首页

> 期刊论文知识库

首页 期刊论文知识库 问题

自然界的烷烃论文期刊

发布时间:

自然界的烷烃论文期刊

白色污染的主要来源有食品包装、泡沫塑料填充包装、快餐盒、农用地膜等。白色污染是我国城市特有的环境污染,在各种公共场所到处都能看见大量废弃的塑料制品,他们从自然界而来,由人类制造,最终归结于大自然时却不易被自然所消纳,从而影响了大自然的生态环境。

从节约资源的角度出发,由于塑料制品主要来源是面临枯竭的石油资源,应尽可能回收,但由于现阶段再回收的生产成本远高于直接生产成本,在现行市场经济条件下难以做到。

扩展资料

中美科学家2016年06月17日宣布在降解聚乙烯废塑料方面取得突破,不仅为解决被称为“白色污染”的废塑料污染提供了一种可能的新途径,而且降解产物还可用于生产清洁柴油,促进碳资源循环利用。

这项研究由中国科学院上海有机化学研究所黄正课题组和美国加利福尼亚大学欧文分校管治斌课题组合作完成。相关论文发表在新一期美国《科学进展》杂志上。

废塑料造成的“白色污染”是目前世界各国面临的最棘手环保问题之一。目前绝大部分废塑料主要通过填埋和焚烧处理,但前者占用土地资源且易污染地下水,后者则增加了碳排放还会造成大气污染。

在新研究中,科学家利用交叉烷烃复分解催化策略,使用廉价的低碳烷烃作为反应试剂和溶剂与聚乙烯发生重组反应,有效降低了聚乙烯的分子量和碳链长度。

低碳烷烃是在石油炼制中大量生成的副产品,不能作为燃油或天然气,使用价值非常有限。过量存在的低碳烷烃好比“剪刀”,多次和聚乙烯重组反应,直至把分子量上万、甚至上百万的聚乙烯降解为可作为清洁柴油的烷烃。

参考资料来源:人民网-破解“白色污染”有了新途径

参考资料来源:百度百科-白色污染

网上会有很多这样的论文期刊的~比如(有机化学研究、合成化学研究)等等这些~你可以去找下免费的论文参考就可以啦~

王琦,中国古陶瓷研究及收藏领域中一个几乎无人不晓的名字。因其位列民国“珠山八友”之首,传世作品常成为海内外各大拍卖公司的重要拍品,倍受关注程度有目共睹。王琦(1884-1937),号碧珍,别号陶迷道人,江西新建人。17岁至景德镇,初以捏面人为生,后改习瓷画。约在民国八年(1919年)时所绘瓷板画就已享誉瓷都。此时还以晚清海上画家钱慧安的作品为蓝本,尤以肖像画最受人珍爱。约在民国十一年(1922年)左右转师乾隆间“扬州八怪”之一黄慎。在这之前作品多饰印章很少题字。转学黄慎之后,常用草书长题,人物头部则衬以明暗结构准确,表情生动(其时号称“西法头子”即西洋画法绘人物头部),而衣褶则以写意法绘成,用笔潇洒奔放。晚期人物画姿态诙诡,形神兼备。1922年与同仁创建“景德镇瓷业美术研究社”,任社长(又据吴霭生墓志铭载,吴霭生为社长,王琦系副社长)。1928年又和王大凡、程意亭、汪野亭、邓碧珊、徐仲南、田鹤仙、刘雨岑等瓷画家一道组建“月圆会”,为“珠山八友”(亦称“八大名家”)之首。其传世作品见有粉彩或绛彩瓶、尊、笔筒、印盒、花盆、瓷板画及壶等,以人物题材为主。系“珠山八友”也是民国粉彩行业中成就最高影响最大的瓷画家。

王琦,男,博士,教授、博士生导师,浙江大学分子设计与分子热力学研究所所长。1983年,浙江大学,学士;1986年,浙江大学,硕士;1990年,浙江大学-美国Purdue大学,博士;1998年,日本大阪大学,博士后。1992年,副教授;1999年,教授;2000年,博士生导师。2000年,台湾科技大学,访问教授。主要从事分子模拟与分子设计、分子热力学、低温微量热学、薄膜成长与微电子材料等方面的研究工作。在国际著名学术刊物J Chem Phys, J Phys Chem B, Langmuir, Chem Phys Lett, Biopolymers, J Chem Eng Data及国内核心刊物(SCI、EI源期刊)上发表论文近70篇,其中6篇SCI影响因子在3以上,10篇在2以上,另有8篇获浙江省自然科学优秀论文奖。2项科研成果通过部级鉴定。曾获“业绩显著的浙江大学博士学位获得者”,“亿利达优秀教师奖”,多次评为“浙江大学优秀青年教师”。代表性科研成果:(1)流体在微孔和狭缝中的输运行为研究。重点研究了复杂极性流体在纳米级微孔和狭缝中的结构、扩散、粘度、导热等行为及其相对于体相流体的特殊性。(2)烷烃混合物在分子筛中的吸附与分离性能研究。重点研究了正、异构烷烃及其三元、四元混合物在各类分子筛上的选择性吸附与分离性能。(3)混合原子价化合物的超低温相变行为研究。重点研究了碘桥联一维复核铂配合物的混合原子价行为、镍配合物顺反磁性体间的相转变、及磁性体配合物在超低温(- ~ - ℃)下的磁相变等。(4)三螺旋结构的多聚糖重水溶液的结构有序性研究。重点研究了其介电驰豫、光学旋转与热容等行为。(5)设计建立了一套加压汽液平衡测定装置,研究了加压下的汽液平衡规律。在此基础上完成的丙二醇技术开发攻关项目,通过部级鉴定,获专家们一致好评,认为该成果达到国际先进水平。

水和烷烃的极性比较研究论文

烷烃分为饱和的和不饱和的。饱和的如果是直链烃,就是c-c-c-c-c-c-c这样的,肯定是结构对称并且是非极性的如果是有支链的,如c-c-c-c-c等 | | c c这个就不是完全非极性结构,因为它的分子结构并不对称,会偏向一边不饱和烃与之类似,如果其结构能形如c-c-c-c-c-c-c,对称点在某一个原子上或者几何中心的,那么这就是非极性分子

烷烃即饱和烃(saturated group),是只有碳碳单键的链烃,是最简单的一类有机化合物。烷烃分子中,氢原子的数目达到最大值,它的通式为CnH2n+2。分子中每个碳原子都是sp3杂化。最简单的烷烃是甲烷。烷烃中,每个碳原子都是四价的,采用sp3杂化轨道,与周围的4个碳或氢原子形成牢固的σ键。连接了1、2、3、4个碳的碳原子分别叫做伯、仲、叔、季碳;伯、仲、叔碳上的氢原子分别叫做伯、仲、叔氢。为了使键的排斥力最小,连接在同一个碳上的四个原子形成四面体(tetrahedron)。甲烷是标准的正四面体形态,其键角为109°28′(准确值:arccos(-1/3))。理论上说,由于烷烃的稳定结构,所有的烷烃都能稳定存在。但自然界中存在的烷烃最多不超过50个碳,最丰富的烷烃还是甲烷。由于烷烃中的碳原子可以按规律随意排列,所以烷烃的结构可以写出无数种。直链烷烃是最基本的结构,理论上这个链可以无限延长。在直链上有可能生出支链,这无疑增加了烷烃的种类。所以,从4个碳的烷烃开始,同一种烷烃的分子式能代表多种结构,这种现象叫同分异构现象。随着碳数的增多,异构体的数目会迅速增长烷烃还可能发生光学异构现象。当一个碳原子连接的四个原子团各不相同时,这个碳就叫做手性碳,这种物质就具有光学活性。烷烃失去一个氢原子剩下的部分叫烷基,一般用R-表示。因此烷烃也可以用通式RH来表示。烷烃最早是使用习惯命名法来命名的。但是这种命名法对于碳数多,异构体多的烷烃很难使用。于是有人提出衍生命名法,将所有的烷烃看作是甲烷的衍生物,例如异丁烷叫做2-二甲基丙烷。现在的命名法使用IUPAC命名法,烷烃的系统命名规则如下:找出最长的碳链当主链,依碳数命名主链,前十个以天干(甲、乙、丙、丁、戊、己、庚、辛、壬、癸)代表碳数,碳数多于十个时,以中文数字命名,如:十一烷。 从最近的取代基位置编号:1、2、3...(使取代基的位置数字越小越好)。以数字代表取代基的位置。数字与中文数字之间以 - 隔开。 有多个取代基时,以取代基数字最小且最长的碳链当主链,并依甲基、乙基、丙基的顺序列出所有取代基。 有两个以上的取代基相同时,在取代基前面加入中文数字:一、二、三...,如:二甲基,其位置以 , 隔开,一起列于取代基前面。 异辛烷(2,2,4-三甲基戊烷)的结构式。异辛烷是汽油抗爆震度的一个标准,其辛烷值定为100。对于一些结构简单或者常用的烷烃,还经常用俗名。如,习惯上直链烷烃的名称前面加“正”字,但系统名称中并没有这个字。在主链的2位有一个甲基的称为“异”,在2位有两个甲基的称为“新”。这虽然只适合于异构体少的丁烷和戊烷,出于习惯还是保留了下来,甚至给不应该叫“异”的2,2,4-三甲基戊烷也冠上了“异辛烷”的名字。物理性质烷烃随着分子中碳原子数的增多,其物理性质发生着规律性的变化:1.常温下,它们的状态由气态、液态到固态,且无论是气体还是液体,均为无色。一般地,C1~C4气态,C5~C16液态,C17以上固态。2.它们的熔沸点由低到高。3.烷烃的密度由小到大,但都小于1g/cm^3,即都小于水的密度。4.烷烃都不溶于水,易溶于有机溶剂。 CH3 | 注意:新戊烷(CH3—C—CH3)由于支链较多,常温常压下也是气体。 | CH3化学性质烷烃性质很稳定,因为C-H键和C-C双键相对稳定,难以断裂。除了下面三种反应,烷烃几乎不能进行其他反应。氧化反应R + O2 → CO2 + H2O 或 CnH2n+2 + (3n+1)/2 O2-----------(点燃)---- nCO2 + (n+1) H2O所有的烷烃都能燃烧,而且反应放热极多。烷烃完全燃烧生成CO2和H2O。如果O2的量不足,就会产生有毒气体一氧化碳(CO),甚至炭黑(C)。以甲烷为例:CH4 + 2 O2 → CO2 + 2 H2O O2供应不足时,反应如下:CH4 + 3/2 O2 → CO + 2 H2O CH4 + O2 → C + 2 H2O 分子量大的烷烃经常不能够完全燃烧,它们在燃烧时会有黑烟产生,就是炭黑。汽车尾气中的黑烟也是这么一回事。取代反应R + X2 → RX + HX 由于烷烃的结构太牢固,一般的有机反应不能进行。烷烃的卤代反应是一种自由基取代反应,反应的起始需要光能来产生自由基。以下是甲烷被卤代的步骤。这个高度放热的反应可以引起爆炸。链引发阶段:在紫外线的催化下形成两个Cl的自由基 Cl2 → Cl* / *Cl链增长阶段:一个H原子从甲烷中脱离;CH3Cl开始形成。 CH4 + Cl* → CH3+ + HCl (慢) CH3+ + Cl2 → CH3Cl + Cl* 链终止阶段:两个自由基重新组合 Cl* 和 Cl*, 或 R* 和 Cl*, 或 CH3* 和 CH3*. 裂化反应裂化反应是大分子烃在高温、高压或有催化剂的条件下,分裂成小分子烃的过程。裂化反应属于消除反应,因此烷烃的裂化总是生成烯烃。如十六烷(C16H34)经裂化可得到辛烷和辛烯(C8H18)。由于每个键的环境不同,断裂的机率也就不同,下面以丁烷的裂化为例讨论这一点:CH3-CH2-CH2-CH3 → CH4 + CH2=CH-CH3 过程中CH3-CH2键断裂,可能性为48%; CH3-CH2-CH2-CH3 → CH3-CH3 + CH2=CH2 过程中CH2-CH2键断裂,可能性为38%; CH3-CH2-CH2-CH3 → CH2=CH-CH2-CH3 + H2 过程中C-H键断裂,可能性为14%。 裂化反应中,不同的条件能引发不同的机理,但反应过程类似。热分解过程中有碳自由基产生,催化裂化过程中产生碳正离子和氢负离子。这些极不稳定的中间体经过重排、键的断裂、氢的转移等步骤形成稳定的小分子烃。在工业中,深度的裂化叫做裂解,裂解的产物都是气体,称为裂解气。由于烷烃的制取成本较高(一般要用烯烃催化加氢),所以在工业上不制取烷烃,而是直接从石油中提取。烷烃的作用主要是做燃料。天然气和沼气(主要成分为甲烷)是近来广泛使用的清洁能源。石油分馏得到的各种馏分适用于各种发动机:C1~C4(40℃以下时的馏分)是石油气,可作为燃料; C5~C11(40~200℃时的馏分)是汽油,可作为燃料,也可作为化工原料; C9~C18(150~250℃时的馏分)是煤油,可作为燃料; C14~C20(200~350℃时的馏分)是柴油,可作为燃料; C20以上的馏分是重油,再经减压蒸馏能得到润滑油、沥青等物质。 此外,烷烃经过裂解得到烯烃这一反应已成为近年来生产乙烯的一种重要方法。 英文命名对照n Name Formula Alkyl1 Methane CH4 Methyl2 Ethane C2H6 Ethyl3 Propane C3H8 Propyl4 Butane C4H10 Butyl5 Pentane C5H12 Pentyl6 Hexane C6H14 Hexyl7 Heptane C7H16 Heptyl8 Octane C8H18 Octyl9 Nonane C9H20 Nonyl10 Decane C10H22 Decyl例如,2,2,4-三甲基戊烷 2,2,4-trimethylpentane

烷烃的物理性质遵循甲烷的模式,并与烷烃的结构相一致。烷烃分子完全是由共价键连结起来的。这些键或是连结两个同类的原子,因而是非极性的;或是连结两个电负性相差很小的原子,因而只有很小的极性。而且这些键在方向上分布得非常对称,所以键的微弱的极性易于抵消。所以烷烃分子或是非极性的,或是极性很弱。把非极性分子结合在一起的作用力(范德华力)是弱的,而且作用力范围很小;它们仅在两个分子的紧密接触部分起作用,也就是在分子的表面间发生作用。因此,可以预料,在同一类化合物中,分子越大——因而它的表面积越大——分子间的作用力也越弱。表烷烃的某些物理常数列举了若干正烷烃的某些物理常数。我们知道,沸点和熔点随着碳原子数增加而升高。沸腾和熔融过程需要克服液体和固体的分子间作用力。分子变大时,分子间的作用力增大,因而沸点和熔点升高。烷烃的某些物理常数 名称 结构式 熔点(℃) 沸点(℃) 密度(20℃) 甲烷 CH4 -183 -162 乙烷 CH3CH3 -172 丙烷 CH3CH2CH3 -187 -42 正丁烷 CH3(CH2)2CH3 -138 0 正戊烷 CH3(CH2)3CH3 -130 36 正己烷 CH3(CH2)4CH3 -95 69 正庚烷 CH3(CH2)5CH3 98 正辛烷 CH3(CH2)6CH3 -57 126 正壬烷 CH3(CH2)7CH3 -54 151 正癸烷 CH3(CH2)8CH3 -30 174 正十一烷 CH3(CH2)9CH3 -26 196 正十二烷 (CH3(CH2)10CH3 -10 216 正十三烷 CH3(CH2)11CH3 -6 234 正十四烷 CH3(CH2)12CH3 252 正十五烷 CH3(CH2)13CH3 10 266 正十六烷 CH3(CH2)14CH3 18 280 正十七烷 CH3(CH2)15CH3 22 292 正十八烷 CH3(CH2)16CH3 28 308 正十九烷 CH3(CH2)17CH3 32 320 正二十烷 CH3(CH2)18CH3 36 异丁烷 (CH3)2CHCH3 -159 -12 异戊烷 (CH3)2CHCH2CH3 -160 28 新戊烷 (CH3)4C -17 异己烷 (CH3)2CH(CH2)2CH3 -154 60 3-甲基戊烷 CH3CH2CH(CH3)CH2CH3 -118 63 2,2-二甲基丁烷 (CH3)3CCH2CH3 -98 50 2,3-二甲基丁烷 (CH3)2CHCH(CH3)2 -129 58 除了很小的烷烃外,链上每增加一个碳,沸点升高20到30度;我们发现,每个碳原子使沸点增加20~30°不仅适用于烷烃,而且也适用于我们以后要研究的各种同系列。熔点的增高并不如此有规律,因为在晶体中,分子间的作用力不仅取决于分子的大小,而且也取决于他们在晶格中填充得多好。为C1-C4四个烷烃是气体,但是,由于沸点和熔点随着链长的增加而升高,以后的13个(C5~C17)是液体,含有18个碳或18个碳以上的是固体。 具有相同碳原子数但结构不同的烷烃,他们的沸点有微小的差别。丁烷、戊烷和己烷异构体的沸点可以看到,支链异构体比直链异构体具有较低的沸点,支链越多,沸点越低。因此,正丁烷的沸点是0°,而异丁烷的沸点是-12°。正戊烷的沸点是36°,而有一个支链的异戊烷是28°,有两个支链的新戊烷是°。支化作用对沸点的影响在各类有机化合物中可以观察到,支化作用使沸点降低是合理的;由于支化作用,使分子的形状趋向于呈球形,这样,表面积便降低,结果是分子间作用力变弱,因此就能在较低的温度被克服。与经验规律“相似相溶”相一致,烷烃溶解于苯、乙醚和氯仿等非极性溶剂,而不溶于水和其他极性强的溶剂。把烷烃作为溶剂时,液态烷烃能溶解极性弱的化合物,而不能溶解极性强的化合物。密度是随着烷烃分子的增大而增加的,但在左右时趋于稳定;因此,所有烷烃的密度都很小。大多数有机化合物的密度比水小,这并不奇怪,因为它们和烷烃一样,主要是由碳和氢组成的。一般说来,一个化合物的密度如果要比水大,必需含有一个溴或碘那样的原子,或含有几个氯那样的原子

极性分子就是分子的中心不在分子所构成的几何体体心上,水有一个108度的键角,这个图形的中心就不在直线上,所以是极性,甲烷是正四面体结构,氢在正四面体四个角上,碳正好是体心,故非极性

甲醛非甲烷总烃毕业论文

ML28-1 杯芳烃化合物的合成及其在氟化反应中的相转移催化作用ML28-2 高效液相色谱分离硝基甲苯同分异构体ML28-3 甲烷部分氧化反应的密度泛函研究ML28-4 硝基吡啶衍生物的结构及其光化学的研究ML28-5 酰胺衍生的P,O配体参与的Suzuki偶联反应及其在有机合成中的应用ML28-6 磺酰亚胺的新型加成反应的研究ML28-7 纯水相Reformatsky反应的研究ML28-8 一个合成邻位氨基醇化合物的绿色新反应ML28-9 恶二唑类双偶氮化合物的合成与光电性能研究ML28-10 CO气相催化偶联制草酸二乙酯的宏观动力学研究ML28-11 三芳胺类空穴传输材料及其中间体的合成研究ML28-12 光敏磷脂探针的合成、表征和光化学性质研究ML28-13 脱氢丙氨酸衍生物的合成及其Michael加成反应研究ML28-14 5-(4-硝基苯基)-10,15,20-三苯基卟啉的亲核反应研究ML28-15 醇烯法合成异丙醚的研究ML28-16 手性螺硼酸酯催化的前手性亚胺的不对称硼烷还原反应研究ML28-17 甾类及相关化合物的结构与生物活性关系研究ML28-18 金属酞菁衍生物的合成与其非线性光学性能的研究ML28-19 新型手性氨基烷基酚的合成及其不对称诱导ML28-20 水滑石类化合物催化尿素醇解法合成有机碳酸酯研究ML28-21 膜催化氧化正丁烷制顺酐ML28-22 甲醇选择性催化氧化制早酸甲酯催化剂的研制与反应机理研究ML28-23 甲酸甲酯水解制甲酸及其动力学的研究ML28-24 催化甲苯与甲醇侧链烷基化反应制取苯乙烯和乙苯的研究ML28-25 烯胺与芳基重氮乙酸酯的新反应研究 ML28-26 核酸、蛋白质相互作用研究及毛细管电泳电化学发光的应用ML28-27 H-磷酸酯在合成苄基膦酸和肽衍生物中的应用ML28-28 微波辐射下三价锰离子促进的2-取代苯并噻唑的合成研究ML28-29 铜酞菁—苝二酰亚胺分子体系的光电转换特性研究ML28-30 新型膦配体的合成及烯烃氢甲酰化反应研究ML28-31 肼与羰基化合物的反应及其机理研究ML28-32 离子液体条件下杂环化合物的合成研究ML28-33 超声波辐射、离子液体以及无溶剂合成技术在有机化学反应中的应用研究ML28-34 有机含氮小分子催化剂的设计、合成及在不对称反应中的应用ML28-35 金属参与的不对称有机化学反应研究ML28-36 黄酮及噻唑类衍生物的合成研究ML28-37 钐试剂产生卡宾的新方法及其在有机合成中的应用ML28-38 琥珀酸酯类内给电子体化合物的合成与性能研究ML28-39 3-甲基-4-芳基-5-(2-吡啶基)-1,2,4-三唑铜(II)配合物的合成、晶体结构及表征ML28-40 直接法合成二甲基二氯硅烷的实验研究ML28-41 中性条件下傅氏烷基化反应的初步探索IIβ-溴代醚新合成方法的初步探索ML28-42 几种氧化苦参jian类似物的合成ML28-43 环丙烷和环丙烯类化合物的合成研究ML28-44 基于甜菜碱的超分子设计与研究ML28-45 新型C2轴对称缩醛化合物合成研究ML28-46 环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备ML28-47 蛋白质吸附的分子动力学模拟ML28-48 富硫功能化合物的分子设计与合成ML28-49 ABEEM-σπ模型在Diels-Alder反应中的应用ML28-50 快速确定丙氨酸-α-多肽构象稳定性的新方法ML28-51 SmI2催化合成含氮杂环化合物的研究及负载化稀土催化剂的探索ML28-52 新型金属卟啉化合物的合成及用作NO供体研究ML28-53 磁性微球载体的合成及其对酶的固定化研究ML28-54 甾体—核苷缀合物的合成及其性质研究ML28-55 非键作用和库仑模型预测甘氨酸-α-多肽构象稳定性ML28-56 多酸基有机-无机杂化材料的合成和结构表征ML28-57 5-芳基-2-呋喃甲醛-N-芳氧乙酰腙类化合物的合成、表征及生物活性研究ML28-58 氟喹诺酮类化合物的合成、表征及其生物活性研究ML28-59 手性有机小分子催化剂催化的Baylis-Hillman反应和直接不对称Aldol反应ML28-60 多核铁配合物通过水解途径识别蛋白质a螺旋ML28-61 一种简洁地获取结构参数的方法及应用ML28-62 水杨酸甲酯与硝酸钇的反应性研究及其应用ML28-63 脯氨酸及其衍生物催化丙酮与醛的不对称直接羟醛缩合反应的量子化学研究ML28-64 新型荧光分子材料的合成及其发光性能研究ML28-65 枸橼酸西地那非中间体1-甲基-3-丙基-4-硝基吡唑-5-羧酸的合成研究ML28-66 具有生物活性的含硅混合二烃基锡化合物的研究ML28-67 直接法合成三乙氧基硅烷的研究ML28-68 具有生物活性的含硅混合三烃基锡化合物的研究ML28-69 过氧钒有机配合物的合成及其对水中有机污染物氧化降解的催化性能研究ML28-70 查耳酮化合物的合成与晶体化学研究ML28-71 二唑衍生物的合成研究ML28-72 2-噻吩甲酸-2,2’-联吡啶二元、三元稀土配合物的合成、表征及光致发光ML28-73 3’,5’-二硫代脱氧核苷的合成及其聚合性质的研究ML28-74 β-烷硫基丁醇和丁硫醇类化合物及其衍生物的合成研究ML28-75 新型功能性单体丙烯酰氧乙基三甲基氯化铵合成与研究ML28-76 5-取代吲哚衍生物结构和性能的量子化学研究ML28-77 新型水溶性手性胺膦配体的合成和在芳香酮不对称转移氢化中的应用ML28-78 大豆分离蛋白的接枝改性及其溶液行为研究ML28-79 N-(4-乙烯基苄基)-1-氮杂苯并-34-冠-11的合成和其自由基聚合反应的研究ML28-80 稀土固体超强酸催化合成酰基二茂铁ML28-81 硒(硫)杂环化合物与金属离子的合成与表征ML28-82 新型二阶非线性光学发色团分子的设计、合成与性能研究ML28-83 对△~4-烯-3-酮结构的甾体选择性脱氢生成△~(4,6)-二烯-3-酮结构的研究ML28-84 对苯基苯甲酸稀土二元、三元配合物的合成、表征及荧光性能研究ML28-85 D-π-A共轭结构有机分子的设计合成及理论研究ML28-86 羧酸酯一步法嵌入式烷氧基化反应研究ML28-87 分子内电荷转移化合物溶液及超微粒分散体系的光学性质研究ML28-88 手性氨基烷基酚的合成ML28-89 酪氨酸酶的模拟及酚的选择性邻羟化反应研究ML28-90 单分子膜自组装结构与性质的研究ML28-91 氯苯三价阳离子离解势能面的理论研究ML28-92 香豆素类化合物的合成与晶体化学研究ML28-93 离子液体的合成及离子液体中的不对称直接羟醛缩合反应研究ML28-94 五元含氮杂环化合物的合成研究ML28-95 ONOO~-对胰岛素的硝化和一些因素对硝化影响的体外研究ML28-96 酶解多肽一级序列分析与反应过程建模及结构变化初探ML28-97 一系列二茂铁二取代物的合成和表征ML28-98 N2O4-N2O5-HNO3分析和相平衡及硝化环氧丙烷研究ML28-99 光催化甲烷和二氧化碳直接合成乙酸的研究ML28-100 N-取代-4-哌啶酮衍生物的合成研究ML28-101 电子自旋标记方法对天青蛋白特征分析ML28-102 材料中蛋白质含量测定及蛋白质模体分析ML28-103 具有不同取代基的偶氮芳烃化合物的合成及其性能研究ML28-104 非光气法合成六亚甲基二异氰酸酯(HDI)ML28-105 邻苯二甲酸的溶解度测定及其神经网络模拟ML28-106 甲壳多糖衍生物的合成及其应用研究ML28-107 吲哚类化合物色谱容量因子构致关系ab initio方法研究ML28-108 全氯代富勒烯碎片的亲核取代反应初探ML28-109 自催化重组藻胆蛋白结构与功能的关系ML28-110 二茂铁衍生的硫膦配体的合成及在喹啉不对称氢化中的应用ML28-111 离子交换电色谱纯化蛋白质的研究ML28-112 氨基酸五配位磷化合物的合成、反应机理及其性质研究ML28-113 手性二茂铁配体的合成及其在碳—碳键形成反应中的应用研究ML28-114 水溶性氨基卟啉和磺酸卟啉的合成研究ML28-115 金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸ML28-116 简单金属卟啉催化空气氧化环己烷和环己酮制备己二酸的选择性研究ML28-117 四苯基卟啉锌掺杂8-羟基喹啉铝与四苯基联苯二胺的电致发光性能研究ML28-118 可降解聚乳酸/羟基磷灰石有机无机杂化材料的制备及性能研究ML28-119 大豆分离蛋白接枝改性及应用研究ML28-120 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-121 常压非热平衡等离子体用于甲烷转化的研究ML28-122 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-123 蛋白质在晶体界面上吸附的分子动力学模拟ML28-124 微乳条件下氨肟化反应的探索性研究ML28-125 微波辅助串联Wittig和Diels-Alder反应的研究ML28-126 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-127 3-乙基-4-苯基-5-(2-吡啶基)-1,2,4-三唑配合物的合成、晶体结构及表征ML28-128 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-129 具有生物活性的1,2,4-恶二唑类衍生物的合成研究ML28-130 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-131 PhSeCF2TMS的合成及转化ML28-132 离子液体中脂肪酶催化(±)-薄荷醇拆分的研究ML28-133 脂肪胺取代蒽醌衍生物及其前体化合物合成ML28-134 萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究ML28-135 微波条件下哌啶催化合成取代的2-氨基-2-苯并吡喃的研究ML28-136 镍催化的有机硼酸与α,β-不饱和羰基化合物的共轭加成反应研究ML28-137 茚满二酮类光致变色化合物的制备与表征ML28-138 新型手性螺环缩醛(酮)化合物的合成ML28-139 芳醛的合成及凝胶因子的设计及合成ML28-140 固定化酶柱与固定化菌体柱耦联—高效拆分乙酰-DL-蛋氨酸ML28-141 苯酚和草酸二甲酯酯交换反应产品的减压歧化反应研究ML28-142 有机物临界性质的定量构性研究ML28-143 3-噻吩丙二酸的合成及卤代芳烃亲核取代反应ML28-144 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-145 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-146 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-147 功能性离子液的合成及在有机反应中的应用ML28-148 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-149 气相色谱研究β-二酮酯化合物的互变异构ML28-150 二元烃的混合物过热极限的测定与研究ML28-151 芳杂环取代咪唑化合物的合成及洛汾碱类过氧化物化学发光性能测定ML28-152 卤代苯基取代的咪唑衍生物的合成及其荧光性能的研究ML28-153 取代并四苯衍生物的合成及其应用ML28-154 苯乙炔基取代的杂环及稠环化合物的合成ML28-155 吸收光谱在有机发光材料研发材料中的应用ML28-156 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-157 苯并噻吩-3-甲醛的合成研究ML28-158 微波辅助串联Wittig和Diels-Alder反应的研究ML28-159 超声辐射下过渡金属参与的药物合成反应研究ML28-160 呋喃酮关键中间体—3,4-二羟基-2,5-己二酮的合成研究ML28-161 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-162 吡咯双希夫碱及其配合物的制备与表征ML28-163 负载型Lewis酸催化剂的制备及催化合成2,6-二甲基萘的研究ML28-164 PhSeCF2TMS的合成及转化ML28-165 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-166 多取代β-CD衍生物的合成及其对苯环类客体分子识别ML28-167 多取代_CD衍生物的合成及其对苯环类客体分子识别ML28-168 柿子皮中类胡萝卜素化合物的分离鉴定及稳定性研究ML28-169 毛细管电泳研究致癌物3-氯-1,2-丙二醇ML28-170 超临界水氧化苯酚体系的分子动力学模拟ML28-171 甲烷和丙烷无氧芳构化反应研究ML28-172 2-取代咪唑配合物的合成、晶体结构及表征ML28-173 气相色谱研究β-二酮酯化合物的互变异构ML28-174 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-175 二元烃的混合物过热极限的测定与研究ML28-176 氨基酸在多羟基化合物溶液中的热力学研究ML28-177 分子印迹膜分离水溶液中苯丙氨酸异构体研究ML28-178 杯[4]芳烃酯的合成及中性条件下对醇的酯化反应研究ML28-179 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-180 双氨基甲酸酯化合物的合成及分子自组装研究ML28-181 由芳基甲基酮合成对应的半缩水合物的新方法ML28-182 取代芳烃的选择性卤代反应研究ML28-183 吡啶脲基化合物的合成、分子识别及配位化学研究ML28-184 丙烯(氨)氧化原位漫反射红外光谱研究ML28-185 嘧啶苄胺二苯醚类先导结构的发现和氢化铝锂驱动下邻位嘧啶参与的苯甲酰胺还原重排反应的机理研究ML28-186 酰化酶催化的Markovnikov加成与氮杂环衍生物的合成ML28-187 多组分反应合成嗪及噻嗪类化合物的研究ML28-188 脂肪酶构象刻录及催化能力考察ML28-189 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-190 烯基铟化合物与高碘盐偶联反应的研究及其在有机合成中的应用ML28-191 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-192 邻甲苯胺的电子转移机理及组分协同效应研究ML28-193 负载型非晶态Ni-B及Ni-B-Mo合金催化剂催化糠醛液相加氢制糠醇的研究ML28-194 含吡啶环套索冠醚及配合物的合成与性能研究ML28-195 芳烃侧链分子氧选择性氧化反应研究ML28-196 多组分复合氧化物对异丁烯制甲基丙烯醛氧化反应的催化性能研究ML28-197 多孔甲酸盐[M3(HCOO)6]及其客体包合物的合成、结构和性质ML28-198 纳米修饰电极的制备及其应用于蛋白质电化学的研究ML28-199 对于几种蛋白质模型分子的焓相互作用的研究ML28-200 氨基酸、酰胺、多羟基醇化合物相互作用的热力学研究......

化学与环境有密切的关系。在某些情况下,环境污染主要是由化学污染物造成的,但我们更应该看到,很多环境问题的解决,要依靠化学方法。生活中的化学污染只要有以下几类:1、工厂排放的浓烟2、汽车、飞机、火车、轮船等交通工具排放的大量有害气体和粉尘3、燃烧含硫的燃料4、焚烧生活垃圾、树叶、废旧塑料5 、焚烧工业废弃物6、吸烟7、炒菜做饭时厨房的烟气8、垃圾的腐烂释放出有害气体9、工厂有毒气体的泄漏10、居室装修材料缓慢释放出的有毒气体11、路面扬尘12、农业上喷洒有毒农药13、使用喷发胶等使用化学稀释剂的的产品14、复印机、电视等电器产生的有害气体15、硫的氧化物与氮的氧化物是形成酸雨的主要原因,所以要调整能源结构、减少直接使用煤、石油、天然气等石化燃料。工业生产中产生的废气经净化处理后才能向大气排放。16、臭氧层受到氟氯烃,氮的氧化物等气体的破坏。二氧化碳、臭氧、甲烷、氟氯烃等气体能产生“温室效应”,使全球变暖,对人类正常的生活带来很大的影响。要防止臭氧层继续遭到破坏,防止“温室效应”进一步增强,可以采取以下措施:一、节约能源,减少使用煤、石油、天然气等矿物燃料,更多地利用太阳能、风能、地热等洁净能源。限制并逐步停止氟氯烃的生产和使用,大力植树造林,严禁乱砍滥伐森林、保护湿地等。17、厨房空气里既有燃料燃烧时释放出的二氧化碳、一氧化碳、二氧化硫等气体,又有煎炒食物时产生的气体和悬浮物(油烟)。所以要保持室内空气的流通,在厨房安装抽油烟机。新盖及新装修的居室也会有大量的有害气体,18、吸烟危害健康,同时也污染环境。19、大气污染的来源、危害、治理。主要污染物:二氧化硫、碳氧化物、氮氧化物、碳氢化物、飘尘、煤尘、放射性物质等。来源:煤、石油的燃烧,矿石冶炼,汽车尾气,工业废气等。20、水污染的来源、危害、治理。主要污染物:无机物,碱、盐等,重金属耗氧物质,植物营养物质,石油,难降解有机物等。另外还有氰化物、酚类、病原体、放射性物质、悬浮固体物等等。来源:石油炼制、工业废水、生活污水、使用过农药、化肥的农田排水、降雨淋洗大气污染物和地面淋洗固体垃圾等。21、居室污染的来源、危害及防治措施主要污染物:CO、CO2、SO2、NOx、NH3、醛类(如甲醛)、酚类、烟雾、烟尘、放射性稀有气体氡、电磁波、螨虫、细菌、病毒等。来源:煤、石油、液化气、天然气等的燃烧,煎、炒、烘、烤等高温烹调加工中产生的烟雾,烟草的燃烧,电器发出的电磁波,地毯中的螨虫,建筑装璜材料产生的甲醛、放射性稀有气体氡,化妆品,日用化学品,家宠等22、电池中含有大量的重金属离子,会对水体、土壤造成污染比方说:“赤潮”与水体富营养化“赤潮”是一种危害巨大的自然灾害,它会造成水质恶化和鱼类的大量死亡。20世纪以来,赤潮在世界各地频频发生,日本的濑户内海是赤潮的高发区,仅1976年就发生了326次之多。我国近来也时有发生,其中以1989年黄骅海域赤潮事件最大,损失最重(达3亿元人民币)。1998年春天,又一股来势汹涌的赤潮横扫了香港海和广东珠江口一带海域。赤潮过处,海水泛红,腥臭难闻,水中鱼类等动物大量死亡。当地的各类养殖场损失惨重。据《经济日报》1998年5月3日报道,此次赤潮事件,香港渔民损失近1亿港元;大陆珍贵养殖鱼类死亡逾300吨,损失超过4000万元。一时间,各新闻媒体炒作纷纷,人们不禁要问,何为“赤潮”?它是如何发生的?赤潮的发生机理至今尚无定论。一般认为,适度的水温、 盐分、营养盐、促生质(促进藻类生长的物质)等各种因素都是赤潮生物的增殖因子。而水体富营养化亦即含氮磷营养盐的富集是赤潮发生的一个不可缺少的先决条件。水体富营养化并非新生事件,自然界一直都存在这一现象。所谓沧海变桑田,部分原因就在于水体富营养化。它使湖泊等先变为沼泽,最后变为草原和森林,但这是一个成千上万年的过程。如今人类的活动使之变得异常剧烈。大量含氮、磷肥料的生产和使用、食品加工、畜产品加工等工业废水和大量城市生活污水特别是含磷洗涤剂产生的污水未经处理或处理不达标准即行排放,成为当今水体富营养化过程的重要物质来源。水体中过量的磷、氮营养盐,成为水中微生物和藻类的营养,使得蓝、绿藻和红藻迅速生长,急剧繁殖。它们的繁殖、生长、腐败,引起水中氧气大量减少,导致鱼虾等水生生物大量窒息死亡。某些藻类甚至还会释放出一些有毒物质使鱼类中毒死亡。此外,由于死亡藻类分解时会放出一些CH4、H2S等气体,使海水变得腥臭难闻,水质恶化。这种由于水体中植物营养物质过多蓄积而引起的污染,叫做水体的“富营养化”。这种现象在海湾出现叫做“赤潮”,如果是发生在淡水中,又叫做“水华”。因此,水体富营养化是赤潮(或水华)的先兆,赤潮是水体富营养化的结果。这时需要着重说明的是合成洗涤剂,它由表面活性剂、增净剂等组成。表面活性剂在环境中存留时间较长,消耗水体中的溶解氧,对水生生物有毒性,能造成鱼类畸形。增净剂如磷酸盐,可使水体富营养化。那么,如何治理水体富营养化呢?最有效最简单的办法莫过于把含大量氮磷元素的废水堵截在进入天然水体之前。例如,禁止含磷洗涤剂的生产和使用,对城市工业和生活污水进行净化处理,往污水中加入Ca(OH)2和Al2(SO4)3等沉淀剂除去磷等等。愿人们的行为能防止水体富营养化,消除赤潮的威胁。

建筑装饰材料挥发性有机物及去除设备研究现状Review of researches on VOCs emission and their elimination1 挥发性有机物及其对人体健康的影响挥发性有机化合物(VOC)是指环境监测中以氢焰离子检测器测出的非甲烷烃类物质的总称,其中包括含氧烃类、含卤烃类,广义场合包括甲烷、丙烷、氯烃、氟烃及醇、醚、酯、酮、醛等含氧烃、胺等含氮烃、二硫化碳等含硫烃。通常按沸点的范围把有机化合物分为极易挥发性有机物(VVOC),挥发性有机物(VOC),半挥发性有机物 (SVOC)和与颗粒物质或颗粒有机物有关的物质(POM)等4类。有些有机化合物不能包括在以上的分类中。这是由于这些化合物(如甲醛和丙烯酸)因其反应性或对热的不稳定性不易从吸附剂上回收或用气相色谱法进行分析。挥发性有机物对人体的影响主要表现在感官效应和超敏感效应,包括感官刺激,感觉干燥,刺激眼黏膜、鼻黏膜、呼吸道和皮肤等,挥发性有机化合物很容易通过血液到大脑,从而导致中枢神经系统受到抑制,人人产生头痛、乏力、昏昏欲睡和不舒服的感觉;醇、芳得烃和醛能刺激黏膜和上呼吸道;很多挥发性有机化合物如苯、甲氯乙烯、三氯乙烷、三氯乙烯和甲醛等被证明是致癌物或可疑致癌物。Molhave依据室内VOC对人体的影响不同,对其浓度进行了划分[1],该划分原则通常作为权威引用或作为指导,并在美国ASHRAE标准62-1989R中得到应用,他的划分原则见表1。表1 VOC浓度与人体反应浓度范围/ug/m3 人体反应<200 舒适200~3000 可能抱怨3000~25000 抱怨>25000 有毒2 现有建筑中挥发性有机物的情况中国华西医科大学公共健康学院1995年冬天对刚装修的两个居民房进行了两个半月的VOC测量,发现这些房中产生不同程度的甲醇、乙醇、戊烷、已烷、苯、庚烷、环已烷、甲苯、二甲苯、乙基苯[2]。其中最主要的有机物是甲醇,苯,甲苯和二甲苯。中国预防医学科学院环境卫生监测所对一个办公室空气污染进行测量,发现办公室内主要有机物是苯、甲苯、二甲苯、乙苯和甲醛,浓度从到 mg/m3。美国环保局(EPA)通过对16个建筑的随机抽样调查发现,有4个建筑中的VOC浓度超过了 mg/m3。欧洲对9个国家的56栋建筑进行了室内VOC浓度的测量[3],发现有22栋建筑中VOC浓度超过 mg/m3。文献[4]指出日本住宅中的有机物浓度为~ mg/m3。文献[5]指出瑞典公寓中VOC浓度为 mg/m3,居民家庭中为 mg/m3。文献[6]指出英国综合建筑中VOC浓度为 mg/m3。从上述调查情况可以看出,目前室内VOC污染状况是比较严重的。3 不同建筑装饰材料挥发性有机物的散发量测量为了从污染源上控制VOC的产生,国内外很多单位都对建筑装饰材料的VOC散发情况进行了测量。文献[7]对中国生产的8种室内材料即酸漆、黑漆、地板清洁剂、地板蜡、空气清新剂、地毯背面粘接剂、墙约、墙纸粘接剂和彩色墙纸进行了测量,发现其散发的VOC有3~30种。文献[8]指出了TVOC的最大传和其衰减度随着材料的不同而不同,流态物质如油漆、清漆和地板油的衰减度最大。EPA做了实验来确认各种室内污染源的散发量,同时确认各种因素对散发量的影响[9],这些因素包括温度、相对湿度、空气变化及小室负荷。结果表明,空气换气次数对散发量尤其是湿材料的散发量有很大的影响。文献[10]对37种典型的加拿大民用住宅所使用的建筑装饰材料发散的VOC进行了测量,得出了这些材料的VOC数据库。目前世界上已有3个体积为55 m3 (5m×4m×)的实验室用于研究建筑装饰材料的VOC产生量,它们分别是IRC/NRC①,NRMRL/USEPA②和CSIRO/Austrlia③,这些实验室均用不锈钢制作,具有加热、通风、空气调节系统,能够控制室内各种参数。为了使各实验室所测得的数据有可比性及可靠性,欧洲已经建立了对室内污染物测量方法、选样方法、数据分析方法、结果整理方法等统一的协定方案[11]。4 建筑装饰材料VOC散发标准的制定和材料的分类目前我国国家质检总局已颁发了《室内装饰装修材料有害物质限量》10项强制性标准,从2002年7月1日开始的散发量作了规定[12]。北欧国家根据普通材料最大的VOC散发量为40,100和数百ug/(m2·h),将材料分为MEC-A(低挥发性材料),MEC-B(中挥发性材料)和MEC-C(高挥发性材料)3类[13]。美国EPA现在做出了污染源分类数据库,这个数据库含有材料的VOC散发量及毒性[14]。5 挥发性有机物散机理的研究挥发性有机物的散发率通常由以下两个过程决定[15]:①材料内部的扩散;②材料表面到周围空气的散发。材料内部的扩散是浓度梯度、温度梯度及密度梯度共同作用的结果。每种化合物都有自己的质扩散系数,与其相对分子质量、分子体积、温度及与被扩散的物质特性有关。表面散发由几种机理共同作用,包括蒸发和对流。对于表面散发而言,VOC的散发率会受到空气中浓度、气流速度及温度的影响[16,17]。根据材料的不同,VOC的产生率可能由上述一个或两个因素起决定作用。根据散发机理的不同,室内建筑装饰材料的散发模型,总体上可分为两类即经验模型和物理模型。6 挥发性有机物去除机理和去除设备的研究目前人们主要集中研究活性炭和光触媒设备对VOC的去除特性。吸附是由于吸附剂和吸附质分子间的作用力引起的,这些作用力分为两大类--物理作用力和化学作用力,它们分别引起物理吸附和化学吸附。物理吸附是可逆过程,只能暂阻挡污染而不能消除污染。而化学吸附是不可逆的过程,是挥发性物质的分子与吸附剂起化学反应而生成非挥发性的物质,这种机理可使得低沸点的物质如甲醛被吸附掉。活性炭是最常用的吸附剂,它对许多VOC都是很有效的,但对甲醛作用很小。已有的研究成果表明活性炭对芳香族化合物的吸附优于对非芳香族化合物的吸附,如对苯的吸附优于对环已烷的吸附;对带有支键的烃类物质的吸附优于直键烃的吸附;对相对分子质量大、沸点高的化合物的吸附总是高于相对分子质量小、沸点低化合物的吸附;空气湿度增大,则可降低吸附的负荷;吸附质浓度越高,则吸附量也越高;吸附量随温度升高而下降;吸附剂内表面积愈大,吸附量越高。浸了高锰酸钾的氧化铝(PIA)对甲醛及低浓度的醛和有机酸有很高的去除效率。所以PIA经常与活性炭联合起来使用以提高过滤器的效率。目前美国市场上有3种化学过滤器,都是用活性炭作为吸附剂的[18],第1种是V字型装有大颗粒的活性炭,第2种是折边型装有小颗粒的活性炭,第3种是折边型的活性炭编织物过滤器,效率为40%~80%,当风速为时阻力为约100Pa。光触媒设备是以N型半导体的能带理论为基础,N型半导体吸收能量大于或等于禁带宽度(禁带能量)的光子(hv)后,进入激发状态,此时价带上的受激发电子路过禁带,进入导带。同时在价带上形成光致空穴。可以用作光催化剂的N型半导体种类繁多,有TiO2,ZnO, Fe2O3,CdS和 WO3等。由于TiO2的化学稳定性高、耐光腐蚀、难溶,并且具有较深的价带能级,可使一些吸热的化学反应在被光辐射的TiO2表面得到实现和加速,加之TiO2无毒、成本低,所以被广泛用作光催化氧化反应的催化剂。TiO2的禁带宽度(Eg)为,当用波长小于387nm的光照射TiO2时,由于光子的能量大于禁带的宽度,其价带上的电子被激发,跃过禁带进入导带,同时在价带上形成相应的空穴。光致空穴h 具有很强的捕获电子的能力,而导带上的光致电子e-又具有高的活性,在半导体表面形成了氧化还原体系。利用光致空穴h 和光致电子e-与空气中的水分和氧气相互反应产生的具有高浓度活性的氢氧游离基·OH,可氧化各种有机物质并使之矿化。如下所示:有机污染物的降解机理与其分子结构有关,分子结构不同其降解机理及途径也有差异。Hashimoto等研究了脂肪族化合物的光催化降解机理,认为脂肪烃先于·OH生成醇,并进而氧化为醛和酸,终生成二氧化碳和水[19]。文献[20]指出TiO2光催化反应中,一些芳得族化合物的光催化降解过程往往伴随着多种中间产物的生成。目前,对于各类芳香族化合物的光催化降解机理研究还很不完备,初步研究认为其主要降解机理还是在·OH基的作用下,芳香环结构发生变化,并进一步开环,从而逐步被氧化,最终矿化为二氧化碳、水及小分子无机物。对室内甲醛和甲苯的研究表明,污染物光催化氧化与其浓度有关,质量数在1×10-4以下的甲醛可完全被光催化分解为二氧化碳和水,而在较高浓度时,则被氧化成为甲酸。高浓度的甲苯光催化降解时,由于生成的难分解的中间产物富集在TiO2周围,阻碍了光催化反应的进行,去除效率非常低,但低浓度时TiO2表面则没有中间产物生成。文献[21]对非均相光催化技术在室内空气品质控制方面的应用进行了研究。指出光催化氧化技术室内空气中低浓度的VOC有着良好的效果。光催化氧化设备可进行模块化设计,而且气体通过时压力降低可忽略不计,这样很容易加装到中央空调空调的系统中去。美国新泽西州的通用空气技术(UAT)公司已开发生产了落地式及管道式光催化空气交净化与消毒设备[22]。尽管许多厂家都在研制VOC去除设备,但对于室内多种有机物污染并存的情况,如何描述这些设备的性能及如何用于实际工程中,则是亟待解决的问题。7 结语7.1 国内外实测结果表明,目前许多建筑中存在VOC污染。国内这方面的研究刚起步,建议有关部门应规范现有建筑装饰材料,根据有关规范要求,尽快建立建筑装饰材料VOC数据库。7.2 为了评估建筑装饰材料对室内带来的挥发性有机物,应考虑实际房间中多污染源的问题,通过建立合理的房间污染模型来切实指导空调系统的设计运行和维护。7.3 针对目前国内外空调房间存在挥发性有机物的污染的问题,应该改变空调系统设计方法即从设计阶段就应该考虑这些污染的去除问题,并开发出用于去除各种污染包括牢固挥发性有机物的高效设备。参考文献1 Molhave L. Volatile organic compounds, indoor air quality, and health. Proceedings of the 5th International Conference on Indoor Air Quality and Climate Indoor Air'90, V5:15-342 Li Y, Hu J, Liu G, et al. Determination of volatile organic compounds in residential buildings. The proceedings of the 7th International Conference on Indoor Air Quality and Climate- Indoor Air'96, V3, 1997: Bluyssen P M, Oliveria Fernandes E De, Fanger P O, et al. Final report, European audit project to optimize indoor air quality and energy consumption in office buildings, (Contract JOU2-CT92-0022), TNO Building Construction Research, Delft, The Netherlands, Park J S, Fujii S, Yuasa K, et al. Characteristics of volatile organic compounds in residence. Proceedings of the 7th International Conference on Indoor Air Quality and Climate-Indoor Air'96, V3, 1997:579-5845 Englund F, Hardrup L E. Indoor air voc levels during the first year of a new three-story building with wooden frame. The proceedings of the 7th International Conference on Indoor Air Quality and Climate- Indoor Air'96, V3, 1997: 47-516 Yu C, Crump D, Squire R. The indoor air concentration and the emission of VOCs and formaldehyde from materials installed in BRE low energy test houses. Indoor and Built Environment, 1997(6): Han K, Jing H. Chamber testing of VOCs from indoor materials. The proceedings of the 7th International Conference on Indoor Air Quality and Climate- Indoor Air'96, V3, 1997:107-1118 Tahtinen M, Saarela K, Tirkkonen T et al. Time dependence of tvoc emission for selected materials. Proceedings of the 7th International Conference on Indoor Air Quality and Climate- Indoor Air'96, V3, 1997: EPA Report No. EPA-600/R-94-141. Characterization of emissions from carpet samples using a 10 gallon aquarium as the source chamber. Prepared by Acurex Environmental Corporation for the U S Environmental Protection Agency Office of Research and Development, Figley D, Makohon J, Dumont R, et al. Development of a voc emission database for building materials. The Proceedings of the 7thd International Conference on Indoor Air Quality and Climate- Indoor Air' 96, V3, 1997: Saarela K, Clausen G, Pejtersen J, et al. European database on indoor air pollution sources in buildings, principles of the protocol for testing of building materials. The Proceedings of the 7th International Conference on Indoor Air Quality and Climate- Indoor Air'96, V3, 1997: Schriever R, Marutzky R. VOC emissions of coated parquet floors. Indoor Air'90. Proceedings of the 5th International Conference on Indoor Air Quality and Climate. Toronto, 1990, 3: Saarela K, Sandell E. Comparative emission studies of flooring materials with reference to nordic guidenlines. ASHRAE IAQ 94 Healthy Buildings Conference Proccedings, Washington, DC: Johnston P K, Cinalli C A, Girman J R ,et al. Priority ranking and characterisation of indoor air sources. Characterising Sources of Indoor Air Pollution and Related Sink Effects. ASTM STP 1287, Bruce A Tichenor editor, American Society for Testing and Materials, USA, 1996:392~400。15 Knudsen H N, Kjaer U D, Nielsen P A. Characterization of emissions from building products: long-term sensory evaluation, the impact of concentration and air velocity. The Proceedings of the 7th International Conference on Indoor Air Quality and Climate-Indoor Air'96, V3, 1997: Tichnor B A, Guo Z, Sparks L E. Fundamental mass transfer model for indoor air emissions form surface coatings. Indoor Air, 1993, 3 (4): Clausen P A. Emission of volatile and semi-volatile organic compounds from water borne paints- the effect of film thickness. Indoor Air: International Journal of Indoor Air quality and Climate, 1993, 3 (4): Michael A J. Chemical filtration of indoor air : An application primer. ASHRAE J, 1996 (2).19 Hashimoto Kazuhito, et al. J Phys. Chem, 1984, 88: 藤屿昭,机能材料,1998,18(9):2921 Jacoby W A, et al. Heterogeneous photocatalysis for control of volatile organic compunds in indoor air. J Air & Waste Manage Assoc, 1996, 46:

苯与烷烃酸性比较研究论文

苯的酸性比烷烃的酸性大。苯是一种碳氢化合物,是有酸性的,而且比烷烃的酸性要大。烷烃是只有碳碳单键的链烃,是最简单的一类有机化合物。

烷烃不能与液溴与酸性高锰酸钾反应烯烃可以使液溴与酸性高锰酸钾褪色苯不能使液溴和酸性高锰酸钾褪色

乙烷与苯的酸性比较,苯的酸性大于乙烷,乙烷都是饱和键,相对更稳定,而苯有不饱和键容易发生加成反应,取代反应等。

烯烃>炔烃>烷烃烷烃性质稳定烯烃的双键是一个pai键,一个sigema键,而炔烃的是1个sigema键,2个pai键,性质跟稳定。(打不上希腊字母,我说的是单烯烃,如果是2烯烃,共轭烯烃等,就说不定了)

自然期刊nature

《科学》是美国科学促进会出版的一份学术期刊,为全世界最权威的学术期刊之一。《科学》是发表最好的原始研究论文、以及综述和分析当前研究和科学政策的同行评议的期刊之一。该杂志于1880年由爱迪生投资1万美元创办,于1894年成为美国最大的科学团体“美国科学促进会”(AmericanAssociationfortheAdvancementofScience,AAAS)的官方刊物。全年共51期,为周刊,全球发行量超过150万份。

《自然》:《Nature》杂志1869年创刊于英国,是世界上最早的国际性科技期刊,涵盖生命科学、自然科学、临床医学、物理化学等领域。自成立以来,始终如一地报道和评论全球科技领域里最重要的突破,影响因子(17年数据)。其办刊宗旨是“将科学发现的重要结果介绍给公众,让公众尽早知道全世界自然知识的每一分支中取得的所有进展”。

《Nature》网站涵盖的内容相当丰富,不仅提供1997年6月到最新出版的《Nature》杂志的全部内容,其姊妹刊物《Nature》出版集团(TheNaturePublishingGroup)出版的8种研究月刊,6种评论杂志,2种工具书。

扩展资料:

《科学》资金来源

多数科技期刊都要向读者收取审稿、评论、发表的相关费用。但《科学》杂志发表来稿是免费的。其杂志的资金来源共有三部分:AAAS的会员费、印刷版和在线版的订阅费、广告费。

《科学》竞争对手

在全球,《科学》杂志的主要对手为英国伦敦的《自然》杂志,该杂志创办于1869年,曾发表了大量的达尔文、赫胥黎等大师的文章。21世纪的前4年中,二者为率先发表人类基因排列的图谱而激烈竞争。

参考资料来源:百度百科-自然

参考资料来源:百度百科-科学

属于第一梯队的期刊。

Springer中文名字叫做施普林格。其实从官网的about上,我们基本就可以知道这个出版社出版的相关期刊。1842年,在柏林成立,是一个总部位于德国的世界性出版公司,它出版教科书、学术参考书以及同行评论性杂志,专注于科学、技术、数学以及医学领域。一个重磅的消息就是,在2015年出版业两大巨头 Springer 和 Nature 完成合并,合并后的新公司叫 “Springer Nature"。有了nature的加持,Springer显然就是巨无霸了。

《Nature》是世界上历史悠久的、最有名望的科学杂志之一,首版于1869年11月4日。  与当今大多数科学论文杂志专一于一个特殊的领域不同,其是少数依然发表来自很多科学领域的一手研究论文的杂志(其它类似的杂志有《科学》和《美国科学院学报》等)。在许多科学研究领域中,很多最重要、最前沿的研究结果都是以短讯的形式发表在《自然》上。

《nature》和《science》的主刊定位为兼顾学术期刊和科学杂志,涵盖了所有学科,属于综合性科学杂志《nature》和《science》的子刊偏向某一专业的专门针对某一类别的研究。

主刊与其子刊的档次差距在于影响力或者影响因子:

1、根据期刊引证报告,《科学》在2014年的影响因子为。nature影响因子为(17年数据)。

2、Nature Geoscience是Nature08年创刊的地球科学子刊,14年影响因子,这个地球科学,尤其是地质类有影响力的一区专业期刊里面是很有含金量的。即使是Nature主刊,如果只考虑地球科学方面的文章的话,影响因子也很难超过15。

3、Nature Communcations是2010年创刊的新子刊,宗旨跟Nature主刊比较一致,2017-2018最新影响因子为。

4、通过IF比较,某些子刊类的review甚至高于主刊,但综合来看,主刊比其子刊更有影响力,也更难发文章。

Nature系列刊物有三类:综述性期刊,对重要的研究工作进行综述评论;研究类期刊,以发表原创性研究报告为主;临床医学类期刊,对医学领域重要的研究进展做出权威性解释,并促进最新的研究成果转变为临床实践。截止2018年1月14日下午,自然出版集团旗下包括Nature本身以Nature打头的期刊已经52个,其中子刊为51个!

science旗下刊物有Science Advances;Science Translational Medicine;Science Signaling;Science Immunology;Science Robotics。

nature的论文不仅要求具有“突出的科学贡献”,还必须“令交叉学科的读者感兴趣”。science的主要关注点是出版重要的原创性科学研究和科研综述,此外《科学》也出版科学相关的新闻、关于科技政策和科学家感兴趣的事务的观点。

同一篇文章可以同时发子刊主刊。

科技论文基本以3种形式出现在《nature》和《science》:

(1)学术论文:《Nature》:Articale;《Science》:Research articale;

(2)研究报道:《Nature》:Letter;《Science》:Report;

(3)通讯:《Nature》:Correspondence;《Science》:Letter。

两刊的一个重要差别是《Science》允许参考文献中在参考文献号下列出一个以上的文献,同时也允许在参考文献下加入简要注解说明等。这2点在《Nature》中都是不允许的。因此,在同一类文章形式中,《Science》提供了较大的空间。

参考资料:

相关百科

热门百科

首页
发表服务