首页

> 期刊论文知识库

首页 期刊论文知识库 问题

热采井口装置研究论文

发布时间:

热采井口装置研究论文

一、我国石油和石油化工装备制造业已具有坚实基础 石油、石油化工工业是我国的支柱产业之一,在国民经济中占有重要地位,2001年,全国生产原油亿吨;原油加工量亿吨;生产乙烯万吨;生产化肥万吨;生产合成材料万吨,主要经济指标居全国工业各行业之首。石油、石油化工工业的发展带动了为其提供装备的石油、石油化工设备制造业的发展。建国五十多年以来,特别是改革开放20多年来,通过研制、开发、合作生产、引进技术,使我国石油、石油化工设备制造业,从无到有、从小到大,建立起一个比较完整的制造体系。据统计,2001年行业中的石油和石油化工专用设备405家规模以上企业,工业总产值(现价)达134亿元,利润总额亿元,从业人员万人。 (1)石油钻采设备制造体系已经形成 石油钻采设备制造业是为陆地、沙漠、浅滩和海上石油、天然气的勘探、开发提供装备。建国初期,石油基本依赖进口,而石油和石油化工设备制造业更谈不上,全国只有几家小厂生产一些石油设备零配件。经过五十年来的努力,已建成几个比较集中的制造基地:以宝鸡、兰州、南阳等为主的钻井设备基地;以上海、江苏为主的石油工具基地;以江汉、四川为主的石油钻头基地;以西安为主的地球物理勘探设备基地;以济南为主的石油钻机专用柴油机制造基地。采油设备的制造分散在全国各地,东北地区较为集中。 全世界具有生产成套石油钻机能力的国家不多,只有英国、俄罗斯、罗马尼亚、英国、挪威等国家。我国是发展中国家唯一能生产成套石油钻机的国家,且已具备年生产1000-9000米系列成套钻机120套左右能力。目前,生产成套石油钻机企业已发展到八家。其中,国企四家:宝鸡石油机械厂、南阳石油机械厂、江汉第四石油机械厂、胜利油田动力机厂;中外合资企业二家:兰石国民油井石油工程有限公司、上海三高石油设备有限公司;民营企业二家:成都瑜宏石化工程有限责任公司、川油广汉机械有限公司。2001年共生产销售石油钻机106台,无论在数量和质量上均是历来最好水平。 采油采气井口装置已是我国的成熟产品,单油管采油井口装置最高压力可达105mpa,双油管采油井口装置最高压力可达70mpa;机械采油设备已达到国际水平;生产适用于井筒直径51/2〃-7〃,温度为50℃-150℃,压力为10mpa及以上各种规格成套电动潜油泵;钩载60-120吨、修井深度为3600-7200米修井机;江汉石油钻头股份有限公司是亚洲最大的石油钻头生产企业,其能力为年产108个品种、23万只钻头。 国内制造的油气集输设备规格齐全、质量过硬,如流量为750-3000米3/时、扬程90-550米的ks型离心输油泵,pcl长输管线压缩机,800-1100mm口径、4-10mpa球阀,直径325-1420mm、壁厚6-16mm油气集输钢管生产能力达上百万吨,以及生产制造海洋油气集输单点系泊系统、浮式生产贮油船、穿梭油轮海底管道输送系统和加压设备等。 (2)石油化工设备制造业有了历史性突破 五十年来,我国石油炼制工业一直走自主发展的道路,因而,带动了炼油技术装备的发展。目前,已可以制造500万吨/年以上炼油厂成套设备、800万吨/年常减压蒸馏装置、200万吨/年以上重油催化裂化装置、150万吨/年加氢裂化装置、200万吨/年渣油加氢脱硫装置、100万吨/年延迟焦化装置等。一些高难度设备,如加氢裂化和加氢精制装置用的加氢反应器、高压换热器、高压空冷器;加氢和重整装置用的离心式循环氢压缩机、50及80吨活塞力的往复式新氢压缩机;催化裂化和延迟焦化装置用的主风机、富氧压缩机、高效旋风分离器、外取热器、烟机以及重要的流程泵等都能制造。 曾几何时,我国制造的小型化肥、中型化肥设备遍布全国各地,解决了当时对化肥的急需。这些化肥设备,由于其技术经济指标已落后,逐渐被大型化肥设备淘汰。以30万吨/年合成氨、52万吨/年尿素为代表的大型化肥装置的设备,包括关键设备:直径米的快活素合成塔、co2汽提塔、原料气压缩机、氨压缩机、合成气压缩机、co2压缩机等都已研制成功。 因此,我国的石油和石油化工装备行业从满足国内市场为主,到走出国门、融入国际市场,进入发展新阶段的条件已经成熟,一定会大有可为。

深水石油钻井技术现状及发展趋势*摘要:随着世界深水油气资源不断发现,近几年来深水钻探工作量越来越大。随着水深的增加和复杂的海况环境条件,对钻井工程提出了更高的挑战,钻井技术的难度越来越大。从目前国内外深水钻井实践出发,对深水的钻井设备、定位系统、井身结构设计、双梯度钻井技术、喷射下导管技术、动态压井钻井技术、随钻环空压力监测、钻井液和固井工艺技术和钻井隔水管及防喷器系统等关键技术进行了阐述,对深水的钻井设计和施工进一步向深水钻井领域发展具有重要导向作用。关键词:深水钻井;钻井设备;关键技术全世界未发现的海上油气储量有90%潜伏在水深超过1000 m以下的地层,所以深水钻井技术水平关系着深海油气勘探开发的步伐。对于海洋深水钻井工程而言,钻井环境条件随水深的增加变得更加复杂,容易出现常规的钻井工程难以克服的技术难题,因此深水钻井技术的发展是影响未来石油发展的重要因素。1国内外深水油气勘探形势全球海洋油气资源丰富。据估计,海洋石油资源量约占全球石油资源总量的34%,累计获探明储量约400×108,t探明率30%左右,尚处于勘探早期阶段。据美国地质调查局(USGS)评估,世界(不含美国)海洋待发现石油资源量(含凝析油)548×108,t待发现天然气资源量7815×1012m3,分别占世界待发现资源量的47%和46%。因此,全球海洋油气资源潜力巨大,勘探前景良好,为今后世界油气勘探开发的重要领域。随着海洋钻探和开发工程技术的不断进步,深水的概念和范围不断扩大。目前,大于500 m为深水,大于1500 m则为超深水。据估计,世界海上44%的油气资源位于300 m以下的水域,其中,墨西哥湾深水油气资源量高达(400~500)×108桶油当量,约占墨西哥湾大陆架油气资源量的40%以上,而巴西东部海域深水油气比例高达90%左右。20世纪90年代以来,由于发现油气田储量大,产量高,深水油气倍受跨国石油公司青睐,发展迅速。据估计,近年来,深水油气勘探开发投资年均增长30. 4%, 2004年增加到220亿美元。1999年作业水深已达2000 m, 2002年达3000 m。90年代以来,全球获近百个深水油气发现,其中亿吨级储量规模的超过30%。2000年,深水油气储量占海洋油气储量的12. 3%,比10年前增长约8%。2004年,全球海洋油气勘探获20个重大深水发现(储量大于110×108桶)。1998-2002年有68个深水项目,约15×108t油当量投产; 2003-2005年则增至144个深水项目,约4216×108t油当量投产, 2004年深水石油产量210×108,t约占世界石油产量的5%。2目前深水油气开发模式深水油气开发设施与浅水油气开发设施不同,其结构大多从固定式转换成浮式,因此开发方式和方法也发生了变化。国外深水油气开发中常用的工程设施有张力腿(TLP)平台、半潜式(SEMIOFPS)平台、深吃水立柱式(SPAR)平台、浮式生产储油装置(FPSO)以及它们的组合。3深水钻井关键技术深水钻井设备适用于深水钻井的主要是半潜式钻井平台和钻井船2种浮式钻井装置。. 1深水钻井船钻井船是移动式钻井装置中机动性最好的一种。其移动灵活,停泊简单,适用水深范围大,特别适于深海水域的钻井作业。钻井船主要由船体和定位设备2部分组成。船体用于安装钻井和航行动力设备,并为工作人员提供工作和生活场所。在钻井船上设有升沉补偿装置、减摇设备、自动动力定位系统等多种措施来保持船体定位。自动动力定位是目前较先进的一种保持船位的方法,可直接采用推进器及时调整船位。全球现有38艘钻井船,其中额定作业水深超过500 m的深水钻井船有33艘,占总数的87%。在这33艘深水钻井船中,有26艘正在钻井,有5艘正在升级改造。在现有的深水钻井船中, 20世纪70年代建造的有10艘, 80年代和90年代建造的各有7艘,其余9艘是2000-2001年建造的。其中2000年建成的钻井船最多,有8艘;其次是1999年,有4艘。目前在建的7艘钻井船中,均是为3000多米水深建造的, 2007年将建成1艘, 2008年和2009年将各建成3艘。钻井船主要活跃在巴西海域、美国墨西哥湾和西非海域。2006年7月初,正在钻井的26艘深水钻井船分布在8个国家。其中巴西8艘,占1/3;其次是美国,有6艘;安哥拉、印度和尼日利亚分别有4艘、3艘和2艘;中国、马来西亚和挪威各1艘。. 2半潜式钻井平台半潜式钻井平台上部为工作甲板,下部为2个下船体,用支撑立柱连接。工作时下船体潜入水中,甲板处于水上安全高度,水线面积小,波浪影响小,稳定性好、支持力强、工作水深大,新发展的动力定位技术用于半潜式平台后,到本世纪初,工作水深可达3000 m,同时勘探深度也相应提高到9000~12 000 m。据Rigzone网站截至2006年7月初的统计,全球现有165座半潜式钻井平台,其中额定作业水深超过500 m的深水半潜式钻井平台有103座,占总数的62%。在这103座深水半潜式钻井平台中,有89座正在钻井,有11座正在升级改造。其中31座是20世纪70年代建造的,最长的已经服役30多年; 40座是20世纪80年代建造的; 13座是90年代建造的; 19座是2000 -2005年建造的。此外,还有24座深水半潜式钻井平台正在建造。深水半潜式钻井平台主要活跃在美国墨西哥湾、巴西、北海、西非、澳大利亚和墨西哥海域。2006年7月初,处于钻井中的89座深水半潜式钻井平台分布在18个国家,其中美国最多, 24座,占总数的27%;巴西17座,挪威10座,英国6座,澳大利亚、墨西哥和尼日利亚各5座,其余国家各有1~3座。深水定位系统半潜式钻井平台、钻井船等浮式钻井装置在海中处于飘浮状态,受风、浪、流的影响会发生纵摇、横摇运动,必须采用可靠的方法对其进行定位。动力定位是深水钻井船的主流方式。在现有的深水钻井船中,只有6艘采用常规锚链定位(额定作业水深不足1000 m),其余27艘都采用动力定位(额定作业水深超过1000 m)。1000 m以上水深的钻井船采用的都是动力定位,在建的钻井船全部采用动力定位。动力定位系统一般采用DGPS定位和声纳定位2种系统。声纳定位系统的优点: (1)精确度高(1% ~2% )、水深(最大适用水深为2500 m); (2)信号无线传输(不需要电缆); (3)基本不受天气条件的影响(GPS系统受天气条件的影响); (4)独立,不需要依靠其他系统提供的信号。声纳定位系统的缺点: (1)易受噪声的影响,如环境噪声、推进器噪声、测试MWD等; (2)折射和阴影区; (3)信号传输时间; (4)易受其他声纳系统的干扰,如多条船在同一地方工作的情况。大位移井和分支水平井钻井技术海上钻井新技术发展较快,主要包括大位移井、长距离水平钻井及分支水平井钻井技术。这些先进技术在装备方面主要包括可控马达及与之配套的近钻头定向地层传感器。在钻头向地层钻进时,近钻头传感器可及时检测井斜与地层性质,从而使司钻能够在维持最佳井眼轨迹方面及时做出决定。由于水平井产量高,所以在国外海上油气田的开发中已经得到了广泛的应用。目前,国外单井总水平位移最大已经达11 000m。分支水平井钻井技术是国际上海洋油气田开发广泛使用的技术,近年来发展很快。利用分支井主要是为了适应海上需要,减少开发油藏所需平台数量及平台尺寸(有时平台成本占开发成本一半还多)。具体做法是从一个平台(基础)钻一口主干井,然后从主干井上急剧拐弯钻一些分支井,以期控制较大的泄油面积,或者钻达多个油气层。深水双梯度钻井技术与陆地和浅海钻井相比,深海钻井环境更复杂,容易出现常规钻井装备和方法难以克服的技术难题:锚泊钻机本身必须承受锚泊系统的重量,给钻机稳定性增加了难度;隔水管除了承受自身重量,还承受严重的机械载荷,防止隔水管脱扣是一个关键问题;地层孔隙压力和破裂压力之间安全钻井液密度窗口窄,很难控制钻井液密度安全钻过地层;海底泥线处高压、低温环境影响钻井液性能产生特殊的难题;海底的不稳定性、浅层水流动、天然气水合物可能引起的钻井风险等。国外20世纪60年代提出并在90年代得到大力发展的双梯度钻井(DualGradi-entDrilling,简称DGD)技术很好地解决了这些问题。双梯度钻井技术的主要思想是:隔水管内充满海水(或不使用隔水管),采用海底泵和小直径回流管线旁路回输钻井液;或在隔水管中注入低密度介质(空心微球、低密度流体、气体),降低隔水管环空内返回流体的密度,使之与海水相当,在整个钻井液返回回路中保持双密度钻井液体系,有效控制井眼环空压力、井底压力,克服深水钻井中遇到的问题,实现安全、经济的钻井。喷射下导管技术海上浅水区的表层套管作业通常采用钻孔、下套管然后固井的作业方式。在深水区,由于海底浅部地层比较松软,常规的钻孔/下套管/固井方式常常比较困难,作业时间较长,对于日费高昂的深水钻井作业显然不合适。目前国外深水导管钻井作业通常采用“Jetting in”的方式。常规做法是在导管柱(Φ914. 4 mm或Φ762 mm)内下入钻具,利用导管柱和钻具(钻铤)的重量,边开泵冲洗边下入导管。3. 6动态压井钻井技术(DKD)DKD(Dynamic killDrilling)技术是深水表层建井工艺中的关键技术。该技术是一种在未建立正常循环的深水浅层井段,以压井方式控制深水钻井作业中的浅层气井涌及浅层水涌动等复杂情况的钻井技术。其工作原理与固井作业中的自动混浆原理相似,它是根据作业需要,可随时将预先配好的高密度压井液与正常钻进时的低密度钻井液,通过一台可自动控制密度的混浆装置,自动调解到所需密度的钻井液,可直接供泥浆泵向井内连续不断地泵送。在钻进作业期间,只要PWD和ROV监测到井下有地层异常高压,就可通过人为输入工作指令,该装置立即就可泵送出所需要的高密度钻井液,不需要循环和等待配制高密度钻井液,真正意义上地实现边作业边加重的动态压井钻井作业。3. 7随钻环空压力监测(APWD)由于深水海域的特殊性,与浅水和陆地钻井相比,部分的上覆岩层被水代替,相同井深上覆岩层压力降低,使得地层孔隙压力和破裂压力之间的压力窗口变得很窄,随着水深的增加,钻井越来越困难。据统计,在墨西哥湾深水钻井中,出现的一系列问题,如井控事故、大量漏失、卡钻等都与环空压力监测有关。随钻环空压力测量原理是主要靠压力传感器进行环空压力测量,可实时监测井下压力参数的变化。它可以向工程师发出环空压力增加的危险报警,在不破坏地层的情况下,提供预防措施使井眼保持清洁。主要应用于实时井涌监测和ECD监控、井眼净化状况监控、钻井液性能调整等,是深水钻井作业过程中不可缺少的数据采集工具。3. 8随钻测井技术(LWD /MWD /SWD)深水测井技术主要是指钻井作业过程中的有关井筒及地层参数测量技术,包括LWD、MWD和SWD测井技术。由于深水钻井作业受到高作业风险及昂贵的钻机日租费的影响,迫使作业者对钻井测量技术提出了多参数、高采集频率和精度及至少同时采用2套不同数据采集方式的现场实时数据采集和测量系统,并且具有专家智能分析判断功能的高标准要求。目前最常用的定向测量方式是MWD数据测量方式,这种方式通常只能测量井眼轨迹的有关参数,如井斜角、方位角、工具面。LWD是在MWD基础上发展起来的具有地层数据采集的随钻测量系统,较常规的MWD增加了用于地层评价的电阻率、自然伽马、中子密度等地层参数。具有地质导向功能的LWD系统可通过近钻头伽马射线确定井眼上下2侧的地层岩性变化情况,以判断井眼轨迹在储层中的相对位置;利用近钻头电阻率确定钻头处地层的岩性及地层流体特性以及利用近钻头井斜参数预测井眼轨迹的发展趋势,以便及时做出调整,避免钻入底水、顶部盖层或断裂带地层。随钻地震(SWD)技术是在传统的地面地震勘探方法和现有的垂直地震剖面(VSP———VerticalSeismic Profiling)的基础上结合钻井工程发展起来的一项交叉学科的新技术。其原理是利用钻进过程中旋转钻头的振动作为井下震源,在钻杆的顶部、井眼附近的海床埋置检波器,分别接收经钻杆、地层传输的钻头振动的信号。利用互相关技术将钻杆信号和地面检波器信号进行互相关处理,得到逆VSP的井眼地震波信息。也就是说,在牙轮钻头连续钻进过程中,能够连续采集得到直达波和反射波信息。深水钻井液和固井工艺随着水深度的加大,钻井环境的温度也将越来越低,温度降低将会给钻井以及采油作业带来很多问题。比如说在低温情况下,钻井液的流变性会发生较大变化,具体表现在黏、切力大幅度上升,而且还可能出现显著的胶凝现象,再有就是增加形成天然气水合物的可能性。目前主要是在管汇外加绝缘层。这样可以在停止生产期间保持生产设备的热度,从而防止因温度降低而形成水合物。表层套管固井是深水固井的难点和关键点。海底的低温影响是最主要的因素。另外由于低的破裂压力梯度,常常要求使用低密度水泥浆。深水钻井的昂贵日费又要求水泥浆能在较短的时间内具有较高的强度。深水钻井隔水管及防喷器系统深水钻井的隔水管主要指从海底防喷器到月池一段的管柱,主要功能是隔离海水、引导钻具、循环钻井液、起下海底防喷器组、系附压井、放喷、增压管线等作用。在深水钻井当中,隔水管柱上通常配有伸缩、柔性连接接头和悬挂张力器。在深水中,比较有代表性的是Φ533. 4 mm钻井隔水管,平均每根长度为15. 2~27. 4 m。为减小由于钻井隔水管结构需要和自身重量对钻井船所造成的负荷,在钻井隔水管外部还装有浮力块。这种浮力块是用塑料和类似塑料材料制成的,内部充以空气。在钻井隔水管外部,还有直径处于50~100 mm范围的多根附属管线。在深水钻井作业过程中,位于泥线以上的主要工作构件从下向上分别是:井口装置、防喷器组、隔水管底部组件、隔水管柱、伸缩短节、转喷器及钻井装置,井口装置通常由作业者提供。4结论深水石油钻井是一项具有高科技含量、高投入和高风险的工作,其中喷射下导管技术、动态压井钻井技术、随钻环空压力监测、随钻测井技术、ECD控制等技术是深水钻井作业成功的关键。钻井船、隔水管和水下防喷器等设备的合理选择也是深水钻井作业成功的重要因素。另外,强有力的后勤支持和科学的作业组织管理是钻井高效和安全的重要保障。参考文献:[1]潘继平,张大伟,岳来群,等.全球海洋油气勘探开发状况与发展趋势[J].中国矿业, 2006, 15(11): 1-4.[2]刘杰鸣,王世圣,冯玮,等.深水油气开发工程模式及其在我国南海的适应性探讨[ J].中国海上油气,2006, 18(6): 413-418.[3]谢彬,张爱霞,段梦兰.中国南海深水油气田开发工程模式及平台选型[ J].石油学报, 2007, 28(1): 115-118.[4]李芬,邹早建.浮式海洋结构物研究现状及发展趋势[J].武汉理工大学学报:交通科学与工程版, 2003, 27(5): 682-686.[5]杨金华.全球深水钻井装置发展及市场现状[J].国际石油经济, 2006, 14(11): 42-45.[6]赵政璋,赵贤正,李景明,等.国外海洋深水油气勘探发展趋势及启示[J].中国石油勘探, 2005, 10(6): 71-76.[7]陈国明,殷志明,许亮斌等.深水双梯度钻井技术研究进展[J].石油勘探与开发, 2007, 18(2): 246-250.

你要的是人类的发展史,还只是我们国家的.

矿井瓦斯抽采系统设置毕业论文

浅议煤矿煤层的开采技术摘要:由于煤层的自然条件和采用的机械不同,完成回采工作各工序的方法也就不同,并且在进行的顺序、时间和空间上必须有规律地加以安排和配合。这种在采煤工作面内按照一定顺序完成各项工序的方法及其配合,称为采煤工艺。在一定时间内,按照一定的顺序完成回采工作各项工序的过程,称为采煤工艺过程。关键词:开发技术 煤炭工艺 煤炭一、煤炭开采的主要形式(一)井下采煤井下采煤的顺序。对于倾角10°以上的煤层一般分水平开采,每一水平又分为若干采区,先在第一水平依次开采各采区煤层,采完后再转移至下一水平。开采近水平煤层时,先将煤层划分为几个盘区,立井于井田中心到达煤层后,先采靠近井筒的盘区,再采较远的盘区。如有两层或两层以上煤层,先采第一水平最上面煤层,再自上而下采另外煤层,采完后向第二水平转移。按落煤技术方法,地下采煤有机械落煤、爆破落煤和水力落煤三种,前二者称为旱采,后者称为水采,我国水采矿井仅占。旱采包括壁式采煤法和柱式采煤法,以前者为主。壁式采煤法工作面长,一般100~200 m,可以容纳功率大,生产能力高的采煤机械,因而产量大,效率高。柱式采煤法工作面短,一般6~30 m,由于工作面短,顶板易维护,从而减少了支护费用,主要缺点是回采率低。(二)露天采煤移走煤层上覆的岩石及覆盖物,使煤敞露地表而进行开采称为露天开采,其中移去土岩的过程称为剥离,采出煤炭的过程称为采煤。露天采煤通常将井田划分为若干水平分层,自上而下逐层开采,在空间上形成阶梯状。其主要生产环节:首先用穿孔爆破并用机械将岩煤预先松动破碎,然后用采掘设备将岩煤由整体中采出,并装入运输设备,运往指定地点,将运输设备中的剥离物按程序排放于堆放场;将煤炭卸在洗煤厂或其他卸矿点。主要优缺点优点为生产空间不受限制,可采用大型机械设备,矿山规模大,劳动效率高,生产成本低,建设速度快。另外,资源回采率可达90%以上,资源利用合理,而且劳动条件好,安全有保证,死亡率仅为地下采煤的1/30左右。主要缺点是占用土地多,会造成一定的环境污染,而且生产过程需受地形及气候条件的制约。在资源方面,对煤赋存条件要求较严,只宜在埋藏浅,煤层厚度大的矿区采用。二、采煤方法与工艺在发展现代采煤工艺的同时,继续发展多层次、多样化的采煤工艺,建立具有中国特色的采煤工艺理论。我国长壁采煤方法已趋成熟,放顶煤采煤的应用在不断扩展,应用水平和理论研究的深度和广度都在不断提高,急倾斜、不稳定、地质构造复杂等难采煤层采煤方法和工艺的研究有很大空间,主要方向是改善作业 条件,提高单产和机械化水平。(一)开采技术开发煤矿高效集约化生产技术、建设生产高度集中、高可靠性的高产高效矿井开采技术。以 提高工作面单产和生产集中化为核心,以提高效率和经济效益为目标,研究开发各种条件下 的高效能、高可靠性的采煤装备和工艺,简单、高效、可靠的生产系统和开采布置,生产过 程监控与科学管理等相互配套的成套开采技术,发展各种矿井煤层条件下的采煤机械化,进一步改进工艺和装备,提高应用水平和扩大应用范围,提高采煤机械化的程度和水平。(二)解决难题开发“浅埋深、硬顶板、硬煤层高产高效现代开采成套技术”,主要解决以下技术难题。硬顶板控制技术,研究埋深浅、地压小的硬厚顶板控制技术,主要通过岩层定向水力 压裂、倾斜深孔爆破等顶板快速处理技术,使直接顶能随采随冒,提高顶煤回收率,且基本 顶能按一定步距垮落,既有利于顶煤破碎,又保证工作面的安全生产。硬厚顶煤控制技术,研究开发埋深浅、支承压力小条件硬厚顶煤的快速处理技术,包括高压 注水压裂技术和顶煤深孔预爆破处理技术,使顶煤体能随采随冒,提高其回收率。顶煤冒放性差、块度大的综放开采成套设备配套技术,研制既有利于顶煤破碎和顶板控制, 又有利于放顶煤的新型液压支架,合理确定后部输送机能力。 两硬条件下放顶煤开采快速推进技术,研究合适的综放开采回采工艺,优化工序,缩短放煤 时间,提高工作面的推进度,实现高产高效。5~宽煤巷锚杆支护技术,通过宽煤巷锚 杆支护技术的研究开发和应用,有利于综采配套设备的大功率和重型化,有助于连续采煤机 的应用,促进工作面的高产高效。(三)缓倾斜薄煤层长壁开采主要研究开发:体积小、功率大、高可靠性的薄煤层采煤机 、刨煤机;研制适合刨煤机综采的液压支架;研究开发薄煤层工作面的总体配套技术和高效开采技术。(四)缓倾斜厚煤层一次采全厚大采高长壁综采应进一步加强完善支架结构及强度,加 强 支架防倒、防滑、防止顶梁焊缝开裂和四连杆变形、防止严重损坏千斤顶措施等的研究,提高支架的可靠性,缩小其与中厚煤层(采高3m左右)高产高效指标的差距。(五)各种综采高产高效综采设备保障系统要实现高产高效,就要提高开机率,对“支架—围岩”系统、采运设备进行监控。今后研究的重点是:通过电液控制阀组操纵支架和改善“支架—围岩”系统控制,进一步完善液压信息、支架位态、顶板状态、支护质量信息的自动采集系统;乳化液泵站及液压系统运行状态的检测诊断;采煤机在线与离线相结合的“油 —磨屑”监测和温度、电信号的监测;带式输送机、刮板输送机全面状态监控。三、主要的开采技术(一)深矿井开采技术深矿井开采的关键技术是:煤层开采的矿压控制、冲击地压防治、瓦斯和热害治理及深井通风、井巷布置等;需要攻关研究的是:深井围岩状态和应力场及分布状态的特征;深井作业场所工作环境的变化;深井巷道(特别是软岩巷道)快速掘进与支护技术与装备;深井冲击地压防治技术与监测监控技术;深矿井高产高效开采有关配套技术;深矿井开采热害治理技术与装备。(二)“三下”采煤技术提高数值模拟计算和相似材料模拟等,深入研究开采上覆岩层运动和地表下陷规律,研究满足地表、建筑物、地下水资源保护需要的合理的开采系统和优化参数,发展沉降控制理念和关键技术,包括用地表废料向垮落法工作面采空区充填的系统;研究与应用各种充填技术和组合充填技术,村庄房屋加固改造重建技术,适于村庄保护的开采技术;研究近水体开采的开采设计,工艺参数优化和装备,提出煤炭开采与煤炭城市和谐统一的开采沉陷控制、开采村庄下压煤、土地复垦和矿井水资源化等关键技术。(三)优化巷道布置,减少矸石排放的开采技术改进、完善现有采煤方法和开采布置,以实现开采效益最大化为目标,研究开发煤矿地质条件开采巷道布置及工艺技术评价体系专家系统,实现开采方法、开采布置与煤层地质条件的最优匹配。实行全煤巷布置单一煤层开采,矸石基本不运出地面,生产系统要减化,同时实现中采与中掘同走发展,生产效率大幅提高的经验的同时,重点研究高产高效矿井,开拓部署与巷道布置系统的优化,减化巷道布置,优化采区及工作面参数,研究单一煤层集中开拓,集中准备、集中回采的关键技术,大幅度降低岩巷掘进率,多开煤巷,减少出矸率;研究矸石在井下直接处理、作为充填材料的技术,既是减少污染的一项有利措施,又减化了生产系统,有利于高产高效集中化开采,应加紧研究。采煤方法和工艺的进步和完善始终是采矿学科发展的主题。采煤工艺的发展将带动煤炭开采各环节的变革,现代采煤工艺的发展方向是高产、高效、高安全性和高可靠性,基本途径是使采煤技术与现代高新技术相结合,研究开发强力、高效、安全、可靠、耐用、智能化的采 煤设备和生产监控系统,改进和完善采煤工艺。

安全专篇是指在煤矿初步设计的基础上对煤矿安全设施和条件的设计,包括煤矿初步设计安全专篇说明书和附图两部分。3 基本规定 矿井初步设计安全专篇必须在以下资料基础上编制:a) 经国土资源部门评审备案的相应级别的井田勘查地质报告;b) 省级及以上政府有关主管部门项目核准(审批)的批复文件;c) 国土资源部门划定井田范围批复文件或颁发的采矿许可证;d) 安全预评价报告。 矿井初步设计安全专篇编制必须符合《煤炭产业政策》、《煤炭工业矿井设计规范》、《煤矿安全规程》等政策、法规、标准要求。 矿井初步设计安全专篇必须在初步设计的基础上进行编制,矿井初步设计及其安全专篇应由同一个设计单位进行编制,编制单位必须具有相应设计资质。4 编制内容 概况 矿区开发情况。包括矿区总体规划,现有生产、在建矿井的分布和开采情况,小窑分布及开采情况;属于非新建项目的,要介绍其建设、安全生产情况。 项目设计依据。包括建设单位提出的要求和目标、提供的主要技术资料与审批文件,设计编制的主要原则和指导思想,国家有关安全法律法规、规范和标准等。 建设单位基本情况。项目建设单位的组成、主营业务、煤炭建设与生产业绩、近年安全生产状况。 设计概况 地理概况。矿区、矿井所在地理位置、交通情况、地形地貌、水系河流、气象与地震、环境状况等情况。附:交通位置图。 主要自然灾害。井田所在区域洪水、泥石流、滑坡、岩崩、不良工程地质、灾害性天气等方面。 工程建设性质,新建、改建、扩建。 井田开拓与开采。井田境界、储量、设计能力及服务年限;井田开拓方式、采区布置、采煤工艺及主要设备,建设工期等。附:井筒特征表。附插图:开拓方式平、剖面图。 提升、排水、压缩空气系统。主要设备型号和主要技术参数。 井上下主要运输设备。地面铁路、公路及其它运输方式,井下主要、辅助运输方式及设备。 供电及通讯。供电电源、电压、电力负荷、送变电方式、地面供配电、井下供配电、安全监控与计算机管理,通讯及铁路信号等。 地面辅助生产系统。包括原煤进仓装车、洗选加工、矸石排放,以及供排水、污水处理、井口降温采暖等系统。 地面设施。工业场地及周边用于生产生活的重要建筑物与构筑物。附:工业场地总平面布置图。 技术经济。劳动定员汇总表,主要技术经济指标。 矿井开拓与开采 煤层埋藏及开采条件 地质构造及特征。地层、煤系地层及含煤性。煤系地层走向、倾向、倾角及其变化规律;断层、褶曲、陷落柱、剥蚀带发育情况及其分布规律;火成岩侵入情况及对煤层和煤层顶底板的影响;构造类型。附表:主要断层特征表 煤层及煤质。煤层赋存情况(包括可采煤层层数、厚度、倾角、结构、节理、层理发育情况等)、煤层顶底板岩性特征、物理力学性质、结构及变化规律;煤层露头(含隐露头)及风化带情况;煤质及煤种。附:可采煤层特征表。煤质特征表。附:煤层柱状图。 矿井主要灾害因素及安全条件。煤层瓦斯赋存及规律,煤层瓦斯含量、压力,矿井瓦斯等级,矿井煤(岩)与瓦斯(二氧化碳)突出危险性,其它有毒有害气体情况;各煤层煤尘爆炸指数及爆炸危险性;煤层自燃发火期和自燃倾向性;煤层顶、底板情况;冲击地压危险性;地温情况。邻近矿井瓦斯、煤尘、煤的自燃、煤与瓦斯突出、地温等实际情况及鉴定研究成果。 矿井开拓系统 井筒井筒的设置及功能。井筒和工业场地工程地质条件、防洪设计标准、保护煤柱的留设等;进、回风井口的安全性。 采区(或盘区、下同)划分、采区及煤层开采顺序、采区接替关系,划分依据及其合理性分析;煤层下行开采的顺序确定;煤层上行开采的分析论证。 主要巷道主要巷道布置层位、安全煤柱、安全间隙、支护方式、安全风速、其它安全措施等。插图:井筒、开拓、采区主要巷道断面图。附:开拓方式平、剖面图。 竣工投产应具备标准条件,采区包括盘区大巷应贯穿整个采(盘)区。 采煤方法及采区巷道布置 采煤方法的合理性分析。应对综合机械化采煤、放顶煤采煤法、水文地质条件复杂、煤层自燃、高瓦斯矿井、煤(岩)与瓦斯突出矿井、冲击地压矿井、薄煤层、大倾角煤层和特厚煤层等难采煤层的适应性和安全性进行分析。 采掘设备的安全性液压支架的支护强度、防倒、防滑措施;倾斜和急倾斜煤层开采时的防飞矸措施等。 采区巷道布置。采区上、下山、采煤工作面顺槽等巷道布置方式。对有冲击地压、煤层自燃和煤与瓦斯突出等条件下巷道层位的选择与分析。高瓦斯矿井、有煤(岩)与瓦斯(二氧化碳)突出危险矿井采区和开采容易自燃煤层的采区以及低瓦斯矿井开采煤层群和分层开采采用联合布置的采区,其专用回风巷的设置情况。采区及工作面加强支护的要求等。附:采(盘)区巷道布置及机械配备平、剖面图;井下运输系统图。 顶板管理及冲击地压 顶板灾害防治及装备影响矿山压力显现基本因素分析:煤层顶板岩性、顶底板类别、物理力学性质对可能产生顶板事故的影响分析;断层与褶曲、挤压带与破碎带、冲刷、节理、裂隙、煤层倾角、开采深度、采高、控顶距对矿山压力显现的影响。一般顶板冒落灾害的防治措施及装备:回采工作面顶板管理方式的选择,回采工作面支架的选择论证,采区顺槽巷道支护的选择论证;沿空掘(留)巷的安全措施。掘进工作面支护选择论证、交叉点支护的选择论证。矿山压力观测设备:综采工作面、高档普采工作面、其它采煤工作面及掘进工作面各种矿山压力观测设备。坚硬顶板跨落灾害的防治措施:顶板岩石特性、物理力学性质、顶板岩层厚度、临近矿井顶板冒落情况等。预防措施及装备:顶板高压注水、强制放顶等措施分析。岩石钻机、高压注水泵、矿山压力观测设备(如:微震仪、地音仪、超声波地层应力仪等)。 冲击地压矿区或邻近矿井或本矿冲击地压发生的历史资料;影响本矿冲击地压发生的因素分析(地质因素、开拓开采因素);冲击地压预测(冲击地压预测方法、预测仪器仪表和设备选型);冲击地压防治措施(设计原则、防治措施等)。附:上下煤层对照图、冲击地压的预测和防治工程图(必要时附)。 井下主要硐室井下架线式电机车修理间及变流室、井下蓄电池式电机车修理间及充电变流室、井下防爆柴油机车修理间及加油(水)站、井下换装硐室、井下消防材料库、防水闸门硐室、井下急救站、避灾硐室、井下降温系统硐室等的规格、要求(装备)、服务范围、层位位置选择、支护形式、通风方式等。 井上、下爆炸材料库位置、库房型式、支护、通风、照明、通讯;距主要井巷(建构筑物)距离;爆炸材料库采取的安全防范措施。 安全出口矿井、采区、工作面安全出口设置及保证措施。 矿山压力及地质测量类仪表、设备配置 瓦斯灾害防治 瓦斯灾害因素分析 瓦斯赋存状况瓦斯成分、瓦斯参数(瓦斯风化带、瓦斯压力、各煤层瓦斯含量及梯度等)、煤层逶气性系数、煤(岩)与瓦斯(二氧化碳)突出危险性、其它有毒有害气体情况。 瓦斯涌出量预测及变化规律分析根据不同水平的瓦斯参数预测矿井不同水平或开采区域的瓦斯涌出量、矿井瓦斯等级,从不同区域不同埋深分析研究矿井瓦斯涌出的变化规律等。 瓦斯灾害治理措施选择研究确定降低矿井瓦斯浓度的可能途径,对风排、抽排比例关系进行定性、定量分析。 防爆措施 防止瓦斯积存的措施。健全稳定、合理、可靠的通风系统;保证工作面有充足的风量和合理的风速;确定瓦斯异常区装备、管理标准。 控制和消除引爆火源。防止爆破引燃瓦斯;防治自燃措施;电气防爆措施;防止撞击产生火花的措施;防止产生引燃(爆)火源(明火)的措施。 地面储、装、运等辅助生产系统防爆措施 隔爆措施(见) 瓦斯抽采 矿井瓦斯储量瓦斯储量、可抽量及瓦斯涌出量计算。 抽采系统和方法瓦斯抽采系统的选择及合理性分析;地面集中抽采(预抽)的预抽量、预抽时间、预抽效果分析。本煤层瓦斯抽采方法;临近层抽采方法;采空区抽采方法;抽采巷道的选择和布置;钻场布置和钻孔参数。 抽采管路及其设备抽放系统的主、干、支管管径、材质、连接方式,主管路的趟数;抽放管路的布设和敷设方式,安全间距;管路的附属设施(如阀门、计量装置、放水器、除渣装置、管路瓦斯参数测定孔等)及其布设原则;井下管路的阻燃性和防砸、防静电、防腐、防漏气、防下滑措施,地面管路的防冻和防雷电、静电措施;矿井不同时期的抽放流量、负压及时间界限;瓦斯储存、利用方式及所需正压,抽放设备选型及工况点(应考虑抽放设备实际工况与标准工况的换算),设备富裕能力(≮15%)校验,设备工作及备用台数;瓦斯抽放站的辅助设施(起重、冷却、采暖、通风、测量及计量)、安全设施(防爆器、防回火装置、放空管、避雷、灭火器具),安装布置方式,防火间距,机房安全出口;抽放设备及设施选型合理性和运行安全、可靠性分析;附:抽放管路系统图、抽放泵特性曲线图。 安全保障措施抽放系统及抽放泵站安全措施:抽放站场、钻孔施工防治瓦斯措施;管路及抽放瓦斯站防雷电、防火灾、防洪涝、防冻措施;抽放瓦斯浓度规定;安全管理措施。监测监控子系统的组成、功能及设置。 防突措施 煤与瓦斯突出的危险性分析煤层赋存、顶底板等情况;瓦斯特征;煤层的物理力学性质;矿井或邻近矿井煤与瓦斯突出情况;各煤层瓦斯突出危险性鉴定结果。 综合防突措施(开拓方式和开采顺序;采煤方法和巷道布置;采区巷道和顶板管理;通风等)。 煤层注水防突(煤层注水的布孔形式、位置、长度、注水量等参数结合防尘、防突等因素综合考虑,详见)。 开采保护层:保护层的确定;保护层作用有效范围的圈定;开采保护层的几个技术问题—主要巷道布置、井巷揭突出煤层地点的选择、预抽被保护层的瓦斯、保护层的有效保护范围及有关参数确定、保护层的回采工作面与被保护层的掘进工作面超前距离的确定、防止应力集中的影响、留煤柱时采取的措施、掘进通风和局部扇风的选择、井巷揭煤前通风系统和通风设施及采区上山布置方式、其它应注意的问题。 预抽煤层瓦斯;石门和井巷揭煤的防突措施;煤巷掘进防突措施;回采工作面防突措施。 预测预报措施,煤与瓦斯突出预测仪器。 安全防护措施井巷揭穿突出煤层和在突出煤层中进行采掘作业时的安全防护措施;压风自救系统(压风自救硐室;压风自救点;自救系统需风量校验,管路设施);个人防护措施等。附:压风自救系统图。 矿井瓦斯及其它气体检测仪器、设备配置 矿井通风 通风系统矿井通风方式和通风方法。矿井初、后期进回风井数目及位置、功能、服务的范围及时间;改扩建矿井增加和弃用的井筒情况。附插图:通风系统图(初、后期)、通风网络图(初、后期)。 矿井风量、风压及等积孔矿井不同时期的需风量计算及风量分配、风压、等积孔计算及通风难易程度评价,应考虑自然风压及海拔高度影响。附表:初、后期风压计算表。 掘进通风掘进通风方法、通风设备、防止产生循环风的安全措施。 硐室通风井下独立通风硐室的通风系统及安全措施,采用扩散通风的硐室及通风要求。 井下通风设施及构筑物井下各种风门、挡风墙、风帘和风桥、调节风门、测风站的设置及技术要求。 矿井主通风机及矿井反风矿井通风设备选型及正常、反风工况点(应考虑自然风压影响及海拔高度对特性曲线的修正),通风设备的余量及电机功率(包括反风功率)校验;工况调节方式,辅助设施(防爆门、风硐、风门、起重、润滑、液压、冷却散热、消音、测压、灭火器具),安装布置方式,机房安全出口,风门防冻措施,性能测试方式;反风方式、反风系统及设施;多风机联合运转时的性能匹配及工况点稳定性;通风设备及设施选型合理性和运行安全、可靠性分析。多风井实施反风的技术措施和方法。附:初、后期风机工作和反风特性曲线图。 井筒防冻井筒防冻方式、计算参数、设备选型及相应的安全措施。 降温措施及设备选型 矿井致热因素热害种类、热害程度及致热因素分析。 矿井地热、热水分布状况及岩石热物理性质可采煤层上下主要层段岩石热物理性质及参数;热水型矿井的热水形成、运移、水温及水量等主要参数;地热型矿井的原始岩温、干湿球温度等主要参数。 矿井热源散热量计算地温情况及热害对职工的影响;风温预测计算及采取的降温措施。 降温措施及设备选型开拓、采掘布置措施;通风系统及通风管理措施;地热及热水型矿井封堵、疏干措施;人工制冷、降温等措施;降温设备选型;采用各种措施的经济技术比较;降温措施及预期效果。 矿井通风检测类设备配置 粉尘灾害防治 粉尘危害及防尘措施 粉尘种类和危害程度分析粉尘的种类、游离二氧化硅含量、煤尘的爆炸性、粉(煤)尘的危害性等。 防尘措施的确定各采掘工作面、装载点、卸载点、运输、仓储......等产生粉尘的尘源地点,采用的降尘、除尘、捕尘以及对沉淀在巷道中的煤尘所采取的综合防尘措施。回采、掘进工作面除尘。 煤层注水 煤层注水设计依据煤层的物理特性、煤层顶底板的物理特性、煤层的结构特征等;论述煤层注水的必要性。 注水工艺、参数及设备注水方式的选择、注水参数及水质的确定;注水系统的选择、注水设备和仪表的选择。 井下消防、洒水(给水)系统井下消防洒水系统:水源及水处理、水量、水压、水质、给水系统(系统选择、水池、蓄水仓、加压、减压、管网)、用水点装置(灭火装置、给水栓、喷雾装置)、管道、加压泵站、自动控制。 粉尘监测及个体防护设备 粉尘检测主要检测方法及频率,粉尘传感器布置及检测仪表。 个体防护设备个体防护设备的选择及配置。 防爆措施(有煤尘爆炸危险矿井)防尘降尘措施、电气设备及保护、撒布岩粉、防止火源引起煤尘爆炸的措施等。 隔爆措施(有煤尘爆炸危险或有瓦斯涌出矿井)防止爆炸由局部扩大为全矿性的灾难所采取的措施。 隔爆水棚(水槽、水袋)水棚的结构、选型、计算与布置以及水棚给水系统。 隔爆岩粉棚粉棚的结构、布置、计算,对岩粉的要求与岩粉原料。附:隔爆水棚、岩粉棚布置图。 矿井地面生产系统防尘地面生产系统防尘;排矸系统防尘;喷雾洒水除尘措施及装备。 矿井总粉尘、呼吸性粉尘检查、检测类仪器仪表配置 防灭火 煤层自然发火危险性及防灭火措施 煤层自然发火危险性煤层自燃发火危险性参数及矿井的火灾特点。邻近矿井煤层自燃发火的特点和规律、煤层的发火期。 煤的自燃分析预测从煤的化学成分及变质程度、孔隙率、地质构造和内生裂隙、水分、炭化程度、煤岩组分、硫磷含量、瓦斯含量、吸氧速度、温度及开拓方式、采煤方法、通风方式等等方面分析。 煤层的自燃预防措施应根据矿井煤层自然发火的特点、开拓开采方式、先进适用的科技成果,选择适宜的开拓开采和通风方式,确定预测预报自然发火的方法,火灾监测系统设置等。 防灭火方法 灌浆防灭火:设计依据及主要技术资料、灌浆系统的选择、灌浆方法的选择、灌浆参数的计算及选择、灌浆材料的选择、泥浆制备、注浆管道和泥浆泵选择。附:灌浆系统图。 氮气防灭火:设计依据及主要技术要求、注氮工艺系统及设备、注氮参数。附:注氮工艺系统图。 阻化剂防灭火:设计依据、阻化剂的选择、喷洒压注工艺系统、参数计算、喷洒压注设备。 凝胶防灭火:主料、基料及促凝剂的选择、参数计算、压注、喷洒设备选择等。 其它防灭火方法:泡沫灭火技术、均压通风等。 井下外因火灾防治 电气事故引发的火灾防治措施井下机电设备硐室防火措施、井下电气设备的防火措施、井下电缆、井下电气设备的各种保护。 带式输送机着火的防治措施井下阻燃输送带选择、巷道照明、驱动轮防滑保护、烟雾保护、温度保护和堆煤保护装置,自动洒水装置和防胶带跑偏装置,机头机尾硐室自动灭火系统、火灾报警装置以及监测监控装置。 其它火灾的防治措施防止地面明火引发井下火灾的措施;防止地面雷电波及井下、防止井下爆破引发火灾的措施;空压机的防火与防爆措施;防止机械摩擦、撞击等引燃可燃物的措施等。 井下防火构筑物井下防火门硐室、消防材料库、防火墙、采区和工作面密闭等。 矿井防治水 矿井水文地质 水文地质情况井田水文地质条件,主要含(隔)水层类型,矿井水文地质条件、水文地质类型;井田临近矿井和小(古)窑涌水及积水情况以及地表水体、废弃的矿井、小窑老塘积水情况、地质构造的导水性;第四系含(隔)水层特征及积水情况;封闭不良钻孔情况;矿井主要含水层或积水区与主要开采煤层之间的关系;矿井正常涌水量和最大涌水量。 矿井水文地质特点、水患类型及威胁程度分析、可能发生突水的地点和突水量预计。 矿井防治水措施的确定 矿井开拓开采所采取的安全保证措施。矿井开拓工程位置及层位选择、采掘工程所采取的防治水措施。 防治水煤(岩)柱的留设。防治水煤(岩)柱的种类、防治水煤(岩)柱的留设原则、计算依据、方法与结果。 区域、局部探放水措施及设备。探放水原则、探放水方法的确定、探放水设备的选择、探放水时的安全措施。 疏水降压。根据矿井具体水文地质条件确定:疏水降压地点、方法和降低水头值的确定,疏水工程设计,疏水降压设备选择。 防水闸门。分析设置防水闸门的必要性,防水闸门规格,防水闸门硐室位置及设计计算结果,施工及管理要求。 井下排水。矿井不同时期井下正常、最大涌水量;排高及时间界限,地面所需附加扬程,排水方式;排水设备选型及管路淤积前、后的工况点(应考虑海拔高度对参数进行修正,以及并联运行);排水泵的工作、备用、检修台数,预留预设情况,排水能力校验,电机功率和吸上真空高度校验,泵与管路的运行组合,水泵的充水方式和起动、调节方式;排水管路管径、材质、连接方式和壁厚校验,阀门,管路趟数及敷设井巷和方式;水质pH<5时的防酸措施,管路的防腐,排水系统防水力冲击措施,管路预留位置;泵房附属设施[引水、起重、运输、配水井/阀及硐室,大功率泵房的通风散热和降噪措施;配水井、联轴器的安全防护;排水设备及设施选型合理性和运行安全、稳定性分析。水泵房位置及通道,水仓布置及容量。附:水泵特性曲线图、排水系统图。 地表水防治。设计依据、地面水防治、地面水防治工程及装备。 小窑、老窑水防治。小窑、老窑分布范围、积水情况,与矿井的开拓开采之间的关系、影响程度,提出其积水区域实现安全开采的防治水技术途径和安全技术措施。 电气安全 提升、运输、空气压缩设备 矿井监控系统 矿井救护、应急救援与保健 安全管理机构与安全定员、培训 待解决的主要问题及建议施工图阶段和施工中应注意和解决的问题。对于改扩建矿井,改扩建期间的安全措施和新老系统转换的说明。对需要进行专项安全设计的说明。

第十四条 煤与瓦斯突出矿井和高瓦斯矿井必须建立地面固定抽采瓦斯系统,其他应当抽采瓦斯的矿井可以建立井下临时抽采瓦斯系统;同时具有煤层瓦斯预抽和采空区瓦斯抽采方式的矿井,根据需要分别建立高、低负压抽采瓦斯系统。第十五条 泵站的装机能力和管网能力应当满足瓦斯抽采达标的要求。备用泵能力不得小于运行泵中最大一台单泵的能力;运行泵的装机能力不得小于瓦斯抽采达标时应抽采瓦斯量对应工况流量的2倍,即:第十六条 瓦斯抽采矿井应当配备瓦斯抽采监控系统,实时监控管网瓦斯浓度、压力或压差、流量、温度参数及设备的开停状态等。抽采瓦斯计量仪器应当符合相关计量标准要求;计量测点布置应当满足瓦斯抽采达标评价的需要,在泵站、主管、干管、支管及需要单独评价的区域分支、钻场等布置测点。第十七条 瓦斯抽采管网中应当安装足够数量的放水器,确保及时排除管路中的积水,必要时应设置除渣装置,防止煤泥堵塞管路断面。每个抽采钻孔的接抽管上应留设钻孔抽采负压和瓦斯浓度(必要时还应观测一氧化碳浓度)的观测孔。煤矿应当加强瓦斯抽采现场管理,确保瓦斯抽采系统的正常运转和瓦斯抽采钻孔的效用,钻孔抽采效果不好或者有发火迹象的,应当及时处理。

矿井升降机防滑装置论文答辩

起重机安全防护装置及功能1.超载限制器它是起重机防止超载的安全保护装置,也称起重量限制器。其安全功能是当起重机的吊载超过额定值时,使起升动作停止,从而避免超载发生事故。超载限制器广泛用于桥式类型起重机和升降机上。有些臂架类型起重机(例如塔式起重机、门座起重机)将超载限制器与力矩限制器配合使用。超载限制器有机械式、电子式多种类型。(1)机械式:通过杠杆、弹簧、凸轮等的作用带动撞杆,当超载时,撞杆与控制起升动作的开关相作用,切断起升机构的动力源,控制起升机构中止运行。(2)电子式:由传感器、运算放大器、控制执行器和载荷指示计等部分组成,将显示、控制和报警等安全功能集于一身。当起重机吊载时,承载构件上的传感器产生变形,把载荷重量转化为电信号,经过运算放大,指示出载荷的数值。当载荷超过额定载荷时,切断起升机构的动力源,使起升机构的起升动作不能实现。2.力矩限制器力矩限制器是臂架式起重机的综合性安全保护装置。我们知道,臂架式起重机是以起重力矩来表征载荷状态的。起重力矩值是由起重量、幅度的乘积决定,幅度值是由起重机臂架的臂长和倾角余弦的乘积决定,这样,起重机是否超载,实际上受到了起重量、臂长和臂架倾角等限制,同时还要考虑作业工况等多个参数也有制约作用,控制起来比较复杂。目前广泛采用的微机控制的力矩限制器可以综合多种情况,较好地解决了这个问题。力矩限制器由载荷检测器、臂长检测器、角度检测器、工况选择器和微型计算机构成。当起重机进入工作状态时,将实际工作状态各参数的检测信号输入计算机,经过运算、放大、处理后,与事先存入的额定起重力矩值比较,并同时在显示器上把相应的实际数值显示出来。当实际值达到额定值的90%时,它会发出预警信号,当实际值超过额定载荷时则会发出警报信号,同时起重机停止向危险的方向(起升、伸臂、降臂、回转)继续动作。3.缓冲器它是配置在轨道运行式起重机金属结构端部的一种安全装置,具有吸收运行机构碰撞动能、减缓冲击的安全功能。缓冲器安全检查的主要指标是安装是否牢固可靠、元件是否完好和吸收动能的能力大小。缓冲器的工作原理是,如果单台起重机的大车(或小车)意外冲向轨道行程终点时,缓冲器可以与处于同一水平高度的轨道端部止挡(另外一种安全装置)相互作用;如果在同一跨度轨道上的两台起重机相撞时,与设在两台起重机金属结构相对面的缓冲器发生作用。缓冲器通过自身变形,迅速将碰撞动能转化为弹性势能吸收,从而减轻碰撞力的冲击作用,避免对起重机造成破坏。常见的有橡胶缓冲器、弹簧缓冲器及液压缓冲器。(1)橡胶缓冲器:利用碰撞时橡胶的弹性变形实现缓冲。由于吸收能量少,一般用在运动速度较低的起重机。(2)弹簧缓冲器:可将大部分撞击动能迅速转化为弹簧的压缩势能,适于中等运动速度的起重机,应用最广泛。优点是结构简单,对起重机仍有较大的冲击作用。不过,现在通过技术手段改造,其性能已有较大改进。(3)液压缓冲器:通过油缸活塞挤压油液作功来消耗受到撞击时的动能,适于运动速度更大的起重机。优点是可吸收更大的冲击动能,无反弹作用;缺点是构造复杂,受环境温度对油液性能的影响较大,缓冲器的功能也会随之受到影响。4.防风防滑安全装置这是防止露天工作的起重机在大风作用下沿轨道发生滑行的安全装置,室外工作的轨道式起重机均应安装。其安全功能是,当起重机遭遇非工作状态下的最大风力时,起重机不被吹动,防止起重机在轨道端头倾覆。常见防风装置有夹轨器、锚定装置和铁鞋。(1)夹轨器:它广泛应用于各类露天轨道起重机,其工作原理是利用夹钳夹紧轨道头部的两个侧面,通过结合面的夹紧摩擦力将起重机固定在轨道上,使起重机不能滑移。夹轨器的设计要求是,夹轨器的夹紧力须大于起重机的滑行力,以保证在当地最大风力作用下,起重机保持不动;夹轨钳的闭合应靠装置构件自身重量或弹簧的作用,而不应只靠动力驱动装置的驱动作用,以防止在动力供应中断时,夹轨器不起作用;动力驱动的夹轨动作应滞后于运行机构制动器的动作,以消除起重机制动时可能产生的剧烈颤动。(2)锚定装置:它借助插销或插板装置、链条或顶杆将起重机与轨道基础相连成一体,用于非工作状态特大风暴时起重机的固定。由于锚定装置只能设在轨道的某个特定位置,起重机要运行到该位置才能锚定,它不适于紧急情况下的即时防风。(3)铁鞋:它是一种楔形装置,使用时将楔形舌尖插入车轮踏面和轨道顶面之间,铁鞋的斜坡构成对车轮滑动的阻力。5.极限位置限制器也称行程限制器,其安全功能是保证工作机构在运动中,当接近极限位置时,自动切断前进的动力源并停止运动,防止行程越位。极限位置限制器由相互作用的两部分构成,一个是触头(撞块或安全尺),安装在工作机构的运动部分上;一个是行程限位开关,是控制工作机构的运动方向或行程距离的主令电器,固定在极限位置的轨道或起重机的金属结构上,并串在工作机构的控制线路中。当某方向的运动接近极限位置时,触头触碰行程限位开关,切断该运动方向的控制电路,停止该方向的运行,同时接通反方向运动电路,使运行机构只能向安全方向运行。起重机的极限位置限制器有:(1)上升极限位置限制器:所有类型起重机的起升机构和变幅机构至少应装一套上升极限位置限制器。吊运液体金属和其他危险品起重机的起升机构必须装两套,两套限制器开关动作应有先后,并应尽量采用不同结构型式和控制不同的断路装置。(2)下降极限位置限制器:其安全功能应保证吊具下降到下极限位置时,自动切断下降的动力源,以保证钢丝绳在卷筒上的缠绕不少于设计所规定的安全圈数。塔式或门座起重机的变幅机构、港口门座起重机的起升机构及其他有下限要求的机构应设置下降限位开关。其他起重机的起升机构是否安装下降极限位置限制器不作为强制性的要求。(3)运行极限位置限制器:轨道起重机的大车(或小车)运行机构在轨道端头附近都必须设置行程限位开关,一般由限位开关和触发开关的安全尺配套使用。6.联锁保护也称为联锁开关或舱门开关,其安全功能是将联锁开关的状态与起重机的某工作机构的运动联系起来,在开关开启状态,对应的被其制约的工作机构不能启动,只有在开关关闭状态,被联锁的工作机构运动才能执行;当机构运动过程中,如果对应的舱门开关被打开,就给出停机指令。联锁保护可防止起重机的某机构在特定条件下运转伤人。需要联锁保护的部位与制约的工作机构如下:(1)从建筑物登上起重机司机室的门与大车运行机构之间;(2)由司机室登上桥架主梁的舱口门或通道栏杆门与小车运行机构之间;(3)司机室设在运动部分时,进入司机室的通道口的门与小车运行机构之间;这样,可以防止当有人正从建筑物跨入、跨出起重机的瞬间,或在起重机主梁上有人正做设备检修时,由于司机不知晓而操作起重机,使机构运转伤人。7.零位保护桥架式起重机的起升、大车运行和小车运行等三个工作机构是由三个操作装置分别控制的,必须设零位保护。其保护作用是只要有一个机构的控制器不在零位,所有机构都不能启动;只有在先将各机构控制器置于零位的情况下,工作机构的电动机才有可能启动,零位保护是用来防止在起重机开始运转时或失电后又恢复供电时,司机在没有思想准备情况下启动总开关,某个或几个机构突然运转造成的意外伤害。8.紧急开关所有起重机必须装有在紧急情况下可迅速断开总电源的紧急开关或装置,并设置在司机操作方便的地方。联锁保护、行程限位、零位保护、紧急开关等,常常联合在起重机的控制电路中发挥作用,只要有一个装置处于非正常状态,起重机就不能启动或停止向发生危险的方向运行。9.偏斜调整和显示装置大跨度的门式起重机和装卸桥,当两端支腿因前进速度不同步而发生偏斜时,该装置能将偏斜情况指示出来,并使偏斜得到调整。10.幅度指示器安装在具有变幅机构的起重机上,能正确指示吊具所在的幅度。11.水平仪安装在流动式起重机上,可以检查已打支腿起重机的倾斜度,显示起重机机身的水平状态。12.防止吊臂后倾装置安装在挠性变幅机构的臂架起重机上,当变幅机构的变幅行程开关失灵时,能阻止吊臂向后倾。13.极限力矩限制装置用于当臂架起重机的臂架旋转阻力矩大于设计规定的力矩时,该装置内的摩擦元件发生滑动,切断动力输入,使旋转运动停止,从而起到保护作用。14.风级风速报警器安装在露天工作的起重机上。当风力大于6级时能发出报警信号,并能显示瞬时风速风级。在沿海工作的起重机可定为当风力大于7级时发出报警信号。15.支腿回缩锁定装置安装在工作时需要打支腿的流动式起重机上,其安全功能是双向锁定支腿,保证起重机在打支腿进行起重作业时,不发生“软腿”回缩现象;当起重机结束起重作业,支腿收回时能可靠地锁定支腿,防止起重机在行驶状态下支腿自行伸出。16.回转定位装置用于流动式起重机在道路上行驶时,保证使回转盘上的起重结构保持在固定位置,防止行驶时发生摆动。17.防倾翻安全钩安装在主梁一侧落钩的单主梁起重机上,防止小车倾翻。18.检修吊笼用于高空中导电滑线的检修。其可靠性不应低于司机室。19.扫轨板、支承架和轨道端部止挡扫轨和支承架用来扫除起重机行进方向轨道上的障碍物;轨道端部止挡设置在铺设轨道的尽头端部,与起重机(或运行小车)运动结构上的缓冲器配合作用,防止起重机(或运行小车)脱轨。20.导电滑线防护板用于防止人员意外接触带电滑线引发触电事故而设的防护挡板。使用滑线的起重机,对易发生触电的部位都应设该装置:(1)桥式起重机司机室位于大车滑线端时,通向起重机的梯子和走台与滑线间应设置防护板。(2)桥式起重机大车沿线端的端梁下,应设置防护板,以防止吊具的钢丝绳与滑线的意外接触。(3)同跨桥式起重机作多层布置时,下层起重机的滑线应沿全长设置防护板。21.防护罩起重机上外露的活动零部件,如开式齿轮、联轴器、传动轴、链轮、链条、传动带、皮带轮等,均应装设防护罩。露天工作的起重机,其电气设备应装设防雨罩。22.倒退报警装置流动式起重机向倒退方向运行时,可发出清晰的报警音响信号和明灭相间的灯光信号,提示机后人员迅速避开。

1、从事高处作业的人员,身体必须健康,患有高血压病、心脏病、贫血病、癫痫病的人员不能从事高处作业,从事高处作业的人员要定期进行体检。2、从事高处作业的人员要佩戴安全防护用具:安全帽、安全带等。安全带要挂在牢固可靠的地方,防止挂钩滑脱。3、从事高处作业的人员,衣着要灵活、轻便,禁止穿硬底鞋和带钉鞋和易滑鞋。4、不准在没有防护设施的外墙和外壁板等建筑物上行走。5、距地面3米以上的作业处,要设防护栏杆、挡板或安全网。6、在层高米的屋内作业,所用的铁凳、木凳、人字梯等,要栓牢固,并设防滑装置。

矿井提升系统安全技术管理规定方法

矿井提升是指沿矿井井筒运出矿石、煤、废石或矸石,以及升降人员、设备和器材等。下面是由我为大家整理的矿井提升系统安全技术管理规定方法,欢迎大家阅读浏览。

一、设计选型、到货验收及保管

一设计选型必须符合国家有关技术政策。遵循技术先进、经济合理的原则。具备可靠性高、运行费用低、维修方便等特点。选购的设备应有鉴定证书和生产许可证,防爆设备必须有产品合格证、防爆合格证和煤矿矿用产品安全标志。

二设计选型后必须由分管领导组织有关部门进行设计审查通过后,按照有关规定报上级主管部门批准后组织实施。

三设备到货后,有关部门按设备装箱单和技术文件要求查验设备、附机、随机配件及技术资料。技术资料至少应具备以下九种:

1、使用说明书

2、产品出厂合格证(防爆合格证)

3、基础图

4、设备总装图

5、制动装置结构图、系统图

6、易损零部件图

7、电气原理图、安装接线图

8、主要电气设备试验报告。

9、主要部件的探伤报告。

四查验合格的设备应及时安装调试、投入使用。暂时不使用的设备必须入库妥善保管,定期维护保养,防止日晒、雨淋、锈蚀、损坏和丢失,并做好防火防盗工作。设备严禁拆套、拆件使用。

二、设备安装及验收

设备安装验收依据《煤矿安装工程质量检验评定标准》,并编制设备安装工程验收大纲。

一安装措施及技术要求

1、设备安装前必须对矿建项目依据设计进行严格验收,以保证安装质量。

2、工程计划开工前,必须制定施工安全技术措施,明确保证工程质量的要求事项,作为安装技术准则。内容包括以下几类:

⑴施工组织设计:应具备施工准备和科学组织施工的文件或书面材料。

⑵安装主要依据:由设计部门和厂家提供的设备装配图、安装图、基础图、平面布置图、原理图、关系图及方框图等图纸。

⑶设备安装:安装程序、装配工艺要求,调试方法和注意事项作为安装指南。

⑷质量标准:设计规范、设备安装验收规范、安全规程,作为安装的基本准则。

⑸设备评定的主要依据:主要经济技术指标及性能调试、测试的试验报告。

二安装验收的图纸及资料

1、设备出厂说明书、合格证、装箱单

2、设备清单:包括已到设备、到货未安装设备和已订未到设备

3、装配图和随机备件图

4、设计施工图

5、提升、制动、电气系统图

6、调试、测试报告

7、隐蔽工程检查验收记录

8、安装竣工图、竣工报告

9、安装工程质量检验评定表

10、施工预算及决算

三设备安装中的重点验收项目及内容

安装单位应主动邀请有关部门在安装过程中共同验收,并做好隐蔽工程记录,符合设计安装标准,以作为今后验收移交的凭证。

1、滚筒(驱动轮)制动闸盘或闸轮无开焊、裂纹和变形

2、主轴水平度和多段轴的平行度

3、联轴器的同轴度

4、减速箱的技术测定

5、深度指示器的传动和变速装置的装配、润滑

6、制动闸盘粗糙度、端面跳动、不平行度

7、电气系统调试

8、主提升钢丝绳、尾绳的试验和悬挂

四工程竣工验收

工程安装完毕后,由安装单位按有关标准进行自检验收,合格后向主管部门提出申请,由矿业(集团)公司组织设计、施工、设备管理和使用等单位进行交接验收和评定。

1、检验工程技术档案、竣工图、隐蔽工程记录、调试报告和设备清册等资料。

2、对工程标准和安装质量进行抽检与复验。

3、组织安装单位和使用单位编制试运转实施方案,检查试运转情况。

4、对安装质量进行评定,填写工程竣工移交报告、移交验收鉴定书、质量认证意见。

三、提升设备的检修、维护及安全运行

一技术测定、整定及探伤

1、载人提升机每年进行一次安全检测检验,其它提升机每三年进行一次检测检验。制动系统、联接装置每年探伤一次(已发现缺陷的三个月),由具备资质的单位进行探伤,并出具报告。矿机电矿长(副总工程师)对测定、探伤报告要审查、签字,对已发现的问题提出整改意见,报分管领导组织实施。

2、仪表按规定时间效验:A级半年一次、B级一年一次进行校验,C级使用前鉴定一次。

3、电控系统整定试验一年一次,其中安全保护继电器整定试验每半年一次。

4、绞车运行速度图的测试、制动减速度计算、制动闸时间、空行程时间和贴闸压力测试有效期一年。

5、闸瓦间隙测试整定有效期10天。

6、负力提升及升降人员的绞车必须有电气制动,盘形闸绞车必须使用动力制动(变频调速绞车除外),并能自动投入或人工投入,正常使用。动力制动、制动力矩及二级制动必须有计算、整定资料。运行方式改变时,必须重新计算、整定,计算结果符合《煤矿安全规程》432、433条规定。

7、电动机、高压开关柜试验有效期一年。

二安全保护设施的试验周期、方法

1、维修工试验项目

⑴过速保护:每天不动车试验继电器一次

⑵限速保护:每天不动车试验继电器一次

⑶深度指示器失效保护:每天模拟失效或低速开车试验一次

⑷满仓保护:每天模拟满仓试验一次

⑸后备保护器: 后备2m/s限速保护、后备过速保护、后备过卷保护、后备减速开关每周试验一次

⑹井口操车设备、安全门与信号闭锁:每天不动车试验一次

⑺换向器栅栏门闭锁:每天不动车试验一次

⑻信号闭锁:每天不动车试验一次

⑼松绳保护每天不动车试验一次,松绳后接受煤仓不放煤的闭锁和箕斗顺利通过卸载曲轨的显示装置每10天检查试验一次

⑽油压系统过、欠压保护:超温保护每周不动车试验一次

以上保护,第⑴、⑵、⑶、⑷、⑹、⑺、⑻保护一种失灵,必须停车立即处理,合格后方可开车,第⑸、⑼、⑽保护一种失灵,必须在当天处理合格。

2、操作司机试验项目

⑴过卷保护:每班模拟过卷试验一次

⑵欠电压保护:每班不动车试验一次

⑶闸间隙保护(报警):每班不动车试验闸瓦磨损开关

⑷松绳报警:每班不动车试验一次

⑸紧急制动开关:每班不动车试验一次

以上五种保护,必须灵敏可靠,任何一项保护不合格,均要停车并汇报,待修复合格后方可开车。

三提升系统其它设施管理

1、选用的提升容器、人车(斜井、平巷)、矿车(包括连接链、插销)、罐笼、箕斗、连接装置、防坠器、托罐及防蹲罐缓冲装置等必须具备煤矿矿用产品安全标志。

2、在提升速度大于3m/s的提升系统内,必须设防撞梁和托罐装置,防撞梁不得兼作他用。防撞梁必须能够挡住过卷后上升的容器或平衡锤;托罐装置必须能够将撞击防撞梁后再下落的容器或配重托住,并保证其下落的距离不超过0、5m。

3、加强提升容器防坠保护设施的管理,做到定期试验,并形成正式报告,认真填写日期、地点、数据、结论等,经矿分管副矿长(副总工程师)签字后存档。

⑴立井罐笼防坠器:不脱勾检查性试验6个月一次;脱勾试验一年一次。

⑵斜井人行车防坠器:不摘勾的手动落闸试验每班一次,对摘勾的人行车每次运行前应再进行一次手动落闸试验,静止松绳落闸试验一个月一次,重载全速脱勾试验一年一次。

4、立井提升容器的罐耳在安装时同罐道之间所留的间隙以及罐道和罐耳的检查检修严格按《煤矿安全规程》第385条、386条规定执行。立井提升容器和井壁、罐道梁、井梁之间的最小间隙必须符合《煤矿安全规程》第387条的规定。

5、斜井提升容器之间的有效间隙不得小于0、2m;容器外侧距两帮的间隙:行人侧不小于0、8m,非行人侧不小于0、3m。

6、楔形罐道、防撞梁、托罐装置和防蹲缓冲装置应每月检查一次,并做好记录。

7、升降人员的立井井口、井底、中间水平及井口井底的二层平台、必须设置安全可靠的安全门,安全门必须与罐位和提升信号联锁,其要求应符合《煤矿安全规程》第384规定。非进出人员侧,应设置防止人员进入罐内的设施,进人侧严禁出人,出人侧严禁进人。因检修井筒装备或处理事故需站在提升容器顶上工作时,容器上必须装有保险伞。

8、当罐笼到位安全门打开后,发出调平和换层信号时,提升机应保证只能按0、5~1m/秒速度运行。

四提升信号系统

1、提升信号必须采取逐级传递方式,即车场把勾工将信号传递井口,由井口把勾工传递到绞车房。井口信号必须同绞车控制回路相闭锁。信号不能控制绞车的安全回路。

2、信号控制装置所用按钮,“停止”扭应单独设置。停止信号可兼作紧急停车信号。各个地点的“停止”和“急停”信号直通车房。当“停止”信号发出,绞车停止运行后,不管容器在任何位置,未发“开车”信号,绞车启动不起来,工作闸敞不开。

3、提升信号声光俱备,停车信号与工作信号声、光有区别。停车信号警铃必须使用单击电铃或电笛; 停车信号和工作信号的指示灯必须分开设置,并有明显区别。一套提升装置供给几个水平提升时,各水平所发信号必须有区别。

4、用多层罐笼升降人员或物料时,必须具有符合《煤矿安全规程》第395条所规定的信号闭锁。

5、除常用的信号装置外,还必须具有备用信号。斜井提升时,专门提升物料系统,还需要一套由井底车场及各水平车场直通绞车房的紧急停车信号; 专门升降人员的系统,还需有人行车泄漏通讯机; 人物混提的系统,有井底车场及各水平车场直通绞车房的紧急停车信号和人行车泄漏通讯机。

6、斜井双勾串车提升时,必须设置错码(串勾)信号。

7、井底车场和井口之间,井口和绞车房之间,必须装设直通电话或传话筒。

五提升系统技术改造

1、应积极采用国际国内的先进技术和产品,对在用的老提升系统进行技术改造,以提高系统的可靠性,降低运行成本。

2、提升系统的重大技术改造必须在调研基础上由矿提出改造方案,经矿业(集团)公司组织技术论证,按照有关规定向上级部门报批。

3、技术改造设计方案,必须符合《煤矿安全规程》和国家相关规定,并具备一定的先进性。技术改造必须做好整个提升系统的优化匹配,对影响系统可靠性的`重要环节,如主井装载定重测量环节、制动器、防滑保障、过卷过放防护装置等产品和技术应引起足够的重视。采用计算机技术时,必须按电磁兼容性技术进行设计,并按有关国家标准进行技术指标检验,以保证提升系统的安全可靠性。

4、技术改造后必须经批准部门组织验收合格后方可投入运行,出据验收报告,并将相关的技术文件及图纸同时改动,记入技术档案。

六提升钢丝绳的管理

1、正确选用提升机钢丝绳。重要用途使用的钢丝绳不应采用点接触型。选用钢丝绳除严格执行《煤矿安全规程》第400条、407条、416条和具备煤矿矿用产品安全标志外,还应考虑以下因素:

⑴立井提升宜采用同向捻镀锌钢丝绳,斜井串车提升宜采用交互捻钢丝绳。

⑵当井筒中淋水较大或淋水的酸碱度较高,以及作为回风井的井筒提升时,应尽量选用镀锌钢丝绳。

⑶斜井提升宜使用面接触钢丝绳或外层钢丝较粗的三角股钢丝绳;立井提升宜采用异型股钢丝绳和线接触钢丝绳。

⑷摩擦轮提升机必须采用规格相同左右捻各半数钢丝绳,尾绳宜选用不旋转钢丝绳。

⑸罐道绳应用密封钢丝绳。

2、提升机钢丝绳的使用、检查与维修

⑴钢丝绳检验严格按《煤矿安全规程》第398条、399条、400条、401条、402条的规定执行。被检验绳头的截取长度不小于1、5m,在用提升绳应在靠近容器端处截取绳头。用加热方法切割的绳头长度需加长200mm。

⑵摩擦轮式提升钢丝绳的使用期限不得超过2年,平衡钢丝绳的使用期限不得超过4年。如果钢丝绳的断丝、直径缩小和锈蚀程度不超过《煤矿安全规程》405条、406条和408条的规定,可以继续使用,但不得超过1年。

⑶提升及其它用途钢丝绳检查及记录,必须符合《煤矿安全规程》404条规定。机电区长和机电管理部门负责人每旬对钢丝绳检查记录审查签字一次,机电管理部门组织每月分析总结一次,并有分析总结资料。

⑷提升钢丝绳检查结果达到《煤矿安全规程》第405条、406条、407条、408条规定值时,必须立即更换。钢丝绳遭受猛烈冲击拉力,应立即停止运转进行检查,在没有发现新的断丝和直径缩小等现象,可以继续使用。如果由于急剧受力,钢丝绳使用长度较原来长度增长0、5%以上时,则应更换新绳。

⑸平衡钢丝绳的长度必须同提升容器过卷高度相适应,并防止过卷时损坏平衡钢丝绳。

⑹提升装置必须有试验合格的备用钢丝绳。对使用中的钢丝绳,根据井巷条件及锈蚀情况,至少每月涂油一次。摩擦轮式提升装置的钢丝绳,只准涂、浸专用钢丝绳油(增摩脂),否则可不涂油,但对不绕过摩擦轮部分,必须涂防腐油。

⑺立井提升容器与提升钢丝绳的连接,应采用楔形连接装置。每次更换钢丝绳时,必须对连接装置的主要受力部件进行探伤检验,合格后方可继续使用。楔形连接装置的累计使用期限:单绳提升不得超过10年;多绳提升不得超过15年。

⑻钢丝绳的保管存放,应在表面涂一层固体油脂并入库,防止锈蚀。

⑼钢丝绳在运输取放过程中,不得碰伤或挤压。

⑽立井和斜井天轮,应使用衬垫天轮,斜井轨道托滚也应使用带衬垫托滚。

七油质管理

1、加强提升设备润滑管理,根据每台设备的特点和实际运行状况,建立润滑“五定”(定人、定质、定量、定点、定期)制度并做好用油换油记录。

2、液压站用油至少一年更换一次,每半年必须化验取样一次;减速机润滑油要使用抗磨剂,每半年必须取样化验一次,每二年进行清洗、过滤或换油。

3、润滑油剂需经检验合格后方能入库,并妥善保管和定量发放。

八特殊提升

1、除了按正常“加速、等速、减速、停车”程序的提升方式外的提升为特殊提升。

2、特殊提升需要解除某些保护或闭锁信号系统某些功能时,应制定可靠的安全措施,由矿机电矿长(副总工程师)及安监部门负责人、总工程师批准后执行。

3、进行特殊提升时,其速度应符合下列规定

⑴使用罐笼运送油类炸药,运行速度不得超过2m/s; 运送其它火药时,不得超过4m/s。司机在启动和停止提升机运行时不得使提升容器发生震动。

⑵提升特殊大型设备(物品)及长材料时,其运行速度一般不应超过1m/s。

⑶人工验绳速度,一般不大于0、3m/s

⑷因检修井筒装备或处理事故人员需站在提升容器顶上工作时,其提升容器的运行速度一般为0、3~0、5m/s。

4、提升或下放超过正常负荷的物件时,需重新计算制动力矩,验算钢丝绳、悬挂或连接装置的安全系数,符合要求后,制定安全技术措施,经矿机电矿长(副总工程师)及安监部门负责人、总工程师批准方可实施。需要调整制动系统时,机电工区指定专人现场指挥、机电管理部门派人现场监督,提升完毕及时恢复。对超长尺寸、重量的设备的提升运输应事先进行同重量负荷、同尺寸的模拟试验。

5、特殊提升必须执行正司机操作,副司机监护工作制度。

九提升系统的检修工作

1、各矿要根据每一提升系统运行特点及状态有计划地进行周期性检修。

2、检修前应认真编制“检修任务书”、检修质量标准、安全技术措施、劳动组织以及施工网络图和施工进度图表,并组织全体检修人员学习。

3、每项检修任务都应指定负责人,同一地点多单位同时作业时,必须明确一人统一指挥,并明确分工,重大检修项目应成立检修指挥组。

4、检修计划时间应包括规定的试运转时间。检修后必须留有详细的记录,内容主要包括检修部件技术参数的变更及其原因并附有简图,形成正式报告并留档备查。

5、提升系统日常维修,每天要保证2~4小时的检查维修时间。全年不少于12天的停产检修日。

十提升系统的操作及维修

1、针对每一部提升机的设备性能及运行特点,制定技术操作规程,做到内容全面、程序清晰并同现场实际相符。

2、司机必须经过培训,熟悉设备的结构、性能、技术特征、动作原理,掌握《煤矿安全规程》有关规定及车房各项规章制度,并经考试取得合格证后,持证上岗。

3、提升系统维修工、钢丝绳检查工必须经过专业技术培训,考试合格后持证上岗。

4、提升系统维修重点抓好以下工作。

⑴设备维修必须建立包机制,明确包机人员的职责。

⑵对各种保护装置和安全设施定期进行检查试验,达到灵敏可靠。

⑶应针对每部提升机的实际情况做好“三化”工作,即维护检查周期制度化、维护内容规律化、维护保养程序工艺化。

⑷认真编制设备有关使用维护的各种规章制度和标准,组织维修人员学习有关设备的结构、性能、使用、维护和安全技术等方面的业务知识,掌握《煤矿安全规程》及《机电设备检修标准》、《机电设备完好标准》有关提升系统的各种规定,并进行理论和操作的考试。

⑸做好维护检查记录,内容包括检查项目、时间、发现问题的处理意见。机电区队技术负责人应每月检查签字。

(十一)提升系统技术资料管理

健全技术档案,做到一台一档。

1、技术资料存档明细

⑴绞车原始设计、安装图(安装调试验收单)、使用说明书。

⑵设备改造安装图

⑶制动装置结构图和系统图

⑷易损零部件图

⑸电气原理图和接线图

⑹增设保护安装图和控制图

⑺提升信号图

⑻井筒装置图、布置图(包括井架、井底布置)

⑼钢丝绳出厂合格证、试验报告和更新记录

⑽防坠器试验报告

⑾技术测定和整定、分析报告

⑿制动力矩验算资料

⒀探伤报告

⒁提升装置年度检查报告和月停产检修记录(包括实测数

据、零部件更换)

⒂重大及以上机电事故分析报告

⒃经济运行分析报告,运行单耗

⒄相关联的煤矿矿用产品安全标志资料

2、每一提升系统必须建立如下制度

⑴要害场所管理制度(门口张挂)

⑵岗位责任制度、包机制度(机房张挂),信号工和把勾工岗位责任制度(井口、井底张挂)

⑶交接班制度(机房张挂)

⑷领导干部上岗制度(机房张挂)

⑸操作规程(机房张挂)

⑹安全保护装置日检查试验制度

⑺设备定期检修制度

⑻设备巡回检查制度

3、每一提升系统要具有以下记录

⑴日维护检查记录(机房存放)

⑵电气保护日检查试验记录(机房存放)

⑶钢丝绳日检记录(机房存放)

⑷交接班、运转日志记录(机房存放)

⑸干部上岗记录(机房存放)

⑹井口操车设备、安全门闭锁与信号日试验记录(班组存放)

⑺外来人员登记记录(机房存放)

⑻提升系统事故记录(机房存放)

⑼设备检修记录(机房存放)

⑽钢丝绳试验、更换记录(存档)

4、每一提升系统需在机房内张挂以下图纸

⑴制动系统图

⑵电气原理图

⑶设备平面布置图

⑷巡回检查图表

⑸绞车总装图和技术特征卡片

(十二)提升系统备品、备件管理

1、实行分类管理,对设备所需的专用件,实行建帐管理。

2、做好备件的验收、入库、储存、保养工作。

3、建立旧件回收制度,搞好旧件修理复用,修好的备件要交备件库另册登记入帐。

苹果采摘机械装置毕业论文

在采摘苹果的时候应该戴好手套,然后也应该用筐子将苹果放起来,采摘的时候一定要将苹果的树叶和根部一起采摘下来,这样能够存放的时间更长一些。

苹果采摘是栽培的最后阶段,这可能导致丰收而不是大丰收。如碰压伤、刺果、落果过多、叶片、果枝、大枝损伤过重等。因此,收获必须遵循科学的方法。

一,采摘方法

(1)采摘前做好充分准备:首先要准备好采摘水果的工具,如篮子、果篮、果梯、运输车等。或塑料泡沫和其他软材料。果梯应坚固且足够高,以到达树顶的果实。参与者剪短指甲。

(2)注意采摘方法:苹果果皮很薄,略不注意刺、蛮等。由于果实已经成熟,果梗和果枝很容易分离,容易掉落断了,坏了。因此,果实一定要清淡、清淡。采摘时,用手轻轻握住果实,食指按压茎部,然后提起,使茎部与果枝从分离部位,轻轻取出果实。摘水果的窍门如下:“拿着水果就像拿着鸡蛋,用食指提起把手,用右手摘水果,用左手接上,轻轻地放进篮子里。”当水果桌上有两个或多个水果时,采摘要用双手,一只手握着一只手采摘,或者选择最容易的一个先采摘,然后一个一个地采摘其他水果,否则会采摘一个坠落,或整个地面。

二,注意事项

(1)适宜采收。同一棵树上的果实应由外而内、由下而上采收;成熟度不一致,分批采收可提高果实品质。

(2)采收宜在上午露水干燥后,下午气温凉爽后进行。不宜在雾天、雨天及日晒下进行。

(3)采果者应剪掉指甲,戴手套轻拿水果。

(4)选择合适的收获工具:水果剪、收获刀等。

(5)用收获袋或篮子收获。

(6)使用周转箱要大小适中,不要太大,否则容易造成产品底部压坏。木箱、防水纸箱和塑料周转箱对产品的危害较小。

(7)采收时间对采后加工、保鲜、贮运有很大影响。一般最好在一天内温度较低的时候采收,因为产品的呼吸作用小,生理代谢慢,可以最大限度地减少产品带来的田间热量。

机械制造与机械设计的关系 这类的你最好自己去591论文网上查,很多案例,也可以找那里老师代笔。挺负责的,信誉也不错。

可以通过机器进行采摘,可以通过人工的方式进行采摘,还可以通过敲击的方式进行采摘,也可以通过爬梯的方式进行采摘,这些都是比较常见的采摘方法。需要注意采摘的安全,需要注意采摘的过程,需要注意采摘的苹果是否成熟,还需要注意采摘的时候注意保护自己的安全,也要注意对身体的保障。

研究夹紧装置的论文

法兰盘的机械加工工艺分析与铣夹具设计 论文摘要 I第一章 机械加工工艺与机床夹具概论 机械加工工艺过程概述 生产过程和工艺过程 机械加工工艺过程的组成 安装与工位 机床夹具及其功用 机械夹具的概念 机床夹具的组成 机床夹具的分类 工件的定位 工件定位的基本原理 常用定位元件及选用 定位误差分析 定位误差产生的原因 7第二章 法兰盘零件机械加工工艺设计 法兰盘的工艺分析 法兰盘的工艺规程设计 确定毛坯的制造形式 基面的选择 制定工艺路线 机械加工余量,工序尺寸及毛坯尺寸的确定 铣削加工用量及工时定额计算 13第三章 法兰盘铣削加工专用夹具设计 铣床夹具概述 直线进给铣床夹具 圆周进给铣床夹具 靠模铣床夹具 法兰盘铣削加工定位方案设计 定位方案设计 定位方案比较分析 法兰盘铣削加工夹紧机构设计 夹紧装置的组成与基本要求 夹紧力的方向与作用点 法兰盘铣削加工夹紧机构设计 22第四章 论文总结 24参考文献 25

机械手夹持器毕业设计论文及装配图 论文编号:JX402 包括装配图,字数:15384.页数:60 摘要 本次机械手的设计本设计说明书主要对于夹持器,伸缩臂,液压系统及PLC控制编程进行的设计思想和设计过程。内容主要包括:夹持器与伸缩臂总体方案的确定,采用了液压与电动驱动系统,相应的涉及到电机和液压缸的选择计算,总体结构设计、主要部件的受力分析和强度校核。 关键词:机械手,夹持器,PLC,液压 Abstract the this manipulator's design this design instruction booklet mainly regarding the screw clamp, expands and contracts the arm, the design concept which and the design process the hydraulic system and the PLC control programming carries on. The content mainly includes: The screw clamp and the expansion arm overall concept's determination, has used the hydraulic pressure and the electrically operated driving system, corresponding involving to electrical machinery and hydraulic cylinder's choice computation, gross structure design, major component's stress analysis and intensity examination. key word: Manipulator, screw clamp, PLC, hydraulic pressure 目录 摘要1 Abstract 1 第一章 夹持器 3 夹持器设计的基本要求 3 夹持器结构设计 4 夹紧装置设计. 4 手爪的夹持误差及分析 7 楔块等尺寸的确定 10 材料及连接件选择 13 第二章 腕部 15 腕部设计的基本要求 15 具有一个自由度的回转缸驱动的典型腕部结构 15 腕部结构计算 16 腕部回转力矩的计算 16 回转液压缸所驱动力矩计算 18 回转缸内径D计算 20 液压缸盖螺钉的计算 21 静片和输出轴间的连接螺钉 23 腕部轴承选择 24 材料及连接件,密封件选择 24 第三章 伸缩臂设计 26 伸缩臂设计基本要求 26 方案设计 27 伸缩臂机构结构设计 29 伸缩臂液压缸参数计算 29 导向杆机构设计 36 第四章 驱动系统 39 驱动系统设计要求 39 驱动系统设计方案 39 驱动系统设计 40 分功能设计分析 40 液压泵的确定与所需功率计算 40 确定泵的电机功率N 41 液压元件的选择,如表所示 42 辅助元件的选择 43 液压系统的验算 43 液压系统图 44 设计的液压系统图 44 液压系统电磁铁动作顺序控制原理 44 电磁铁动作顺序 45 第五章 PLC控制系统 48 PLC的构成及工作原理 48 PLC选择 48 程序设计 50 语句表 52 总结58 参考文献 59 以上回答来自:

机械专业毕业论文开题报告范文(精选6篇)

在生活中,报告与我们愈发关系密切,要注意报告在写作时具有一定的格式。那么什么样的报告才是有效的呢?下面是我整理的机械专业毕业论文开题报告范文,欢迎阅读,希望大家能够喜欢。

论文题目:

MC无机械手换刀刀库毕业设计开题报告

本课题的研究内容

本论文是开发设计出一种体积小、结构紧凑、价格较低、生产周期短的小型立式加工中心无机械手换刀刀库。主要完成以下工作:

1、调研一个加工中心,了解其无机械手换刀刀装置和结构。

2、参照调研的加工中心,进行刀库布局总体设计。画出机床总体布置图和刀库总装配图,要有方案分析,不能照抄现有机床。

3、设计该刀库的一个重要部分,如刀库的转位机构(包括定位装置,刀具的夹紧装置等),画出该部件的装配图和主要零件(如壳体、蜗轮、蜗杆等3张以上工作图。

4、撰写设计说明书。

本课题研究的实施方案、进度安排

本课题采取的研究方法为:

(1)理论分析,参照调研的加工中心,进行刀库布局总体设计。

进度安排:

收集相关的毕业课题资料。

完成开题报告。

完成毕业设计方案的制定、设计及计算。

完成刀库的设计

完成毕业设计说明书。

毕业设计答辩。

主要参考文献

[1] 廉元国,张永洪. 加工中心设计与应用 [M]. 北京:机械工业出版社,

[2] 惠延波,沙杰.加工中心的数控编程与操作技术 [M]. 北京:机械工业出版社

[3] 励德瑛.加工中心的发展趋势 [J]. 机车车辆工艺,1994,6

[4] 徐正平.CIMT2001 加工中心评述[J]. 制造技术与机床,2001,6

[5] 刘利. FPC-20VT 型立式加工中心[J]. 机械制造,1994,7

[6] 李洪. 实用机床设计手册 [M]. 沈阳:辽宁科学技术出版社,

[7] 刘跃南.机械系统设计[M].北京:机械工业出版社,

[8] Panasonic 交流伺服电机驱动器 MINASA 系列使用说明书

[9] 成大先.机械设计手册第四版第 2 卷[M]. 北京:化学工业出版社,

[10] 成大先.机械设计手册第四版第 3 卷[M]. 北京:化学工业出版社,

1 课题提出的背景与研究意义

课题研究背景

在数控机床移动式加工中移动部件和静止导轨之间存在着摩擦,这种摩擦的存在增加了驱动部件的功率损耗,降低了运动精度和使用寿命,增加了运动噪声和发热,甚至可能使精密部件变形,限制了机床控制精度的提高。由于摩擦与运动速度间存在非线性关系,特别是在低速微进给情况下,这种非线性关系难以把握,可能产生所谓的尺蠖运动方式或混沌不清的极限环现象,严重破坏了对微进给、高精度、高响应能力的进给性能要求。为此,把消除或减少摩擦的不良影响,作为提高机床技术水平的努力方向之一。该课题提出的将磁悬浮技术应用到数控机床加工中,即可以做到消除移动部件与静止导轨之间存在的摩擦及其不良影响。对提高我国机床工业水平及赶上或超过国际先进水平具有重大意义,且社会应用前景广阔。

课题研究的意义

机床正向高速度、高精度及高度自动化方向发展。但在高速切削和高速磨削加工场合,受摩擦磨损的影响,传统的滚动轴承的寿命一般比较短,而磁悬浮轴承可以克服这方面的不足,磁悬浮轴承具有的高速、高精度、长寿命等突出优点,将逐渐带领机电行业走向一个没有摩擦、没有损耗、没有限速的崭新境界。超高速切削是一种用比普通切削速度高得多的速度对零件进行加工的先进制造技术,它以高加工速度、高加工精度为主要特征,有非常高的生产效率,磁悬浮轴承由于具有转速高、无磨损、无润滑、可靠性好和动态特性可调等突出优点,而被应用于超高速主轴系统中。要实现高速切削,必须要解决许多关键技术,其中最主要的就是高速切削主轴系统,而选择合理的轴承型式对实现其高转速至关重要。其中,磁悬浮轴承是高速切削主轴最理想的支承型式之一。磁悬浮轴承可以满足超高速切削技术对超高速主轴提出的性能要求。但它与普通滑动或滚动轴承的本质区别在于,系统开环不稳定,需要实施主动控制,而这恰恰使得磁悬浮轴承具有动特性可控的优点磁悬浮轴承是一个复杂的机电磁一体化产品,对其精确的分析研究是一项相当困难的工作,如果用实验验证则会碰到诸如经费大、周期长等困难,在目前国内情况下不能采取国外以试验为主的研究方法,主要从理论上进行研究,利用计算机软件对磁悬浮控制系统进行仿真是一种获得磁悬浮系统有关特征简便而有效的方法。这就是本课题的研究目的和意义。

2 本课题国内外的研究现状

磁悬浮轴承的应用与发展可以说是传统支承技术的革命。由于具有无机械接触和可实现主动控制两个显著的优点,主动磁悬浮轴承技术从一开始就引起了人们的重视。磁悬浮轴承的研究最早可追溯到1937年,Holmes和Beams利用交流谐振电路实现了对钢球的悬浮。自1988年起,国际上每两年举行一届磁悬浮轴承国际会议,交流和研讨该领域的最新研究成果;1990年瑞士联邦理工学院提出了柔性转子的研究问题,同年教授提出了数字控制问题;1998年瑞士联邦理工学院的和等人提出了无传感器磁悬浮轴承。近十年,瑞士、美国、日本等国家研制的电磁悬浮轴承性能指标已经很高,并且已成功应用于透平机械、离心机、真空泵、机床主轴等旋转机械中,电磁悬浮轴承技术在航空航天、计算机制造、医疗卫生及电子束平版印刷等领域中也得到了广泛的应用。纵观2006年在洛桑和托里诺召开的第10界国际磁轴承研讨会,磁轴承主要应用研究为磁轴承在高速发动机、核高温反应堆(HTR-10GT)、人造心脏和回转仪等方面。国内在磁悬浮轴承技术方面的研究起步较晚,对磁悬浮轴承的研究起步于80年代初。

1983年上海微电机研究所采用径向被动、轴向主动的混合型磁悬浮研制了我国第一台全悬浮磁力轴承样机;1988年哈尔滨工业大学的陈易新等提出了磁力轴承结构优化设计的理论和方法,建立了主动磁力轴承机床主轴控制系统数学模型,这是首次对主动磁力轴承全悬浮机床主轴从结构到控制进行的系统研究;1998年,上海大学开发了磁力轴承控制器(600W)用于150m制氧透平膨胀机的控制;2000年清华大学与无锡开源机床集团有限公司合作,实现了内圆磨床磁力轴承电主轴的'工厂应用实验。目前,国内清华大学、西安交通大学、国防科技大学、哈尔滨工业大学、南京航空航天大学等等都在开展磁悬浮轴承方面的研究。2002年清华大学朱润生等对主动磁悬浮轴承主轴进行磨削试验,当转速60000r/min、法向磨削力100N左右时,精度达到小于8m的水平,精磨磨削效率基本达到工业应用水平。2003年6月,南京航空航天大学磁悬浮应用技术研究所研制的磁悬浮干燥机的性能指标已通过江苏省技术鉴定,向工业应用迈出了可喜的一步。2005年“济南磁悬浮工程技术研究中心”研制的磁悬浮轴承主轴设备,在济南第四机床厂做磨削试验,成功磨制出一个内圆孔工件,这是我国第一个用磁悬浮轴承主轴加工的工件。此项技术填补了国内空白。近几年来,由于微电子技术、信号处理技术和现代控制理论的发展,磁悬浮轴承的研究也取得了巨大进展。

从总体上看,磁悬浮轴承技术正向以下几个方向发展:

(1)理论分析更注重系统的转子动力学分析,更多地运用非线性理论对主动

磁悬浮转子系统的平衡点和稳定性进行分析;更注重建立系统的非线性耦合模型以求得更好的性能。

(2)注重系统的整体优化设计,不断提高其可靠性和经济性,以期获得磁悬浮轴承更加广泛的应用前景。

(3)控制器的实现越来越多的采用数字控制。为达到更高的性能要求,控制器的数字化、智能化、集成化成为必然的发展趋势。由于数字控制器的灵活性,各种现代控制理论的控制算法均在磁悬浮轴承上得到尝试。

(4)发展了多种新型磁悬浮轴承如:无传感器磁悬浮轴承、无轴承电机超导磁悬浮轴承、高温磁悬浮轴承。此外,磁悬浮机床主轴在各方面也有较大的发展空间如:高洁净钢材Z钢和EP钢的引入;陶瓷滚动体,重量比钢球轻40%;润滑技术的开发,对于高速切削液的主轴,油液和油雾润滑能有效防止切削液进入主轴;保持架的开发,聚合物保持架具有重量,自润滑及低摩擦系数的特点从应用的角度看,磁悬浮轴承的潜力尚未得到的发掘,而它本身也未达到替代其它轴承的水平,设计理论,控制方法等都有待研究和解决。

3 课题的研究目标与研究内容

研究目标

控制器是主动控制磁悬浮轴承研究的核心,因此正确选择控制方案和控制器参数,是磁悬浮轴承能够正常工作和发挥其优良性能的前提。该课题主要研究单自由度磁悬浮系统,其结构简单,性能评判相对容易、研究周期短,并且可以扩展到多自由度磁悬浮系统的研究。针对磁悬浮主轴系统的非线性以及在控制方面的特点,该课题探索出提高系统总体性能和动态稳定性的有效控制策略。

主要研究内容

(1)阐述课题的研究背景与意义,对国内外相关领域的研究状况进行综述。

(2)对磁悬浮机床主轴的动力学模型进行分析,并将其数值化、离散、解耦和降阶等,为后续研究

1、 目的及意义(含国内外的研究现状分析)

本人毕业设计的课题是”钢坯喷号机行走部件及总体设计”,并和我的一个同学(他课题是“钢坯喷号机喷号部件设计”)一起努力共同完成钢坯喷号机的设计。我们的目的是设计一种价格相对便宜,工作性能可靠的钢坯喷号机来取代用人工方法在钢坯上写编号。

对钢坯喷号是钢铁制造业必然需要存在的一个环节,这是为了实现质量管理和质量追踪。我们把生产钢坯对应的连铸机号、炉座号、炉号、流序号以及表示钢坯生产时间的时间编号共同组成每块钢坯的唯一编号,适当的写在钢坯的表面。这样就在钢铁厂的后续检验或在客户使用过程中,如果发现钢坯的质量有问题,就可以根据这个编号来追踪到生产这个钢坯的连铸机、炉座、炉号、流序及时间等重要信息,及早的发现并解决生产设备中存在的问题。

目前,在国外像日本、美国等一些发达国家已经实现了对钢坯的自动编号,虽然其辅助设备较多,价格较贵,但大大提高生产的自动化进程和效率。并且钢坯喷号机具有设备利用率高、位置精度高、可控制性能好等优点。而在国内,除了少数的几家大型钢铁企业(宝钢、鞍钢等)引进了自动钢坯喷号机,大部分的钢铁企业仍然处在人工编号的阶段。

实现钢坯喷号的机械化和自动化是提高生产效率和降低生产成本的重要途径之一,钢坯喷号机无论在国内还是国外都会有很大的市场。一方面因为人工的工艺流程不但浪费了大量的能量,而且打断了生产的自动化进程,从而致使生产效率降低,生产成本增加。另一方面由于生产钢坯的车间温度很高,有强烈的热辐射,同时还有大量的水蒸气和粉尘,因此对其中进行人工编号的工人的劳动强度非常大,并且对身体是一种摧残,容易得职业病。所以无论从那个方面看都急需一种价格相对便宜,工作性能可靠的钢坯喷号机来代替人工编号。

作为一个大学生,毕业设计对我来说是展示我大学四年学习成果的一个机会,也是对我的综合能力的一个考验。我本人对“钢坯喷号机行走部件及总体设计”的课题也非常感兴趣,我一定会努力完成这次毕业设计的。总的来说,钢坯喷号机对于钢铁厂和这次毕业设计对于我都是具有现实意义的。

2、基本内容和技术方案

本课题是基于机械设计与电子控制结合的技术来设计钢坯喷号机。经连连轧的钢坯规格为160mmx200mm的方形钢坯,用切割机割成定长,由300mm宽的输出通道送出。

1.基本内容

先拟定钢坯喷号机的总体方案,然后确定钢坯喷号机行走部件的传动方案及结构参数,最后画出钢坯喷号机行走部件的装配图以及零件图。

2.系统技术方案

(1)工作过程:启动机器PLC控制步进电机带动钢坯喷号机到相应的位置,按下启动键发送控制信号传到控制部件(PLC),控制部件发出控制命令给执行部件(主要是行走部件及喷号部件,行走部件带动喷头靠近钢坯表面,然后喷头进行喷号),喷号完成后喷头上升并清洗号码牌。再次移动喷号到下一个钢坯处。

(2)要求实现的功能:行走部件功能(喷号机整体左右的移动,喷号部件的上下前后移动,喷头的左右移动)、喷号部件功能(喷头喷号,清洗号码牌,号码牌的更换)。其中号码为(0—9)十个数字,号码可以变化更换。每个号码大小为35mmx15mm,号码间距为5mm。

(3)实现方案:

行走功能的实现:由于在钢坯上喷号并不需要很精确的定位,所以采用人工控制步进电机的方式移动整体喷号机来粗调。采用液压缸提供动力来推动喷号部件,并采用行程开关控制电机来实现喷号部件上下移动,下行程开关可以控制喷号部件与钢坯表面之间的间距和发出信号使喷头开始喷涂料并向右移动。采用液压缸推动,滚轮在导架上滚动的方式实现喷好机构的前后移动,并采用行程开关控制电机来实现喷头的左右移动,右行程开关可以控制喷头停止喷涂料并回到初始位置和喷号部件向上移动。

喷号功能的具体实现方案由和我一组的同学确定。

3、进度安排

3-4周 认真阅读和学习有关资料和知识,并翻译英文文献

5-7周 钢坯喷号机行走部件的传动方案及总体设计

8-9周 确定钢坯喷号机行走部件结果参数

10-13周 完成钢坯喷号机行走部件装配图及零件工作图

14-15周 准备并进行毕业答辩

1. 设计(或研究)的依据与意义

十字轴是汽车万向节上的重要零件,规格品种多,需求量大。目前,国内大多采用开式模锻和胎模锻工艺生产,其工艺过程为:制坯→模锻→切边。生产的锻件飞边大,锻件加工余量和尺寸公差大,因而材料利用率低;而且工艺环节多,锻件质量差,生产效率低。

相比之下,十字轴冷挤压成形的具有以下优点:

1、提高劳动生产率。用冷挤压成形工艺代替切削加工制造机械零件,能使生产率大大提高。

2、制件可获得理想的表面粗糙度和尺寸精度。冷挤压十字轴类零件的精度可达ITg---IT8级,表面粗糙度可达Ra O.2~1.6。因此,用冷挤压成形的十字轴类零件一般很少再切削加工,只需在要求特别高之处进行精磨。

3、提高零件的力学性能。冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度高于原材料的强度。

4、降低零件成本。冷挤压成形是利用金属的塑性变形制成所需形状的零件,因而能大量减少切削加工,提高材料的利用率,从而使零件成本大大降低。

2. 国内外同类设计(或同类研究)的概况综述

利用切削加工方法加工十字轴类零件,生产工序多,效率低,材料浪费严重,并且切削加工会破坏零件的金属流线结构。目前国内大多采用热模锻方式成形十字轴类零件,加热时产生氧化、脱碳等缺陷,必然会造成能源的浪费,并且后续的机加工不但浪费大量材料,产品的内在和外观质量并不理想。

采用闭式无飞边挤压工艺生产十字轴,锻件无飞边,可显着降低生产成本,提高产品质量和生产效率:

(1)不仅能节省飞边的金属消耗,还能大大减小或消除敷料,可以节约材料30﹪;由于锻件精化减少了切削加工量,电力消耗可降低30﹪;

(2)锻件质量显着提高,十字轴正交性好、组织致密、流线分布合理、纤维不被切断,扭转疲劳寿命指标平均提高2~3倍;

(3)由于一次性挤压成型,生产率提高25%.

数值模拟技术是CAE的关键技术。通过建立相应的数学模型,可以在昂贵费时的模具或附具制造之前,在计算机中对工艺的全过程进行分析,不仅可以通过图形、数据等方法直观地得到诸如温度、应力、载荷等各种信息,而且可预测存在的缺陷;通过工艺参数对不同方案的对比中总结出规律,进而实现工艺的优化。数值模拟技术在保证工件质量、减少材料消耗、提高生产效率、缩短试制周期等方面显示出无可比拟的优越性。

目前,用于体积成形工艺模拟的商业软件已有“Deform”、“Autoforge”等软件打入中国市场。其中,DEFORM软件是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。DEFORM无需试模就能预测工业实际生产中的金属流动情况,是降低制造成本,缩短研发周期高效而实用的工具。二十多年来的工业实践清楚地证明了基于有限元法DEFORM有着卓越的准确性和稳定性,模拟引擎在大金属流动,行程载荷和产品缺陷预测等方面同实际生产相符保持着令人叹为观止的精度。

3. 课题设计(或研究)的内容

1)完成十字轴径向挤压工艺分析,完成模具总装图及零件图设计。

2)建立十字轴径向挤压成形模具的三维模型。

3)十字轴径向挤压成形过程数值模拟。

4)相关英文资料翻译。

4. 设计(或研究)方法

1)完成十字轴径向挤压成形工艺分析,绘制模具总装图及零件图。

2)写毕业论文建立十字轴径向挤压成形模具的三维模型。

3)完成十字轴径向挤压成形过程数值模拟。

4)查阅20篇以上与课题相关的文献。

5)完成12000字的论文。

6)翻译10000个以上英文印刷符号。

5. 实施计划

04-06周:文献检索,开题报告。

07-10周:进行工艺分析、绘制模具二维图及模具三维模型设计。

11-13周:进行数值模拟。

14-16周:撰写毕业论文。

17周:进行答辩。

一、毕业设计题目的背景

三级圆锥—圆柱齿轮减速器,第一级为锥齿轮减速,第二、三级为圆柱齿轮减速。这种减速器具有结构紧凑、多输出、传动效率高、运行平稳、传动比大、体积小、加工方便、寿命长等优点。因此,随着我国社会主义建设的飞速发展,国内已有许多单位自行设计和制造了这种减速器,并且已日益广泛地应用在国防、矿山、冶金、化工、纺织、起重运输、建筑工程、食品工业和仪表制造等工业部门的机械设备中,今后将会得到更加广泛的应用。

二、主要研究内容及意义

本文首先介绍了带式输送机传动装置的研究背景,通过对参考文献进行详细的分析,阐述了齿轮、减速器等的相关内容;在技术路线中,论述齿轮和轴的选择及其基本参数的选择和几何尺寸的计算,两个主要强度的验算等在这次设计中所需要考虑的一些技术问题做了介绍;为毕业设计写作建立了进度表,为以后的设计工作提供了一个指导。最后,给出了一些参考文献,可以用来查阅相关的资料,给自己的设计带来方便。

本次课题研究设计是大学生涯最后的学习机会,也是最专业的一次锻炼,它将使我们更加了解实际工作中的问题困难,也使我对专业知识又一次的全面总结,而且对实际的机械工程设计流程有一个大概的了解,我相信这将对我以后的工作有实质性的帮助。

三、实施计划

收集相关资料:20XX年4月10日——4月16日

开题准备: 4月17日——4月20日

确定设计方案:4月21日——4月28日

进行相关设计计算:4月28日——5月8日

绘制图纸:5月9日——5月15日

整理材料:5月15日——5月16日

编写设计说明书:5月17日——5月20日

准备答辩:

四、参考文献

[1] 王昆等 机械设计课程设计 高等教育出版社,1995.

[2] 邱宣怀 机械设计第四版 高等教育出版社,1997.

[3] 濮良贵 机械设计第七版 高等教育出版社,2000.

[4] 任金泉 机械设计课程设计 西安交通大学出版社,2002.

[5] 许镇宁 机械零件 人民教育出版社,1959.

[6] 机械工业出版社编委会 机械设计实用手册 机械工业出版社,2008

1. 设计(或研究)的依据与意义

十字轴是汽车万向节上的重要零件,规格品种多,需求量大。目前,国内大多采用开式模锻和胎模锻工艺生产,其工艺过程为:制坯→模锻→切边。生产的锻件飞边大,锻件加工余量和尺寸公差大,因而材料利用率低;而且工艺环节多,锻件质量差,生产效率低。

相比之下,十字轴冷挤压成形的具有以下优点:

1、增强劳动生产率。用冷挤压成形工艺代替切削加工制造机械零件,能使生产率大大增强。

2、制件可获得理想的表面粗糙度和尺寸精度。冷挤压十字轴类零件的精度可达ITg---IT8级,表面粗糙度可达Ra O.2~1.6。因此,用冷挤压成形的十字轴类零件一般很少再切削加工,只需在要求特别高之处进行精磨。

3、增强零件的力学性能。冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度高于原材料的强度。

4、降低零件成本。冷挤压成形是利用金属的塑性变形制成所需形状的零件,因而能大量减少切削加工,增强材料的利用率,从而使零件成本大大降低。

2. 国内外同类设计(或同类研究)的概况综述

利用切削加工方法加工十字轴类零件,生产工序多,效率低,材料浪费严重,并且切削加工会破坏零件的金属流线结构。目前国内大多采用热模锻方式成形十字轴类零件,加热时产生氧化、脱碳等缺陷,必然会造成能源的浪费,并且后续的机加工不但浪费大量材料,产品的内在和外观质量并不理想。

采用闭式无飞边挤压工艺生产十字轴,锻件无飞边,可显着降低生产成本,增强产品质量和生产效率:

(1)不仅能节省飞边的金属消耗,还能大大减小或消除敷料,可以节约材料30%;由于锻件精化减少了切削加工量,电力消耗可降低30%;

(2)锻件质量显着增强,十字轴正交性好、组织致密、流线分布合理、纤维不被切断,扭转疲劳寿命指标平均增强2~3倍;

(3)由于一次性挤压成型,生产率增强25%.

数值模拟技术是CAE的关键技术。通过建立相应的数学模型,可以在昂贵费时的模具或附具制造之前,在计算机中对工艺的全过程进行分析,不仅可以通过图形、数据等方法直观地得到诸如温度、应力、载荷等各种信息,而且可预测存在的缺陷;通过工艺参数对不同方案的对比中总结出规律,进而实现工艺的优化。数值模拟技术在保证工件质量、减少材料消耗、增强生产效率、缩短试制周期等方面显示出无可比拟的优越性。

目前,用于体积成形工艺模拟的商业软件已有“Deform”、“Autoforge”等软件打入中国市场。其中,DEFORM软件是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。DEFORM无需试模就能预测工业实际生产中的金属流动情况,是降低制造成本,缩短研发周期高效而实用的工具。二十多年来的工业实践清楚地证明了基于有限元法DEFORM有着卓越的准确性和稳定性,模拟引擎在大金属流动,行程载荷和产品缺陷预测等方面同实际生产相符保持着令人叹为观止的精度。

3. 课题设计(或研究)的内容

1)完成十字轴径向挤压工艺分析,完成模具总装图及零件图设计。

2)建立十字轴径向挤压成形模具的三维模型。

3)十字轴径向挤压成形过程数值模拟。

4)相关英文资料翻译。

4. 设计(或研究)方法

1)完成十字轴径向挤压成形工艺分析,绘制模具总装图及零件图。

2)毕业论文建立十字轴径向挤压成形模具的三维模型。

3)完成十字轴径向挤压成形过程数值模拟。

4)查阅20篇以上与课题相关的文献。

5)完成12000字的论文。

6)翻译10000个以上英文印刷符号。

5. 实施计划

04-06周:文献检索,开题报告。

07-10周:进行工艺分析、绘制模具二维图及模具三维模型设计。

11-13周:进行数值模拟。

14-16周:撰写毕业论文。

17周:进行答辩。

基于Pro/E毒消柜控制面板的注塑模具设计 梁江波 葛正浩 厉成龙 丁英杰 (陕西科技大学 陕西•咸阳 712081) 摘 要:借绍利用Pro/E软件对消毒柜控制面板注塑模具进行辅助设计的过程,重点阐述应用Pro/E模具模块分模的流程。指明采用模具CAD/CAM软件Pro/E来实现模具三维设计,可以大大缩短设计和制造周期,提高产品设计准确性,降低设计成本。 关键词: Pro/E模具;分模;消毒柜控制面板;模架设计专家系统 3D design of disinfectant tank’s faceplate injection mould based on Pro/Engineer Liangjiangbo Gezhenghao Dingyingjie Lichenglong (Shanxi University of Science & Technology, Xianyang, Shanxi, 712081,China) Abstract Introduce the process of designing the injection mould for disinfectant tank’s faceplate based on Pro/Engineer. Expanded the process of parting module on emphases. directed that 3D softwares have got extensive application. the softwares of Pro/E,can shorten the period of mould design and manufacture, it also lowered the product cost. Key words :Pro/E;mould;parting module;disinfectant tank’s faceplate;manufacture 1 引 言 Pro/E是美国PTC公司开发的基于PC平台的CAD/CAM/CAE一体化软件,也是目前我国模具行业中应用最为广泛的设计软件之一。Pro/E有许多应用模块,在注塑模具设计中应用Pro/E制造模具模块和模架设计专家系统(EMX)可以非常方便快捷的设计出模具的全部内容。不仅效率高,而且直观性好,准确性高。本文以消毒柜控制面板注塑模设计为例介绍了由制件到注塑模具的设计成型过程。 2 制品实体造型 消毒柜控制面板采用Pro/E零件模块的成形实体功能,通过创建拉伸、抽壳、复制、阵列、倒圆角、剪切、加强筋等特征命令建立实体如图1-1。 图1-1 消毒柜控制面板的零件模型 3 制品的结构特征分析 制品的材料为ABS,这种通用塑胶易于成型和机械加工,具有优良的物理机械性能和低温抗冲击性,良好的电性能、耐磨性、尺寸稳定性、耐化学性,染色性,优良的流动性和良好的综合性能,成型工艺性好。 该制件为ZLD-38型消毒柜的控制面板,如图1-1所示。其上有6个固定孔,用螺钉将其固定在壳体上;有三个按键孔、一个VFD显示孔和一个侧向的门开关孔。控制电路板和电磁门开关在装配时要安装在其腔体内。可见面要求平整、光滑、色泽均匀一致,无气泡、裂纹、收缩、融合纹等注塑缺陷,分型面无飞边、毛刺;壁厚偏差一致,脱模斜度应不大于。在将其安装在壳体上后,其上表面要贴pop贴。为了提高其强度在其内部设有加强筋。 4 零件成型工艺性分析 在模具结构中,采用侧浇口,两点进浇,采取一模两腔的布局,由于采用两点进浇,故减少了熔料在模腔内流动的距离,便于注射成型。顶出方式采用推板脱模,制件的固定柱采用顶管脱模方式。门锁孔采用斜导柱分型抽芯机构完成侧抽,内腔的控制板卡采用斜顶杆完成内侧抽。冷却方式采取水冷形式,冷却水孔布置采用直通式布置,各通道在模具外用软管连接,具体的结构见模具设计部分。 5 模具设计 利用Pro/E软件制造模块(CAM)中的模具型腔子模块进行分模设计,设计步骤如下: (1)打开Pro/E,新建→制造→模具型腔→取文件名() →进入分模界面。(2)将工件作为参考零件装配到界面上,由于是第一次装配,所以可以用缺省装配。(3)通过控制层的图标把参考模型的基准面遮蔽,从而使图面简化。(4)建立工件体积块。可以通过手动草绘,也可通过自动设定参数直接生成。如图1-2所示。 图1-2 工件体积块 图1-3 模具体积块 图1-4 分型面1 (5)设置收缩率。通过用比例方式,对所有尺寸用公式S=1+α进行设置。 (6)创建模具体积块。通过创建球形拉料杆体积块、销体积块、内侧抽体积块,最终生成模具体积块。如图1-3所示。(7)设计分型面。在分模过程中,分型面的设计是最为关键。本例的分型面的建构步骤如下:①新建分型面→复制→制件所有外表面→填补外表面上的所有孔;②与零件底面重合处拉伸一平整曲面;③将复制曲面与拉伸曲面合并,并选对保留侧。分型面设计完成如图1-4、图1-5、图1-6、图1-7所示。 图1-5 分型面2 图1-6 分型面3 图1-7 分型面4 (8)拆模。步骤为:模具体积块→分割→2个体积块→所有工件→选取分型面,将工件分割开来,并分别定义名称rest、rest1、 rest2、rest3。将生成的体积块抽取生成模具成型零件,步骤为:模具元件→抽取。 (9)开模仿真。步骤为:模具进料孔→定义间距→定义移动。如图1-8所示。 图1-8 制件开模仿真图 6 用塑料顾问做模具的流动模拟分析 打开制件文件,单击应用程序菜单下的塑性顾问,单击 按钮,启动塑料顾问应用程序。对填充质量和压力降做出可视化分析,如下图所示。 图1-9 填充质量示意图 图1-10 预期质量示意图 图1-11 压力降示意图 在菜单条中依次点击Results→summary,打开“Results summary”对话框,制件的加工参数和流动的相关参数见图1-12。 图1-12 加工参数与流动的相关参数 7 制品注射模具的3D总装配设计 调用模架专家系统,选好模架类型和各模板尺寸, 把型腔和型心装进模架,设计完成浇注冷却系统、顶出系统及抽芯滑块装置,并装配好螺钉、导柱、导套等标准件如图1-13所示。 图1-13 完成后的模具总装配模型 图1-14 模具开模状态图 8 开模仿真 .依次点击→模具基体→装配元件→在弹出的“装配元件”对话框中按下 ,将所有的元件装配到模具总装配模型中去,完成后的模具开模状态图如图1-14所示。 9 结束语 本文以消毒柜控制面板为例介绍了利用Pro/E建立实体模型,并进行模具设计的整个过程。通过设计发现基于Pro/E的模具设计有如下优点:①能直接根据产品的三维数据生成模具的型心和型腔,提高设计的准确性。②利用标准模架库,减少了模具标准件的绘制,提高了效率。③实现了全三维的设计,直观,可靠。④统一的数据库使零件修改、模具修改非常方便。⑤根据加工要求可通过数控模块生成刀轨文件,通过后 置处理生成数控程序。 参考文献: [1] 林清安. Pro/Engineer模具设计[M].北京:北京大学出版社,2001. [2] 何满才.模具设计与加工-MASTERCAM[M].北京:人民邮电出版社,2002. [3] 葛正浩.Pro/ENGINEER Wildfire塑料模具设计入门与实践.化学工业出版社,2004. [4] 史铁梁.模具设计指导,机械工业出版社,2003. [5] 申开智.塑料成型模具,中国轻工业出版社,2002.

相关百科

热门百科

首页
发表服务