首页

> 期刊论文知识库

首页 期刊论文知识库 问题

复函数项级数毕业论文

发布时间:

复函数项级数毕业论文

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

4.1.3复变函数项级数定义4.3设{fn(z)}(n=1,2,…)为一复变函数列,其中各项均在复数域D上有定义,称表达式∑∞〖〗n=1fn(z)=f1(z)+f2(z)+…+fn(z)+…(4.2)为复变函数项级数.该级数的前n项和Sn(z)=f1(z)+f2(z)+…+fn(z)为级数的部分和.若z0为D上的固定点,limn→∞Sn(z)=S(z0),则称复变函数项级数()在z0点收敛,z0称为级数∑∞〖〗n=1fn(z)的一个收敛点,收敛点的集合称为级数∑∞〖〗n=1fn(z)的收敛域.若级数∑∞〖〗n=1fn(z)在z0点发散,则称z0为级数∑∞〖〗n=1fn(z)的发散点,发散点的集合称为级数∑∞〖〗n=1fn(z)的发散域.若对D内的任意点z,都有limn→∞Sn(z)=S(z),则称级数∑∞〖〗n=1fn(z)在D内处处收敛.并称S(z)为级数的和函数.下面我们重点讨论一类特别的解析函数项级数——幂级数,它是复变函数项级数中最简单的情形.4.2幂级数〖〗在复变函数项级数的定义中,若取fn(z)=an(z-z0)n或fn(z)=anzn(n=1,2,…),就得到函数项级数的特殊情形∑∞〖〗n=0an(z-z0)n=a0+a1(z-z0)+a2(z-z0)2+…+an(z-z0)n+…(4.3)或∑∞〖〗n=0anzn=a0+a1z+a2z2+…+anzn+…(4.4)形如()或()的级数称为幂级数,其中,a0,a1,…,an,…和z0均为复常数.在级数(4.3)中,令z-z0=ξ,则化为式(4.4)的形式,称级数(4.4)为幂级数的标准形式,式(4.3)称为幂级数的一般形式.为方便,今后我们以幂级数的标准形式(4.4)为主来讨论,相关结论可平行推广到幂级数的一般形式(4.3).4.2.1幂级数的收敛性关于幂级数收敛问题,我们先介绍下面的定理.定理4.5(Abel定理)若幂级数∑∞〖〗n=0anzn在z=z0(≠0)处收敛,则此级数在|z|<|z0|内绝对收敛(即∑∞〖〗n=0|anzn|收敛);若在z=z0处发散,则在|z|>|z0|内级数发散.证若∑∞〖〗n=0anzn在z=z0(≠0)处收敛,即级数∑∞〖〗n=0anzn0收敛,所以limn→∞anzn0=0因而,存在常数M>0使得对所有的n,有|anzn0|<M当|z|<|z0|时,|anzn|=|anz0|z〖〗z0n<Mz〖〗z0n,而级数∑∞〖〗n=0z〖〗z0n收敛,所以,∑∞〖〗n=0anzn绝对收敛.若∑∞〖〗n=0anzn在z=z0(≠0)发散,假设存在一点z1,使得当|z1|>|z0|时,∑∞〖〗n=0anzn1收敛.则由上面讨论可知,∑∞〖〗n=0anzn0收敛,与已知∑∞〖〗n=0anzn0发散矛盾!因此,∑∞〖〗n=0anzn在|z|>|z0|发散.由Abel定理,我们可以确定幂级数的收敛范围,对于一个幂级数来说,它的收敛情况有以下三种情形:(1)对所有正实数z=x,∑∞〖〗n=0anxn都收敛,由Abel定理,∑∞〖〗n=0anzn在复平面上处处绝对收敛;(2)对所有的正实数x,∑∞〖〗n=0anxn(x≠0)发散,由Abel定理,∑∞〖〗n=0anzn在复平面内除原点z=0外处处发散;(3)既存在使级数收敛的正实数x1>0,也存在使级数发散的正实数x2>0,即z=x1时级数∑∞〖〗n=0anxn1收敛,z=x2时级数∑∞〖〗n=0anxn2发散.由Abel定理,∑∞〖〗n=0anzn在|z|≤x1内,级数绝对收敛,在|z|≥x2内级数发散.在情形(3)中,可以证明,一定存在一个有限的正数R,使得幂级数∑∞〖〗n=0anzn在圆|z|<R内绝对收敛,在|z|>R时发散,则称R为幂级数的收敛半径,称|z|<R为幂级数的收敛圆.约定在第一种情形,R=∞;第二种情形,R=0.而对于幂级数∑∞〖〗n=0an(z-z0)n,收敛圆是以z0为圆心,R为半径的圆:|z-z0|<R.至于在收敛圆的圆周|z|=R(或|z-z0|=R)上,∑∞〖〗n=0anzn或∑∞〖〗n=0an(z-z0)n的收敛性较难判断,可视具体情况而定.关于幂级数收敛半径的求法,同实函数的幂级数类似,可以用比值法和根植法.定理4.6(幂级数收敛半径的求法)设幂级数∑∞〖〗n=0anzn,若下列条件之一成立:(1)(比值法)limn→∞an+1〖〗an=L;(2)(根值法)limn→∞n〖〗|an|=L.则幂级数∑∞〖〗n=0anzn的收敛半径R=1〖〗L.证明从略.当L=0时,R=∞;当L=∞时,R=0.例4.4求下列幂级数的收敛半径:(1)∑∞〖〗n=1zn〖〗n3(讨论圆周上情形);(2)∑∞〖〗n=1(z-1)n〖〗n(讨论z=0,2的情形);(3)∑∞〖〗n=0(cosin)zn.解(1)因为limn→∞an+1〖〗an=limn→∞1〖〗(n+1)3〖〗1〖〗n3=limn→∞n〖〗n+13=1或者limn→∞n〖〗|an|=limn→∞n〖〗1〖〗n3=limn→∞1〖〗n〖〗n3=1所以,收敛半径R=1,从而级数的收敛圆为|z|<1.由于在圆周|z|=1,级数∑∞〖〗n=1zn〖〗n3=∑∞〖〗n=11〖〗n3收敛(p级数,p=3>1),所以,级数在圆周|z|=1上也收敛.因此,所给级数的收敛范围为|z|≤1.(2)由于limn→∞an+1〖〗an=limn→∞1〖〗(n+1)〖〗1〖〗n=limn→∞n〖〗n+1=1,故收敛半径R=1,从而它的收敛圆为|z-1|<1.在圆周|z-1|=1上,当z=0时,原级数成为∑∞〖〗n=1(-1)n1〖〗n(交错级数),所以收敛;当z=2时,原级数为∑∞〖〗n=11〖〗n,发散.表明在收敛圆周上,既有收敛点又有发散点.(3)由于an=cosin=1〖〗2(en-e-n),所以limn→∞an+1〖〗an=limn→∞en+1-e-(n+1)〖〗en-e-n=limn→∞en(e-e-2n-1)〖〗en(1-e-2n)=e故收敛半径为R=1〖〗e.例4.5求幂级数∑∞〖〗n=1(-1)n1+sin1〖〗n-n2zn的收敛半径.解因为limn→∞n〖〗(-1)n1+sin1〖〗n-n2=limn→∞1+sin1〖〗n-n=limn→∞1+sin1〖〗n1〖〗sin1〖〗n-sin1〖〗n〖〗1〖〗n=e-1故所求收敛半径为R=e.例4.6求幂级数∑∞〖〗n=1(-i)n-1(2n-1)〖〗2nz2n-1的收敛半径.解记fn(z)=(-i)n-1(2n-1)〖〗2nz2n-1,则limn→∞fn+1(z)〖〗fn(z)=limn→∞(2n+1)2n|z|2n+1〖〗(2n-1)2n+1|z|2n-1=1〖〗2|z|2当1〖〗2|z|2<1时,即|z|<2时,幂级数绝对收敛;当1〖〗2|z|2>1时,即|z|>2时,幂级数发散.所以,该幂级数的收敛半径为R=2.4.2.2幂级数的运算和性质和实函数的幂级数类似,复变函数的幂级数也可以进行加、减、乘等运算.设幂级数∑∞〖〗n=0anzn=S1(z),∑∞〖〗n=0bnzn=S2(z),收敛半径分别为R1、R2,则∑∞〖〗n=1anzn±∑∞〖〗n=1bnzn=∑∞〖〗n=0(an±bn)zn=S1(z)±S2(z),|z|<R(4.5)∑∞〖〗n=1anzn∑∞〖〗n=1bnzn=∑∞〖〗n=0(anb0+an-1b1+…+a0bn)zn=S1(z)S2(z),|z|<R(4.6)其中,R=min(R1,R2).复变函数的幂级数还可以进行复合运算.设h(z)在D内解析,且|h(z)|<R,z∈D,则f(h(z))在D内解析,且f(h(z))=∑∞〖〗n=0anhn(z),z∈D.在f(z)的幂级数展开中,可以用z的一个函数h(z)去代换展开式中的z,这在后面解析函数的级数展开中经常用到.幂级数∑∞〖〗n=oanzn在其收敛圆|z|<R内,还具有如下性质:(1)它的和函数S(z)=∑∞〖〗n=0anzn在|z|<R内解析;(2)在收敛圆内幂级数可逐项求导,即S′(z)=∑∞〖〗n=1nanzn-1,|z|<R;(4.7)(3)在收敛圆内幂级数可逐项积分,即∫CS(z)dz=∑∞〖〗n=0∫Canzndz=∑∞〖〗n=0an〖〗n+1zn+1,(4.8)|z|<R,C为|z|<R内的简单曲线.

摘 要:在平面弹性问题中,由于载荷不同,弹性体的形状不同造成其解析解用一般方法难以求出,所以继续寻找出一种适用于弹性问题的特殊解法。本文采用了复变函数的级数解法,以无限带孔口域弹性平板为例运用其的基本方程和边界条件可展开成复变函数特点,通过对比两边同幂项的系数确定其待定系数,再计算出位移边界下的应力场。我们通过给其不同的载荷和位移边界条件运用数学软件进行计算求解得出不同载荷的应力场图像进行分析。Pick to: in the plane elasticity problem, the load is different, the shape of the elastomer different cause its analytical solution with general method is difficult to calculate, so continue to look for a suitable for elastic special solution of the problem. This article adopted the series solutions of complex function in infinite elastic plate with orifice domain, for example by using the basic equation and boundary conditions of the expandable into complex function characteristics, on both sides by comparing with the power factor to determine the undetermined coefficient, then calculate the displacement boundary under stress field. We through to the different load and displacement boundary conditions using mathematics software to calculate the solution of different load stress field of the image are analyzed.

函数项级数的毕业论文

教育专业毕业论文题目只是需要题目吗?论文呢?

前言: 当今,在社会环境对从业人员要求具有更高学历的激励下,在各类专业人员不断进行知识更新的进程中,广泛地存在着要求提高自己的数学水平的愿望.特别对于原来只学过普通微积分课程的人来说,他们在补习各自所需要的数学知识时,因缺乏牢固的数学基础,不可避免地会遇到很多困难.本论文就是在为他们讲授数学分析理论基础课的讲义的基础上写成的.考虑到在职人员投入业余学习的时间十分有限,要他们系统地学完一门数学分析这样的大课程几乎是不可能的.一种可行而有效的做法或许是这样的--选择几个起主导作用的专题,讲授其中那些具有原则意义的概念和思想,通过举例讨论一些典型问题的解法. 序言: 自20世纪90年代后期开始,我国的高等教育改革步伐日益加快.实行5天工作制,使教学总时数减少,而新的专业课程却不断出现.在这样的情况下,对传统的专业课程应该如何处置,这样一个不能回避的问题就摆在了我们的面前.而这时,教育部师范司启动了面向21世纪教学改革计划.在我们进行"数学专业培养方案"项目的研究中,这个问题有两种方案可以选择:一是简单化的做法,或者削减必修课的数量,将一些传统的数学课程从必修课的名单中去掉,变为选修课,或者少讲内容减少课时;二是对每门课程的教学内容进行优化、整合,建立一些理论平台,减少一些繁琐的论证和计算,以达到削减课时,同时又能保证基本教学内容. 目录: 第一章 实数理论 建立实数的原则与完备有序域 * 戴德金分划说简介 无限小数与实数 实数完备性的等价命题 * 上极限与下极限 第二章 连续性 n维欧氏空间 函数概念的演进 函数极限和连续的一般定义 连续函数的整体性质 不动点与压缩映射原理简介 第三章 微分学 可微性的统一定义 可微函数的性质 微分中值定理与导函数的性质 凸函数 例题续编 第四章 积分学 定积分概念与牛顿-莱布尼兹公式 可积条件 定积分的性质 变限积分 反常积分 第五章 级数 数项级数综述 一致收敛概念的提出 一致收敛判别 一致收敛函数列(或级数)的性质 1、小学数学论文的组成 小学数学论文具有类型多样、形式活泼等特点,有的侧重于经验的总结,实验结果的阐述,包括实验过程、手段、方法和结果的记录;有的侧重于理论性的研究,包括对研究课题的提出,对研究成果的分析、推导、论证和应用等。但不论哪类论文,主要由标题、摘要、前言、正文、结论、参考文献等部分组成。 标题就是论文的总题目,是文章基本内容的缩影,古人云:“立片言以居要,乃全篇之警策。”所以拟定标题应该力求简短、明确、质朴、醒目,既要防止太冗长,又要避免太概括,使人不明了;既要防止文不对题或过于陈旧,又要避免追求新颖、空泛而没有实际的内容。 摘要一般包括本课题研究的意义,研究的内容与方法,研究的成果或价值等,便于读者迅速了解全文的概貌。所以摘要应简明扼要,引人入胜,内容全面,重点突出,且能独立使用。 前言也称引言或绪言,一般包括本课题研究的背景或起点,需要研究的问题,研究的方法、手段,研究的意义或价值。需要注意的是,对研究的意义或价值应力求实事求是,既不可拔高,也不可贬低或过分谦虚。 正文是论文的主体,作为表达作者个人研究成果的部分,所占篇幅较大,有时还必须辅以必要的小标题,应力求概念清晰,论点明确,论证严密,论据充分,具有科学性、准确性和创新性,同时条理要清楚,文字应通俗简明。 结论是对正文中所分析论证的问题加以综合,概括出基本点,这是课题解决的答案。结论作为理论分析和实验的逻辑发展,是论述的概括集中和升华,由局部到一般,由具体事实、经验,上升到理论概括,是整篇论文的归宿,所以应力求完整、准确、鲜明,还应如实指出本理论的使用范围和成果的意义,以及本文尚未解决的问题和继续研究的方向。 参考文献是反映作者严肃的科学态度和研究工作的依据,其中包括撰写该论文所参考的书籍(作者姓名、书名、版次、页数、出版者、出版年份)或期刊(作者姓名、标题、刊物名称、卷或期、页数、年份)。 2、小学数学论文的撰写过程 第一步,选题、选材。 要想写什么内容的文章,无论是理论探讨方面,还是教材教法方面和解题方法技巧方面,以及教学经验总结方面,对阐述问题的深度、广度等,要心中有数,具有明确的目的性和主题性。 无论选择哪方面的内容与具体题材,都必须力求具有先进性、针对性和实践性,要想做到这一点,首先,根据文献检索方法,尽可能多地查阅资料,掌握国内外最新研究动态。其次,深入钻研这些文献资料,看看能否得到进一步启发,有无新的见解。尽管选题可能重复,类似的题材较多,但也可以从不同侧面结合不同实例,根据不同对象写出一定的新意来,使观点更明确,方法更有效,使其先进性、针对性、实用性更强。第三,选题要从实际出发,题目大小、题材的深度和广度要恰当。 第二步,拟纲、执笔。 论文选题确定后,就要注意写好提纲,这是写好文章的基础。首先,要将内容、结构布局好,要拟定一个写作提纲,准备分几个部分,各个部分集中讲几个问题,这些部分与问题之间的关系如何,都需要进一步精心设计,使其结构严谨、层次分明,具有科学性、逻辑性。其次,要注意各种文章的特点。写理论性的文章,最好能再确定大小标题,叙述上力求论点明确,可信度强,便于别人借鉴;写教材分析方面的文章,应进行比较,提出改进意见或提示值得深入研究的问题等。 第三步,修改、定稿。 修改是文章初稿完成后的一个加工过程,它包括对论文文字的修饰,以及科学性的推敲等。论文初稿形成后,应从头至尾反复地阅读,逐句逐段推敲,审核一下文中的论点是否明确,论据是否充分,论证是否合理,结构是否严谨,计算是否正确等。一篇好的小学数学论文,应该是数文并茂。就是说,既要有好的数学内容,又要有好的文字表达。所以,文字的工夫对数学论文来说很为重要。数学论文,贵在朴实,少用浮词,免得冲淡文章的中心,文字应通俗易懂,简明扼要,用词应准确简炼,表达完整,特别是中心内容一定要阐述透彻清楚。此外,书写要规范,题号、图号、标点也要正确。修改是一项细致的工作,只有对文稿反复推敲、修改,才能消除不应有的错误。只有经过反复修改加工,文章的质量才会不断提高。

1、选题尽量与日常工作结合起来一是便于收集数据,二是通过论文写作,对考生今后工作也有帮助,一举两得。反之,选一个与工作毫不相干的题目,从头开始,只能落得个事倍功半的结果。2、选择感兴趣的题目做论文是原创性的工作,因此,考生对某个方面感兴趣,会促使自己积极主动地探讨这方面的问题,强烈的成就动机将是做一篇优秀论文的基础。3、学术类文献综述类题目尽量不要选对所有参加自学考试的考生来讲,做学术论文是一件极具挑战性的工作,绝不是想象中那样轻松。自考过程中,考生可以通过强化复习通过考试,但做研究是完全不同的过程。只有在考生花费精力查阅大量文献后,才能知道可以做什么课题,还需要考生自己去收集数据,分析数据,撰写报告。综述性论文需要查阅大量的参考文献,从选题到提交论文,一般仅有3个月时间,真正码字可能就一两个星期的时间,在这么短的时间内要查阅到写综述的参考文献,难度相当大。时间短难度大,很少考生能将这些类型的论文写得好和有一定深度。不过,如果你实力很强,那也是可以的。当然,每次没能通过论文答辩的考生,绝大部分都是选择了这些雷区类型题目,希望大家吸取教训。

函数项级数的应用毕业论文

前言: 当今,在社会环境对从业人员要求具有更高学历的激励下,在各类专业人员不断进行知识更新的进程中,广泛地存在着要求提高自己的数学水平的愿望.特别对于原来只学过普通微积分课程的人来说,他们在补习各自所需要的数学知识时,因缺乏牢固的数学基础,不可避免地会遇到很多困难.本论文就是在为他们讲授数学分析理论基础课的讲义的基础上写成的.考虑到在职人员投入业余学习的时间十分有限,要他们系统地学完一门数学分析这样的大课程几乎是不可能的.一种可行而有效的做法或许是这样的--选择几个起主导作用的专题,讲授其中那些具有原则意义的概念和思想,通过举例讨论一些典型问题的解法. 序言: 自20世纪90年代后期开始,我国的高等教育改革步伐日益加快.实行5天工作制,使教学总时数减少,而新的专业课程却不断出现.在这样的情况下,对传统的专业课程应该如何处置,这样一个不能回避的问题就摆在了我们的面前.而这时,教育部师范司启动了面向21世纪教学改革计划.在我们进行"数学专业培养方案"项目的研究中,这个问题有两种方案可以选择:一是简单化的做法,或者削减必修课的数量,将一些传统的数学课程从必修课的名单中去掉,变为选修课,或者少讲内容减少课时;二是对每门课程的教学内容进行优化、整合,建立一些理论平台,减少一些繁琐的论证和计算,以达到削减课时,同时又能保证基本教学内容. 目录: 第一章 实数理论 建立实数的原则与完备有序域 * 戴德金分划说简介 无限小数与实数 实数完备性的等价命题 * 上极限与下极限 第二章 连续性 n维欧氏空间 函数概念的演进 函数极限和连续的一般定义 连续函数的整体性质 不动点与压缩映射原理简介 第三章 微分学 可微性的统一定义 可微函数的性质 微分中值定理与导函数的性质 凸函数 例题续编 第四章 积分学 定积分概念与牛顿-莱布尼兹公式 可积条件 定积分的性质 变限积分 反常积分 第五章 级数 数项级数综述 一致收敛概念的提出 一致收敛判别 一致收敛函数列(或级数)的性质 1、小学数学论文的组成 小学数学论文具有类型多样、形式活泼等特点,有的侧重于经验的总结,实验结果的阐述,包括实验过程、手段、方法和结果的记录;有的侧重于理论性的研究,包括对研究课题的提出,对研究成果的分析、推导、论证和应用等。但不论哪类论文,主要由标题、摘要、前言、正文、结论、参考文献等部分组成。 标题就是论文的总题目,是文章基本内容的缩影,古人云:“立片言以居要,乃全篇之警策。”所以拟定标题应该力求简短、明确、质朴、醒目,既要防止太冗长,又要避免太概括,使人不明了;既要防止文不对题或过于陈旧,又要避免追求新颖、空泛而没有实际的内容。 摘要一般包括本课题研究的意义,研究的内容与方法,研究的成果或价值等,便于读者迅速了解全文的概貌。所以摘要应简明扼要,引人入胜,内容全面,重点突出,且能独立使用。 前言也称引言或绪言,一般包括本课题研究的背景或起点,需要研究的问题,研究的方法、手段,研究的意义或价值。需要注意的是,对研究的意义或价值应力求实事求是,既不可拔高,也不可贬低或过分谦虚。 正文是论文的主体,作为表达作者个人研究成果的部分,所占篇幅较大,有时还必须辅以必要的小标题,应力求概念清晰,论点明确,论证严密,论据充分,具有科学性、准确性和创新性,同时条理要清楚,文字应通俗简明。 结论是对正文中所分析论证的问题加以综合,概括出基本点,这是课题解决的答案。结论作为理论分析和实验的逻辑发展,是论述的概括集中和升华,由局部到一般,由具体事实、经验,上升到理论概括,是整篇论文的归宿,所以应力求完整、准确、鲜明,还应如实指出本理论的使用范围和成果的意义,以及本文尚未解决的问题和继续研究的方向。 参考文献是反映作者严肃的科学态度和研究工作的依据,其中包括撰写该论文所参考的书籍(作者姓名、书名、版次、页数、出版者、出版年份)或期刊(作者姓名、标题、刊物名称、卷或期、页数、年份)。 2、小学数学论文的撰写过程 第一步,选题、选材。 要想写什么内容的文章,无论是理论探讨方面,还是教材教法方面和解题方法技巧方面,以及教学经验总结方面,对阐述问题的深度、广度等,要心中有数,具有明确的目的性和主题性。 无论选择哪方面的内容与具体题材,都必须力求具有先进性、针对性和实践性,要想做到这一点,首先,根据文献检索方法,尽可能多地查阅资料,掌握国内外最新研究动态。其次,深入钻研这些文献资料,看看能否得到进一步启发,有无新的见解。尽管选题可能重复,类似的题材较多,但也可以从不同侧面结合不同实例,根据不同对象写出一定的新意来,使观点更明确,方法更有效,使其先进性、针对性、实用性更强。第三,选题要从实际出发,题目大小、题材的深度和广度要恰当。 第二步,拟纲、执笔。 论文选题确定后,就要注意写好提纲,这是写好文章的基础。首先,要将内容、结构布局好,要拟定一个写作提纲,准备分几个部分,各个部分集中讲几个问题,这些部分与问题之间的关系如何,都需要进一步精心设计,使其结构严谨、层次分明,具有科学性、逻辑性。其次,要注意各种文章的特点。写理论性的文章,最好能再确定大小标题,叙述上力求论点明确,可信度强,便于别人借鉴;写教材分析方面的文章,应进行比较,提出改进意见或提示值得深入研究的问题等。 第三步,修改、定稿。 修改是文章初稿完成后的一个加工过程,它包括对论文文字的修饰,以及科学性的推敲等。论文初稿形成后,应从头至尾反复地阅读,逐句逐段推敲,审核一下文中的论点是否明确,论据是否充分,论证是否合理,结构是否严谨,计算是否正确等。一篇好的小学数学论文,应该是数文并茂。就是说,既要有好的数学内容,又要有好的文字表达。所以,文字的工夫对数学论文来说很为重要。数学论文,贵在朴实,少用浮词,免得冲淡文章的中心,文字应通俗易懂,简明扼要,用词应准确简炼,表达完整,特别是中心内容一定要阐述透彻清楚。此外,书写要规范,题号、图号、标点也要正确。修改是一项细致的工作,只有对文稿反复推敲、修改,才能消除不应有的错误。只有经过反复修改加工,文章的质量才会不断提高。

教育专业毕业论文题目只是需要题目吗?论文呢?

摘 要:在平面弹性问题中,由于载荷不同,弹性体的形状不同造成其解析解用一般方法难以求出,所以继续寻找出一种适用于弹性问题的特殊解法。本文采用了复变函数的级数解法,以无限带孔口域弹性平板为例运用其的基本方程和边界条件可展开成复变函数特点,通过对比两边同幂项的系数确定其待定系数,再计算出位移边界下的应力场。我们通过给其不同的载荷和位移边界条件运用数学软件进行计算求解得出不同载荷的应力场图像进行分析。Pick to: in the plane elasticity problem, the load is different, the shape of the elastomer different cause its analytical solution with general method is difficult to calculate, so continue to look for a suitable for elastic special solution of the problem. This article adopted the series solutions of complex function in infinite elastic plate with orifice domain, for example by using the basic equation and boundary conditions of the expandable into complex function characteristics, on both sides by comparing with the power factor to determine the undetermined coefficient, then calculate the displacement boundary under stress field. We through to the different load and displacement boundary conditions using mathematics software to calculate the solution of different load stress field of the image are analyzed.

1. 生活中处处有数学 2、解数学竞赛题的整体策略 3、谈数学解题中发掘隐含条件的若干途径4、论数学教育中性别差异的影响 5、逆向思维在数学论证中的作用及培养6、谈小学、初中数学的衔接 7、容斥原理及其应用8、从高中课程改革看大学课程改革 9、信息化教育问题10、数学素质教育中的教师素质问题 11. 浅析课堂教学的师生互动12、谈设疑法在课堂教学中的应用 13、计算机辅助小学数学教学的探索 14、谈一类重要的数学方法--分类讨论法15、小学数学竞赛题的教育价值16、在解题中培养学生的数学直觉思维 17. 反思教学中的一题多解18. 初探影响解决数学问题的心理因素 19、在数学教学中培养学生的反思意识 20、关于探索性命题的若干问题 21、数学实验教学模式探究22、论小学数学竞赛题的解题方法 23、奥林匹克数学的解题策略24、三角形面积在竞赛中的应用 25. 数学教育中的科学人文精神 26. 数学几种课型的问题设计 27. 在探索中发展学生的创新思维 28. 把握发现式教学实质,优化课堂教学 29. 如何评价小学学生的数学素质 30. 阅读材料在数学教学中的作用 31. 数学中的判断之我见 32. 关于学生数学能力培养的几点设想 33. 反例在数学中的作用 34. 谈谈类比法 35. 数学教学设计随笔 36. 数学CAI应遵循的原则 37. 我国数学教育改革的若干问题 38. 当代数学教学模式的发展趋势 39. “问题解决教学”的实践与认识 40. 数学教学中的“理论联系实际” 41. 小学数学课堂教学探究性学习案例简析 42. 数学训练,贵在科学 43. 教学媒体在数学教学中的作用 44. 培养数学能力的重要性和基本途径 45. 初探在数学教学中开展研究性学习 46. 浅谈数学学习兴趣的培养 47. 如何使计算机辅助教学变得更方便 48. 精心设计习题,提高教学质量 49. 我对概念教学的的再认识 50. 数学教学中的情境创设 51. 结合数学教学实际开展教研教改 52. 为学生展开想象的翅膀创造环境 53. 利用习题变换,培养思维能力 54. 课堂教学中培养学生创造能力的尝试 55. 观察法及其在数学教育研究中的应用 56. 直觉思维在解题中的运用 57. 数学方法论与数学教学—案例三则 58. 概念课是思维训练的重要环节 59. 对概念导入和问题设计的思考 60. 把握概念本质注重思维能力的培养 61. 将研究性学习引入数学课堂教学 62. 数学教学的现代研究 63. 数学探究性活动的内容、形式及教学设计 64. 注重创新性试题的设计 以上为参考论文选题,学生写论文时可选用,也可按选题提供的范围和方向,根据自己教学过程中体会最深的某方面自定论文选题1.关于数学教学目的问题; 2.关于数学思维问题; 3.关于数学教学方法问题; 4.关于学习的迁移问题; 5.关于数学教学的评价问题; 6.关于熟练技能与深刻理解的关系问题; 7.数学的实用功能与数学的文化教育功能相关关系的研究; 8.数学教学的德育功能研究; 9.班级授课制中集体教学、小组教学和个别教学在数学教学中的地位和作用; 10.数学发现法(探究式)教学可实施的基本内容、对象和范围; 11.对数学教学中“可接受性原则”的认识及其具体做法的实验研究; 12.中学生数学学习习惯与学习方法的调查分析; 13.诊断和鉴别数学学习困难学生的方法探析; 14.数学智力因素与数学非智力因素的界定及其对学生学习成绩交互作用的研究; 15.数学教学中激发学生学习兴趣的内在机制和外部因素的研究; 16.教法与学法的双向作用研究; 17.学生“用数学”意识和能力的形成机制以及培养途径的实验研究; 18.数学新课程实施中转变学生学习方式的途径; 19.学生数学观念或数学意识的形成机制和培养途径的实验研究; 20.创设良好的数学教学心理氛围与提高数学教学质量相关关系 的研究。 21.中学数学教育的地位与作用。 22.形象思维与数学教学。 23.直观思维与数学教学。 24.非智力因素与数学学习。 25.数学美与数学教学。 26.在数学教学中怎样培养学生的数学能力。 27.数学作图及图形的教学。 28.数学解题错误的探讨。 29.怎样配备数学习题。 30.数学解题常用的一些思维方法。 31.怎样提高学生的自学能力。 32.怎样培养学生学习数学的兴趣。二、《概率论与数理统计》参考题 1.有关概率论发展的历史。 2.随机性与必然的数学基础与认识。 3.随机变量的直观认识与数学描述。 4.古典概率型的计算技巧。 5.几何概率型的分析处理。 6.有关概率论之介绍。 7.概率论中数学期望概念。 8.利用期望概率统一引人矩阵概率。 9.期望概率在概率论中的地位和作用。 10.特征函数与因数在概率论中的作用及其含义。 11.关于独立性。 12.大数定律与中心定律之含义。 13.大数定律与概率的统计定义。 14.有关概率不等式。 15.条件概率与条件期望。 16.Bayes公式的扩展。 17.概率在其它学科中的应用。 18.其它数学分支在概率论中的应用。 19.概率题目计算的多解性。 20.数理统计概念。 21.数理统计的过去与现在。 22.数理统计在客观现实中的作用。 23.假设检验的实质与作用。 24.参数估计的作用与处理方法。 25.数理统计在你自己工作实践中的应用(实例)。 26.学习概率统计的实践与体会。 27.概率统计中的错题分析。 28.如果我讲概率统计的话,我将这样讲(要求具体详细,资料充实,结构新颖)。 29.利用回归分析方法处理问题。 30.回归分析理论中存在的问题与解决的设想。三、《微分几何》参考题 1.空间曲线的基本公式及其在曲线论中的作用。 2.渐近线与渐缩线。 3.空间曲线弯曲性的研究。 4.曲率与挠率。 5.曲面的第一基本形式在曲面论中的作用。 6.等矩映象与曲面的内在几何。 7.曲面的第二基本形式在曲面论中的作用。 8.曲面上的曲率线,渐近曲线,测地线。 9.曲面的内在几何与外在几何的相依性。 10.曲面内的基本定理与曲线论的基本定理的比较(相仿之处与不同之处)。 11.高斯曲率的意义与作用。 12.等矩映射与等角映射及等积映射的关系。 13.高斯与波涅公式的意义与作用。 14.伪球面与罗氏几何。四、《复变函数》参考题 1.复变函数在一点解析的等价定义。 2.幅角多值性所导出的问题汇集。 3.小结复变函数的积分。 4.解析与调和函数的关系。 5.漫谈复数∞。 6.0,∞与函数 7.多值函数单值分支的表达与计算。 8.分式线性函数全体对乘法——函数复合——构成群。 9.∞和∞邻域的引进使扩充复平面的为紧空间。 lo.等比级数 ,在函数的泰勒展开式和罗朗展开式中的作用。 11.谈复数的比较大小问题。 五、《实变函数》参考题, 1.关于积分号下取极限(积分与极限交换次序问题)。 ①在什么条件下可以积分号下取极限,是积分的一个重要性质,例 如关系到微积分基本定理成立的条件,函数项级数和的性质等等。 ②列举勒贝格积分和黎曼积分在几个问题上的基本结论,分析其 中最基本的要求和相互关系(书上P146第6题可供参考),可以发现勒贝格积分在这方面比黎曼积分好得多,而且是用勒贝格积分的主要好处之一。 ③给出上述基本结论的简单推论,新的证明方法应用例题,并说明它们的意义。 2.关于微积分基本定理(牛顿一菜布尼兹公式) ①什么是微积分基本定理,它的重要意义在哪里? ②黎曼积分情形,相应定理的条件是什么?有什么不足之处? ③勒贝格积分情形,相应的定理的结论和条件又是怎样的?条件减弱在哪里?还有什么问题? ④应用例题。 3.关于绝对连续函数。 ①绝对连续的定义是什么?有些什么等价说法或充分必要条件,并证明之。绝对连续与连续、一致连续有什么不同,有什么关系。 ②证明绝对连续函数列一致收敛的极限,可微函数与绝对连续函 数复合,仍为绝对连续的。 ③绝对连续函数几乎处处可微,能否做到处处可微?举例!绝对连续函数与它的导致关系如何,与微积分基本定理有什么关系。 ④绝对连续函数全体组成线性空间。 4.关于勒贝格积分。 ①试将关于勒贝格积分的定义综合起来,做出一个统一,一般的勒贝格积分定义,并说明勒贝格积分仍然是“分割、求积、取极限”的结果,勒贝格积分的“分割”与黎曼积分又有何根本不同之处? ②说明勒贝格积分在几何上仍是“曲边梯形的面积”。 ③证明对于勒贝格积分,也和黎曼积分一样,无界函数的积分(广 义积分)和无界区域上的积分(无穷积分),都是有界函数在有界域上的积分的极限。 ④勒贝格积分有哪些黎曼积分所没有的重要性质。从积分的定义看,是什么原因导致这两类积分有许多重大差别。 ⑤勒贝格积分有许多重要性质,带来一些什么好处? 5.关于测度。 ①总结定义点集的勒贝格测度的过程,并与数学分析中定义区域的面积的过程(重积分前面部分)作比较,分析其中不同之处,以及为什么因为这些不同,导致黎曼积分和勒贝格积分在性质上有许多重大差别。 ②说明勒贝格测度长度、面积、体积概念的推广,当平面区域可求面积时,它的面积和勒贝格测度相等。 ③列举勒贝格测度的重要性质,说明它们与勒贝格积分性质的关 系(例如测度的可数可加性与积分的可数可加性有什么关系,单调集列极限的测度(定理3、2、6~3、2、10)与勒维定理(定理5、4、2的关系)。 6.关于可测函数。 ①可测函数与连续函数,可积函数从定义上、性质上看有什么关系和差别。 ②全体可测函数构成线性空间,构成环。 ③试说明鲁金定理的意义,以及它与黎斯定理、叶果洛夫定理的关系。你如何理解“可测函数近于连续函数”及其理由。 7.关于可测函数列的各种收敛概念。 ①试述实变函数论中及数学分析中讲过的各种收敛概念的定义和性质、互相之间的关系。以及引进这些概念的意义和用处。 ②从黎斯定理和叶果洛夫定理出发说明,你怎么理解“几乎处处收敛,近乎一致收敛”。 8.关于点集上的连续函数。 ①定义,性质。 ②与数学分析中讲的连续的关系。 9.集合论和点集论的方法在实变函数论中的意义。 从一些具体例子出发说明,为了解决数学分析中一些结果不够完善的问题,如推广它们的结论,有必要用这种方法去研究函数,用它也确实有好的效果。说明集合论是测度论和积分论的基础。 以上问题,除参考.所用教材外,还可参考程其襄等编《实变函数与泛函分析基础》。朱玉楷编《实变函数简编》等有关书籍资料。

复变函数多值函数论文研究

《实变函数》和《复变函数》都是数学系本科的专业课程。简单的说《实变函数》主要研究的是定义域为实数的函数的性质,而《复变函数》主要研究的是定义域为复数的函数的性质。 《实变函数》主要引进了一种新的积分-Lebesgue积分,用来研究不连续函数的积分问题。 《复变函数》主要研究定义域为复数的函数的微积分以及幂级数展开等性质。可以理解为复数函数的《数学分析》。但内容上有所增加。 在我国的数学系课程中,二者的联系并不大,研究的方法也不同。可以说《实变函数》要更深一些。如果要深入了解它们之间的联系,可以看一下这本书Walter Rudin的《Real and Complex Analysis》(有中译本),它是美国大学数学系研究生用书,其中包括了《实变函数》和《复以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积分学的进一步发展,它的基础是点集论。什么是点集论呢?点集论是专门研究点所成的集合的性质的理论。也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。 实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。[编辑本段]实变函数论的产生 微积分产生于十七世纪,到了十八世纪末十九世纪初,微积分学已经基本上成熟了。数学家广泛地研究并建立起它的许多分支,是它很快就形成了数学中的一大部门,也就是数学分析。 也正是在那个时候,数学家逐渐发现分析基础本身还存在着学多问题。比如,什么是函数这个看上去简单而且十分重要的问题,数学界并没有形成一致的见解。以至长期争论者问题的这样和那样的解答,这样和那样的数学结果,弄不清究竟谁是正确的。又如,对于什么是连续性和连续函数的性质是什么,数学界也没有足够清晰的理解。 十九世纪初,曾经有人试图证明任何连续函数除个别点外总是可微的。后来,德国数学家维尔斯特拉斯提出了一个由级数定义的函数,这个函数是连续函数,但是维尔斯特拉斯证明了这个函数在任何点上都没有导数。这个证明使许多数学家大为吃惊。 由于发现了某些函数的奇特性质,数学家对函数的研究更加深入了。人们又陆续发现了有些函数是连续的但处处不可微,有的函数的有限导数并不黎曼可积;还发现了连续但是不分段单调的函数等等。这些都促使数学家考虑,我们要处理的函数,仅仅依靠直观观察和猜测是不行的,必须深入研究各种函数的性质。比如,连续函数必定可积,但是具有什么性质的不连续函数也可积呢?如果改变积分的定义,可积分条件又是什么样的?连续函数不一定可导,那么可导的充分必要条件由是什么样的?…… 上面这些函数性质问题的研究,逐渐产生了新的理论,并形成了一门新的学科,这就是实变函数。[编辑本段]实变函数的内容 以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积分学的进一步发展,它的基础是点集论。什么是点集论呢?点集论是专门研究点所成的集合的性质的理论。也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。 实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。这里我们只对它的一些重要的基本概念作简要的介绍。 实变函数论的积分理论研究各种积分的推广方法和它们的运算规则。由于积分归根到底是数的运算,所以在进行积分的时候,必须给各种点集以一个数量的概念,这个概念叫做测度。 什么实测度呢?简单地说,一条线段的长度就是它的测度。测度的概念对于实变函数论十分重要。集合的测度这个概念实由法国数学家勒贝格提出来的。 为了推广积分概念,1893年,约当在他所写的《分析教程》中,提出了“约当容度”的概念并用来讨论积分。1898年,法国数学家波莱尔把容度的概念作了改进,并把它叫做测度。波莱尔的学生勒贝格后来发表《积分、长度、面积》的论文,提出了“勒贝格测度”、“勒贝格积分”的概念。勒贝格还在他的论文《积分和圆函数的研究》中,证明了有界函数黎曼可积的充分必要条件是不连续点构成一个零测度集,这就完全解决了黎曼可积性的问题。 勒贝格积分可以推广到无界函数的情形,这个时候所得积分是绝对收敛的,后来由推广到积分可以不是绝对收敛的。从这些就可以看出,勒贝格积分比起由柯西给出后来又由黎曼发扬的老积分定义广大多了。也可以看出,实变函数论所研究的是更为广泛的函数类。 自从维尔斯特拉斯证明连续函数必定可以表示成一致收敛的多项式级数,人们就认清连续函数必定可以解析地表达出来,连续函数也必定可以用多项式来逼近。这样,在实变函数论的领域里又出现了逼近论的理论。 什么是逼近理论呢?举例来说,如果能把 A类函数表示成 B类函数的极限,就说 A类函数能以 B类函数来逼近。如果已经掌握了 B类函数的某些性质,那么往往可以由此推出 A类函数的相应性质。逼近论就是研究那一类函数可以用另一类函数来逼近、逼近的方法、逼近的程度和在逼近中出现的各种情况。 和逼近理论密切相关的有正交级数理论,三角级数就是一种正交级数。和逼近理论相关的还有一种理论,就是从某一类已知函数出发构造出新的函数类型的理论,这种理论叫做函数构造论。 总之,实变函数论和古典数学分析不同,它是一种比较高深精细的理论,是数学的一个重要分支,它的应用广泛,它在数学各个分支的应用是现代数学的特征。 实变函数论不仅应用广泛,是某些数学分支的基本工具,而且它的观念和方法以及它在各个数学分支的应用,对形成近代数学的一般拓扑学和泛涵分析两个重要分支有着极为重要的影响。

从柯西1814年论文脚注增补内容和1825年的论文可以看出,他是通过长期刻苦的思考才认识到,引进复量后可以用简单形式表达实函数对之间的关系,1830-1838柯西在都灵和布拉格期间发表的工作是不连贯的,后来《分析与数学物理练习》(四卷,1840-1847)重新整理了这些工作。 他在1831年的论文中指出下述定理:函数f(z)可以按麦克劳林公式展开为幂级数,对所有z绝对值小于那些使函数或其导数无穷或不连续的z收敛(那时柯西知道的奇点只是我们现在称为极点的奇点),他证明这个级数逐项按绝对值小于一个收敛的几何级数,其和数为 ,其中Z是使f(z)不连续的第一个值,f(z)上划线是对所有绝对值为|Z|的z而言|f(z)|的最大值。他给出了函数可展为麦克劳林级数的一个有力易用的判别法则,它用了现在称为强级数的比较级数。他首先证明 再将分式展开证明定理。在定理中他假定了函数本身的连续性必推出导数的存在性和连续性,也曾经在定理叙述中补充到:收敛区域止于使函数及其导数无穷或不连续的z值,但他没有确信必须对导数加些条件,后来又把这句补充删掉了。在另一篇论文中,柯西把[解析的]f(z)=u+iv沿一个[单连通]区域边界曲线的积分和展布在这个区域上的积分联系起来,得到了一个与路径无关的基本定理新证明。他对一个矩形证明定理后推广到了不自交的闭曲线(魏尔斯特拉斯1842年独立得出)。柯西早期可能受到了格林1828年工作的影响,因为他将结果推广到了曲面上的区域。 到1846年他改变了对复函数的观点,不像1826年以前关心实积分及其求值,而是为复函数理论本身建立基础,他给出了关于沿一条任意闭曲线的积分 的新叙述:如果曲线包围一些极点,那么积分值是函数在这些极点上留数之和的2πi倍。 他还着手处理了多值函数的积分,并进一步考虑积分号下的多值函数。如果被积函数是一个代数方程或超越方程的根,如 (其中w^3=z),且如果沿着一条闭路径积分并又回到起点,那么被积函数就表示另外一个根,在这些情形中沿着闭路径积分的值依赖于起点,而沿着路径的延拓产生积分的不同值。但若环绕路径充分多次使ω回到原始值,那么积分的值将重复出现,是z的一个周期函数。积分的周期模不再像单值函数那样可以用留数表示。 柯西关于多值函数积分的概念依然是模糊的。1821年起的二十几年里,柯西独自发展了复函数理论,1843年才有法国数学家继续他的工作,皮埃尔·阿方斯·洛朗(Pierre Alphonse Laurent,1813-1854)在1843年得到了一个重要结果,他证明当一个函数在一孤立点上不连续时,必须用变数的升幂及降幂展开式来代替泰勒展开式,如果函数和其导数在一个圆环内单值且连续,这个圆环的中心是孤立点a,则函数以相反方向沿圆环的两个边界圆所取的积分适当展开,给出z的升幂及降幂展开式,它在圆环内收敛。这个洛朗展开式是 ,它是泰勒展开式的一个推广。魏尔斯特拉斯1841年得到该结果,但未发表。 皮瑟(Victor Alexandre Puiseux,1820 -1883)在1850年发表了关于多值函数的论文,论f(u,z)=0给出的复代数函数,其中f是u和z的多项式,他首次区分极点与支点(柯西未发觉其中区别)并引入本性奇点(一个无穷阶的极点)概念(魏尔斯特拉斯也曾独立提出),比如e^(1/z)=0在z=0。虽然柯西在1846年的论文中考虑了简单多值函数沿着包围支点的几条路径的变化,但皮瑟证明如果u1是f(u,z)=0的一个解,且z沿着某一条路径变化,则u1的最后值并不依赖于路径,只要路径不包围使u1为无穷或其它解(即支点)的任何点。 皮瑟还证明z的函数在支点z=a处附近的展开式必须含有z-a的分数次幂,于是改进了柯西把函数展开为麦克劳林级数的定理,他得到f(u,z)=0的解u的一个展开式,它不是展成z的幂而是z-c的幂,所以展开式在一个以c为中心,且不含极点或支点的圆内正确,然后皮瑟让c沿着一条路径变化,使那些收敛圆部分重叠,并使在一个圆内的展开式可以延伸到另一个圆。这样从u在一点的值开始,可以沿任何一条路径了解其变化。 通过皮瑟对多值函数、多值函数在复平面上的支点、以及多值函数积分的研究,皮瑟把柯西的函数论工作发展到第一阶段完毕,多值函数的理论中仍有困难需要克服。柯西写了一些关于多值函数的论文,试图跟上皮瑟的工作。虽然他引入分支切割的概念,但仍未区分极点和支点。代数函数及其积分的课题要交给黎曼继续进行。 柯西在1851年的论文中对复函数性质作了更谨慎的叙述,他肯定了复函数本身及其导数的连续性对幂级数展开式是必需的。他指出u作为z的函数,在z=a处的导数与x+iy平面上z趋于a的方向无关,且u满足u对x的二阶导+u对y的二阶导=0。在这篇论文中他还引入了新的术语,称一个永不为无穷的、恰有一个导数的单值函数为synectique,后来Charles Briot(1817-1822)和Jean-Claude Bouquet(1819-1885)用holomorphic(全纯)代替了synectique,并用meromorphic(亚纯)指在区域中只有极点的函数。

实积分与复积分的比较研究一。对于理科类学科的学习而言,最重要的一点莫过于概念的清晰程度,因此有实积分与复积分的比较研究一。复变函数是以复数作为自变量和因变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。

复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。 复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。 留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。 把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。

复变函数本科毕业论文

复变函数复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。 以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。 复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。 留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。 把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。

复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。 复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。 留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。 把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。

实积分与复积分的比较研究一。对于理科类学科的学习而言,最重要的一点莫过于概念的清晰程度,因此有实积分与复积分的比较研究一。复变函数是以复数作为自变量和因变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。

相关百科

热门百科

首页
发表服务