首页

> 期刊论文知识库

首页 期刊论文知识库 问题

基于决策树分类毕业论文题目

发布时间:

基于决策树分类毕业论文题目

企业信息系统开发战略

你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向? 老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!!学校的格式要求、写作规范要注意,否则很可能发回来重新改,你要还有什么不明白或不懂可以问我,希望你能够顺利毕业,迈向新的人生。 (一)选题毕业论文(设计)题目应符合本专业的培养目标和教学要求,具有综合性和创新性。本科生要根据自己的实际情况和专业特长,选择适当的论文题目,但所写论文要与本专业所学课程有关。(二)查阅资料、列出论文提纲题目选定后,要在指导教师指导下开展调研和进行实验,搜集、查阅有关资料,进行加工、提炼,然后列出详细的写作提纲。(三)完成初稿根据所列提纲,按指导教师的意见认真完成初稿。(四)定稿初稿须经指导教师审阅,并按其意见和要求进行修改,然后定稿。一般毕业论文题目的选择最好不要太泛,越具体越好,而且老师希望学生能结合自己学过的知识对问题进行分析和解决。不知道你是否确定了选题,确定选题了接下来你需要根据选题去查阅前辈们的相关论文,看看人家是怎么规划论文整体框架的;其次就是需要自己动手收集资料了,进而整理和分析资料得出自己的论文框架;最后就是按照框架去组织论文了。你如果需要什么参考资料和范文我可以提供给你。还有什么不了解的可以直接问我,希望可以帮到你,祝写作过程顺利毕业论文选题的方法: 一、尽快确定毕业论文的选题方向 在毕业论文工作布置后,每个人都应遵循选题的基本原则,在较短的时间内把选题的方向确定下来。从毕业论文题目的性质来看,基本上可以分为两大类:一类是社会主义现代化建设实践中提出的理论和实际问题;另一类是专业学科本身发展中存在的基本范畴和基本理论问题。大学生应根据自己的志趣和爱好,尽快从上述两大类中确定一个方向。二、在初步调查研究的基础上选定毕业论文的具体题目在选题的方向确定以后,还要经过一定的调查和研究,来进一步确定选题的范围,以至最后选定具体题目。下面介绍两种常见的选题方法。 浏览捕捉法 :这种方法就是通过对占有的文献资料快速地、大量地阅读,在比较中来确定论文题目地方法。浏览,一般是在资料占有达到一定数量时集中一段时间进行,这样便于对资料作集中的比较和鉴别。浏览的目的是在咀嚼消化已有资料的过程中,提出问题,寻找自己的研究课题。这就需要对收集到的材料作一全面的阅读研究,主要的、次要的、不同角度的、不同观点的都应了解,不能看了一些资料,有了一点看法,就到此为止,急于动笔。也不能“先入为主”,以自己头脑中原有的观点或看了第一篇资料后得到的看法去决定取舍。而应冷静地、客观地对所有资料作认真的分析思考。在浩如烟海,内容丰富的资料中吸取营养,反复思考琢磨许多时候之后,必然会有所发现,这是搞科学研究的人时常会碰到的情形。 浏览捕捉法一般可按以下步骤进行: 第一步,广泛地浏览资料。在浏览中要注意勤作笔录,随时记下资料的纲目,记下资料中对自己影响最深刻的观点、论据、论证方法等,记下脑海中涌现的点滴体会。当然,手抄笔录并不等于有言必录,有文必录,而是要做细心的选择,有目的、有重点地摘录,当详则详,当略则略,一些相同的或类似的观点和材料则不必重复摘录,只需记下资料来源及页码就行,以避免浪费时间和精力。 第二步,是将阅读所得到的方方面面的内容,进行分类、排列、组合,从中寻找问题、发现问题,材料可按纲目分类,如分成: 系统介绍有关问题研究发展概况的资料; 对某一个问题研究情况的资料; 对同一问题几种不同观点的资料; 对某一问题研究最新的资料和成果等等。 第三步,将自己在研究中的体会与资料分别加以比较,找出哪些体会在资料中没有或部分没有;哪些体会虽然资料已有,但自己对此有不同看法;哪些体会和资料是基本一致的;哪些体会是在资料基础上的深化和发挥等等。经过几番深思熟虑的思考过程,就容易萌生自己的想法。把这种想法及时捕捉住,再作进一步的思考,选题的目标也就会渐渐明确起来。

计算机毕业设计 基于Python的SIFT和KCF的运动目标匹配与跟踪 毕业论文+项目源码 基于Python决策树算法的学生学习行为数据分析 设计报告+代码及数据 基于Sring+bootstrap+MySQL的住房公积金管理系统 课程报告+项目源码及数据库文件 基于C++的即时通信软件设计 毕业论文+项目源码 基于JavaWeb+MySQL的图书管理系统 课程报告+项目源码及数据库文件 基于Android Studio+Android SDK的手机通讯录管理软件设计 课程报告+项目源码 基于JSP+MySQL的校园网上订餐系统 毕业论文+项目源码及数据库文件 基于AndroidStudio的花艺分享平台APP设计 报告+源码及APK文件 基于Python的酒店评论情感分析 课程报告+答辩PPT+项目源码 基于QT的教务选课管理系统设计与实现 毕业论文+项目源码 基于Android+Springboot+Mybatis+Mysql的个人生活APP设计 说明书+项目源码 基于的Web3D宇宙空间数据可视化系统 设计报告+前后端源码及数据 基于java+android+SQLite的保健型果饮在线销售APP设计 毕业论文+源码数据库及APK文件 基于的高校综合资源发布分享社交二手平台 毕业论文+项目源码及数据库文件+演示视频 基于Delphi+MySQL的大学生竞赛发布及组队系统 设计报告+源码数据库及可执行文件+使用说明书 基于Android的名片信息管理系统设计与实现 毕业论文+任务书+外文翻译及原文+演示视频+项目源码 基于Python的电影数据可视化分析系统 设计报告+答辩PPT+项目源码 基于JavaWeb的企业公司管理系统设计与实现 毕业论文+答辩PPT+演示视频+项目源码 高校成绩管理数据库系统的设计与实现 毕业论文+项目源码 基于JavaWeb的家庭食谱管理系统设计与实现 毕业论文+项目源码及数据库文件 基于Python+SQLSERVER的快递业务管理系统的设计与实现 毕业论文+项目源码及数据库文件 基于Python的语音词频提取云平台 设计报告+设计源码 在推荐系统中引入 Serendipity 的算法研究 毕业论文+参考文献+项目源码 基于Html+Python+Django+Sqlite的机票预订系统 毕业论文+项目源码及数据库文件 基于Python的卷积神经网络的猫狗图像识别系统 课程报告+项目源码 基于C++的云安全主动防御系统客户端服务端设计 毕业论文+项目源码 基于JavaSSM的学生成绩管理APP系统设计与实现 毕业论文+答辩PPT+前后台源码及APK文件 基于JavaSwing+MySQL的清朝古代名人数据管理系统设计 毕业论文+任务书+项目源码及数据库文件 基于Python_Django的社会实践活动管理系统设计与实现 毕业论文 基于Servlet WebSocket MySQL实现的网络在线考试系统 毕业论文+项目源码 基于JavaWEB+MySQL的学生成绩综合管理系统 毕业论文+项目源码及数据库文件 基于SpringBoot+Vue和MySQL+Redis的网络课程平台设计与实现 毕业论文+任务书+开题报告+中期报告+初稿+前后台项目源码 基于Java的毕业设计题目收集系统 课程报告+项目源码 基于Java+Python+html的生产者与消费者算法模拟 毕业论文+任务书+项目源码 基于JavaWeb+MySQL的学院党费缴费系统 毕业论文+项目源码及数据库文件 基于Java+MySQL的学生成绩管理系统 毕业论文+任务书+答辩PPT+项目源码及数据库文件 基于Java+MySQL的学生和客户信息管理系统 课程报告+项目源码及数据库文件 基于Java的长整数加减法算法设计 毕业论文+项目源码 基于vue+MySQL的毕业设计网上选题系统 毕业论文+项目源码 基于背景建模和FasterR-CNN的视频前景和目标检测 毕业论文+答辩PPT+项目源码 基于Python的智能视频分析之人数统计的多种实现 毕业论文+答辩PPT+项目源码 基于C#+SQL server的校园卡消费信息管理系统 毕业论文+项目源码及数据库文件

你可以到七七计算机毕业论文的毕业设计题目列表中找一份。有完整的论文和源码等,很详细

决策树分类论文期刊

此本来自自己硕士论文的综述部分。

偏最小二乘法可以分为偏最小二乘回归法(Partial least square regression, PLSR)与偏最小二乘法判别分析(Partial least square discriminate analysis, PLS-DA)。PLSR实现的主要思想是将自变量和因变量分别进行线性组合分析,再将求得的数据进行关联分析,所以其为主成分分析、典型相关性分析与多元线性回归建模的组合。PLS-DA是有监督的判别分析法,Gottfries等首先报道了PLS-DA使用,而后Barker与Rayens明确了其用于判别分析的理论基础,并且对于其应用的优缺点由Brereton与Lloyd进一步阐释(Gottfries et al 1995, Barker and Rayens 2003, Brereton and Lloyd 2014 )。其与PLSR区别是因变量是类别,而不是连续的变量,一般是在PLSR分析后加入一个逻辑判别函数如Sigmoid函数(在逻辑回归判别中将详述)。因为两者前面分析部分相似,故这里主要介绍PLSR算法。PLSR中自变量与因变量的基础结构公式为:

X = TPT + E

Y = UQT + F

PLSR一般基于非线性迭代最小二乘算法(NIPALS)建立。其步骤为(1)对自变量X和因变量Y同时提取各自的主成分t1(x1、x2...xn的线性组合)与u1(y1、y2...yn的线性组合),并且要求这两个主成分相关性最大;(2)再进行X与Y分别对t1与u1的回归,若方程达到了设置的满意度,则停止计算;(3)否则,再利用t1对X解释后剩余的信息和u1对Y解释后剩余的信息重新按照(1)进行,再次循环,直到符合设定的阈值。最终X可能会提取到t1、t2...tn个主成分,Y提取到u1、u2…un,使Y的u组合对t1、t2...tn进行回归,进而转化成Y对x1、x2...xn的回归方程(Wold et al 2001)。

PLSR是基于FT-MIR建立模型研究中使用最为广泛和经典的算法,上述关于基于FT-MIR检测牛奶脂肪酸、蛋白质及氨基酸和抗生素残留的定量模型研究中均使用了PLSR算法,可见其应用之普遍。PLS-DA已在食品分析中的产品认证、医学诊断中的疾病分类和代谢组分析中进行广泛应用,并且Gromski等在综述代谢组的分析中,将其和随机森林与支持向量机进行了比较(Gromski et al 2015, Lee et al 2018)。

PLS的优点:(1)能处理样本量远小于特征属性数量的数据;(2)能处理特征属性间存在多重共线性的问题;(3)建立的模型时包含自变量与因变量的信息。其缺点有:(1)不能很好的处理非线性问题;(2)容易过拟合,需注意主成分数的选择。

主成分分析(Principal Component Analysis,PCA)是一种无监督的降维分析方法。PCA降维的基本原则是使降维后方差最大与损失最小,如图1-2。其实现的基本过程:(1)对所有样本进行中心化处理;(2)计算样本的协方差矩阵;(3)对协方差矩阵进行特征值分解;(4)对得到的特征值进行排序,取前n个组成新矩阵;(5)以新矩阵来代替原来样本的特征(Abdi and Williams 2010, Jolliffe and Cadima 2016)。

线性判别分析(Linear discriminat analysis,LDA)是一种有监督的降维与判别分析方法。LDA降维原则是类别内方差最小,类别间方差最大,这样的特点更有利于进行判别分析(Anandkumar et al 2015)。其实现的基本过程为(1)计算样本各类别内的类内散度矩阵Sw;(2)计算样本各类别间的散度矩阵Sb;(3)对Sw做奇异分解,得到Sw -1 ;(4)对Sw -1 Sb做特征分解;(5)取上一步得到的前n特征向量以最大似然法求得各类别的均值和方差做后续的判别分析。

LDA不适用自变量远远大于样本的情况,而PCA可以,故这里将两个算法进行联用,先以PCA进行降维,再以LDA进行判别分析(Yang and Yang 2003)。

PCA-LDA的优点:(1)两个算法的联用可以同时对原数据进行降维和判别分析;(2)LDA采用的是各类均值,算法较优。其缺点有(1)只适合符合高斯分布的样本数据分析;(2)可能会有过拟合的风险。

决策树是基础的分类和回归方法,本研究主要集中在其用于分类上。决策树是通过树状结构对具有特征属性的样本进行分类。每一个决策树都包括根节点(第一个特征属性),内部节点(其他特征属性)以及叶子节点(类别),通用的为每个内部节点有两个分支(Kaminski et al 2018)。其实现的基本步骤:(1)在所有属性中选择最优属性,通过其将样本分类;(2)将分类的样本再通过另一个特征属性再次分类,一直循环直到将样本分到各叶子节点;(3)对生成的树进行剪枝(包含预剪枝与后剪枝)。决策树选择特征属性的算法不同会有不同结果,典型算法包括:CART算法(Breiman et al 1984)、ID3算法(Quinlan 1986)、算法(Quinlan 1992)等,但这些方法生成的过程相似。

CART采用基尼指数最小化原则,进行特征选择,递归地生成二叉树,该算法只能对特征进行二分。ID3算法在各个节点上采用信息增益来选择特征,每一次选择的特征均使信息增益最大,逐步构建决策树,但缺点是其会选择取值较多的特征,而算法采用信息增益比选择特征,解决了ID3的缺点。

DT的优点:(1)运行速度相对较快;(2)可同时处理不同类型的数据,基本不需要预处理;(3)结果容易解释,并可进行可视化。其缺点:(1)容易过拟合,导致泛化能力不强;(2)不支持在线学习,若有新样本,DT需要全部重建;(3)当各类别数据样本不平衡时,结果会偏向有更多数值的特征;(4)不能处理样本特征属性之间的相关性(James et al 2013, Painsky and Rosset 2015)。

人工神经网络是以神经元为单位模仿生物神经网络的结构与功能的数学算法模型(Marcel and Sander 2018)。其可以进行线性与非线性的判别分析,属于有监督的学习分类法,主要分为前馈型神经网络、反馈型神经网络与自组织神经网络。

单位神经元如图1-3中A,一般有多个输入的“树突”,再分别给予不同的权重求和,与阈值比较,达到阈值的通过激活函数求出输出数据,最后进行输出。激活函数f通常分为三类:阈值函数、分段函数、双极性连续函数。

这里以经典的单隐层神经网络为例进行讲解,如图1-3中B。其输入层包含三个神经元,隐含层有四个神经元,输出层有两个神经元。其运算过程为由输入层输入数据,随机设定权重和阈值,通过隐藏层计算再传递到输出层,输出层会根据设定的期望进行判断,如果不符合,则返回重新改变权重和阈值,进入循环,直到符合设定的期望再停止运算,这样就能得到模型的权重和阈值,可对新数据进行判别,这种运算法即为常见的反馈型神经网络(Tu 1996)。多层神经网络属于深度学习,以卷积神经网络为基础进行构建。 ANN的优点:(1)能够自主学习;(2)能解决线性与非线性的问题;(3)可处理因变量之间的相互作用。其缺点:(1)需要设置大量的参数进行约束;(2)结果解释性差,为黑箱算法;(3)计算学习时间长;(4)容易过拟合(Tu 1996)。

大数据分析工具详尽介绍&数据分析算法1、 HadoopHadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点:⒈高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。⒉高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。⒊高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。 ⒋高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。Hadoop带有用 Java 语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。2、 HPCCHPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与 通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国 实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆 比特网络技术,扩展研究和教育机构及网络连接能力。该项目主要由五部分组成:1、高性能计算机系统(HPCS),内容包括今后几代计算机系统的研究、系统设计工具、先进的典型系统及原有系统的评价等;2、先进软件技术与算法(ASTA),内容有巨大挑战问题的软件支撑、新算法设计、软件分支与工具、计算计算及高性能计算研究中心等;3、国家科研与教育网格(NREN),内容有中接站及10亿位级传输的研究与开发;4、基本研究与人类资源(BRHR),内容有基础研究、培训、教育及课程教材,被设计通过奖励调查者-开始的,长期 的调查在可升级的高性能计算中来增加创新意识流,通过提高教育和高性能的计算训练和通信来加大熟练的和训练有素的人员的联营,和来提供必需的基础架构来支 持这些调查和研究活动;5、信息基础结构技术和应用(IITA ),目的在于保证美国在先进信息技术开发方面的领先地位。3、 StormStorm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来,其它知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、Admaster等等。Storm有许多应用领域:实时分析、在线机器学习、不停顿的计算、分布式RPC(远过程调用协议,一种通过网络从远程计算机程序上请求服务)、 ETL(Extraction-Transformation-Loading的缩写,即数据抽取、转换和加载)等等。Storm的处理速度惊人:经测 试,每个节点每秒钟可以处理100万个数据元组。Storm是可扩展、容错,很容易设置和操作。4、 Apache Drill为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。Apache Drill 实现了 Google’s Dremel.据Hadoop厂商MapR Technologies公司产品经理Tomer Shiran介绍,“Drill”已经作为Apache孵化器项目来运作,将面向全球软件工程师持续推广。该项目将会创建出开源版本的谷歌Dremel Hadoop工具(谷歌使用该工具来为Hadoop数据分析工具的互联网应用提速)。而“Drill”将有助于Hadoop用户实现更快查询海量数据集的目的。“Drill”项目其实也是从谷歌的Dremel项目中获得灵感:该项目帮助谷歌实现海量数据集的分析处理,包括分析抓取Web文档、跟踪安装在Android Market上的应用程序数据、分析垃圾邮件、分析谷歌分布式构建系统上的测试结果等等。通过开发“Drill”Apache开源项目,组织机构将有望建立Drill所属的API接口和灵活强大的体系架构,从而帮助支持广泛的数据源、数据格式和查询语言。5、 RapidMinerRapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。功能和特点免费提供数据挖掘技术和库100%用Java代码(可运行在操作系统)数据挖掘过程简单,强大和直观内部XML保证了标准化的格式来表示交换数据挖掘过程可以用简单脚本语言自动进行大规模进程多层次的数据视图,确保有效和透明的数据图形用户界面的互动原型命令行(批处理模式)自动大规模应用Java API(应用编程接口)简单的插件和推广机制强大的可视化引擎,许多尖端的高维数据的可视化建模400多个数据挖掘运营商支持耶鲁大学已成功地应用在许多不同的应用领域,包括文本挖掘,多媒体挖掘,功能设计,数据流挖掘,集成开发的方法和分布式数据挖掘。6、 Pentaho BIPentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。Pentaho BI 平台,Pentaho Open BI 套件的核心架构和基础,是以流程为中心的,因为其中枢控制器是一个工作流引擎。工作流引擎使用流程定义来定义在BI 平台上执行的商业智能流程。流程可以很容易的被定制,也可以添加新的流程。BI 平台包含组件和报表,用以分析这些流程的性能。目前,Pentaho的主要组成元素包括报表生成、分析、数据挖掘和工作流管理等等。这些组件通过 J2EE、WebService、SOAP、HTTP、Java、JavaScript、Portals等技术集成到Pentaho平台中来。 Pentaho的发行,主要以Pentaho SDK的形式进行。Pentaho SDK共包含五个部分:Pentaho平台、Pentaho示例数据库、可独立运行的Pentaho平台、Pentaho解决方案示例和一个预先配制好的 Pentaho网络服务器。其中Pentaho平台是Pentaho平台最主要的部分,囊括了Pentaho平台源代码的主体;Pentaho数据库为 Pentaho平台的正常运行提供的数据服务,包括配置信息、Solution相关的信息等等,对于Pentaho平台来说它不是必须的,通过配置是可以用其它数据库服务取代的;可独立运行的Pentaho平台是Pentaho平台的独立运行模式的示例,它演示了如何使Pentaho平台在没有应用服务器支持的情况下独立运行;Pentaho解决方案示例是一个Eclipse工程,用来演示如何为Pentaho平台开发相关的商业智能解决方案。Pentaho BI 平台构建于服务器,引擎和组件的基础之上。这些提供了系统的J2EE 服务器,安全,portal,工作流,规则引擎,图表,协作,内容管理,数据集成,分析和建模功能。这些组件的大部分是基于标准的,可使用其他产品替换之。7、 SAS Enterprise Miner§ 支持整个数据挖掘过程的完备工具集§ 易用的图形界面,适合不同类型的用户快速建模§ 强大的模型管理和评估功能§ 快速便捷的模型发布机制, 促进业务闭环形成数据分析算法大数据分析主要依靠机器学习和大规模计算。机器学习包括监督学习、非监督学习、强化学习等,而监督学习又包括分类学习、回归学习、排序学习、匹配学习等(见图1)。分类是最常见的机器学习应用问题,比如垃圾邮件过滤、人脸检测、用户画像、文本情感分析、网页归类等,本质上都是分类问题。分类学习也是机器学习领域,研究最彻底、使用最广泛的一个分支。最近、Fernández-Delgado等人在JMLR(Journal of Machine Learning Research,机器学习顶级期刊)杂志发表了一篇有趣的论文。他们让179种不同的分类学习方法(分类学习算法)在UCI 121个数据集上进行了“大比武”(UCI是机器学习公用数据集,每个数据集的规模都不大)。结果发现Random Forest(随机森林)和SVM(支持向量机)名列第一、第二名,但两者差异不大。在的数据上、Random Forest压倒了其它90%的方法。也就是说,在大多数情况下,只用Random Forest 或 SVM事情就搞定了。KNNK最近邻算法。给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。近的点的权重大点,远的点自然就小点。详细介绍链接Naive Bayes朴素贝叶斯算法。朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导。详细介绍链接朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。SVM支持向量机算法。支持向量机算法是一种对线性和非线性数据进行分类的方法,非线性数据进行分类的时候可以通过核函数转为线性的情况再处理。其中的一个关键的步骤是搜索最大边缘超平面。详细介绍链接AprioriApriori算法是关联规则挖掘算法,通过连接和剪枝运算挖掘出频繁项集,然后根据频繁项集得到关联规则,关联规则的导出需要满足最小置信度的要求。详细介绍链接PageRank网页重要性/排名算法。PageRank算法最早产生于Google,核心思想是通过网页的入链数作为一个网页好快的判定标准,如果1个网页内部包含了多个指向外部的链接,则PR值将会被均分,PageRank算法也会遭到LinkSpan攻击。详细介绍链接RandomForest随机森林算法。算法思想是决策树+boosting.决策树采用的是CART分类回归数,通过组合各个决策树的弱分类器,构成一个最终的强分类器,在构造决策树的时候采取随机数量的样本数和随机的部分属性进行子决策树的构建,避免了过分拟合的现象发生。详细介绍链接Artificial Neural Network“神经网络”这个词实际是来自于生物学,而我们所指的神经网络正确的名称应该是“人工神经网络(ANNs)”。人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无为导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境 (即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。

关于决策树的毕业论文

以下是一些计算机本科毕业设计题目供您参考:

数据挖掘的算法及技术的应用的研究论文

摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。

关键词: 数据挖掘; 技术; 应用;

引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。

一、数据挖掘概述

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。

二、数据挖掘的基本过程

(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。

三、数据挖掘方法

1、聚集发现。

聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。

2、决策树。

这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。

四、数据挖掘的应用领域

市场营销

市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。

金融投资

典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。

结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。

参考文献

[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.

[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.

你可以到七七计算机毕业论文的毕业设计题目列表中找一份。有完整的论文和源码等,很详细

你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向? 老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!!学校的格式要求、写作规范要注意,否则很可能发回来重新改,你要还有什么不明白或不懂可以问我,希望你能够顺利毕业,迈向新的人生。 (一)选题毕业论文(设计)题目应符合本专业的培养目标和教学要求,具有综合性和创新性。本科生要根据自己的实际情况和专业特长,选择适当的论文题目,但所写论文要与本专业所学课程有关。(二)查阅资料、列出论文提纲题目选定后,要在指导教师指导下开展调研和进行实验,搜集、查阅有关资料,进行加工、提炼,然后列出详细的写作提纲。(三)完成初稿根据所列提纲,按指导教师的意见认真完成初稿。(四)定稿初稿须经指导教师审阅,并按其意见和要求进行修改,然后定稿。一般毕业论文题目的选择最好不要太泛,越具体越好,而且老师希望学生能结合自己学过的知识对问题进行分析和解决。不知道你是否确定了选题,确定选题了接下来你需要根据选题去查阅前辈们的相关论文,看看人家是怎么规划论文整体框架的;其次就是需要自己动手收集资料了,进而整理和分析资料得出自己的论文框架;最后就是按照框架去组织论文了。你如果需要什么参考资料和范文我可以提供给你。还有什么不了解的可以直接问我,希望可以帮到你,祝写作过程顺利毕业论文选题的方法: 一、尽快确定毕业论文的选题方向 在毕业论文工作布置后,每个人都应遵循选题的基本原则,在较短的时间内把选题的方向确定下来。从毕业论文题目的性质来看,基本上可以分为两大类:一类是社会主义现代化建设实践中提出的理论和实际问题;另一类是专业学科本身发展中存在的基本范畴和基本理论问题。大学生应根据自己的志趣和爱好,尽快从上述两大类中确定一个方向。二、在初步调查研究的基础上选定毕业论文的具体题目在选题的方向确定以后,还要经过一定的调查和研究,来进一步确定选题的范围,以至最后选定具体题目。下面介绍两种常见的选题方法。 浏览捕捉法 :这种方法就是通过对占有的文献资料快速地、大量地阅读,在比较中来确定论文题目地方法。浏览,一般是在资料占有达到一定数量时集中一段时间进行,这样便于对资料作集中的比较和鉴别。浏览的目的是在咀嚼消化已有资料的过程中,提出问题,寻找自己的研究课题。这就需要对收集到的材料作一全面的阅读研究,主要的、次要的、不同角度的、不同观点的都应了解,不能看了一些资料,有了一点看法,就到此为止,急于动笔。也不能“先入为主”,以自己头脑中原有的观点或看了第一篇资料后得到的看法去决定取舍。而应冷静地、客观地对所有资料作认真的分析思考。在浩如烟海,内容丰富的资料中吸取营养,反复思考琢磨许多时候之后,必然会有所发现,这是搞科学研究的人时常会碰到的情形。 浏览捕捉法一般可按以下步骤进行: 第一步,广泛地浏览资料。在浏览中要注意勤作笔录,随时记下资料的纲目,记下资料中对自己影响最深刻的观点、论据、论证方法等,记下脑海中涌现的点滴体会。当然,手抄笔录并不等于有言必录,有文必录,而是要做细心的选择,有目的、有重点地摘录,当详则详,当略则略,一些相同的或类似的观点和材料则不必重复摘录,只需记下资料来源及页码就行,以避免浪费时间和精力。 第二步,是将阅读所得到的方方面面的内容,进行分类、排列、组合,从中寻找问题、发现问题,材料可按纲目分类,如分成: 系统介绍有关问题研究发展概况的资料; 对某一个问题研究情况的资料; 对同一问题几种不同观点的资料; 对某一问题研究最新的资料和成果等等。 第三步,将自己在研究中的体会与资料分别加以比较,找出哪些体会在资料中没有或部分没有;哪些体会虽然资料已有,但自己对此有不同看法;哪些体会和资料是基本一致的;哪些体会是在资料基础上的深化和发挥等等。经过几番深思熟虑的思考过程,就容易萌生自己的想法。把这种想法及时捕捉住,再作进一步的思考,选题的目标也就会渐渐明确起来。

计算机专业毕业论文题目决策树

你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向? 老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!!学校的格式要求、写作规范要注意,否则很可能发回来重新改,你要还有什么不明白或不懂可以问我,希望你能够顺利毕业,迈向新的人生。 (一)选题毕业论文(设计)题目应符合本专业的培养目标和教学要求,具有综合性和创新性。本科生要根据自己的实际情况和专业特长,选择适当的论文题目,但所写论文要与本专业所学课程有关。(二)查阅资料、列出论文提纲题目选定后,要在指导教师指导下开展调研和进行实验,搜集、查阅有关资料,进行加工、提炼,然后列出详细的写作提纲。(三)完成初稿根据所列提纲,按指导教师的意见认真完成初稿。(四)定稿初稿须经指导教师审阅,并按其意见和要求进行修改,然后定稿。一般毕业论文题目的选择最好不要太泛,越具体越好,而且老师希望学生能结合自己学过的知识对问题进行分析和解决。不知道你是否确定了选题,确定选题了接下来你需要根据选题去查阅前辈们的相关论文,看看人家是怎么规划论文整体框架的;其次就是需要自己动手收集资料了,进而整理和分析资料得出自己的论文框架;最后就是按照框架去组织论文了。你如果需要什么参考资料和范文我可以提供给你。还有什么不了解的可以直接问我,希望可以帮到你,祝写作过程顺利毕业论文选题的方法: 一、尽快确定毕业论文的选题方向 在毕业论文工作布置后,每个人都应遵循选题的基本原则,在较短的时间内把选题的方向确定下来。从毕业论文题目的性质来看,基本上可以分为两大类:一类是社会主义现代化建设实践中提出的理论和实际问题;另一类是专业学科本身发展中存在的基本范畴和基本理论问题。大学生应根据自己的志趣和爱好,尽快从上述两大类中确定一个方向。二、在初步调查研究的基础上选定毕业论文的具体题目在选题的方向确定以后,还要经过一定的调查和研究,来进一步确定选题的范围,以至最后选定具体题目。下面介绍两种常见的选题方法。 浏览捕捉法 :这种方法就是通过对占有的文献资料快速地、大量地阅读,在比较中来确定论文题目地方法。浏览,一般是在资料占有达到一定数量时集中一段时间进行,这样便于对资料作集中的比较和鉴别。浏览的目的是在咀嚼消化已有资料的过程中,提出问题,寻找自己的研究课题。这就需要对收集到的材料作一全面的阅读研究,主要的、次要的、不同角度的、不同观点的都应了解,不能看了一些资料,有了一点看法,就到此为止,急于动笔。也不能“先入为主”,以自己头脑中原有的观点或看了第一篇资料后得到的看法去决定取舍。而应冷静地、客观地对所有资料作认真的分析思考。在浩如烟海,内容丰富的资料中吸取营养,反复思考琢磨许多时候之后,必然会有所发现,这是搞科学研究的人时常会碰到的情形。 浏览捕捉法一般可按以下步骤进行: 第一步,广泛地浏览资料。在浏览中要注意勤作笔录,随时记下资料的纲目,记下资料中对自己影响最深刻的观点、论据、论证方法等,记下脑海中涌现的点滴体会。当然,手抄笔录并不等于有言必录,有文必录,而是要做细心的选择,有目的、有重点地摘录,当详则详,当略则略,一些相同的或类似的观点和材料则不必重复摘录,只需记下资料来源及页码就行,以避免浪费时间和精力。 第二步,是将阅读所得到的方方面面的内容,进行分类、排列、组合,从中寻找问题、发现问题,材料可按纲目分类,如分成: 系统介绍有关问题研究发展概况的资料; 对某一个问题研究情况的资料; 对同一问题几种不同观点的资料; 对某一问题研究最新的资料和成果等等。 第三步,将自己在研究中的体会与资料分别加以比较,找出哪些体会在资料中没有或部分没有;哪些体会虽然资料已有,但自己对此有不同看法;哪些体会和资料是基本一致的;哪些体会是在资料基础上的深化和发挥等等。经过几番深思熟虑的思考过程,就容易萌生自己的想法。把这种想法及时捕捉住,再作进一步的思考,选题的目标也就会渐渐明确起来。

列固为了减小摩擦的是( )独讨论某一点的隶属度毫无意义。对 错 (1). 小的混酥面坯制品

应用遗传算法和决策树算法在数据挖掘中的比较 贾修一 MG0533024 (南京大学 计算机科学与技术系, 江苏省南京市 210093) A Comparision between the Genetic Algorithms and Decision Tree For Data Mining Abstract: This chapter introduces the application with the genetic algorithms and ID3 for the data mining, choose the better algorithm to classifier the given data sets comparision between the two algorithms. And analyzing the results of the experiment as well as reasons. Key words: genetic algrithms; data ming; decision Tree 摘 要: 对训练数据分别采用遗传算法和决策树算法进行数据挖掘,通过比较两者实验得出的结果,来选择更适合本数据集的算法进行分类,并分析实验结果及原因. 关键词: 遗传算法;数据挖掘;决策树算法 1. 数据的描述 数据属性有139351维,每个属性的取值为0或1,分类标识只有两类:A和I.数据的维数太高,在数据预处理阶段最好做属性的约简,进行降维的处理. (1)数据维数太高,易造成一定的维数灾难,使得分类挖掘时间过长. (2)数据庞大,肯定有些噪音数据. 2.算法的设计 为了提高最后分类的精确度,特设计了两种方法进行比较,从中选出一种精确度高的方法.第一种是根据数据的特点,每个属性只取值0和1,所以进行属性约简的时候采用遗传算法.遗传算法的优点是可以对大规模的数据进行一定的属性约简. 遗传算法描述: (1) 遗传算法的步骤是编码,选择,交叉,变异.通过模仿自然界中的遗传进化原理,来对数据进行处理.而遗传算法的好坏取决于适应度函数的选择,进化的次数,和交叉变异的合理性和概率性等,所以要想设计一个合适的遗传算法必须经过大量的实验. (2) 就训练数据而言,对每一维属性的取值,在类标识一定的条件下,取1和取0的概率之间有个绝对值差α1,α2,该差越大,说明该属性的重要程度越高.同时还要考虑对同一维属性,不论最终类标识是什么,取值都相同的话,则该属性可以被认为是无效的属性,对最后的分类没有影响,所以适应度函数取对每一维属性的α1,α2的熵,熵越大,则属性的重要程度就越低. (3) 编码阶段,就把每一位属性做为一个长度为139351的染色体的一个基因,1表示选择该属性,0表示不选择该属性.随机初始化8个种群,按照适应度函数的定义,从中选取4个适应度函数最小的染色体做为父代. (4) 将选出的父代进行交叉操作,因为是降维操作,所以交叉就是取两个染色体之间隔位进行AND(与)操作,变异就是按照一定的概率,在139351维上随机的100位进行非操作,即:0变为1,1变为0.依次又产生4个后代,结合原来的4个父代组成新的8个初始种群.进化50次. 然后利用贝叶斯方法进行分类.得到的是一个弱的学习器h,然后利用AdaBoost方法进行强化学习分类器. AdaBoost算法描述: (1) 给定训练集(x1,y1),(x2,y2),…,(xm,ym)m个. (2) yi∈{-1,+1},实例xi∈X的正确标识. (3) for t=1,…,T 2 { 构造{1,…,m}上的分布Dt,找出弱分类器 ht:X->{-1,+1}, 同时在Dt产生很小的错误εt: εt=PrDt[ht(xi)≠yi] } (4)构造 Dt,D1(i)=1/m Dt+1(i)= Dt/Zt*exp(-αt*yi*ht(xi))//(注:yi和ht(xi)只能取值于{-1,+1}) 其中Zt是归一化因子(使Dt+1为分布) αt=1/2*㏑((1-εt)/ εt)>0 (5)输出最终分类器:Hfinal(x)=sign(∑αt*ht(x)). 第二种方法就是直接使用决策树方法(ID3算法)进行分类.求出每一维属性的的信息增益,建立一棵决策树,利用决策树来进行分类. 决策树算法(ID3) (1)创建节点N; (2)if samples都在同一个类C then { 返回N作为叶结点,以类C标识; } (3)if attribut_list为空 then { 返回N作为叶结点,标记为samples中最普通的类; } (4) 选择attribute_list中具有最高信息增益的属性test_attribute;标记节点N为test_attribute; (5) for each test_attribute中的已知值a 由节点N长出一个条件为test_attribute=a的分枝; (6) 设s是samples中test_attribute=a的样本的集合; (7) if s为空 then 加上一个树叶,标记weisamples中最普通的类; else 加上一个由ID3(s,attribute_list-test_attribute)返回的节点; 3. 实验分析 就第一种方法:通过实验,在进化次数上选取50次,使得维数约简到1500维左右时得到的分类效果最好,但由于种群是随机产生的,所以在未进行boosting强化时正确率在60~85%之间,不是很稳定,但是符合弱分类器的要求,即只要正确率超过50%就行,在进行boosting后,正确率能超过80%,但可能是数据进行约简的不好或进行迭代的次数选取不太合适,正确率却没有ID3的高.就本数据集而言,由于最终标识只有2个,所以比较适合使用遗传算法和Adaboost进行训练.正确率不高主要问题应该在: (1)遗传算法的适应度函数没有选好,不同的编码方式对应不同的适应度函数取法,就本例而言,二进制编码方式应该是可以的,就是在对适应度函数取的时候没有一个合适的数据表示,只好利用了熵的概念,但在实际意义上感觉效果并不是很好.属性约简后正确率不高,这应该是最主要的原因. (2)交叉变异的方式或许有问题,但是不是主要问题,只要适应度函数选好,也就是选择操作正确的话,这两步操作对最终结果应该影响不大. (3)进化次数的改进,通过实验,考虑最后的正确率和运行时间,发现在进化50次和约简到1500维时贾修一:应用遗传算法和决策树算法在数据挖掘中的比较3 效果最好.但随着适应度函数的不同,进化次数也不同.从理论上说,进化次数越多,效果也应该越好,最终达到一个最优解,但同时要避免得到局部最优解,就需要对传统的遗传算法进行改进,避免早熟问题.在此就不讨论. (4)利用贝叶斯分类得到的弱学习器,在格式上并不和Adaboost完全适应,所以在应用的时候效果不是很好,这也取决于迭代的次数和训练样集的选取. 就决策树方法,对这么多维的属性在某种意义上说并不合适,但就对本实验给定的训练样例集而言,通过建树,只要6个结点就可以,而且正确率超过90%,所以,根据不同的数据集采用不同的方法得到的正确率是不一样的.所以在某种程度上说,奥卡姆剃刀原理是正确的. 由于时间有限,没有对第一种方法进行一定的改进和进行其他方法的实验,故最终采用ID3算法进行分类,采用前100个数据进行训练,后10个进行测试,错误的只有1个.采用前80个数据进行训练,后30个进行测试的时候只有2个分类错误.正确率自测还是可以的. 4. 总结和感谢 通过本次实验,最大的收获就是采用了两种不同的方法进行了实验比较,虽然自己原先设计的算法没有得到期望中的效果,并最终采用了其他的算法,但是通过实验,我对遗传算法和AdaBoost强化弱学习器方法等有了更深的了解,也明白对不同的数据,是没有一种万能通用的解法的.以后会继续改进自己的算法,争取取得好的效果.最后感谢老师能提供这次实验的数据.

计算机论文题目

随着大科学时代的到来及科技水平的高速发展,计算机科学与技术已经渗透到我国经济、社会的各个领域,这些都有利于全球经济的发展,还极大地推动了社会的进步,

1、基于物联网的煤矿井下监测网络平台关键技术研究

2、基于抽象状态自动机和π演算的UML动态语义研究

3、基于多种数据源的中文知识图谱构建方法研究

4、基于矩阵化特征表示和Ho-Kashyap算法的分类器设计方法研究

5、基于博弈论的云计算资源调度方法研究

6、基于合约的泛型Web服务组合与选择研究

7、本体支持的Web服务智能协商和监测机制研究

8、基于神经网络的不平衡数据分类方法研究

9、基于内容的图像检索与推荐技术研究

10、物联网技术及其在监管场所中的应用

11、移动图书馆的研发与实现

12、图书馆联机公共目录查询系统的研究与实现

13、基于O2O模式的外卖订餐系统

14、网络时代个人数据与隐私保护的调查分析

15、微信公众平台CMS的设计与实现

16、环保部门语义链网络图形化呈现系统

17、BS结构计量信息管理系统设计与研究

18、基于上下文的天然气改质分析控制系统的设计与实现

19、基于增量学习和特征融合的多摄像机协作监控系统目标匹配方法研究

20、无线自组网络密钥管理及认证技术的研究

21、基于CDMI的云存储框架技术研究

22、磨损均衡在提高SSD使用寿命中的应用与改进

23、基于.NET的物流管理软件的设计与实现

24、车站商铺信息管理系统设计与实现

25、元数据模型驱动的合同管理系统的设计与实现

26、安睡宝供应与销售客户数据管理与分析系统

27、基于OpenCV的人脸检测与跟踪算法研究

28、基于PHP的负载均衡技术的研究与改进

29、协同药物研发平台的构建及其信任机制研究

30、光纤网络资源的智能化管理方法研究

31、基于差异同步的云存储研究和实践

32、基于Swift的云存储产品优化及云计算虚拟机调度算法研究

33、基于Hadoop的重复数据删除技术研究

34、中文微博情绪分析技术研究

35、基于协议代理的内控堡垒主机的设计与实现

36、公交车辆保修信息系统的研究与设计

37、基于移动互联网的光纤网络管理系统设计与开发

38、基于云平台的展馆综合管理系统

39、面向列表型知识库的组织机构实体链接方法研究

40、Real-time Hand Gesture Recognition by Using Geometric Feature

41、基于事件的社交网络核心节点挖掘算法的研究与应用

42、线性判别式的比较与优化方法研究

43、面向日志分类的蚁群聚类算法研究

44、基于决策树的数据挖掘技术在电信欠费管理中的应用与研究

45、基于信任关系与主题分析的微博用户推荐技术

46、微博用户兴趣挖掘技术研究

47、面向多源数据的信息抽取方法研究

48、基于本体约束规则与遗传算法的BIM进度计划自动生成研究

49、面向报关行的通关服务软件研究与优化

50、云应用开发框架及云服务推进策略的研究与实践

51、复杂网络社区发现方法以及在网络扰动中的影响

52、空中交通拥挤的识别与预测方法研究

53、基于RTT的端到端网络拥塞控制研究

54、基于体系结构的无线局域网安全弱点研究

55、物联网中的RFID安全协议与可信保障机制研究

56、机器人认知地图创建关键技术研究

57、Web服务网络分析和社区发现研究

58、基于球模型的三维冠状动脉中心线抽取方法研究

59、认知无线网络中频谱分配策略的建模理论与优化方法研究

60、传感器网络关键安全技术研究

61、任务关键系统的软件行为建模与检测技术研究

62、基于多尺度相似学习的图像超分辨率重建算法研究

63、基于服务的信息物理融合系统可信建模与分析

64、电信机房综合管控系统设计与实现

65、粒子群改进算法及在人工神经网络中的应用研究

66、污染源自动监控数据传输标准的研究与应用

67、一种智能力矩限制器的设计与研究

68、移动IPv6切换技术的研究

69、基于移动Ad hoc网络路由协议的改进研究

70、机会网络中基于社会关系的数据转发机制研究

71、嵌入式系统视频会议控制技术的研究与实现

72、基于PML的物联网异构信息聚合技术研究

73、基于移动P2P网络的广播数据访问优化机制研究

74、基于开放业务接入技术的业务移动性管理研究

75、基于AUV的UWSN定位技术的研究

76、基于隐私保护的无线传感网数据融合技术研究

77、基于DIVA模型语音生成和获取中小脑功能及其模型的研究

78、无线网络环境下流媒体传送技术的研究与实现

79、异构云计算平台中节能的任务调度策略研究

80、PRAM模型应用于同步机制的研究

81、云计算平台中虚拟化资源监测与调度关键技术研究

82、云存储系统中副本管理机制的研究

83、嵌入式系统图形用户界面开发技术研究

84、基于多维管理的呼叫中心运行系统技术研究

85、嵌入式系统的流媒体播放器设计与性能优化

86、基于组合双向拍卖的云资源调度算法的研究

87、融入隐私保护的特征选择算法研究

88、济宁一中数字化校园系统的设计与实现

89、移动合作伙伴管理系统的设计与实现

90、黄山市地税局网络开票系统的设计与应用

91、基于语义的领域信息抽取系统

92、基于MMTD的图像拼接方法研究

93、基于关系的垃圾评论检测方法

94、IPv6的过渡技术在终端综合管理系统中的实现与应用

95、基于超声波测距与控制的运动实验平台研发

96、手臂延伸与抓取运动时间协调小脑控制模型的研究

97、位置可视化方法及其应用研究

98、DIVA模型中定时和预测功能的研究

99、基于蚁群的Ad Hoc路由空洞研究

100、基于定向天线的Ad Hoc MAC协议的研究

101、复杂网络社区发现方法以及在网络扰动中的影响

102、空中交通拥挤的识别与预测方法研究

103、基于RTT的端到端网络拥塞控制研究

104、基于体系结构的无线局域网安全弱点研究

105、物联网中的RFID安全协议与可信保障机制研究

106、机器人认知地图创建关键技术研究

107、Web服务网络分析和社区发现研究

108、基于球模型的`三维冠状动脉中心线抽取方法研究

109、认知无线网络中频谱分配策略的建模理论与优化方法研究

110、传感器网络关键安全技术研究

111、任务关键系统的软件行为建模与检测技术研究

112、基于多尺度相似学习的图像超分辨率重建算法研究

113、基于服务的信息物理融合系统可信建模与分析

114、电信机房综合管控系统设计与实现

115、粒子群改进算法及在人工神经网络中的应用研究

116、污染源自动监控数据传输标准的研究与应用

117、一种智能力矩限制器的设计与研究

118、移动IPv6切换技术的研究

119、基于移动Ad hoc网络路由协议的改进研究

120、机会网络中基于社会关系的数据转发机制研究

121、嵌入式系统视频会议控制技术的研究与实现

122、基于PML的物联网异构信息聚合技术研究

123、基于移动P2P网络的广播数据访问优化机制研究

124、基于开放业务接入技术的业务移动性管理研究

125、基于AUV的UWSN定位技术的研究

126、基于隐私保护的无线传感网数据融合技术研究

127、基于DIVA模型语音生成和获取中小脑功能及其模型的研究

128、无线网络环境下流媒体传送技术的研究与实现

129、异构云计算平台中节能的任务调度策略研究

130、PRAM模型应用于同步机制的研究

131、云计算平台中虚拟化资源监测与调度关键技术研究

132、云存储系统中副本管理机制的研究

133、嵌入式系统图形用户界面开发技术研究

134、基于多维管理的呼叫中心运行系统技术研究

135、嵌入式系统的流媒体播放器设计与性能优化

136、基于组合双向拍卖的云资源调度算法的研究

137、融入隐私保护的特征选择算法研究

138、济宁一中数字化校园系统的设计与实现

139、移动合作伙伴管理系统的设计与实现

140、黄山市地税局网络开票系统的设计与应用

141、基于语义的领域信息抽取系统

142、基于MMTD的图像拼接方法研究

143、基于关系的垃圾评论检测方法

144、IPv6的过渡技术在终端综合管理系统中的实现与应用

145、基于超声波测距与控制的运动实验平台研发

146、手臂延伸与抓取运动时间协调小脑控制模型的研究

147、位置可视化方法及其应用研究

148、DIVA模型中定时和预测功能的研究

149、基于蚁群的Ad Hoc路由空洞研究

150、基于定向天线的Ad Hoc MAC协议的研究

决策类本科毕业论文题目

财务管理 是伴随人们对生产管理的需要而产生的。随着社会生产力的发展,财务管理也经历了一个由简单到复杂、由低级到高级的发展过程。下面我给大家带来2021财务管理 毕业 论文题目,希望能帮助到大家!

财务管理本科毕业论文题目

1、汽车经销商集团财务共享中心问题研究

2、水利项目财务风险治理研究

3、影院公司内部控制研究

4、新三板 教育 行业企业财务风险评价与控制研究

5、财务视角下的风电基建工程项目风险管理研究

6、 保险 公司财务风险管理问题研究

7、混合并购财务风险管理研究

8、ZY 油田公司财务共享服务中心构建研究

9、SH 石油工程公司财务共享服务中心构建研究

10、S 高校校院两级预算管理模式研究

11、Z 油田财务共享服务中心构建与运行研究

12、作业基础预算在 MA 钻井公司生产预算管理中的应用研究

13、X 房地产公司财务风险评价及控制研究

14、陕八建 A 项目财务风险管理研究

15、K 医院预算管理优化研究

16、PG 公司财务共享服务中心构建研究

17、GS 合成钛业公司财务风险管理研究

18、财务共享模式下费用报销管理的研究

19、我国县级公立医院预算目标制定、行为影响及后果

20、基于全生命周期的 Y 高校固定资产管理优化研究

21、战略预算管理在 H 公司的应用研究

22、暴风集团财务风险及其控制问题的探讨

23、邮储银行江西省分行财务集中核算管理研究

24、基于财务共享视角的企业内部控制研究

25、LSX 集团财务共享服务构建研究

26、郑州煤电股份有限公司财务风险控制研究

27、D 博物馆内部控制案例研究

28、青岛海尔并购通用家电的财务风险研究

29、SZ 公司财务共享服务中心内部控制案例研究

30、基于共享服务的集团企业全面预算管理信息系统构建研究

31、基于博弈论的 JTL 建筑公司纳税筹划分析

32、M 公司财务共享服务中心构建的研究

33、XJ 集团预算松弛问题研究

34、基于作业成本法的 A 煤炭公司成本管理研究

35、风帆公司并购 Q 集团财务风险分析与控制研究

36、兴宏建筑财务风险管理研究

37、尤洛卡公司财务风险管理研究

38、H 保险公司的集团财务共享管理模式构建研究

39、D 公司财务风险分析及防范研究

40、GX 证券公司财务共享服务中心构建研究

41、HG 酒店战略预算管理研究

42、Z 公立医院绩效预算管理研究

43、C 集团财务共享服务中心构建与实施研究

44、财务共享服务在中国国旅的应用研究

45、S 公司纳税筹划问题研究

46、W 公司财务管理问题研究

47、绵阳市农民专业合作社财务管理现状与财务绩效研究

48、重庆科创职业学院招生财务管理系统的设计与实现

49、湖南省 儿童 医院预算管理改进研究

50、美容品牌综合管理系统的设计与实现

51、基于 ERP 环境下 S 集团的财务风险管控研究

52、基于 的财务业务外包支撑系统的设计与实现

53、高校科研经费财务管理研究

54、平衡计分卡在高校预算管理中的应用研究

55、基于财务视角下 M 电业公司内部控制问题研究

56、基于财务共享模式下 B 集团成本控制问题研究

57、高校财务风险预警系统研究

58、W 集团财务风险管理研究

59、蒙东协合新能源企业财务风险管理研究

60、信息技术企业的融资策略研究

61、利宇新能源集团财务战略研究

62、H 公司内部财务控制问题及改进研究

63、基于战略导向的全面预算管理在 L 化工企业的应用研究

64、苏里格气田 D 区天然气产量预测与作业预算 方法 研究

65、新疆油田科研经费预算管理研究

66、林木资源可持续利用视阈下的企业财务风险及成因研究

67、基于 WEB 的高校上网认证计费系统的设计与实现

68、商业银行财务信息管理系统设计与实现

69、书店财务会计报表系统设计与实现

70、公路上市公司财务风险预警模型构建与应用研究

财务管理专业毕业论文题目

1、 上市公司财务绩效评价及其影响因素研究

2、 企业内部控制与管理者代理问题研究

3、 基于城市视角的地下城市综合体设计研究

4、 国有企业财务治理问题研究

5、 企业预算管理的困境与对策研究

6、 政府干预下企业过度投资形成机理研究

7、 企业集团财务公司风险防范问题研究

8、 企业财务风险传导机理研究

9、 寒冷地区居住建筑体型设计参数与建筑节能的定量关系研究

10、 近代岭南建筑装饰研究

11、 公司治理、多元化战略与财务绩效的关系

12、 农村中小企业融资体系研究

13、 基于财务决策视角的企业内在价值评价方法研究

14、 中国国有企业对外直接投资研究

15、 中国小微企业融资问题研究

16、 基于治理导向观的企业集团预算研究

17、 基于融资结构理论的我国采矿业融资问题研究

18、 中国石油企业对外直接投资研究

19、 上市公司股权结构对内部控制有效性的影响研究

20、 我国电信企业内部控制研究

21、 制度环境对我国上市公司融资决策的影响研究

22、 战略性新兴产业初期融资模式及其效率评价

23、 国有企业经营绩效评价研究

24、 中国上市公司股权激励问题研究

25、 石油企业纳税筹划研究

26、 国有企业财务管理中的监督体制研究

27、 中国上市公司会计盈利状况及与股价变动关系统计分析

28、 中国创业板上市公司大股东与高管减持行为实证研究

29、 中国中小企业融资困境与制度创新研究

30、 组织合法性视角下的企业自愿性社会责任信息披露研究

财务会计毕业论文选题

[1]浅析企业财务会计和管理会计融合方式与对策

[2]财务会计向管理会计转变思考

[3]浅议人工智能时代中小企业财务会计向管理会计的转型

[4]关于管理会计与财务会计的融合研究

[5]管理会计与财务会计的区别与融合途径

[6]新形势下企业财务会计与管理会计的融合

[7]管理会计的应用研究

[8]大数据背景下财务会计向管理会计转型探究

[9]大数据背景下财务会计向管理会计转型探究

[10]财务会计向管理会计转型中存在的问题及对策研究

[11]现代财务会计核算体系分析

[12]管理会计与财务会计在财务管理中的运用分析

[13]新形势下企业财务会计与管理会计融合思考与分析

[14]论新形势下财务会计向管理会计的转型

[15]管理会计和财务会计在 企业管理 中的实践融合

[16]略论如何促进企业财务会计与管理会计的融合

[17]浅议大数据背景下财务会计向管理会计转型策略

[18]企业财务会计向管理会计转型的思考

[19]新时期企业财务会计与管理会计融合思考

[20]试论新形势下财务会计与管理会计的融合

[21]浅议人工智能时代财务会计向管理会计的转型

[22]现代财务会计理论的发展趋势探究

[23]管理会计与财务会计在财务管理中的运用研究

[24]大数据视域下财务会计向管理会计的转型

[25]新形势下企业管理会计与财务会计的融合发展

[26]大数据背景下财务会计向管理会计的转型探究

[27]关于税务会计与财务会计的应用比较

[28]新财务会计制度对医院会计核算的影响

[29]大数据背景下财务会计向管理会计转型探讨

[30]财务会计与管理会计融合的问题与举措探析

[31]“大智移云”时代下财务会计向管理会计的转型研究——基于财务共享视角

[32]“互联网+”背景下财务会计发展策略研究

[33]财务会计工作中审计方法的有效应用分析

[34]关于财务会计向管理会计转型的思考与对策

[35]大数据时代下企业财务会计向管理会计转型刍议

财务管理毕业论文题目相关 文章 :

★ 财务管理毕业论文题目大全选题

★ 财务管理毕业论文题目大全选题(2)

★ 财务管理毕业论文题目

★ 财务管理专业毕业论文选题集锦

★ 财务管理专业毕业论文选题

★ 财务管理专业毕业论文题目大全

★ 财务管理专业毕业论文题目选题

★ 财务管理论文题目哪个好写

★ 财务管理毕业论文选题

★ 财务管理专业毕业论文选题集锦(2)

经济学核心思想是物质稀缺性和有效利用资源,可分为两大主要分支,微观经济学和宏观经济学。如何做好经济学的论文选题呢?下面我给大家带来本科经济学论文题目选题方向,希望能帮助到大家!

公共经济学论文题目

1、地方公共经济影响下的城市设计研究

2、公共经济权力审计监控机理研究

3、基于公共经济理论的我国农村公路管养问题研究

4、中国公共经济管理转型对民办 教育 影响研究

5、当代中国公共经济与民间经济关系优化研究

6、公共经济视野下当代我国教育财政问题研究

7、经济权力审计控制效果研究

8、公共经济视角下的电信普遍服务研究

9、我国发展低碳经济的公共经济政策

10、论加强公共经济服务对农民专业合作社的供给

11、论经济公益诉讼

12、从美国三次经济危机论经济波动与公私经济互动的关系

13、1970年以来西方公共经济研究的 方法 论演进:阶段及特征

14、黑龙江省绿色经济增长的公共投资研究

15、政府公共物品供给模式转变对多元经济主体的回应性研究

16、论经济法的公共本质

17、公共产品定价权研究

18、公共经济视角下我国医疗服务供给中政府职责分析

19、中国商业银行的制度分析

20、缓解贫富差距之公共经济政策研究

21、中国公共经济管理转型对民办教育影响研究

22、我国电子政务发展现状及对策分析

23、公共财政视角下的彩票公益金法律制度研究

24、我国政府财务 报告 改革研究

25、公共产品定价权研究

26、我国城市公共设施市场化探析

27、地方政府物资储备体系研究

28、湖南省五团镇政府公共服务水平建设研究

29、新公共服务理论框架下青岛开发区政府管理模式改革研究

30、对单位制社区物业管理中的供给和需求关系的研究

31、覆盖城乡居民社会保障管理体制研究

32、公共基础设施支出绩效评价研究

33、市政经济发展研究

34、我国城市公用事业价格改革的市场化问题研究

35、公共品双层供给理论与实证研究

36、公共财政支出绩效评估研究

37、公共治理视角下税务行政危机管理研究

38、经济法行为的规范分析

39、论国有企业分类改革

40、公共产品价格调控法律问题研究

41、公共经济学视角下城市公共交通供给研究

42、公共物品有效提供的经济学分析

43、我国捐赠的公共经济学分析

44、新型城镇化背景下公共产品有效供给的经济学探索

45、基础教育公私伙伴关系(PPP)治理模式的公共经济学研究

46、公共经济学视角下关于“看病难”问题的制度分析

47、“春运”困境—公共经济学视角下的需求分析

48、基于实验经济学的公共物品搭便车行为研究

49、现代公共决策的经济学分析

50、增加农民工子女就学机会的公共经济学分析

51、基于公共经济学理论下的公共图书馆

52、经济学公共知识分子的媒介化成长与异化

53、中国商业银行的制度分析

54、赣州市廉租房运行机制分析

55、公共经济学视角下的中国纳税人权利保护研究

56、农民工市民化的公共经济学分析

57、基于公共经济学视角的城市经营主体分体论

58、公共经济学视角下雾霾严重的原因分析

59、公共经济学视角下的国家粮食安全问题研究

60、经济学视角下的物流公共政策研究

微观经济学论文题目

1、我国绿化工程监理微观环境分析

2、知识产权对微观经济的作用机理研究

3、外生驱动互联网消费增长的微观空间计量研究

4、房地产市场反周期宏观调控政策绩效的微观探析

5、劳动力成本上升对现代服务业企业升级的影响研究--基于微观企业财务层面以信息技术产业为例

6、宏微观因素对商业银行信贷风险影响的实证分析

7、经济责任审计促进经济增长的微观途径--基于“中国之谜”中政府官员的作用

8、中级微观经济学混合教学模式探索与实践

9、基于半鞅过程的中国股市随机波动、跳跃和微观结构噪声统计特征研究

10、中国经济发展新常态的宏观表象和微观基础

11、货币政策、所有制差异与商业信用再配置--兼论新常态背景下供给侧治理的微观路径

12、微观权力、自我技术与组织公民行为-- 人力资源管理 的后现代分析

13、增值税转型对我国微观经济的影响

14、商业性小额信贷机构市场定位微观制度因素分析--以某村镇银行和某小额贷款公司为例

15、城乡关系重构下乡村人口城镇化微观进程研究--基于家庭流动人口的视角

16、微观商业视角下的微信经济

17、应用型人才培养模式下独立学院微观经济学教学改革研究

18、微观开放性视角下创造力的多层次影响机制探究

19、农户劳动力资源配置的微观决策

20、微观经济与 企业管理 探讨

21、民营企业对外直接投资对企业内就业的影响--基于温州微观企业数据的实证研究

22、房产税、房价与住房供给结构--基于上海、重庆微观数据的分析

23、基于微观经济学方法的网格资源分配管理模型研究

24、森林转型的微观机制--以重庆市山区为例

25、我国纺织业企业创新与生产率关系的微观测度

26、人的自由全面发展视域下资源配置的微观机制

27、基于微观企业数据的产业空间集聚特征分析--以杭州市区为例

28、从微观管理视角浅析高校国有资产管理中的问题

29、“双创”背景下非正规就业对劳动力市场影响的微观分析--基于马克思劳动力价值理论视角

30、我国众筹融资的微观机理及宏观效应

31、金融市场微观结构理论综述

32、利率调控对房地产营销市场波动的微观作用机制探究

33、中国对外并购的绩效研究--基于制造业上市企业的微观分析

34、我国服务贸易出口的影响因素分析--来自微观企业层面的证据

35、市场微观结构下高频交易流动性--基于我国商品期货市场的实证研究

36、工商行政管理在宏观控制与微观搞活中的职能与作用

37、典型平原农区土地非农化对乡村发展影响的微观机理

38、贫困地区特色农业规模经营意愿的影响因素研究--微观农户视角的分析

39、中国政策性银行全要素生产率测度及影响因素研究--基于宏观与微观解构

40、中国产业结构升级的新视角--微观产品质量角度

41、新疆农民专业合作社微观运行障碍调研与政府责任分析--以吉木萨尔县为例

42、制造业可持续发展的微观经济分析--基于价格机制与制度结构的视角

43、微观视角下煤炭上市公司资本结构影响因素实证研究

44、优化农业科技创新风险投资微观运行机制的策略研究

45、低碳经济政策失灵的原因分析及应对 措施 --基于微观经济个体的视角

46、税制改革推动国家治理能力提升的微观作用机理研究--基于增值税转型对企业投资行为的影响

47、论宏观调控与微观自主的辩证平衡

48、基于微观动力视角我国上市公司市值管理绩效评价的研究

49、宏观经济政策与微观企业行为--拓展会计与财务研究新领域

50、以“供给管理”激发微观活力实现经济发展动力转型

51、试论我国宏观经济与微观经济协调发展

52、人民币汇率的市场微观结构分析

53、构建结构性政策和改革的微观机制

54、微观博弈视角下网贷平台道德风险的随机监督策略研究

55、基于微观视角的沿海发达地区乡村发展类型研究--以福建省福清市为例

56、微观视角下的农民福祉现状分析--基于主客观福祉的研究

57、混合所有制:基本经济制度的宏观和微观特征

58、网络时代零售业上市公司效率及微观影响因素的实证研究

59、食品供应链安全风险形成的微观机理--基于计划行为理论的实证分析

60、网络借贷监管须关注的微观问题

61、从微观角度研究信贷配给

62、贸易自由化对工资及其份额的影响--基于微观企业贸易参与的视角

63、微观企业全要素生产率测度方法的比较与应用

64、风险差别存款 保险 费率实证研究--基于微观审慎与宏观审慎相结合的视角

65、地方融资平台扭曲式发展的内在机理--基于微观企业理论视角

66、中国对俄出口稳定性的微观视角分析

67、我国“农民网商”的微观特征及问题分析--基于对福建省某“淘宝镇”的调查

68、中国城投债利差宏微观影响因素的实证研究

69、消费信贷中的微观经济主体决策机制分析--基于主流经济学和行为经济学的比较分析

70、人民币汇率预期影响股价的微观机理及 经验 证据

优秀管理经济学小论文题目

1、管理经济学教学模式研究——基于会计专业硕士(MPAcc)教育角度

2、“管理经济学”课程实践教学法探索与研究

3、管理经济学基本原理及其应用

4、管理经济学的教改实践与 总结

5、怎样提高EMBA“管理经济学”课程教学效果与效率——基于校企知识转移视角

6、人事管理经济学:一个述评

7、对管理经济学教学改革的思考

8、从管理经济学角度分析阶梯电价制定策略及其效益

9、基于管理经济学视角下的重大医疗纠纷成本控制

10、基于管理经济学视角的淘宝商城“双十一”案例分析

11、对《管理经济学》课程建设的思考

12、管理经济学对企业运作的启示

13、基于管理经济学视角的小米科技公司成长性分析

14、《管理经济学》课程案例教学初探

15、企业运作中管理经济学的启示作用分析

16、基于管理经济学视角的淘宝“双十一”成功分析

17、管理者的经济学——谈《管理经济学》的定位与发展

18、中国管理实践情境与MBA《管理经济学》教学改进

19、管理经济学教学中的问题与解决对策

20、构建适于中国应用的管理经济学新体系

21、人本管理经济学探索

22、企业运作中管理经济学的启示作用分析

23、管理经济学的学科定位及其局限性

24、基于有序Logistic回归模型案例教学满意度研究——以“管理经济学”课程为例

25、浅析管理经济学与企业、市场的关系

26、管理经济学视角下创新人才培养问题

27、课程分野、定位与案例的选择——公共管理“视角”下管理经济学教学的探讨

28、管理经济学中数学模型思想的应用

29、浅析案例教学法在《管理经济学》教学中的应用

30、论管理经济学在监理企业工作中的应用

31、医改与管理经济学研究分析

32、基于高职教育的管理经济学课程体系研究

33、《管理经济学》 教学方法 探讨

34、基于管理经济学视角的小米科技公司成长性分析

35、企业管理中管理经济学的应用

36、边际分析法在管理经济学中的运用研究

37、学校管理经济学的性质与边界

38、人本管理经济学探索

39、企业运作中管理经济学的启示作用分析

40、基于演化经济学的动漫品牌价值评价与管理体系研究

41、海洋综合管理的经济学基础研究--兼论海洋综合管理体制创新

42、企业核心竞争力的经济学分析

43、煤矿安全事故致因因素经济学分析与风险管理方法

44、信息安全的经济学分析及管理策略研究

45、新制度经济学视野下美国高等学校教师管理制度研究

46、我国林业生物灾害管理的经济学分析与对策研究

47、基于新制度经济学的公立医院薪酬管理研究

48、新制度经济学视野下美国社区学院教师管理制度研究

49、企业管理道德的经济学分析

50、新制度经济学视角下的我国职业教育管理体制研究

本科经济学论文题目选题方向相关 文章 :

★ 本科经济学论文选题

★ 本科经济学论文选题(2)

★ 本科经济学论文题目

★ 国际经济学专业毕业论文选题最全题目

★ 经济学毕业论文题目参考

★ 本科低年级经济学论文选题

★ 经济学毕业论文题目参考2021

★ 2021经济学专业毕业论文题目

★ 本科中级经济学论文选题

相关百科

热门百科

首页
发表服务