一种或多种上述结构或功能的改变,作用于所有类型的细胞;②选择细胞毒性,存在于某些分化细胞上,主要通过化学物质的生物转化,与特殊受体结合或特殊的摄入机制所引发;③细胞特殊功能毒性,对细胞结构和功能损伤轻微,但对整个机体损伤非常严重。类似毒性作用可通过细胞因子、激素和递质的合成、释放、结合和降解影响细胞与细胞间的交流或特殊的转运过程而实现。毒性作用也可能来自化学物质对细胞外过程的干扰,任何一种非动物检测系统对多种因素都应加以考虑。1983年Ekwall提出“基本细胞功能”的概念,即多数化学物质毒性作用是对细胞功能的非特异性损伤,却可引起器官功能的特异性改变甚至机体死亡。有研究显示化学物质体外细胞毒性与其引起的动物死亡率及人体死亡的血药浓度之间都存在良好的相关性。化学物质产生的损伤和死亡,最终可表现为细胞水平上的改变,由此推测体外细胞毒性可以预测体内急性毒性。从早期研究至今已有50多年,可预测体内急性毒性的体外系统得到发展。体外细胞毒性和急性毒性之间的定量研究主要是对RC(Registry of Cytotoxicity)数据库(美国国立职业安全与卫生研究所化学物质毒性作用数据库)中多种化学物质的体外细胞毒性IC50值及体内急性毒性LD50值进行相关分析,获得RC预测模型,用于急性毒性LD50值预测。利用细胞毒理学比较多种检测终点、不同组织和种属的预测能力,发现啮齿动物细胞系对啮齿动物急性毒性,人源细胞系对人体急性毒性均有良好的预测能力。BALB/c3T3细胞和人正常角质细胞(NHK)在验证实验中具有良好的稳定性及预测能力,因此推荐作为细胞毒性分析常用细胞系,其它细胞系及检测终点也可使用。体外方法有助于预测化学物质急性暴露引发的全身和局部影响,并评估体内毒性浓度。因此进行急性毒性检测前首先进行体外细胞毒性分析,然后根据RC预测模型进行LD50值预测,选择体内急性毒性最适宜的开始剂量,减少实验动物的使用。

干细胞的研究进展科技论文

你看看这是不是你需要的类型论文,不过我还是建议只是参考,自己写最好了。 干细胞作为一种既有自我更新能力、又有多分化潜能的细胞,具有非常重要的理论研究意义和临床应用价值。近几年来,干细胞的研究取得了重大突破, 1999和2000年,世界最权威的美国《Science》杂志连续2年将干细胞和人类基因组计划列为当年的10大科学突破之首。美国《时代》周刊认为干细胞和人类基因组计划将同时成为新世纪最具有发展和应用前景的领域。为抢占这一科技制高点,世界各国纷纷投入大量的人力、物力和财力加紧研究开发,并已取得应用性成果:2005年10月,美国食品和药物管理局(FDA)也已批准将神经干细胞移植入人体大脑;2005年11月,美国心脏协会报道了干细胞治疗心肌梗塞的204例临床病例的研究报告,其结论是干细胞对心脏功能的改善效果,是没有任何现有临床药物能达到的;日本在2000年启动的“千年世纪工程”中,将干细胞工程作为四大重点之一,于第一年度就投入了108亿日元的巨额资金;瑞典、巴西也于2005年通过立法继续支持干细胞研究,并于2005年进行一项多中心1200病例的用干细胞治疗心脏病的临床应用研究。干细胞技术作为生物技术领域最具有发展前景和后劲的前沿技术,将可能导致一场医学和生物学革命,给无数疑难病症治疗带来了新的希望。 按照科学家描绘的美妙蓝图,通过干细胞技术的有效应用,今后更换人体器官就像给汽车换零件一样简单,血细胞、脑细胞、骨骼和内脏都将可以更换,即使患上绝症也能绝处逢生。其实,干细胞技术不仅在疾病治疗方面有着极其诱人的前景,而且其对动物克隆、植物转基因生产、发育生物学、新药物的开发与药效、毒性评估等领域也将产生极其重要的影响。干细胞技术是世纪之交最为引人注目的科技成果,被认为是人类生命科学研究的重要里程碑,预示着生命科学研究将进入快速发展时期。 参考资料:

干细胞的发展进程

干细胞是人体内最原始的细胞,它具有较强的再生能力,在干细胞因子和多种白细胞介素的联合作用下可扩增出各类的细胞。在99年末的年度世界十大科技成果评选中,"干细胞研究的新发现"荣登榜首。干细胞研究有不可估量的医学价值。分离、保存并在体外人工大量培养使之成长为各种组织和器官成为干细胞研究的首要课题。当前,对干细胞的分离和培养技术获得了重大进展,利用单克隆免疫吸附能识别细胞类型或细胞谱系的表面抗原,其分离纯度和细胞活力都很高。99年以色列魏茨曼科学院将白介素-6与干细胞内的受体分子合并研制出一种新分子,可使干细胞在维持原本特性的基础上进行自我增殖且细胞寿命也有所延长。在临床运用中,造血干细胞应用较早,在五十年代,临床上就开始应用骨髓移植来治疗血液系统疾病。到八十年代,外周血干细胞移植技术逐渐推广。美国StmlellsCsliifornia公司用血液干细胞在小鼠体内培育出成熟的肝细胞。胚胎干细胞目前许多研究工作都是以小鼠胚胎干细胞为研究对象,神经干细胞的研究仍处于初级阶段。我国现已掌握了脐血干细胞分离、纯化、冷冻保存以及复苏的一整套技术,并开始在上海筹建我国第一个脐血库。在北京,北京医科大学人民医院细胞治疗中心也正在筹建全世界最大的异基因脐带血干细胞库,计划到2002年完成冷冻5万份异基因脐带血干细胞,为全世界华人患者提供脐带血干细胞做移植用。2000年初,我国东北地区首例脐血干细胞移植成功。我国在"治疗性克隆"研究领域获得重大突破,"治疗性克隆"课题被列为国家级重点基础研究项目。此课题分为上、中、下游三块,上海市转基因研究中心成国祥博士负责上游研究,上海第二医科大学盛惠珍教授和曹谊林教授分别主持中、下游的研究工作。其整体目标是,用病人的体细胞移植到去核的卵母细胞内,经过一定的处理使其发育到囊胚,再利用囊胚建立胚胎干细胞,在体外进行诱导分化成特定的组织或器官,如皮肤、软骨、心脏、肝脏、肾脏、膀胱等,再将这些组织或器官移植到病人身上。利用这种方法,将从根本上解决同种异体器官移植过程中最难的免疫排斥反应,同时还使得组织或器官有了良好的、充分的来源。目前,由上海市转基因研究中心负责的上游研究工作,即把病人的体细胞移到去核的卵母细胞并经一系列的处理发育至囊胚取得成功。这个中心创建的三种技术路线方法,即"体细胞克隆哺乳动物的制备方法"、"获得治疗性克隆植入前的制备方法"以及"用于治疗性克隆的人体细胞组织器官保存方法"均已收到国家知识产权局同意专利申请的受理通知。为了一个人的形成,单个受精卵将产生数以亿计的细胞和250多种不同的细胞类型。幸而,直到最后一个细胞和器官发育形成之时,所有的一切仍未结束。贯穿于整个生命的,是大多数组织继续产生新的细胞以替换损耗的老细胞或满足新的生命活动的需要。比如,当运动员在高海拔地区进行训练的时候,循环系统中血细胞的数量相应增加以满足运输更多氧气的需要。很显然,在诸如皮肤,毛发,骨骼,骨髓,肠这样的组织中,细胞再生能力已得到证实;但这种现象很可能在所有器官中都不同程度地存在着,包括大脑在内,而惯常的观点是,神经元是不可再生的。组织更新和修补自身的能力来源于称为干细胞的小细胞团。干细胞存在于生命的全过程,在体内微环境中被专门的“看护”细胞紧密包围。“看护”细胞提供生长因子和信号分子保持干细胞的特性――分化能力,以及在特定生命周期中分化为特化细胞的同时又能自我复制的能力。矛盾的是,干细胞的自身分裂十分有限,而它们的子细胞在最终形成特化细胞的过程中,有非凡的繁殖力。干细胞以及他们能维持一定数量的能力一直深深吸引着生物学家们[1],如今更为狂热。由于人们意外的发现成熟组织中的干细胞可以重新程序化,即使效率极低,但仍然可以分化为其他来源的细胞。[2]比如,在正常情况下,成年鼠的少数造血干细胞可生成肌肉组织,神经系干细胞可生成血液。这些报告使得将来受损组织用同一个体内其他组织的残余干细胞来修复成为可能。悬而未决的问题另外两项研究也引起了科学界和公众的广泛关注。去年,有两个研究小组宣布他们从人类胚胎和胎儿的生殖细胞中分离出了多能干细胞(pluripotential)――可以分化为多种细胞类型的干细胞。紧跟着,就是众所周知的来自成熟体细胞的克隆羊多莉(dolly)及克隆鼠的诞生。这些有着巨大新闻价值的研究层出不穷,引起了世界性的关于道德和伦理规范的讨论风暴,而且到现在还在争论。比如在美国,公众的反对迫使NIH停止对人胚胎干细胞的研究提供资助。这些争论使许多研究人员开始意识到,他们必须就一些基本问题与迫切的公众和立法者进行有效的交流,其中包括“人的生命何时开始?”“成为人意味着什么?”“什么是胚胎,它在什么时候变成人?”。科学家们是否能回答这些复杂的问题还有争执,这里我不打算继续深入讨论。我只想确定这个事实:在回答另一个更重要的基本问题“我们怎样才可能把干细胞用于医药领域?”之前,我们的确还需要更多的信息。采取哪种方法?最基本的,我们必须进一步研究人体所有组织的干细胞。第一步,我们需要确定分子标记,它们能将寥寥无几的干细胞从他们庞大的子细胞中区分开来。此外,还需了解干细胞与所处的微环境之间的相互作用,以及微环境如何对机体的需求作出反应。我们仅对骨髓中的造血干细胞的相关信息有一定了解,这将有助于在临床治疗中增加受损组织中残留的干细胞的数量。现在,我们已经能够培养少量造血干细胞以重建人的血液系统。设定一个最坏的状况,一个慢性病患者失去了某种组织的大部分干细胞,必须要用替代疗法才能生存。如今,最可行的方案是采用另一个体相应组织的干细胞来补充。但是,这种方案也相当危险,由于捐献者与患者没有遗传上的相容性,移植很快因免疫排斥而失败。一种改进方案是用所谓“自体同源干细胞(autologous stem cells)”的干细胞来进行治疗,这种干细胞与患者的基因型完全相同。虽然目前还不可行,但是我们已经有了一定的设想。一种方案是分离、培养患者的另一组织的干细胞,比如骨髓或皮肤的,再把这些成熟干细胞在体外重新程序化。为了了解怎样才能重新程序化干细胞,我们需要一系列的实验,来研究沉默基因的重新激活,以及激活基因被关闭的机制。例如“早期胚胎细胞分化为不同细胞系的机制研究”就会给我们相当的启示。如果我们理解了遗传基因控制正常发育的实现过程,我们将更容易地在实验室里进行有目的地控制基因表达和细胞分化的方向。另一种方法是用来源于囊胚期的胚胎的多能干细胞。囊胚期是指卵子刚刚受精但尚未种植到子宫的阶段,此时胚胎称为胚泡。胚泡大约由100个细胞组成,其中包含一些特化性较少的干细胞,可在培养中不确定地诱导分化为多种细胞形式(如图)。最早的人类多能干细胞是从体外受精的临床病例中得来的多余胚泡。这个里程碑式的事件是James Thomson领导的University of Wisconsin, Madison的实验室在1998年的成果。另一个在澳大利亚的Monash University的实验室最近宣布了相似的实验结果。现在这两个小组正在进一步研究这些多能干细胞和子细胞的特征。这些工作为人类胚胎早期发育中基因功能研究提供无价的数据资料。不幸的是直到现在,我们对这一领域知之甚少,部分由于联邦经费对胚胎研究的限制。尽管胚胎发育在进化中高度保守,但是脊椎动物胚胎发育中一些细节上的差异,足以证明鼠和人之间并不是所有的基因都具有相同功能。因此,在模式动物研究中得来的信息不能充分体现出我们在人类干细胞中研究中的问题。公众眼中的干细胞用人类多能干细胞进行研究引起争议是由于他们来自人类的受精卵,在某些人认为人的生命始于受精。那么在理论上,用体细胞核转移的方法生成自体同源干细胞引起的争议会少一些。这种方法是把成熟细胞的细胞核转入一个去核的未受精卵细胞中,在实验室里,这个卵细胞发育成胚泡,研究人员可从中分离培养多能干细胞系。最近,Monash University的研究人员用这项技术在小鼠上取得了成功。他们在1000多个转移基因标记的细胞核的去核卵细胞中,获得一个胚胎干细胞系。如果这种“治疗性克隆”能够在效率上更提高一些,那么这对人类干细胞的研究同样有意义。既然实验用的卵细胞是去核和未受精的,无不同个体的遗传物质融合,从而未发生受精过程,所以用这种方法制造的干细胞在道德和伦理上将更容易被人们所接受。此外,由于胚胎干细胞不能独立发育成胎儿,所以他们不是胚胎。然而,从理论上讲,体细胞核转移产生的胚泡不仅只用于干细胞的产生,把这样的胚泡移植到妇女子宫中也有可能克隆人。尝试此类研究与现行道德准相驳,也是违法行为。另外,这样的行为会使许多不负责任的人们有所企图,无法控制伦理道德标准,而且有可能使人为的和有目的地制造畸形婴儿成为可能。这些争议对一些更极端的反对者来说还不是关键,他们认为只有对于一个已经去世的人,体细胞核转移技术才可以接受。往往在联邦经费资助人类干细胞的科学研究之前,一个基于相互尊重的信仰的公众讨论就已经开始,无论这种研究是以治疗人类疾病为目的还是以基础研究为目的。可以认为这种争论本身,是一个好的事情,因为它激发了公众对生物学和复制的兴趣及关注,这些内容以往在学校里不能有效的传授给学生。(克隆青蛙往往不能象克隆人类自己那样使高中的学生们产生兴趣,而且人类肢体再生的案例就可以引导学生展开有关人类肢体的形成和哪些基因产生手臂而不产生腿之类的讨论,象这样的说法未免太牵强了一点。)无论怎样,干细胞研究的前提是将会得到新的实质意义上的治疗方法。因此,科学家们必须十分谨慎,避免媒体对基因治疗过分夸大的报道,否则会失去公众的信任和信心。在应用人多能干细胞时,也必须十分留心。就像我们看到的那样,对公众中的某些人来说,这些细胞的来源相当于破坏人的生命。事实是在我们确切知道干细胞治疗的实际用途之前,还有许多障碍要跨越。当我们向前继续探索的每时每刻,我们必须诚实.http://

相关百科

热门百科

首页
发表服务