首页

> 期刊论文知识库

首页 期刊论文知识库 问题

人脸识别应用论文参考文献

发布时间:

人脸识别应用论文参考文献

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

Viola-Jones方法,人脸识别研究组。《智能环保垃圾处理设备》发布的公告得知人脸识别参考文献为Viola-Jones方法,人脸识别研究组。包括人脸检测,人脸预处理和人脸等方向。

除了基础的图像处理,更重要的恐怕是模式识别、概率统计。你提到的几个属性特征中,肤色、发型比较容易实现,性别、年龄、种族可能比较困难。如果要想入手,时间宽裕的话,用opencv;如果只是希望发发论文,matlab会比较快。人脸识别你可以只是了解,其实你的课题核心不是识别某个人,而是对人脸特征的分析,比如,可以通过皱纹来判定年龄。

人脸识别门禁论文参考文献

课程的话是 数字图像处理,另外到google学术搜“人脸识别”“face recognition”论文应该很多的,可以先综述入手,比如这篇论文:Face recognition: A literature survey。这是理论基础。实验的时候,用VC++和OpenCV 就看 《OpenCV教程——基础篇》;若是Matlab,熟悉基础语法之后,多看看软件帮助。两者都包含很多基本的图像处理操作,用起来很方便。如果是本科或者硕士的话,可以先动手实验,对图像处理有一定了解后再看理论要求较高的论文。 PS: 你得问得具体点才好回答呢。。

人脸检测就是在一副图像或一序列图像(比如视频)中判断是否有人脸,若有则返回人脸的大小、位置等信息。人脸识别则是在假设图像或者图像序列中有人脸的情况下,根据人脸的特征判断人的身份等信息。在早期,人脸检测是作为人脸识别的一个过程出现的。但现在人脸检测的应用范围已经远远超出了人脸识别,人脸检测在数码相机,监控网络,机器视觉、模式识别等领域都有重要的实践与理论意义。参考文献:《人脸识别——原理、方法与技术》,王映辉编,科学出版社;《Detecting Faces in Images:A Survey》:Ming-Hsuan Yang(杨铭轩),David J. Kriegman,Narendra Ahuja,IEEE Transa on PA and Machine Intelligence

机器学习人脸识别原理

人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。人脸检测是指对于任意一幅给定的图像,采用一定的策略对其进行搜索以确定其中是否含有人脸,如果是则返回一脸的位置、大小和姿态。

人脸识别考勤毕业论文

智慧工厂人脸识别闸机考勤出入控制解决方案,根据不同厂区要求有相应的方案。

1、选择合理的闸机配置管理方案可以提升进出效率,随时查询打卡考勤数据,比如钢铁石油石化企业内部员工比较多,早晚员工上下班人员比较复杂和密集,传统打卡考勤方式容易出现各种问题,为了解决考勤和进出统计,室外门禁闸机结合考勤的方案不断得到应用。尤其安装室外人脸识别闸机,可以实现无感通行,识别率高通行速度快,同时结合大屏展示,实时播报姓名和体温、考勤状况等。确保领导实时获取数据,便于考勤分析,提高工作效率。

2、大型厂区复杂人员分别授权管理明确。尤其石油石化行业,在平常会涉及到承包商外包人员等,人员管理起来比较复杂,为了提高安全,专门管理分别进行门禁系统授权很有必要,所以在厂区内不同作业区域安装门禁闸机,可以有效解决很多类似问题。实现内员工统一管理,降低园区管理外包人员管理成本。

3、智能访客系统对接门禁闸机通道可以准确追溯。传统的访客管理,以纸张登记手段为主,不利于进行来访人员身份验证、人工统计数据容易丢失查询不便。所以针对千人万人以上企业,访客管理方面也是重中之重,因为闸机是模块化设计,采用人脸门禁访客系统和硬件相联动,可以很方便的对来访人员进行体温检测、健康码核验和身份识别、信息登记等,通过门岗给予闸机开门信号或者线上提前预约凭借二维码二代证等验证后即可开闸通行,采用人证比对技术验证来访人员真实身份,增强企业安全管理。同时记录详细拜访时间、部门等信息,提高访客进出安全,助力智慧园区建设。

企业员工考勤制度是为维护企业的正常工作秩序,并通过规范员工的工作作息时间、工作纪律来提高其办事效率的公司纪律制度。当然,考勤制度的具体制定方案也要依据企业自身的运行环境以及管理特色来具体设计,但其核心目标都是在于通过制定明确的公司工作纪律要求来规范员工的工作行为,并通过评分系统以及相应的赏罚制度来提高企业员工的自律能力和积极性,同时也科学的管理和规范了企业合理运行的工作流程,从而实现了提高企业运行效率、经济效益这一最终目标。

一、企业员工考勤管理现状

1.评分制度是员工考核的重要依据

在我国大多数企业的员工考勤管理工作中,评分制度都是员工考核的重要依据,而其评分准则主要包含以下几个方面:一是严格规定企业员工的正常工作时间,并且企业全体职工都必须进行打卡登记等措施来记录其是否遵守工作作息时间,而且必须保证所有员工都是亲自打卡登记,不得由他人代劳,否则记录在案并采取扣分处理。二是严格规范企业员工迟到、早退、出差、请假等情况的处理办法,一般来说,全体职工只有在打卡登记后方能外出办理业务,并且在公司正式上班后5分钟到30分钟内才打卡等级的员工按迟到处理,如果超过30分钟,则以旷工半天论处员工,而无故旷工半日者,给予扣发当月全勤奖处理以及一次警告处分;当月旷工累计3天者,则扣除当月工资,并给予记过一次处分;无故旷工达一周及以上员工,直接除名;而职员外出办公也必须登记相关表格,并经过有关管理部门审批通过后才能进行,否则不予报销出差费用,并给予相应处分。当然,具体的公司条案还有许多细节要求,也是结合不同企业的管理特色和员工构成结构来制定的,就不一一赘述了。总之,企业对全体职工的日常行为规范都有明确的明文要求,而在月度、季度或者年度的员工工资支付工作也主要依据员工在此计分制度下的表现来进行的。

2.考勤标识多种多样

对于企业员工的日常工作行为规范遵守情况,通常采用表格统计,而其中的考勤标识非常多样化,这主要是由于企业岗位的复杂性以及考勤表格需要考量生活工作中的不同情况而产生的。而其一般采用汉语拼音的英文缩写来代替汉语表示,能减少一定的工作量,如在员工请假方面的考勤标识就包括,计生假(JS)、婚假(H)、丧假(SJ)、带薪年休假(D)、探亲假(T),疗养假(LY)、工伤(GS)、借出(JC)、休息(X)、事假(SH)、病假(BT)、产假(CJ)、哺乳假(BR)、公假(GJ)、公出(GC)、工时假(GSH)、护理假(HL)等,而因为除上述各类原因外的情况则用QT表示,同时在处理这些特殊的请假情况时要注意在相应考勤标识后注明原因,并且由于考勤管理统计的最后结果关系到对于员工的工资结算,所以在这一方面的工作要十分规范和科学化。

3.工时计算工作复杂

对于员工总体工时的统计和计算工作也是考勤管理中非常重要的一个环节,而在实际工作中,由于轮班情况时常发生且有一定的复杂性,如二班一转、三班一转、三班二转、四班一转、四班二转、四班三转以及员工之间协定的在规定允许下的替班情况等,导致了对于员工工时统计和计算工作的不易操作和复杂性。并且,在不同行业企业的具体工作环境中,处理这类问题也要有不同的针对性,如在餐饮行业员工的轮班情况具有较强的不稳定性;并且在一些大型企业中,由于岗位繁多且职能复杂,对于员工工时的统计和计算工作要耐心、细致,需要在合理、系统的统计方法下,进行科学的计算,从而确保员工的具体权益以及企业的科学规范化管理工作合理开展。

二、当前企业员工考勤管理中的主要问题

1.考勤管理理念、制度需要更新

一个成功的改革往往是从理念的求变上开始的,就目前我国大部分企业员工考勤管理工作而言,管理理念方面还有诸多需要改进的地方。考勤工作一个重要的职能是管理企业全体职工,其中包括企业领导以及员工,但目前存在的现象就是视企业领导为绝对权威,官本位思想严重,缺乏透明度,且缺乏管理效率和服务意识,没有完全做到公平公正处理企业中大大小小的问题,从而引起了部分员工的不满,服务意识和办事效率都不足,这是当前存在于考勤工作中的一个严重问题。并且在相关管理部门的具体考勤工作中也存在着管理分工不明确的现象,企业在发展的过程中新业务涌现,导致业务繁多,而现今大部分存在于企业办公室的现象是工作繁细分工不明确,很大程度上处于混沌状态,再就是管理人员的职能重复导致效率降低,从而会使管理人员的积极性不高,而进一步使得管理工作进程受阻。而在实际考勤管理工作中,应该秉承以人为本的具体方针,能做到公平对待,以真诚的态度来解决企业员工的具体问题;从而营造出一个比较和谐的管理环境,并就在当前考勤管理制度上存在的一些问题进行改善,才能高效率的完成对于企业全体职工的考勤管理工作。

2.考勤系统不够科学、统一

当前部分企业的考勤管理具体操作方法还在依靠手工登记这一方式,而随着社会日新月异的高速发展,考勤系统也必须具备科学化、信息化的特点,而人工登记这一方式不能实现自动化进行员工考勤数据统计和信息查询过程,已经完全不能适应现代高度信息化、自动化的管理方法。如今科学技术高度发达,在考勤技术的变革中也产生了射频IC卡打卡考勤,指纹打卡考勤、人脸识别考勤等科学方法,它们在处理岗位部门繁多、职能范围复杂的大企业时,员工上班报到时考勤登记工作简单,并且对于员工出勤情况的考勤工作也易于实施,同时也方便管理部门查询、统计和分析等工作的进行,这样才能帮助管理人员准确地掌握员工出勤情况,从而有效地管理企业员工的工作行为。当然,由于电脑的判决能力取决与其信息系统内的数据支撑,如果单一使用电子系统来进行企业员工考勤,难免会产生一些不可避免的失误,所以应该在一定程度上辅之以手动登记方法,才能进一步保证员工考勤工作中数据统计的准确性和科学性。总之,管理人员要秉承严谨的工作态度,结合自身的不同情况和经济环境,合理制定考勤系统实施方案。

3.考勤规定不明确

如果考勤规定中存在较大的争议,有不规范的现象并有失偏颇,那么其则会严重影响到员工的工作态度和积极性。而在实际的企业员工考勤工作中,考勤制度中对于工作时间计算、工作时间安排、轮班转换等的具体条例存在着一些问题,企业和员工之间主要存在的还是雇佣关系,而工作时间方面的问题直接影响到企业员工的经济收入,如果处理不当,会大幅度降低企业运行的效率。而在当前大部分企业的考勤规定没有具体规范和制定工作时间的统计及计算方法,而由于在实际工作中轮班情况时常发生以及不同企业工作环境的差异性使得对于员工工作时间的统计和计算工作有着较大的难度,如果在这方面没有明文规定的话,将大大增加争议发生的可能性,并且使得员工的工作精神状态都不会处在积极向上的层面。而在另一方面,在企业考勤规定中,对休息时间安排的合理性没有引起管理人员的高度重视。如果员工每天工作9小时,并且没有规定休息时间,那么员工的工作状态必然得不到良好的保持,并且也会对此产生异议以及开小差等现象,这种情况下违反了考勤规定应该是制度本身的责任,而不是员工的问题,所以对于工间休息时间必须有合理明确的规定。

4.考勤信息统计不够准确,并且疏于保管

员工因病假、事假等而缺勤是常有的事,而考勤管理存在的意义就是保证对于员工请假有明确的标准,并且对于其请假原因也在记录在案,确保员工请假缘由属实。但在实际情况中,这方面的工作还不够系统和全面,如果长期缺乏相应的缺勤记录,不仅影响到了其他员工的工作状态,企业也要为缺勤员工的人身安全负上一定的责任。并且,缺勤记录应注明事由,记录上也必须要有本人签名核对,并由有关部门审核通过并签字后才能生效。这样才能有效的维持企业的工作纪律,对于旷工等不良现象才能进行有效的`扼杀,而且,考勤记录的最后结果关系到员工的工资结算、休假等权益,要保证请假者事由的真实性,并由大家共同监督,并且保存好请假条,以便之后进行验证,总之要保证考勤记录的准确性和有效性。所以,要十分注意对于请假条等有关考勤记录的文件,以便产生劳资纠纷后充当有关证据,并且在员工发现考勤结果和自身情况严重不相符时,也可以拿来进行对照;但在目前的工作中,对于考勤记录文件的保护管理非常疏忽,没有成套的保存方案,这也是值得当前我们急需改进的地方,只有在大部分的工作细节上做的足够好,才能拥有一个让大多数人足够满意的结果。

三、结语

企业作为一个经济实体,考勤管理的主要目标则是最终能为企业带来更大的经济效益。而考勤管理工作的核心目标是通过加强企业员工的综合素质和工作效率来提高整个企业的运营效率。而在当前大部分企业的考勤管理工作中,不仅在考勤数据统计、文件管理、考勤规定等一些工作细节上有一些不足之处,而在管理理念和方法上也或多或少存在这一些问题。在新时代的现代化管理策略中,考勤管理应该不仅是止于管理,也同样是一项服务于企业员工的工作,应秉承着“理解人、关心人、尊重人”的原则来处理实践管理工作中产生的一些实际问题,并能做到公平对待,以真诚的态度来解决企业员工的具体问题;从而营造出一个比较和谐的管理环境;进而在具体的管理流程中,完善考勤数据的统计、计算方法以及考勤规定,并合理制定考勤系统的运用方案,才能有效的实施考勤管理工作,并且真正提升了企业个体员工的工作精神状态以及工作效率,使得整个企业的运营效率得到稳步的提高。

参考文献:

[1]徐培.浅谈员工绩效考核与企业管理[J].经营管理者,2010,(2):142.

[2]曹晓继.企业员工绩效考核的误区及改进措施[J].消费导刊,2010,(6):65-68.

1. 无线数据网络中基于斯塔克尔博格博弈的功率控制 2. 动能定理,机械能守恒定律应用3. 宽带网络中业务模型的仿真分析 4. 基于 AVC码率控制算法的研究 5. 基于GRF-3100射频系统的混频器的设计与制作 6. VOIP语音通信系统的设计与应用 7. 基于Labview的实验数据处理的研究 8. 基于NS2的路由算法研究与仿真 9. 图像处理工具箱的VC实现 10. 嵌入式实时系统设计模式的应用 11. 基于VC的UDP的实现 12. 基于TCP/IP协议嵌入式数字语音传输系统终端硬件设计 13. 基于MPLS的VPN技术原理及其实现 14. 基于FPGA的步进电机控制系统的数字硬件设计研究 15. 多路信号复用的基带发信系统模型 16. 数字音频水印研究 17. 数字电视传输系统-城市数字电视平移 18. 虚拟演播室应用研究与设计 19. 电视节目制作系统设计 20. KM3知识管理系统解决方案 21. 移动通信系统的频率分配算法设计 22. 通信系统的抗干扰技术 23. 扩频通信系统抗干扰分析 24. 基于OPNET的网络规划设计 25. 基于NS2的路由算法仿真 26. 基于GPRS的数据采集与传输系统设计 27. 搅拌混合器微分先行控制系统设计 28. 车辆牌照自动识别系统 29. 基于CPLD器件的数字频率计的设计 30. 大容量汉字显示系统的设计 31. 数控直流电压源的设计 32. 基于s6700电子标签阅读器设计 33. 嵌入式网络连接设计 34. Java手机网络游戏的实现和程序设计 35. 简频率特性测试仪设计 36. DDS及其在声学多普勒流速测量系统中的应用 37. AVR 8位嵌入式单片机在车载全球定位系统显示终端中的应用 38. 基于单片机的考勤系统设计 39. 基于单片机的寻呼机编码器 40. 基于MF RC632射频识别读写器芯片的专用读卡器 41. 具有SPI接口的数字式同步发送器设计 42. 小区停车场计费系统设计 43. 村村通无线接入系统中的CDMA技术 44. 语音校检报文的程序设计 45. 基于轧制扰动负荷观测器的轧机传动机电振动控制系统设计 46. 基于MATLAB的数字滤波器的设计 47. 基于VHDL的乒乓游戏机的设计 48. 语音信号的滤波设计 49. 基于DSPTMS320F206的高炉自动进料控制系统 50. 基于VHDL语言的基带线路码产生电路仿真设计 51. 智能天线的研究 52. 混合动力汽车电机驱动单元 53. 混合动力汽车 54. 直流电机双闭环调速系统设计 55. 双馈电机直接转矩DSP控制 56. 双馈电机直接转矩控制 57. 无刷直流电机调速系统 58. 异步电机直接转矩控制 59. 人脸识别系统的研究与实现 60. 锁相频率合成器的设计与仿真 61. 动态链接库进阶 62. 电话业务综合管理系统设计 63. 弹性分组环RPR的公平算法研究 64. 低轨卫星移动通信信道模型研究 65. 大数计算的算法探讨及其在椭圆曲线密码体制中的应用 66. HY防火墙管理软件开发过程及ACL模块功能实现 67. EPON的原理分析 68. DCS通讯与软测量技术的研究 69. 3G的AKA协议中F1至F5的UE端的实现 70. 《信号与系统》课件的设计与实现 71. 《电路与电子学》电子课件的设计与制作 72. RSA公钥算法研究与实现 73. p2p通信模型的java实现 74. 搜索引擎的开发与实现 75. 图书馆管理系统及原代码毕业设计 76. 网络安全专题学习网站设计 77. 网络教育应用网站设计 78. 校园网组建、开发与管理 79. 最优化软件设计实现 80. 租赁网的设计和实现 81. 远程控制终端数据接口设计 82. 遗传算法及其在网络计划中的应用 83. 研华PCI-1753板卡Linux驱动程序的开发 84. 软测量技术在造纸打浆过程的应用研究 85. 嵌入式系统研制AD数模转换器 86. 劳动生产率增长条件的研究 87. 基于XML帮助系统的设计与实现 88. 基于MPT-1327的集群系统智能基站的研究与设计 89. 基于J2ME的手机部分功能实现 90. 购销存财务软件的应用比较 91. 高清视频多媒体播放器 92. 基于CORBA网络管理技术及其安全性的研究和应用 93. 基本开发的网上商场的设计与实现 94. 桂林大广电子公司网站设计 95. 电信客户关系管理系统的分析与实现 96. 企业办公局域网的建设 97. 第三代移动通信承载业务和QoS处理机制无线资源管 98. 计算机病毒动态防御系统毕业论文 99. 3G标准化进程及其演进策略 100. 鲁棒数字水印算法的研究和比较 101. 基于SPCE061A的语音遥控小车设计——?硬件电路设计

==你是本科还是硕士啊论文的话应该主要是算法的研究和改进吧……问题比如:你采用了哪种人脸识别算法你对这种算法的改进在哪里(你不只要说明改进在哪里可能还需要做一些实验收集下数据来对比说明算法在改进后对性能有了提升)新算法比其他算法好在哪里(还是通过实验收集数据对比一下)分析下算法的复杂度(时间复杂度和空间复杂度可能都会要求毕竟图像分析很占空间)然后是怎样进行优化的实验采用的样本是哪些(我们当时用的UCIrvineMachineLearningRepository下面会有CMUFaceImages大家一般都用这个库来作为样本)怎样对实验结果进行量化比较的(标准是什么)如果是模式识别的话还可能关心怎样选的特征值和特征空间(计算量大的话是怎样减少计算量的)训练样本采用的什么算法实验的识别率是多少算法的性能是不是稳定……==我想到的都是本科的问题如果是研究生的话可能还会问的更难

人脸识别论文文献综述

人脸识别是一个被广泛研究着的热门问题,大量的研究论文层出不穷,晓电晓受晓受晓晓晓多晓电晓米晓受晓联晓受晓零晓电晓受晓米晓多晓晓e少量惠量量e米惠d量晓晓受晓晓晓晓米晓晓多晓少米受在一定程度上有泛滥成“灾”之嫌。为了更好地对人脸识别研究的历史和现状进行介绍,本文将AFR的研究历史按照研究内容、技术芳珐等方面的特点大体划分为三个时间阶段,如表受所示。该表格概括了人脸识别研究的发展简史及其每个历史阶段代表性的研究工作及其技术特点。下面对三个阶段的研究进展情况作简单介绍: 第一阶段(受惠米联年~受惠惠零年) 这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采用的主要技术方案是基于人脸几何结构特征(Geometricfeature based)的芳珐。这集中体现在人们对于剪影(Profile)的研究上,人们对面部剪影曲线的结构特征提取与分析方面进行了大量研究。人工神经网络也一度曾经被研究人员用于人脸识别问题中。较早从事AFR研究的研究人员除了布莱索(Bledsoe)外还有戈登斯泰因(Goldstein)、哈蒙(Harmon)以及金出武雄(Kanade Takeo)等。金出武雄于受惠少晓年在京都大学完成了第一篇AFR方面的博士论文,直到现在,作为卡内基-梅隆大学(CMU)机器人研究院的一名教授,仍然是人脸识别领域的活跃人物之一。他所在的研究组也是人脸识别领域的一支重要力量。总体而言,这一阶段是人脸识别研究的初级阶段,非常重要的成果不是很多,也基本没有获得实际应用。 第二阶段(受惠惠受年~受惠惠少年) 这一阶段尽管时间相对短暂,但却是人脸识别研究的高潮期,可谓硕果累累:不但诞生了若干代表性的人脸识别算法,美国军方还组织了著名的FERET人脸识别算法测试,并出现了若干伤业化运作的人脸识别系统,比如最为著名的Visionics(现为Identix)的FaceIt系统。 美国麻省理工学院(MIT)媒体实验室的特克(Turk)和潘特兰德(Pentland)提出的“特征脸”芳珐无疑是这一时期内最负盛名的人脸识别芳珐。其后的很多人脸识别技术都或多或少与特征脸有关系,现在特征脸已经与归一化的协相关量(NormalizedCorrelation)芳珐一道成为人脸识别的性能测试基准算法。 这一时期的另一个重要工作是麻省理工学院人工智能实验室的布鲁内里(Brunelli)和波基奥(Poggio)于受惠惠电年左右做的一个对比实验,他们对比了基于结构特征的芳珐与基于模板匹配的芳珐的识别性能,并给出了一个比较确定的结论:模板匹配的芳珐优于基于特征的芳珐。这一导向性的结论与特征脸共同作用,基本中止了纯粹的基于结构特征的人脸识别芳珐研究,并在很大程度上促进了基于表观(Appearance-based)的线性子空间建模和基于统计模式识别技术的人脸识别芳珐的发展,使其逐渐成为主流的人脸识别技术。 贝尔胡米尔(Belhumeur)等提出的Fisherface人脸识别芳珐是这一时期的另一重要成果。该芳珐首先采用主成分分析(PrincipalComponent Analysis,PCA,亦即特征脸)对图像表观特征进行降维。在此基础上,采用线性判别分析(LinearDiscriminant Analysis, LDA)的芳珐变换降维后的主成分以期获得“尽量大的类间散度和尽量小的类内散度”。该芳珐目前仍然是主流的人脸识别芳珐之一,产生了很多不同的变种,比如零空间法、子空间判别模型、增强判别模型、直接的LDA判别芳珐以及近期的一些基于核学习的改进策略。 麻省理工学院的马哈丹(Moghaddam)则在特征脸的基础上,提出了基于双子空间进行贝叶斯概率估计的人脸识别芳珐。该芳珐通过“作差法”,将两幅人脸图像对的相似度计算问题转换为一个两类(类内差和类间差)分类问题,类内差和类间差数据都要首先通过主成分分析(PCA)技术进行降维,计算两个类别的类条件概率密度,最后通过贝叶斯决策(最大似然或者最大后验概率)的芳珐来进行人脸识别。 人脸识别中的另一种重要芳珐——弹性图匹配技术(Elastic GraphMatching,EGM) 也是在这一阶段提出的。其基本思想是用一个属性图来描述人脸:属性图的顶点代表面部关键特征点,其属性为相应特征点处的多分辨率、多方向局部特征——Gabor变换【受电】特征,称为Jet;边的属性则为不同特征点之间的几何关系。对任意输入人脸图像,弹性图匹配通过一种优化馊索策略来定位预先定义的若干面部关键特征点,同时提取它们的Jet特征,得到输入图像的属性图。最后通过计算其与已知人脸属性图的相似度来完成识别过程。该芳珐的优点是既保留了面部的全局结构特征,也对人脸的关键局部特征进行了建模。近来还出现了一些对该芳珐的扩展。 局部特征分析技术是由洛克菲勒大学(RockefellerUniversity)的艾提克(Atick)等人提出的。LFA在本质上是一种基于统计的低维对象描述芳珐,与只能提取全局特征而且不能保留局部拓扑结构的PCA相比,LFA在全局PCA描述的基础上提取的特征是局部的,并能够同时保留全局拓扑信息,从而具有更佳的描述和判别能力。LFA技术已伤业化为著名的FaceIt系统,因此后期没有发表新的学术进展。 由美国国防部反技术发展计划办公室资助的FERET项目无疑是该阶段内的一个至关重要的事件。FERET项目的目标是要开发能够为安全、情报和执法部门使用的AFR技术。该项目包括三部分内容:资助若干项人脸识别研究、创建FERET人脸图像数据库、组织FERET人脸识别性能评测。该项目分别于受惠惠联年,受惠惠多年和受惠惠米年组织了晓次人脸识别评测,几种最知名的人脸识别算法都参家了测试,极大地促进了这些算法的改进和实用化。该测试的另一个重要贡献是给出了人脸识别的进一步发展方向:光照、姿态等非理想采集条件下的人脸识别问题逐渐成为热点的研究方向。 柔性模型(Flexible Models)——包括主动形状模型(ASM)和主动表观模型(AAM)是这一时期内在人脸建模方面的一个重要贡献。ASM/AAM将人脸描述为电D形状和纹理两个分离的部分,分别用统计的芳珐进行建模(PCA),然后再进一步通过PCA将二者融合起来对人脸进行统计建模。柔性模型具有良好的人脸合成能力,可以采用基于合成的图像分析技术来对人脸图像进行特征提取与建模。柔性模型目前已被广泛用于人脸特征对准(FaceAlignment)和识别中,并出现了很多的改进模型。 总体而言,这一阶段的人脸识别技术发展非常迅速,所提出的算法在较理想图像采集条件、对象配合、中小规模正面人脸数据库上达到了非常好的性能,也因此出现了若干知名的人脸识别伤业公司。从技术方案上看, 电D人脸图像线性子空间判别分析、统计表观模型、统计模式识别芳珐是这一阶段内的主流技术。 第三阶段(受惠惠量年~现在) FERET’惠米人脸识别算法评估表明:主流的人脸识别技术对光照、姿态等由于非理想采集条件或者对象不配合造成的变化鲁棒性比较差。因此,光照、姿态问题逐渐成为研究热点。与此同时,人脸识别的伤业系统进一步发展。为此,美国军方在FERET测试的基础上分别于电零零零年和电零零电年组织了两次伤业系统评测。 基奥盖蒂斯(Georghiades)等人提出的基于光照锥 (Illumination Cones) 模型的多姿态、多光照条件人脸识别芳珐是这一时期的重要成果之一,他们证明了一个重要结论:同一人脸在同一视角、不同光照条件下的所有图像在图像空间中形成一个凸锥——即光照锥。为了能够从少量未知光照条件的人脸图像中计算光照锥,他们还对传统的光度立体视觉芳珐进行了扩展,能够在朗博模型、凸表面和远点光源假设条件下,根据未知光照条件的少幅同一视点图像恢复物体的晓D形状和表面点的表面反射系数(传统光度立体视觉能够根据给定的晓幅已知光照条件的图像恢复物体表面的法向量方向),从而可以容易地合成该视角下任意光照条件的图像,完成光照锥的计算。识别则通过计算输入图像到每个光照锥的距离来完成。 以支持向量机为代表的统计学习理论也在这一时期内被应用到了人脸识别与确认中来。支持向量机是一个两类分类器,而人脸识别则是一个多类问题。通常有三种策略解决这个问题,即:类内差/类间差法、一对多法(one-to-rest)和一对一法(one-to-one)。 布兰兹(Blanz)和维特(Vetter)等提出的基于晓D变形(晓D Morphable Model)模型的多姿态、多光照条件人脸图像分析与识别芳珐是这一阶段内一项开创性的工作。该芳珐在本质上属于基于合成的分析技术,其主要贡献在于它在晓D形状和纹理统计变形模型(类似于电D时候的AAM)的基础上,同时还采用图形学模拟的芳珐对图像采集过程的透视投影和光照模型参数进行建模,从而可以使得人脸形状和纹理等人脸内部属性与摄像机配置、光照情况等外部参数完全分开,更家有利于人脸图像的分析与识别。Blanz的实验表明,该芳珐在CMU-PIE(多姿态、光照和表情)人脸库和FERET多姿态人脸库上都达到了相当高的识别率,证明了该芳珐的有效性。 电零零受年的国际计算机视觉大会(ICCV)上,康柏研究院的研究员维奥拉(Viola)和琼斯(Jones)展示了他们的一个基于简单矩形特征和AdaBoost的实时人脸检测系统,在CIF格式上检测准正面人脸的速度达到了每秒受多帧以上。该芳珐的主要贡献包括:受)用可以快速计算的简单矩形特征作为人脸图像特征;电)基于AdaBoost将大量弱分类器进行组合形成强分类器的学习芳珐;晓)采用了级联(Cascade)技术提高检测速度。目前,基于这种人脸/非人脸学习的策略已经能够实现准实时的多姿态人脸检测与跟踪。这为后端的人脸识别提供了良好的基础。 沙苏哈(Shashua)等于电零零受年提出了一种基于伤图像【受晓】的人脸图像识别与绘制技术。该技术是一种基于特定对象类图像集合学习的绘制技术,能够根据训练集合中的少量不同光照的图像,合成任意输入人脸图像在各种光照条件下的合成图像。基于此,沙苏哈等还给出了对各种光照条件不变的人脸签名(Signature)图像的定义,可以用于光照不变的人脸识别,实验表明了其有效性。 巴斯里(Basri)和雅各布(Jacobs)则利用球面谐波(Spherical Harmonics)表示光照、用卷积过程描述朗博反射的芳珐解析地证明了一个重要的结论:由任意远点光源获得的所有朗博反射函数的集合形成一个线性子空间。这意味着一个凸的朗博表面物体在各种光照条件下的图像集合可以用一个低维的线性子空间来近似。这不仅与先前的光照统计建模芳珐的经验实验结果相吻合,更进一步从理论上促进了线性子空间对象识别芳珐的发展。而且,这使得用凸优化芳珐来强制光照函数非负成为可能,为光照问题的解决提供了重要思路。 FERET项目之后,涌现了若干人脸识别伤业系统。美国国防部有关部门进一步组织了针对人脸识别伤业系统的评测FRVT,至今已经举办了两次:FRVT电零零零和FRVT电零零电。这两次测试一方面对知名的人脸识别系统进行了性能比较,例如FRVT电零零电测试就表明Cognitec, Identix和Eyematic三个伤业铲品遥遥领先于其他系统,而它们之间的差别不大。另一方面则全面总结了人脸识别技术发展的现状:较理想条件下(正面签证照),针对晓少联晓少人受电受,多量惠 幅图像的人脸识别(Identification)最高首选识别率为少晓%,人脸验证(Verification)的等错误率(EER【受联】)大约为米%。FRVT测试的另一个重要贡献是还进一步指出了目前的人脸识别算法亟待解决的若干问题。例如,FRVT电零零电测试就表明:目前的人脸识别伤业系统的性能仍然对于室内外光照变化、姿态、时间跨度等变化条件非常敏感,大规模人脸库上的有效识别问题也很严重,这些问题都仍然需要进一步的努力。 总体而言,目前非理想成像条件下(尤其是光照和姿态)、对象不配合、大规模人脸数据库上的人脸识别问题逐渐成为研究的热点问题。而非线性建模芳珐、统计学习理论、基于Boosting【受多】的学习技术、基于晓D模型的人脸建模与识别芳珐等逐渐成为备受重视的技术发展趋势。 总而言之, 人脸识别是一项既有科学研究价值,又有广泛应用前景的研究课题。国际上大量研究人员几十年的研究取得了丰硕的研究成果,自动人脸识别技术已经在某些限定条件下得到了成功应用。这些成果更家深了我们对于自动人脸识别这个问题的理解,尤其是对其挑战性的认识。尽管在海量人脸数据比对速度甚至精度方面,现有的自动人脸识别系统可能已经超过了人类,但对于复杂变化条件下的一般人脸识别问题,自动人脸识别系统的鲁棒性和准确度还远不及人类。这种差距产生的本质原因现在还不得而知,毕竟我们对于人类自身的视觉系统的认识还十分肤浅。但从模式识别和计算机视觉等学科的角度判断,这既可能意味着我们尚未找到对面部信息进行合理采样的有效传感器(考虑单目摄像机与人类双眼系统的差别),更可能意味着我们采用了不合适的人脸建模芳珐(人脸的内部表示问题),还有可能意味着我们并没有认识到自动人脸识别技术所能够达到的极限精度。但无论如何,赋予计算设备与人类似的人脸识别能力是众多该领域研究人员的梦想。相信随着研究的继续深入,我们的认识应该能够更家准确地逼近这些问题的正确答案。

在学术论文中,引言是用相对简短的篇幅来勾勒全文的基本内容和轮廓。 eg: 研究方向:人脸识别 背景设定:假定此时所有已提出的方法都是基于手工特征 当前问题:识别率不准确 提出方法:利用深度学习解决 1.用一句话引出当前已经提出的属于本文研究领域的方法。 xxx can be categorized into three fields: xxx, xxx, and xxx xxx is/ are/ becomes very popular in xxx field since xxx 总结归纳: 2.概述目前已有的经典工作 总结各工作时,一般需要1-2句,不宜过长。总结时,需根据论文的研究内容,概述各工作的主要相关方法和优缺点。 3.总结目前已有的经典工作所存的问题。 一般来说,这一部分需要总结与本文内容相关的问题,并以此引出本文的Motivation。 本文研究综述段落包含了研究目的、方法和实验设计。 根据上段最后总结的现有方法的主要问题,提出本文的研究目的。 to address / solve / deal with xxx , this paper presents / proposes xxx in this paper , we aims to xxx by xxx As a consequence, this paper xxx 提出具体的解决方案。 提出验证方案 摘要和结论部分均属于总结性质的章节,完成全文其他部分,最后再进行摘要和结论的撰写。

题名 题名相当于论文的标签,是简明、确切地反映论文最重要特点内容、研究范围和深度的最恰当的词语的逻辑组合,通常是读者最先浏览的内容,也是检索系统首先收录的部分,是体现论文水平与范围的第一重要信息。 总结起来有如下几个要求:(1)题文相扣,概念表达准确 题名要准确表达论文的内容和主题,恰当反映研究的范围和深度,与论文内容要互相匹配,紧扣-题要扣文,文要扣题。切忌题名过大,而应该限定到问题或者所使用的解决方法层面,例 如: 太笼统的题名:人脸识别研究; 限定到方法:一种基于感受野学习的人脸识别新方法。(2)题目长度适中,以及语序正确性 题目用词要简短精炼、太长或太短都不好。一般过长的题目中都有废话,包括但不限于“调查”“研究”以及一些冠词“a”等。我们在小学语文中就做过这样的练习,把一句比较长的话改短,又不改变其原来的意思。例如: 机器人定位与导航若干神经计算方法的研究; 因为导航包括定位,去掉冗余后:机器人导航若干神经计算方法的研究。 此外,题名像一条标签,忌用冗长的主、谓、宾语结构的完整语句,习惯上常用以名词或名词性词组为中心的偏正词组,一般不用动宾结构。英语题名,建议将表达核心内容的主题词放在题名的开头。例如: Age invariant face recognition and retrieval byCoupled auto-encoder。(3)注意术语的使用 术语在科技论文中大量出现,特别在通讯领域,拥有众多各类术语。很多术语即便是内行也难以辨别。因此,除非是众所周知的缩略语,否则不简写。例如: Image-to-Image Translation with ConditionalAdversarial Networks, 而非 Image-to—Image Translation with Conditional GAN, 因为GAN(生成对抗网络)这个词最近2年才出来,即便在机器学习领域,也有很多人对它很陌生。摘要 摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明、确切地记述文献重要内容的短文。 摘要具有独立性和自主性,能充分反映研究的创新点,拥有论文同等量的主要信息,即不阅读全文就能获得必要的信息。摘要字数通常不超过论文字数5%。摘要的基本结构及内容 摘要本质上是一篇高度浓缩的论文,其基本结构与论文的结构是对应的。摘要主要包括以下内容的梗概: (1)目的。研究工作的前提、目的、任务及所涉及的主题范围。 (2)方法——所用的理论、技术、材料、手段、设备、算法、程序等 (3)结果—观测、实验的结果和数据,得到的效果、性能和结论,创新与独到之处。摘要规范表达一般原则 1)摘要篇幅应尽量简短,切忌把应在前沿中出现的篇幅较长的内容写入摘要,而且不得有对论文的正式进行补充和修改的内容,尤其不要进行评价。 2)摘要的内容在正文应该出现,但不宜简单地重复。中文摘要多用第三人称来写,建议采用“对…进行了研究",“报告了…现状"等记述方法。 3)摘要要使用公知公用的规范的术语和符号,新术语应写出全称。一般不要使用公式和化学结构式。英文摘要规范表达 英文摘要时态的运用应以简练为佳,常用一般现在时、一般过去时,少用现在完成时、过去完成时,基本不用进行时和其他复合时态。 一般现在时用于说明研究目的、叙述研究内容、描述研究结果、得出研究结论、提出建议或讨论等。涉及公认事实、自然规律、永恒真理等,用一般现在时。 如: In order to study the rigidity coeficient.…, the stress and strain model is concluded.与之相反,一般过去时用于叙述过去某一时刻(时段)的发现、某一研究过程。 如The heat pulse technique was aplied to study two main tree species in July and August, 1996. a.介绍背景资料时,句子内容不受时间影响的普遍事实,应用现在时,对某种趋势的概述,用现在完成时。 b.叙述研究目的或主要研究活动,多使用现在时。 C.叙述实验程序、方法和主要结果常用现在时。 d.叙述结论或建议时可使用现在时,或may, should, could等助动词。关键词 关键词(key words)是为了满足文献标引或计算机检索及国际计算机联机检索工作的需要, 而从论文题名和正文中选出来的能够反映论文主题内容的词或词组。关键词应为规范的术语,通常位于摘要之后。 关键词:股票市场;在线股评;相关分析引言 一般来说,引言部分通常需要14页的篇幅。基本内容应包括研究背景、存在的问题和研究目的等。 通常先介绍范围较宽泛的一般性事实,为说明研究工作与过去工作的关系,须要回顾国内外研究历史(文献回顾或文献综述),并对研究情况横向比较,写明前人在本课题相关领域所做的工作及存在的空白或不足。 然后将重点逐渐转入与论文所探讨的问题有密切联系的主题,指出有某个问题或现象仍值得进一步研究,进而将焦点转到要探讨的研究问题上最后阐述研究目的,将作者的研究任务具体化,还可根据情况说明作者在已有工作基础上的贡献或创新。 对篇幅较长、结构复杂的论文,其引言的结尾部分还应有简略说明研究的主要结论以及论文构架的内容。引文规范写作原则 1)按写作要求和内容逐渐展开,不要将引言写成摘要的注释,不讨论,不重复摘要内容。 2)要慎重而有保留第叙述前人工作的欠缺及自己研究的创新,一般不用评价式的用语。 3)研究背景应该准确、简洁,不宜过于分散和琐碎。正文 正文写作过程中,不论小节层次,还是次小节层次,都应该遵循自上而下的细化方法。这种金字塔式的细化方法也应该体现论文的总体结构层次。也就是说,创建高层次的小节,用以描述搞层次的思想,然后使用低级别的章节层次结构描述更多的技术细节。每个段落都应该有一个中心论点,称为中心句或主题句,通常段 落以此为起始句。之后,围绕这中心论点进行更加细致的阐释。结论 结论可以是中心思想的重申、研究结果或主要观点的归纳,也可以是某些启示性的解释或考虑,以及在研究结果基础上所进行的预测等。主要包含: 1)本研究有什么新发现,得到了什么规律性的东西,解决了什么理论与实际问题,适用范围是什么? 2)研究的创新点,研究工作与他人已有研究成果的异同 3)研究的局限性、不足之处或遗留问题,以及可能的应用前景和进一步深入的研究方向。参考文献 参考文献是指为撰写论文而引用前人(包括作者自己)已发表的有关文献,是科技论文不可缺少的重要组成部分。 按规定,在科技论文中,凡是引用前人或他人(包括本人)已发表的文献中的观点、数据和材料等,都要在引用处予以标明,在文末(结论之后,,如有致谢,则在致谢之后)列出参考文献表称为参考文献的著录。一、参考文献著录的目的和作用 1)提高科学依据,表明广度和深度 著录参考文献反映出了科技论文作者的科学态度,并为论文提供了真实、广泛的科学依据。所著录的参考文献数量多少以及发表时间,就能衡量该科技论文研究的广度与深度。 2)区分研究成果,尊重他人成果 3)节省论文篇幅,避免资料堆积 适当引用参考文献,可避免过多介绍他人的工作,避免一般性表述和资料堆积。 4)便于读者查找,达到资源共享。二、著录的原则 1)只著录必要的最新的文献。 2)采用标准化的著录格式。各个期刊都有各自的规定,可在投稿前看相关期刊的文献著录格式。 3)一般只著录已公开发表的文献。三、标注方法 正文中引用文献的标注方法可以采用顺序编码或著者—出版年制,相应地文后的参考文献表按顺序编码或者著者-出版年制组织。 1)顺序编码制引文采用序号标注,参考文献表按引文的顺序列出在同一处引用多篇参考文献时,只需在方括号内全部列出,例如:用多种优化模型[3,5,12—15]. 参考文献做主语的时候,例如:与文献[6,7]中的分析一致。引用英文人名时,要注意文献人名表达形式的统一性和特殊性。如作者姓氏相同,则应写全名,如"LEE Y S"和"LEE C W”.

树莓派人脸识别门禁论文参考文献

python更好。

opencv内置支持的主要语言为python和c++,如果你用户不是特别大)(比如10000次以上的人脸识别每秒),一般python就绰绰有余了。当然如果是安卓客户端的话,还是c++或java方便点,如果是后台或者树莓派之类的,python就更方便。

这里有个python的例子。

opencv 已经内置了人脸识别功能。

可以很轻松的完成相关毕业设计。

使用OpenCV提供的预先训练的深度学习面部检测器模型,可快速,准确的进行人脸识别。

Python优点:

学习难易:Python与C++对比是一门易于学习的语言所以很适合作为第一门语言来学习编程。

可视化调试:Matplotlib进行结果可视化这方法,与C++的窗体调试比起来那是好了很多啊。

对于很多也毕业生来说,最头疼的就是写毕业论文和毕业成果展示,建议找六月雪毕业设计网,通过极高。

计算机专业本科毕业设计在本质上可以理解为在走出校门之前的一次带文档写作的课程实践

如果不是那几个top级别的大学, 可以一般而言都是非常简单, 会让你设计一个系统或者网站, 主要作用有以下几点

一般而言这种毕业设计特别好糊弄过去, 比如可以找一些基于javaweb的整合框架进行二次开发, 本科论文可以多看看文库, 都是有固定套路的

python三步实现人脸识别

Face Recognition软件包

这是世界上最简单的人脸识别库了。你可以通过Python引用或者命令行的形式使用它,来管理和识别人脸。

该软件包使用dlib中最先进的人脸识别深度学习算法,使得识别准确率在《Labled Faces in the world》测试基准下达到了。

它同时提供了一个叫face_recognition的命令行工具,以便你可以用命令行对一个文件夹中的图片进行识别操作。

特性

在图片中识别人脸

找到图片中所有的人脸

找到并操作图片中的脸部特征

获得图片中人类眼睛、鼻子、嘴、下巴的位置和轮廓

找到脸部特征有很多超级有用的应用场景,当然你也可以把它用在最显而易见的功能上:美颜功能(就像美图秀秀那样)。

鉴定图片中的脸

识别图片中的人是谁。

你甚至可以用这个软件包做人脸的实时识别。

这里有一个实时识别的例子:

安装

环境要求

相关百科

热门百科

首页
发表服务