首页

> 期刊论文知识库

首页 期刊论文知识库 问题

求关于凝胶的论文文献最多的论文

发布时间:

求关于凝胶的论文文献最多的论文

作者 | 张晴丹

你能想象克的“绳子”可以提起5公斤重的物体吗?

没开玩笑,这是科研人员创造出的一种力学性能惊人的新材料。它不但具有很好的拉伸性能,拉伸长度能达600%,而且还非常坚韧。

近日,美国北卡罗来纳州立大学Dickey实验室博士后王美香以第一作者的身份,在Nature Materials上发表论文,介绍了这款新材料。它属于离子液体凝胶的一种,在抗拉伸性能和韧性上创造了这类材料的最高纪录,也展现出比水凝胶更广阔的应用前景。

评审专家之一、麻省理工学院教授赵选贺认为,“这些透明的离子液体凝胶具有非常坚韧的机械性能,而且最大的亮点是制作简单,易于使用。”

1+1 10,凝胶界的“佼佼者”

“通常凝胶的机械性能很弱,比如豆腐。但在自然界中也有例外,比如人体内的软骨。一些研究人员一直在努力制造坚韧的凝胶,这启发了我们。”论文共同通讯作者、北卡罗来纳州立大学Dickey实验室负责人Michael D. Dickey告诉《中国科学报》。

此次创造出的离子液体凝胶含有超过60%的离子液体,主要包含丙烯酸和丙烯酰胺两种物质,前者是用于婴儿尿不湿吸水的主要材料,后者是用于隐形眼镜的主要材料。最后,混合材料兼具了聚丙烯酰胺和聚丙烯酸离子液体凝胶的优点,实现了1+1 10的效果。

王美香介绍,新材料透明度达90%以上,其内部的聚合物网络微结构使凝胶拥有极高的力学性能,可拉伸而且非常坚韧。拉伸的长度能达600%,模量有约50个兆帕,断裂强度约有13个兆帕。这是目前离子液体凝胶界的最高纪录。

论文中展示的是用克的离子液体凝胶材料,轻松提起1公斤重量的物体。事实上提起5公斤的重量也不在话下,但因实验室没有5公斤的标准件,他们后来用5公斤的水桶做了实验,材料本身不会有任何破损。

离子液体这个溶剂本身不挥发,且具有很高的热稳定性和导电性。因此,创造出的这款离子液体凝胶具有广阔的应用前景。“可用于电池、传感器、3D打印、致动器和柔性电子设备等。”Michael D. Dickey说。

可穿戴柔性电子器件是当下科学研究的热门之一,要同时满足可弯折、扭曲、拉伸等需求,所以对材料的要求极高。以往做展示用的较多的是传统柔性材料——水凝胶,但水凝胶稳定性是个大问题,长期暴露在空气中会导致水分蒸发、性能受损。

“离子液体凝胶完全可以替代水凝胶在可穿戴柔性电子器件上的应用。首先它很稳定不挥发,不需要任何包覆;其次具有高导电性,不需要额外添加导电介质;可穿戴设备往往需要大变形,离子液体凝胶还可以用来开发应变传感器。”王美香说,“还有一点,它具有自愈合和形状记忆的特性。”

一步法轻松做成

长期以来,在凝胶材料领域最火的,非水凝胶莫属。

实际上,水凝胶在生活中已相当常见。比如,隐形眼镜、果冻、龟苓膏等都是水凝胶的“产物”。自62年前水凝胶横空出世,科研人员便绞尽脑汁地挖掘其力学性能,涌现了无数重大成果。

但同为凝胶材料,离子液体凝胶领域的研究则发展较慢。例如力学性能研究还是一块空白,很难把它的力学性能做到与高强度水凝胶相媲美的程度。

在这篇论文发表之前,合成高强度离子液体凝胶的方法并不易。为了提高材料的力学性能,一些研究人员采用多步法或者溶剂交换,整个过程耗时长、成本高,而且浪费资源。

挑战不可能,这是科研工作者骨子里的基因,恰好离子液体这个溶剂的“72般变化”也让王美香着迷。

“顾名思义,水凝胶用的溶剂只有一种,就是水,而离子液体凝胶用的溶剂是离子液体,有成千上万种,这正是它的魅力所在。”王美香对《中国科学报》说。离子液体在室温下是一种液态的熔融盐,里面含有正离子和负离子,只要熔融盐里的正负离子不一样,就可以实现离子液体的千变万化。

研究选材是从聚丙烯酸和聚丙烯酰胺的单体开始。

最初,王美香把两种材料分开来做。当把丙烯酰胺融到离子液体后,产生的凝胶跟她预想的完全不一样,不透明、发白,就像晒干的面条一样特别脆,一碰就断。随后她又试了丙烯酸,做出来的凝胶则超级软,透明度达到百分百。

完全就是两种极端!这让她无比兴奋,如果把三者混在一起,会擦出什么样的火花呢?

“把丙烯酰胺和丙烯酸融到离子液体里,再加入引发剂和交联剂,然后混匀,用高功率紫外灯照射,3分钟就能制作出论文中这种新型混合材料。”王美香说,“就是这么简单。”

一步法就这样诞生了!它为离子液体凝胶研究开启了新世界的大门。

为实验蓄能,把理论变为现实

王美香在西安交通大学读博期间,就一直从事水凝胶研究。但她看到了离子液体凝胶材料的巨大潜力,因此萌生了调整研究方向的想法。

2018年12月,王美香从西安交通大学获得材料科学与工程博士学位后,进入北卡罗来纳州立大学Dickey实验室做博士后,主要致力于高机械性能凝胶材料的设计和制备,以及研究其在可穿戴柔性电子器件、全固态电池以及超级电容器、传感器和驱动器等领域的应用。

在新的平台,王美香也顺利转换到新赛道,开始离子液体凝胶材料研究。

但是,王美香刚进入北卡罗来纳州立大学,新冠疫情就来了,一下打乱了研究计划,学校封闭,无法进入实验室。

她便利用这段时间查阅文献,为实验蓄能。在家“闭关”三个月后,终于等来复工的消息。王美香便一头扎进实验里,每天在实验室待八个小时,把实验过程中看到的现象记录下来,晚上回家查资料来分析这些现象的成因。

幸运的是,这项工作从始至终都比较顺利,这篇论文投给期刊也很快被接收。并且,评审专家都对该成果给了很高的评价。

“接下来,我们将会做应用方面的拓展,想把离子液体凝胶与3D打印技术相结合,用于开发新型柔性机器人。”王美香说。

参与这项研究的一共有9位作者,其中华人学者就有4位。除了王美香,另外3位分别是论文共同通讯作者、西安交通大学教授胡建,西安交通大学硕士生张鹏尧,以及美国内布拉斯加州大学林肯分校研究助理教授钱文。

图1:基于快速催化纳米强化策略的LSN-Fe/PAM水凝胶设计策略。

图2:LSN铁/聚丙烯酰胺水凝胶中LSN的表征和动态氧化还原反应。

图3:LSN-Fe/PAM水凝胶的力学性能。

图4:LSN-Fe/PAM水凝胶的自粘性能。

图5:LSN-Fe/PAM水凝胶的抗紫外线性能和透明度。

相关论文以题为 Ultrafast Fabrication of Lignin-Encapsulated Silica Nanoparticles Reinforced Conductive Hydrogels with High Elasticity and Self-Adhesion for Strain Sensors 发表在 《Chemistry of Materials》上。通讯作者 是 北京林业大学 杨俊副教授 。

参考文献:

气凝胶材料论文发表最多的期刊

“气凝胶”是半固体状态的凝胶经干燥、去除溶剂后的产物,外表呈固体状,内部含有众多孔隙,充斥着空气,因而密度极小。浙江大学高分子科学与工程学系高超教授的课题组将含有石墨烯和碳纳米管两种纳米材料的水溶液在低温环境下冻干,去除水分、保留骨架,成功刷新了“最轻材料”的纪录。此前的“世界纪录保持者”是由德国科学家在2012年底制造的一种名为“石墨气凝胶”的材料,密度为每立方厘米0.18毫克。这一研究成果已于2013年2月18日在线发表在《先进材料》期刊上,并被《自然》杂志在“研究要闻”栏目中重点配图评论。

跟具体发表期刊有关,但是不错了。虽然影响因子不能完全评价一个期刊的好与坏,但是能在影响因子高的期刊上发文,也是一种被认可的表现。进入2019年以来,材料化学类影响因子(以2018年为准)排名前五的期刊为Nature Reviews Materials, Chemical Reviews, Nature Energy, Chemical Society Reviews和Nature Materials,最高的Nature Reviews Materials影响因子高达74,发文数量为59篇。总发文数量前10名的高校或机构发文情况:其中中国科学院以413篇的发文数量高居榜首,紧随其后的是清华大学(105篇),中科大(74篇)及北京大学(73篇)。中科院如此高的发文数量一方面是因为拥有数量众多的研究所,另一方面是因为中科院作为中国自然科学的最高学术机构,具有很强的攻克科研难题的能力。在高校中清华大学、中科大及北京大学作为中国最高学府,在材料学科的建设与培养中也具有非常亮眼的表现。

水凝胶论文

图1:基于快速催化纳米强化策略的LSN-Fe/PAM水凝胶设计策略。

图2:LSN铁/聚丙烯酰胺水凝胶中LSN的表征和动态氧化还原反应。

图3:LSN-Fe/PAM水凝胶的力学性能。

图4:LSN-Fe/PAM水凝胶的自粘性能。

图5:LSN-Fe/PAM水凝胶的抗紫外线性能和透明度。

相关论文以题为 Ultrafast Fabrication of Lignin-Encapsulated Silica Nanoparticles Reinforced Conductive Hydrogels with High Elasticity and Self-Adhesion for Strain Sensors 发表在 《Chemistry of Materials》上。通讯作者 是 北京林业大学 杨俊副教授 。

参考文献:

美国约翰·霍普金斯大学医学院报告称,他们开发出一种新型水凝胶生物材料,在软骨修复手术中将其注入骨骼小洞,能帮助刺激病人骨髓产生干细胞,长出新的软骨。在临床试验中,新生软骨覆盖率达到86%,术后疼痛也大大减轻。论文发表在2013年1月9日出版的《科学·转化医学》上。 埃里希还说,研究小组正在开发下一代移植材料,水凝胶和黏合剂就是其中之一,二者将被整合为一种材料。此外,她们还在研究关节润滑和减少发炎的技术。 加拿大最新的研究显示,水凝胶(Hydrogel)不仅有利于干细胞(Stem cell)移植,也可加速眼睛与神经损伤的修复。研究团队指出,像果冻般的水凝胶是干细胞移植的理想介质,可以帮助干细胞在体内存活,修复损伤组织。 中国科学院兰州化学物理所研究员周峰课题组利用分子工程,设计制备出一种具有双交联网络的超高强度水凝胶,大大提高了水凝胶的机械性能。相关研究已发表于《先进材料》。 据国外媒体报道,美国加州大学圣迭戈分校的纳米科学工程师日前研发出了一种凝胶,这种凝胶中含有能够吸附细菌毒素的纳米海绵。这 种凝胶有望用于治疗抗药性金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus,MRSA。这种细菌产生了对所有青霉素的抗药性,常常被称作“超级细菌”)导致的皮肤和伤口上的感染。在不使用抗生素的情况下,这种“纳米 海绵水凝胶”能够把被抗药性金黄色葡萄球菌感染的小鼠皮肤上的损伤减小到最小。这项研究日前发表在学术期刊《先进材料》(Advanced Materials)上。

作者 | 张晴丹

你能想象克的“绳子”可以提起5公斤重的物体吗?

没开玩笑,这是科研人员创造出的一种力学性能惊人的新材料。它不但具有很好的拉伸性能,拉伸长度能达600%,而且还非常坚韧。

近日,美国北卡罗来纳州立大学Dickey实验室博士后王美香以第一作者的身份,在Nature Materials上发表论文,介绍了这款新材料。它属于离子液体凝胶的一种,在抗拉伸性能和韧性上创造了这类材料的最高纪录,也展现出比水凝胶更广阔的应用前景。

评审专家之一、麻省理工学院教授赵选贺认为,“这些透明的离子液体凝胶具有非常坚韧的机械性能,而且最大的亮点是制作简单,易于使用。”

1+1 10,凝胶界的“佼佼者”

“通常凝胶的机械性能很弱,比如豆腐。但在自然界中也有例外,比如人体内的软骨。一些研究人员一直在努力制造坚韧的凝胶,这启发了我们。”论文共同通讯作者、北卡罗来纳州立大学Dickey实验室负责人Michael D. Dickey告诉《中国科学报》。

此次创造出的离子液体凝胶含有超过60%的离子液体,主要包含丙烯酸和丙烯酰胺两种物质,前者是用于婴儿尿不湿吸水的主要材料,后者是用于隐形眼镜的主要材料。最后,混合材料兼具了聚丙烯酰胺和聚丙烯酸离子液体凝胶的优点,实现了1+1 10的效果。

王美香介绍,新材料透明度达90%以上,其内部的聚合物网络微结构使凝胶拥有极高的力学性能,可拉伸而且非常坚韧。拉伸的长度能达600%,模量有约50个兆帕,断裂强度约有13个兆帕。这是目前离子液体凝胶界的最高纪录。

论文中展示的是用克的离子液体凝胶材料,轻松提起1公斤重量的物体。事实上提起5公斤的重量也不在话下,但因实验室没有5公斤的标准件,他们后来用5公斤的水桶做了实验,材料本身不会有任何破损。

离子液体这个溶剂本身不挥发,且具有很高的热稳定性和导电性。因此,创造出的这款离子液体凝胶具有广阔的应用前景。“可用于电池、传感器、3D打印、致动器和柔性电子设备等。”Michael D. Dickey说。

可穿戴柔性电子器件是当下科学研究的热门之一,要同时满足可弯折、扭曲、拉伸等需求,所以对材料的要求极高。以往做展示用的较多的是传统柔性材料——水凝胶,但水凝胶稳定性是个大问题,长期暴露在空气中会导致水分蒸发、性能受损。

“离子液体凝胶完全可以替代水凝胶在可穿戴柔性电子器件上的应用。首先它很稳定不挥发,不需要任何包覆;其次具有高导电性,不需要额外添加导电介质;可穿戴设备往往需要大变形,离子液体凝胶还可以用来开发应变传感器。”王美香说,“还有一点,它具有自愈合和形状记忆的特性。”

一步法轻松做成

长期以来,在凝胶材料领域最火的,非水凝胶莫属。

实际上,水凝胶在生活中已相当常见。比如,隐形眼镜、果冻、龟苓膏等都是水凝胶的“产物”。自62年前水凝胶横空出世,科研人员便绞尽脑汁地挖掘其力学性能,涌现了无数重大成果。

但同为凝胶材料,离子液体凝胶领域的研究则发展较慢。例如力学性能研究还是一块空白,很难把它的力学性能做到与高强度水凝胶相媲美的程度。

在这篇论文发表之前,合成高强度离子液体凝胶的方法并不易。为了提高材料的力学性能,一些研究人员采用多步法或者溶剂交换,整个过程耗时长、成本高,而且浪费资源。

挑战不可能,这是科研工作者骨子里的基因,恰好离子液体这个溶剂的“72般变化”也让王美香着迷。

“顾名思义,水凝胶用的溶剂只有一种,就是水,而离子液体凝胶用的溶剂是离子液体,有成千上万种,这正是它的魅力所在。”王美香对《中国科学报》说。离子液体在室温下是一种液态的熔融盐,里面含有正离子和负离子,只要熔融盐里的正负离子不一样,就可以实现离子液体的千变万化。

研究选材是从聚丙烯酸和聚丙烯酰胺的单体开始。

最初,王美香把两种材料分开来做。当把丙烯酰胺融到离子液体后,产生的凝胶跟她预想的完全不一样,不透明、发白,就像晒干的面条一样特别脆,一碰就断。随后她又试了丙烯酸,做出来的凝胶则超级软,透明度达到百分百。

完全就是两种极端!这让她无比兴奋,如果把三者混在一起,会擦出什么样的火花呢?

“把丙烯酰胺和丙烯酸融到离子液体里,再加入引发剂和交联剂,然后混匀,用高功率紫外灯照射,3分钟就能制作出论文中这种新型混合材料。”王美香说,“就是这么简单。”

一步法就这样诞生了!它为离子液体凝胶研究开启了新世界的大门。

为实验蓄能,把理论变为现实

王美香在西安交通大学读博期间,就一直从事水凝胶研究。但她看到了离子液体凝胶材料的巨大潜力,因此萌生了调整研究方向的想法。

2018年12月,王美香从西安交通大学获得材料科学与工程博士学位后,进入北卡罗来纳州立大学Dickey实验室做博士后,主要致力于高机械性能凝胶材料的设计和制备,以及研究其在可穿戴柔性电子器件、全固态电池以及超级电容器、传感器和驱动器等领域的应用。

在新的平台,王美香也顺利转换到新赛道,开始离子液体凝胶材料研究。

但是,王美香刚进入北卡罗来纳州立大学,新冠疫情就来了,一下打乱了研究计划,学校封闭,无法进入实验室。

她便利用这段时间查阅文献,为实验蓄能。在家“闭关”三个月后,终于等来复工的消息。王美香便一头扎进实验里,每天在实验室待八个小时,把实验过程中看到的现象记录下来,晚上回家查资料来分析这些现象的成因。

幸运的是,这项工作从始至终都比较顺利,这篇论文投给期刊也很快被接收。并且,评审专家都对该成果给了很高的评价。

“接下来,我们将会做应用方面的拓展,想把离子液体凝胶与3D打印技术相结合,用于开发新型柔性机器人。”王美香说。

参与这项研究的一共有9位作者,其中华人学者就有4位。除了王美香,另外3位分别是论文共同通讯作者、西安交通大学教授胡建,西安交通大学硕士生张鹏尧,以及美国内布拉斯加州大学林肯分校研究助理教授钱文。

导电水凝胶的研究现状论文

图1:基于快速催化纳米强化策略的LSN-Fe/PAM水凝胶设计策略。

图2:LSN铁/聚丙烯酰胺水凝胶中LSN的表征和动态氧化还原反应。

图3:LSN-Fe/PAM水凝胶的力学性能。

图4:LSN-Fe/PAM水凝胶的自粘性能。

图5:LSN-Fe/PAM水凝胶的抗紫外线性能和透明度。

相关论文以题为 Ultrafast Fabrication of Lignin-Encapsulated Silica Nanoparticles Reinforced Conductive Hydrogels with High Elasticity and Self-Adhesion for Strain Sensors 发表在 《Chemistry of Materials》上。通讯作者 是 北京林业大学 杨俊副教授 。

参考文献:

美国约翰·霍普金斯大学医学院报告称,他们开发出一种新型水凝胶生物材料,在软骨修复手术中将其注入骨骼小洞,能帮助刺激病人骨髓产生干细胞,长出新的软骨。在临床试验中,新生软骨覆盖率达到86%,术后疼痛也大大减轻。论文发表在2013年1月9日出版的《科学·转化医学》上。 埃里希还说,研究小组正在开发下一代移植材料,水凝胶和黏合剂就是其中之一,二者将被整合为一种材料。此外,她们还在研究关节润滑和减少发炎的技术。 加拿大最新的研究显示,水凝胶(Hydrogel)不仅有利于干细胞(Stem cell)移植,也可加速眼睛与神经损伤的修复。研究团队指出,像果冻般的水凝胶是干细胞移植的理想介质,可以帮助干细胞在体内存活,修复损伤组织。 中国科学院兰州化学物理所研究员周峰课题组利用分子工程,设计制备出一种具有双交联网络的超高强度水凝胶,大大提高了水凝胶的机械性能。相关研究已发表于《先进材料》。 据国外媒体报道,美国加州大学圣迭戈分校的纳米科学工程师日前研发出了一种凝胶,这种凝胶中含有能够吸附细菌毒素的纳米海绵。这 种凝胶有望用于治疗抗药性金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus,MRSA。这种细菌产生了对所有青霉素的抗药性,常常被称作“超级细菌”)导致的皮肤和伤口上的感染。在不使用抗生素的情况下,这种“纳米 海绵水凝胶”能够把被抗药性金黄色葡萄球菌感染的小鼠皮肤上的损伤减小到最小。这项研究日前发表在学术期刊《先进材料》(Advanced Materials)上。

关于胶粘剂的论文有参考文献吗

I heard a wise man say,"Give crowns and pounds and guineas

您好,很高兴为你解答! 耐低温胶粘剂是指适合在低温条件下使用的胶粘剂。关于耐低温的要求,已由-40℃下降至-60℃、-80℃甚至-100℃以及更低的温度。超过-100℃则属超低温的范畴。 适合于低温应用的胶粘剂有环氧树脂、环氧与尼龙、酚醛、有机硅氧烷的共聚物、聚酞胺、聚氨酯、聚酰亚胺和聚苯并咪唑等品种。 如聚苯并咪唑胶粘剂在-196℃温度下的剪切强度为,在-196℃经10?次疲劳试验后的剪切强度为15.您好,很高兴为你解答!Mpa,比在您好,很高兴为你解答!5℃下的性能好。这种结构胶黏剂具有很高的黏合抗冲击强度和低温适应性,由甲基丙烯酸酯单体、玻璃化转化温度<-您好,很高兴为你解答!5℃的弹性体、接枝共聚物和催化游离基聚合的催化剂组成。 耐低温胶粘剂的特点是什么?。耐低温胶粘剂耐低温胶粘剂是指能在超低温环境中使用并具有足够强度的一种胶粘剂,通常由PU、EP改性PU和PU及尼龙改性的EP等主体材料配制而成。 EP体系的胶粘剂最适合低温使用,但必须通过多途径改性或开发新型EP及胺类固化剂,才能获得综合性能较好的EP,能快速低温固化,可有效降低由于芯片和基板的热膨胀系数不匹配或外力造成的冲击,提高产品的可靠性。 产品质量一直很好,性价比高,很多知名的3C电子制造商都有采购这家的

2005年度国家技术发明奖 落叶松单宁酚醛树脂胶粘剂的研究与应用由南京林业大学竹材工程研究中心张齐生等完成 该项目属于木材科学与技术、林产化学加工工程领域,是用落叶松树皮栲胶替代苯酚(苯酚取代率为60%)制作落叶松单宁酚醛树脂胶,用于制造室外用胶合板及其它人造板。1988年5月开始小试,1990年3月通过中试鉴定,1998年7月获得国家发明专利。 落叶松单宁由于分子量大,化学活性太强,伴生物的粘度大,因此在制作落叶松单宁酚醛胶时遇到很多困难,其中主要的有:胶液的活性期太短,胶合强度不足,胶液粘度太大等。该项目通过对单宁的降解改性及选用合理的反应条件(配方、投料顺序、温度、时间等)成功地解决了这些困难,得到符合标准的胶粘剂,并且经过不断推广、改进,积累了大量的经验,不断提高质量,扩大应用领域。 与国外同类研究比较,我国是世界上唯一拥有落叶松单宁酚醛胶粘剂和粉状单宁酚醛胶粘剂自主知识产权和产品的国家,在制作方法及使用便利上具有明显的优势。主要技术指标:(1)取代60% 的苯酚制成落叶松单宁酚醛胶;(2)制成的落叶松单宁酚醛胶,游离苯酚≤ 、游离甲醛≤,所生产的胶合板的甲醛释放量达到国家E1级标准要求;(3)所生产的胶合板符合Ⅰ类胶合板标准(室外用);(4)粉状落叶松单宁酚醛胶固体含量≥92%,储存期≥1年。主要经济指标:(1)液体落叶松单宁酚醛胶与普通酚醛胶相比较,根据苯酚价格不同每吨平均可降低成本400至1260元;(2)无需改变人造板工艺与设备,不增加应用企业的设备投资。 该项目是落叶松树皮进行循环利用的产品,可变废为宝,制成的单宁酚醛胶粘剂具有成本低、毒性小等优点,其胶合性能与价格昂贵的苯酚制成的酚醛胶相当,适用于木、竹材制做各种结构的胶合板(如:水泥模板、集装箱底板等)和刨花板等。已在全国17个省100多家企业得到了应用,有力地促进了人造板工业的科技进步。 版权所有:国家科学技术奖励工作办公室 E-Mail: 联系电话: 出处:

相关百科

热门百科

首页
发表服务