首页

> 期刊论文知识库

首页 期刊论文知识库 问题

双边滤波毕业论文

发布时间:

双边滤波毕业论文

物理学是研究物质运动最一般规律和物质基本结构的学科,是当今最精密的一门自然科学学科。下文是我为大家整理的关于物理学方面的论文的 范文 ,欢迎大家阅读参考!

试谈物理学专业电动力学课程教学

动力学电磁现象的经典的动力学理论。通常也称为经典电动力学,电动力学是它的简称。它研究电磁场的基本属性、运动规律以及电磁场和带电物质的相互作用。

一、课程教学根本理念

第一,在教学中要尊重先生学习的主体性、教员教学的主导性,片面发扬先生的盲目性、自动性、发明性。第二,“电动力学”课程属于专业根底课程,教学内容布置上除了让先生学习本门课程的根本知识、根本实际、根本思绪,与其他物理学分支也具有个性和特性的关系。针对这一特点,教师在教学中要留意引导先生类似性抽象思想。第三,教学应突出探求式教学办法,改动传统的教学形式,把信息技术与电动力学课程最大限制地整合,运用多种古代 教育 手腕优化教学进程,推行启示式、探求式、讨论式、小制造等授课方式,培育先生的创新思想和创新理念。

二、在本课程教学中该当做到以下几点

1.讲授内容应实际联络实践

“电动力学”作为一门专业学科课程,是师范院校物理专业的根底实际课。教学中要求先生掌握课程的根本知识、根本实际和根本原理,使先生加深对所授知识的了解,更可深入看法电动力学的实践使用价值,到达学致使用的目的,同时提升先生剖析成绩、处理成绩的才能。

2.注重先生学习的主体性和集体性培育

从课程的设计到评价各个环节,在留意发扬教员在教学中主导作用的同134教改课改2016年3月时,应特别留意表现先生的学习主体位置,以充沛发扬先生的积极性和发掘学习潜能。要求先生能初步剖析消费、生活中的电动力学成绩,以提升先生的剖析成绩和处理成绩的才能。在电动力学实际的学习中运用数学工具处置成绩,使先生看法数学和物理的亲密关系,培育先生运用数学工具处理物理成绩的才能。培育先生自学才能,重要的不是教内容,而是教给先生学习办法。要充沛留意先生的兴味、专长和根底等方面的集体差别,因材施教,依据这种差别性来确定学习目的和评价办法,并提出相应的教学建议。课程规范在课程设计、教学方案、方案制定、内容选取和教学评价等环节上,为教学、学习提供了选择余地和开展的空间。

3.运用多种古代教育手腕优化教学环节

充沛应用古代化教学手腕,发扬信息化教学的劣势,加强先生的学习兴味,进一步强化需求掌握的知识点,拓宽知识面,加强先生的理论操作技艺,培育迷信的思想方式,这样先生能更好地掌握“电动力学”课程知识所触及的相关迷信办法,无效提升其发现成绩、剖析成绩、处理成绩的才能。

4.具有良好的实验条件,充沛保证明验和理论训练质量

鼓舞先生展开科研理论训练,参与各类科技竞赛。实验课及理论训练要留意培育先生的逻辑思想、发明性思想,充沛应用好物理、电子竞赛等创新平台,促进电动力学课程的教学。

三、课程学习战略探求

第一,针对“电动力学”是实际根底课的特点,先生必需坚持 课前预习 ,预习进程中无意识地提出成绩。课堂教学次要采用探求式课堂教学法,即每节课突出一个主题,讲清论透相关原理知识,每个主题经过师生多种方式的互动,教员及时理解、处理先生的疑问成绩,以加强先生的学习兴味。第二,将传统板书、电子课件、网络和视频多种教学手腕相结合。如课内讲授与课外讨论和制造相结合、根底实际教学与学科前沿讲座结合、根本实际与科研理论训练相结合。第三,鼓舞先生参与科研理论训练和各类科技竞赛。培育多样化使用型人才,以培育使用型、复合型、技艺型人才,加强 毕业 生失业才能,完本钱课的预期目的。第四,电动力学也是一门理论性很强的课程,其研讨对象是区别于实物的物质形状,具有笼统的特征。为防止课程教学的数学化,我们将充沛使用当代信息技术的劣势,比方说以视频教学材料加强先生的理性看法和入手才能。再次,实验课及理论训练要留意培育先生的逻辑思想、发明性思想才能和素质,充沛发扬先生的物理思想和物理探求才能。

四、课程教学办法探求

本课程教学中应留意电动力学实际与理论的结合,尊重先生学习的主体性,适当布置指点性自习,培育先生的自学才能。增强对先生课前、课后的答疑辅导,注重先生才能的培育,使先生经过对电动力学中根本实际的了解,看法和掌握电动力学原理的研讨规律,开辟思绪,初步培育先生的科研思想。

1.“双边反应式”教学法

这种教学法由“自学”和“反应”两局部构成,其着眼点是先生在教员指点下的自学和教员由反应来的信息而停止的有重点的解说,使先生的才能在重复训练中失掉锤炼。“自学”和“反应”表现了先生和教员的互相联络、互相配合、互相作用的训练进程。

2.以成绩为中心,展开课堂讨论

式教学法建议课堂教学中遵照迷信性、主体性、开展性准绳,采用以先生为主体的小组讨论式的办法,从提出成绩动手,激起先生学习的兴味,让先生有针对性地去探究并运用实际知识处理实践成绩;也可以针对教研室科研任务中遇到的成绩设计讨论或考虑题,以启示先生剖析、讨论有关电动力学成绩,学习并稳固电动力学知识,开辟思绪,培育科研思想。

3.倡导学导式的教学方式

在教员指点下,先生停止自学、自练,教员把先生在教学进程中的认知活动视为教学活动的主体,让先生自动地去获取知识,开展各自才能,从而到达在充沛发扬先生自动性的根底上,渗入教员的正确引导,使教学单方各尽其能,各得其所。

4.多展开课外理论活动

课外理论训练中,要留意培育先生的逻辑思想、发明性思想才能和素质。鼓舞和指点有才能的先生进入科研理论训练,参与各类科技竞赛。将先生撰写的课程小论文融入教学全进程,从中选出有质量的项目进入科研理论训练。充沛应用好物理、电子竞赛等创新平台,促进电动力学课程的教学,培育使用型、复合型、技艺型人才,加强毕业生失业才能。“电动力学”作为一门探求性课程,在课堂教学中,要突出先生的参与性,使他们自动获取而不是主动承受迷信结论,互动思想使先生觉得电动力学发人沉思,不难入门。“电动力学”与其他物理学分支具有“个性”和“特性”的关系。为了激起先生学习兴味,可以常常采用课堂讨论方式,由先生发问,在教员引导下大家讨论, 总结 得出正确结论。由于剖析“电动力学”需求运用笼统思想,所以课堂教学应充沛运用多媒体,尽量运用图像和颜色搭配,使先生树立正确的物理图像。留意“信息技术”与“电动力学”课程的无效整合,这关于全体优化教学进程,进步先生的专业知识学习效果、进步先生的信息技术才能、培育先生的协作认识和创新肉体均具有严重的理想意义。同时,可将教学实际使用到创新理论才能训练中,使用到物理、电子等各类竞赛中。

参考文献:

[1]冯云光.物理专业电动力学教学变革的探究[J].才智,2014,(19).

[2]郑伟,吕嫣.电动力学网络教学平台建立的研讨[J].沈阳师范大学学报(自然迷信版),2013,31(4):531-534.

[3]刘佳.《电磁学》与《电动力学》课程体系创新研讨[J].科技信息,2013,(11):44.

[4]熊万杰,陆建隆.对“电动力学”课程变革的探究[J].初等文科教育,2003,(6):72-75.

[5]付长宝,徐国慧,王希英.基于电动力学教学变革的学习办法讨论[J].通化师范学院学报,2009,30

试谈电力信息物理融合系统

【摘 要】嵌入式系统、计算机技术、网络通信技术的快速发展使构建未来智能电网成为了可能,基于信息物理系统(CPS)技术构建电力信息物理融合系统(CPPS)为实现未来智能电网提供了新的思路。本文对CPPS平台进行了初步研究分析,介绍了应用于CPPS中的同步PMU技术、开放式通信网络、分布式控制。

【关键词】CPPS;同步PMU;开放式通信;分布式控制

引言

受能源危机、环保压力的推动,以及用户对电能质量(QoS)要求的不断提高,当代电力系统不再符合社会的发展需求,智能电网(Smart Grid)成为未来电力系统的发展方向。智能电网的发展原因主要有以下几个方面:

1)分布式电源(Distributed Generation,DG)大量接入电网导致的系统稳定性问题。由于DG的大量接入使电网变成一个故障电流和运行功率双向流动的有源网络,增加了系统的复杂度和脆弱度,因此亟需发展智能电网以解决DG大量接入电网导致的系统稳定性问题。

2)电力用户对电能质量(QoS)要求的不断提高。现代社会短时间的停电也会给高科技产业带来巨额的经济损失,近年来发生的大停电事故更是给社会带来了难以估量的经济损失。因此,亟需建立坚强自愈的智能电网以提供优质的电力服务。

论文主体结构如下:第1部分介绍了近年来信息物理系统(Cyber Physical System ,CPS)技术的发展以及CPS与智能电网的相互关系;第2部分介绍了电力信息物理融合系统(Cyber-Physical Power System,CPPS)的硬件平台模型;第3部分介绍了同步相量测量装置(Phasor Measurement Units,PMU)技术;第4部分对CPPS中的开放式通信网络进行了初步分析;第5部分对CPPS的分布式控制技术进行了简单介绍;最后第6部分做出全文总结。

1 CPS与智能电网的相互关系

CPS技术的发展得益于近年来嵌入式系统技术、计算机技术以及网络通信技术等的高速发展,其最终目标是实现对物理世界随时随地的控制。CPS通过嵌入数量巨大、种类繁多的无线传感器而实现对物理世界的环境感知,通过高性能、开放式的通信网络实现系统内部安全、及时、可靠地通信,通过高精度、可靠的数据处理系统实现自主协调、远程精确控制的目标[1]。

CPS技术已经在仓储物流、自主导航汽车、无人飞机、智能交通管理、智能楼宇以及智能电网等领域得以初步研究应用[2]。

将CPS技术引入到智能电网中,可以得到电力信息物理融合系统(Cyber-Physical Power System,CPPS)的概念。为了分析CPPS与智能电网的相互关系,首先简单回顾一下智能电网的概念。目前关于智能电网的概念较多,并且未达成一致结论。IBM中国公司高级电力专家Martin Hauske认为智能电网有3个层面的含义:首先利用传感器对发电、输电、配电、供电等环节的关键设备的运行状况进行实时监控;然后把获得的数据通过网络系统进行传输、收集、整合;最后通过对实时数据的分析、挖掘,达到对整个电力系统运行进行优化管理的目的[3-4]。

从上文关于CPS和智能电网的介绍中可以看出,CPS与智能电网在概念上有相通之处,它们均强调利用前沿通信技术和高端控制技术增强对系统的环境感知和控制能力。因此,在CPS基础上建立的CPPS为促进电力一次系统与电力信息系统的深度融合,最终实现构建完整的智能电网提供了新的思路和实现途径。

2 CPPS的硬件平台架构

基于分布式能源广泛接入电网所引起的系统稳定性问题以及建立坚强自愈智能电网的总体目标,建立安全、稳定、可靠的智能电网成为未来电力系统研究的重要方向,同时也是CPPS研究的主要内容。

传统的电力系统监测手段主要有基于电力系统稳态监测的SCADA/EMS系统和侧重于电磁暂态过程监测的各种故障录波仪,保护控制方式主要有基于SCADA主站的集中控制方式和基于保护控制装置安装处的就地控制方式[5]。就地控制方式易于实现,并且响应速度快,但是由于利用的信息有限,控制性能不够完善,不能预测和解决系统未知故障,对于电力系统多重反应故障更不能准确动作。集中控制方式利用系统全局信息,能够优化系统控制性能,但是计算数据庞大、通信环节多,系统响应速度慢,并且现有SCADA系统主要对电力系统进行稳态分析,不能对电力系统的动态运行进行有效地控制。

针对目前电力系统监测、控制手段的不足,要建立坚强自愈的未来智能电网,必须建立相应的广域保护的实时动态监控系统,CPPS的硬件平台就是在此基础上建立起来的。

CPPS的硬件平台6层体系架构如图1所示,主要包括:物理层(电力一次设备)、传感驱动层(同步PMU)、分布式控制层(智能终端单元STU、智能电子装置IED等)、过程控制层(控制子站PLC)、高级优化控制层(SCADA主站控制中心)和信息层(开放式通信网络)。

其中,底层的物理层是指电力系统的一次设备,如发电厂、输配电网等。传感驱动层主要用于对电力系统的动态运行参数进行实时监控,测量参数包括电流、电压、相角等,在CPPS中广泛使用的测量装置是同步PMU。分布式控制层主要包括各STU/IED,为广域保护的分布式就地控制提供反馈控制回路。过程控制层主要指枢纽发电厂和变电站的控制子站,是CPPS的重要组成部分,通过收集多个测量节点的数据信息,建立系统层面的控制回路,并做出相应的控制决策。高级优化控制层是指调度中心控制主站,主要为电力系统的动态运行提供人工辅助优化控制。顶层的信息层即智能电网的开放式通信网络,注意信息层并不是单独的一层,而是重叠搭接CPPS的各个分层,为CPPS内部各组件提供安全、及时、可靠的通信。

上文给出了CPPS的硬件平台模型,但要在电力系统中具体实现CPPS,涉及诸多方面的技术难题,下面对CPPS中的同步PMU、开放式通信网络以及分布式控制等分别加以简单介绍。

3 同步PMU测量技术

同步PMU是构建CPPS的基础,它为CPPS中广域保护的动态监测提供了丰富的测量数据。同步PMU装置主要对电力系统内部的同步相量进行测量和输出,装设点包括大型发电厂、联络线落点、重要负荷连接点以及HVDC、SVC等控制系统,测量数据包括线路的三相电压、三相电流、开关量以及发电机端的三相电压、三相电流、开关量、励磁电流、励磁电压、励磁信号、气门开度信号、AGC、AVC、PSS等控制信号[6]。利用测得的数据可以进行系统的稳定裕度分析,为电力系统的动态控制提供依据。

同步PMU的硬件结构框图如图2所示。

其中,GPS接收模块将精度在±1微秒之内的秒脉冲对时脉冲与标准时间信号送入A/D转换器和CPU单元,作为数据采集和向量计算的标准时间源。由电压、电流互感器测得的三相电流、电压经过滤波整形和A/D转换后,送到CPU单元进行离散傅里叶计算,求出同步相量后再进行输出。注意,发电机PMU除了测量机端电压、电流和励磁电压、电流以外,还需接入键相脉冲信号用以测量发电机功角[7]。

4 CPPS的开放式通信网络

建立CPPS的开放式通信网络,应该在保证安全、及时、可靠的通信的基础上,使系统具有高度的开放性,支持自动化设备与应用软件的即插即用,支持分布式控制与集中控制的结合。对于建立的开放式通信网络,需要进行通信实时性分析、网络安全性和可靠性分析。

IEC 61850标准的应用

IEC 61850标准作为新一代的网络通信标准而运用于智能变电站中,支持设备的即插即用和互操作,使智能变电站具有高度的开放性。IEC 61850标准是智能变电站的网络通信标准,同时正在进一步发展成为智能电网的通信标准[8],因此,使用IEC 61850作为CPPS通信网路的通信标准是最佳选择。

IEC 61850的核心技术[9]包括面向对象建模技术、XML(可扩展标记语言)技术、软件复用技术、嵌入式 操作系统 技术以及高速以太网技术等。

通信网络配置与分析

对于CPPS开放式通信网络的网络配置,可参考智能变电站的三层二网式网络结构配置,构建CPPS的3层式通信网络,如图3所示。

其中,底层为位于发电厂、变电站和重要负荷处的大量PMU、STU/IED,分别负责采集实时信息和执行保护控制功能。中间层为控制子站(过程控制单元PLC),每个控制子站与多个PMU、STU/IED相连,以完成该分区系统层面的保护控制,并根据需要将数据上传到SCADA主站控制中心。SCADA主站控制中心接收各控制子站的上传数据,处理以后将控制信息下发到各控制子站,以实现CPPS的广域保护控制功能。注意,各层设备均嵌入GPS实现精确对时,保证全系统的同步数据采样。

5 CPPS的分布式控制机理

要建立坚强自愈的智能电网,必须利用新型控制机理建立可靠的电力控制系统。根据电力故障扩大的路径和范围以及故障的时间演变过程,文献[10-11]中提出建立时空协调的大停电防御框架,建立了电力系统的3道防线,为实现智能电网的广域动态保护控制奠定了良好的基础。

电力系统的分布式控制(Distributed Control,DC)是相对于传统的SCADA主站集中控制方式而言的,指的是多机系统,即用多台计算机(指嵌入式系统,包括PLC控制子站和STU/IED等)分别控制不同的设备和对象(如发电机、负荷、保护装置等),各自构成独立的子系统,各子系统之间通过通信网络互联,通过对任务的相互协调和分配而完成系统的整体控制目标[12]。分布式控制的核心特征就是“分散控制,集中管理”。在电力系统的3道防线的基础上,结合分布式控制技术,建立CPPS的3层控制架构,如图4所示。

其中,分布式控制层主要是在故障发生的起始阶段(缓慢开断阶段)采取的控制 措施 ,其控制目标应该是保证系统在不严重故障下的稳定性,防止故障的蔓延。过程控制层是在系统已经发生严重故障时(级联崩溃开始阶段)所采取的广域紧急控制措施,需要付出较大的代价。通常针对可能会使系统失稳的特定故障,往往需要投切非故障设备以保证系统的稳定性。广域的紧急控制措施应该在故障被识别出的第一时间立即实施,控制措施实施越晚,控制效果越差。优化控制层是在前两层控制均拒动或欠控制而没有取得控制效果,同时在检测到各种不稳定现象后所采取的控制措施,通常需要进行多轮次的切负荷和振荡解列。在电力恢复阶段,要有自适应的黑启动和自痊愈的控制方案。

6 结语

将CPS 方法 引入到电力系统中,建立CPPS的模型平台,为建立坚强自愈的智能电网提供新的思路。文中对CPPS中的同步PMU测量技术、开放式通信 网络技术 、分布式控制技术分别进行了简单介绍。

·ADSL接入网技术研究 (字数:24985,页数:36) ·直序扩频技术的仿真与应用 (字数:14521,页数:37) ·音频数字水印的实现 (字数:15331,页数:28) ·DVB系统设计 (字数:14318,页数:28) ·PAM调制解调系统设计 二 (字数:9181,页数:31 ) ·上位PC机与下位单片机之间进行串口通信 (字数:12645,页数:30) ·图像梯形退化校正的研究与实现 (字数:12616,页数:34) ·简易数字电压表设计实现 (字数:7436,页数:24 ) ·基于计算机视觉库OpenCV的文本定位算法改进 (字数:9674,页数:32 ) ·基于编码的OFDM系统的C语言设计与实 (字数:11190,页数:34) ·基于ofdm系统的接受分集技术 (字数:11057,页数:28) ·基于FPGA的交织编码器设计 (字数:13239,页数:39) ·红外异步数字通信的数据采集装置设计与实现 (字数:19577,页数:68) ·Visual C++环境下的基于肤色图像的人脸检测算法 (字数:11186,页数:28) ·PAM调制解调系统设计 (字数:13922,页数:43) ·P2P网络通信设计 (字数:8075,页数:39 ) ·NAND Flash设备 (字数:10928,页数:49) ·MPEG4播放技术 (字数:13207,页数:38) ·Butterworth滤波器设计 (字数:8348,页数:28 ) ·基于单片机的智能教师点名器 (字数:10627,页数:29) ·基于CPLD的CDMA扩频调制解调器建模设计与实现 (字数:14327,页数:63) ·带CC1100无线收发模块基本控制系统 (字数:15224,页数:50) ·基于CPLD的CMI码传输系统设计 (字数:11429,页数:41) ·一个简单光纤传输系统的设计 (字数:12785,页数:37) ·基于MCS51微控制器的FSK调制解调器设计——电路设计 (字数:13439,页数:39) ·中小型网络的设计与配置 (字数:16254,页数:42) ·基于AT89S52的FSK调制解调器设计 (字数:14064,页数:45) ·远端光纤收发器断电断纤的识别 (字数:15759,页数:89) ·脉冲成形BPSK调制电路的设计与实现 (字数:11472,页数:36) ·基于XR2206的函数信号发生器设计与实现 (字数:9179,页数:31 ) ·基于MCS51微控制器的FSK调制解调器的设计——程序设计 (字数:12191,页数:46) ·基于CPLD的QPSK调制器实现——电路设计 (字数:11621,页数:33) ·QPSK调制器的CPLD实现——程序设计 (字数:5973,页数:30 ) ·基于卷积码的BPSK基带系统C语言实现 (字数:9361,页数:30 ) ·白噪声发生器的设计 (字数:11398,页数:34) ·基于单片机的机床控制系统 (字数:12085,页数:35) ·低压电力线载波通信模块设计 (字数:15460,页数:68) ·基于SH框架的电子技术交流平台 (字数:10333,页数:38) ·带隙基准电压源的设计 (字数:10396,页数:31) ·电子计时器系统设计与实现 (字数:9780,页数:31 ) ·无线局域网的组建与测试 (字数:17392,页数:48) ·抑制载波双边带调幅电路的设计 (字数:9787,页数:24 ) ·宽带放大器的设计与实现 (字数:12200,页数:36) ·基于单片机的遥控芯片解码的设计与实现 (字数:9802,页数:39 ) ·多种正交幅度调制QAM误码率仿真及星座图的优化 (字数:10967,页数:43)

KinectFusion是一种利用kinect相机的深度数据进行实时三维重建的技术。本文学习一篇比较早的论文(见参考文献),并对其进行详细地讲述。这篇文章构建了KinectFusion的雏形,被后来者争相follow。 KinectFusion的过程可以分为四个模块: 首先对原始深度数据做双边滤波处理,对处理后的深度图做反投影(back-project)操作,得到vertex map。 向量之间的叉乘可以得到法向量,具体运算可以见图3。surface construction的核心是TSDF及其更新。 TSDF全程Truncated Signed Distance Function。它将空间场景模型化为一个立方体栅格,每个栅格中都存有两个值,一个是距离值F,另一个是权重值W。 如图4所示,TSDF模型中存储的距离值,surface处值为零,传感器一侧的值为正,距离表面越远值越大,另一侧值为负,距离表面越远值越小。而权重值则与表面测量的不确定度有关。 而在实际的测量中,接近零的位置的值才是有效的,因此需要设定一个阈值u,将与surface距离大于u置为无效,不予考虑,而小于u的值进行归一化截断。 图5给出了当前帧TSDF距离值的计算方法。 全局的TSDF是由每一帧单个的TSDF加权平均得来的,如图6所示。 虽然理论上权重值和表面测量的不确定度有关,即与顶点光线方向和法线方向夹角的余弦值成正比,与相机中心和顶点的距离值成反比。但是在实际中,权重恒等于1可以得到很好的结果,并且权重的累积不是一直增大,而是设置了最大值阈值,如图7所示。 上文提到过,在TSDF模型中距离值F=0的位置就是surface的位置,因此利用ray casting,从相机中出发,逆着光线走,直到TSDF体元中的距离值由正变负或者由负变正,即确定为surface的位置。 但是有一个问题,在逆着光线方向走的时候,以多长距离为间隔呢?这里由于场景中很大一部分都是没有物体的无效位置,每个体元都去判断正负值显然很费时间。这里就根据TSDF每个体元中存储的距离值来确定步长,当走到TSDF体元存储着正距离值的时候,步长要设定为小于u值,而在此之前,就以u值作为步长,这样就可以快速找到正负变化的位置。 好像还是哪里有问题。对,虽然正负变化的体元位置找到了,但是哪里才是表面确定位置,毕竟表面是一个值而不是一个有厚度的区域。所以我们采用图8的式子近似找到一个合理的位置。找到surface的坐标后,预测的法向量可以由这一点的梯度得到,如图9,并在不同尺度上计算以适应不同的体元精度。 相机的pose通过ICP算法求解。和一般的ICP不同,这里的ICP不是通过两帧之间的对应点进行求解,而是将当前帧的点与上一帧得到的predicted surface点进行匹配。在建立measured surface和predicted surface之间点的对应关系时,作者没用使用过ICP中的最近点,而是将measured surface上的点投影到上一帧相机的位置,得到的图像平面上的坐标对应的predicted surface上的点就是要找的对应点。如图10所示。 在度量measured surface和predicted surface之间的误差时,作者使用的是ICP中的点面误差度量,如图11。以上为算法全部内容。 持续更新,欢迎提出质疑或与作者就相关问题进行讨论。 *参考文献 [1]KinectFusion: Real-Time Dense Surface Mapping and Tracking [2]A Volumetric Method for Building Complex Models from Range Images

滤波技术毕业论文

1. 智能压力传感器系统设计 2. 智能定时器 3. 液位控制系统设计 4. 液晶控制模块的制作 5. 嵌入式激光打标机运动控制卡软件系统设计 6. 嵌入式激光打标机运动控制卡硬件系统设计 7. 基于单片机控制的数字气压计的设计与实现 8. 基于MSC1211的温度智能温度传感器 9. 机器视觉系统 10. 防盗与恒温系统的设计与制作 11. 防盗报警器 12. AT89S52单片机实验系统的开发与应用 13. 在单片机系统中实现SCR(可控硅)过零控制 14. 微电阻测量系统 15. 基于单片机的电子式转速里程表的设计 16. 基于GSM短信模块的家庭防盗报警系统 17. 公交车汉字显示系统 18. 基于单片机的智能火灾报警系统 19. WIN32环境下对PC机通用串行口通信的研究及实现 20. FIR数字滤波器的MATLAB设计与实现方法研究 21. 无刷直流电机数字控制系统的研究与设计 22. 直线电机方式的地铁模拟地铁系统制作 23. 稳压电源的设计与制作 24. 线性直流稳压电源的设计 25. 基于CPLD的步进电机控制器 26. 全自动汽车模型的设计制作 27. 单片机数字电压表的设计 28. 数字电压表的设计 29. 计算机比值控制系统研究与设计 30. 模拟量转换成为数字量的红外传输系统 31. 液位控制系统研究与设计 32. 基于89C2051 IC卡读/写器的设计 33. 基于单片机的居室安全报警系统设计 34. 模拟量转换成为数字量红外数据发射与接收系统 35. 有源功率因数校正及有源滤波技术的研究 36. 全自动立体停车场模拟系统的制作 37. 基于I2C总线气体检测系统的设计 38. 模拟量处理为数字量红外语音传输接收系统的设计 39. 精密VF转换器与MCS-51单片机的接口技术 40. 电话远程监控系统的研究与制作 41. 基于UCC3802的开关电源设计 42. 串级控制系统设计 43. 分立式生活环境表的研究与制作(多功能电子万年历) 44. 高效智能汽车调节器 45. 变速恒频风力发电控制系统的设计 46. 全自动汽车模型的制作 47. 信号源的设计与制作 48. 智能红外遥控暖风机设计 49. 基于单片控制的交流调速设计 50. 基于单片机的多点无线温度监控系统 51. 蔬菜公司恒温库微机监控系统 52. 数字触发提升机控制系统 53. 农业大棚温湿度自动检测 54. 无人监守点滴自动监控系统的设计 55. 积分式数字电压表设计 56. 智能豆浆机的设计 57. 采用单片机技术的脉冲频率测量设计 58. 基于DSP的FIR滤波器设计 59. 基于单片机实现汽车报警电路的设计 60. 多功能数字钟设计与制作 61. 超声波倒车雷达系统硬件设计 62. 基于AT89C51单片机的步进电机控制系统 63. 模拟电梯的制作 64. 基于单片机程控精密直流稳压电源的设计 65. 转速、电流双闭环直流调速系统设计 66. 噪音检测报警系统的设计与研究 67. 转速闭环(V-M)直流调速系统设计 68. 基于单片机的多功能函数信号发生器设计 69. 基于单片机的超声波液位测量系统的设计 70. 仓储用多点温湿度测量系统 71. 基于单片机的频率计设计 72. 基于DIMM嵌入式模块在智能设备开发中的应用 73. 基于DS18B20的多点温度巡回检测系统的设计 74. 计数及数码显示电路的设计制作 75. 矿井提升机装置的设计 76. 中频电源的设计 77. 数字PWM直流调速系统的设计 78. 开关电源的设计 79. 基于ARM的嵌入式温度控制系统的设计 80. 锅炉控制系统的研究与设计 81. 智能机器人的研究与设计 ——\u001F自动循轨和语音控制的实现 82. 基于CPLD的出租车计价器设计——软件设计 83. 声纳式高度计系统设计和研究 84. 集约型无绳多元心脉传感器研究与设计 85. CJ20-63交流接触器的工艺与工装 86. 六路抢答器设计 87. V-M双闭环不可逆直流调速系统设计 88. 机床润滑系统的设计 89. 塑壳式低压断路器设计 90. 直流接触器设计 91. SMT工艺流程及各流程分析介绍 92. 大棚温湿度自动控制系统 93. 基于单片机的短信收发系统设计 ――硬件设计 94. 三层电梯的单片机控制电路 95. 交通灯89C51控制电路设计 96. 基于D类放大器的可调开关电源的设计 97. 直流电动机的脉冲调速 98. 红外快速检测人体温度装置的设计与研制 99. 基于8051单片机的数字钟 100. 48V25A直流高频开关电源设计 101. 动力电池充电系统设计 102. 多电量采集系统的设计与实现 103. PWM及单片机在按摩机中的应用 104. IC卡预付费煤气表的设计 105. 基于单片机的电子音乐门铃的设计 106. 基于单片机的温湿度测量系统设计 107. 基于单片机的简易GPS定位信息显示系统设计 108. 基于单片机的简单数字采集系统设计 109. 大型抢答器设计 110. 新型出租车计价器控制电路的设计 111. 500kV麻黄线电磁环境影响计算分析 112. 单片机太阳能热水器测控仪的设计 113. LED点阵显示屏-软件设计 114. 双容液位串级控制系统的设计与研究 115. 三电平Buck直流变换器主电路的研究 116. 基于PROTEUS软件的实验板仿真 117. 基于16位单片机的串口数据采集 118. 电机学课程CAI课件开发 119. 单片机教学实验板——软件设计 120. PN结(二极管)温度传感器性能的实验研究 121. 微电脑时间控制器的软件设计 122. 基于单片机AT89S52的超声波测距仪的研制 123. 硼在TLP扩散连接中的作用机理研究 124. 多功能智能化温度测量仪设计 125. 电网系统对接地电阻的智能测量 126. 基于数字采样法的工频电参数测量系统的设计 127. 动平衡检测系统的设计 128. 非正弦条件下电参测量的研究 129. 频率测量新原理的研究 130. 基于LABVIEW的人体心率变异分析测量 131. 学校多功能厅音响系统的设计与实现 132. 利用数字电路实现电子密码锁 133. 矩形微带天线的设计 134. 简易逻辑仪的分析 135. 无线表决系统的设计 136. 110kV变电站及其配电系统的设计 137. 10KV变电所及低压配电系统设计 138. 35KV变电所及低压配电系统设计 139. 6KV配电系统及车间变电所设计 140. 交流接触器自动化生产流水线设计 141. 63A三极交流接触器设计 142. 100A交流接触器设计 143. CJ20—40交流接触器工艺及工装设计 144. JSS型数字式时间继电器设计 145. 半导体脱扣器的设计 146. 12A交流接触器设计 147. CJ20-100交流接触器装配线设计 148. 真空断路器的设计 149. 总线式智能PID控制仪 150. 自动售报机的设计 151. 小型户用风力发电机控制器设计 152. 断路器的设计 153. 基于MATLAB的水轮发电机调速系统仿真 154. 数控缠绕机树脂含量自控系统的设计 155. 软胶囊的单片机温度控制(硬件设计) 156. 空调温度控制单元的设计 157. 基于人工神经网络对谐波鉴幅 158. 基于单片机的鱼用投饵机自动控制系统的设计 159. 基于MATLAB的调压调速控制系统的仿真研究 160. 锅炉汽包水位控制系统 161. 基于单片机的无刷直流电机控制系统设计 162. 煤矿供电系统的保护设计——硬件电路的设计 163. 煤矿供电系统的保护设计——软件设计 164. 大容量电机的温度保护——软件设计 165. 大容量电机的温度保护 ——硬件电路的设计 166. 模块化机器人控制器设计 167. 电子式热分配表的设计开发 168. 中央冷却水温控制系统 169. 基于单片机的玻璃管加热控制系统设计 170. 基于AT89C51单片机的号音自动播放器设计 171. 基于单片机的普通铣床数控化设计 172. 基于AT89C51单片机的电源切换控制器的设计 173. 基于51单片机的液晶显示器设计 174. 手机电池性能检测 175. 自动门控制系统设计 176. 汽车侧滑测量系统的设计 177. 超声波测距仪的设计及其在倒车技术上的应用 178. 篮球比赛计时器设计 179. 基于单片机控制的红外防盗报警器的设计 180. 智能多路数据采集系统设计 181. 继电器保护毕业设计 182. 电力系统电压频率紧急控制装置研究 183. 用单片机控制的多功能门铃 184. 全氢煤气罩式炉的温度控制系统的研究与改造 185. 基于ATmega16单片机的高炉透气性监测仪表的设计 186. 基于MSP430的智能网络热量表 187. 火电厂石灰石湿法烟气脱硫的控制 188. 家用豆浆机全自动控制装置 189. 新型起倒靶控制系统的设计与实现 190. 软开关技术在变频器中的应用 191. 中频感应加热电源的设计 192. 智能小区无线防盗系统的设计 193. 智能脉搏记录仪系统 194. 直流开关稳压电源设计 195. 用单片机实现电话远程控制家用电器 196. 无线话筒制作 197. 温度检测与控制系统 198. 数字钟的设计 199. 汽车尾灯电路设计 200. 篮球比赛计时器的硬件设计 201. 公交车报站系统的设计 202. 频率合成器设计 203. 基于RS485总线的远程双向数据通信系统的设计 204. 宾馆客房环境检测系统 205. 智能充电器的设计与制作 206. 基于单片机的电阻炉温度控制系统设计 207. 单片机控制的PWM直流电机调速系统的设计 208. 遗传PID控制算法的研究 209. 模糊PID控制器的研究及应用 210. 楼宇自动化系统的设计与调试 211. 基于AT89C51单片机控制的双闭环直流调速系统设计212. 基于89C52的多通道采集卡的设计 213. 单片机自动找币机械手控制系统设计 214. 单片机控制PWM直流可逆调速系统设计 215. 单片机电阻炉温度控制系统设计 216. 步进电机实现的多轴运动控制系统 217. IC卡读写系统的单片机实现 218. 基于单片机的户式中央空调器温度测控系统设计 219. 基于单片机的乳粉包装称重控制系统设计 220. 18B20多路温度采集接口模块 221. 基于单片机防盗报警系统的设计 222. 基于MAX134与单片机的数字万用表设计 223. 数字式锁相环频率合成器的设计 224. 集中式干式变压器生产工艺控制器 225. 小型数字频率计的设计 226. 可编程稳压电源 227. 数字式超声波水位控制器的设计 228. 基于单片机的室温控制系统设计 229. 基于单片机的车载数字仪表的设计 230. 单片机的水温控制系统 231. 数字式人体脉搏仪的设计 232. I2C总线数据传输应用研究(硬件部分) 233. STV7697在显示驱动电路系统中的应用(软件设计)234. LED字符显示驱动电路(软件部分) 235. 智能恒压充电器设计 236. 基于单片机的定量物料自动配比系统 237. 现代发动机自诊断系统探讨 238. 基于单片机的液位检测 239. 基于单片机的水位控制系统设计 240. FFT在TMS320C54XDSP处理器上的实现 241. 基于模拟乘法器的音频数字功率设计 242. 正弦稳态电路功率的分析 243. 基于Multisim三相电路的仿真分析 244. 他励直流电动机串电阻分级启动虚拟实验 245. 并励直流电动机串电阻三级虚拟实验 246. 基于80C196MC交流调速实验系统软件的设计与开发 247. 基于VDMOS调速实验系统主电路模板的设计与开发 248. 基于Matlab的双闭环PWM直流调速虚拟实验系统 249. 基于IGBT-IPM的调速实验系统驱动模板的设计与开发 250. 基于87C196MC交流调速系统主电路软件的设计与开发 251. HEF4752为核心的交流调速系统控制电路模板的设计与开发 252. 基于87C196MC交流调速实验系统软件的设计与开发 253. 87C196MC单片机最小系统单路模板的设计与开发 254. MOSFET管型设计开关型稳压电源 255. 电子密码锁控制电路设计 256. 基于单片机的数字式温度计设计 257. 智能仪表用开关电源的设计 258. 遥控窗帘电路的设计 259. 双闭环直流晶闸管调速系统设计 260. 三路输出180W开关电源的设计 261. 多点温度数据采集系统的设计 262. 列车测速报警系统 263. PIC单片机在空调中的应用 264. 基于单片机的温度采集系统设计 265. 基于单片机89C52的啤酒发酵温控系统 266. 基于MCS-51单片机温控系统设计的电阻炉 267. 基于单片机的步进电机控制系统 268. 新颖低压万能断路器 269. 万年历可编程电子钟控电铃 270. 数字化波形发生器的设计 271. 高压脉冲开关电源 272. 基于MCS-96单片机的双向加力式电子天平 273. 语音控制小汽车控制系统设计 274. 智能型客车超载检测系统的设计 275. 热轧带钢卷取温度反馈控制器的设计 276. 直流机组电动机设计 277. 龙门刨床驱动系统的设计 278. 基于单片机的大棚温、湿度的检测系统 279. 微波自动门 280. 基于DS18B20温度传感器的数字温度计设计 281. 节能型电冰箱研究 282. 交流异步电动机变频调速设计 283. 基于单片机控制的PWM调速系统 284. 基于单片机的数字温度计的电路设计 285. 基于Atmel89系列芯片串行编程器设计 286. 基于单片机的实时时钟 287. 基于MCS-51通用开发平台设计 288. 基于MP3格式的单片机音乐播放系统 289. 基于单片机的IC卡智能水表控制系统设计 290. 基于MATLAB的FIR数字滤波器设计 291. 单片机水温控制系统 292. 110kV区域降压变电所电气系统的设计 293. ATMEIL AT89系列通用单片机编程器的设计 294. 基于单片机的金属探测器设计 295. 双闭环三相异步电动机串级调速系统 296. 基于单片机技术的自动停车器的设计 297. 单片机电器遥控器的设计 298. 自动剪板机单片机控制系统设计 299. 蓄电池性能测试仪设计 300. 电气控制线路的设计原则 301. 无线比例电机转速遥控器的设计 302. 简易数字电子称设计 303. 红外线立体声耳机设计 304. 单片机与PC串行通信设计 305. 100路数字抢答器设计 306. D类功率放大器设计 307. 铅酸蓄电池自动充电器 308. 数字温度测控仪的设计 309. 下棋定时钟设计 310. 温度测控仪设计 311. 数字频率计 312. 数字集成功率放大器整体电路设计 313. 数字电容表的设计 314. 数字冲击电流计设计 315. 数字超声波倒车测距仪设计 316. 路灯控制器 317. 扩音机的设计 318. 交直流自动量程数字电压表 319. 交通灯控制系统设计 320. 简易调频对讲机的设计 321. 峰值功率计的设计 322. 多路温度采集系统设计 323. 多点数字温度巡测仪设计 324. 电机遥控系统设计 325. 由TDA2030A构成的BTL功率放大器的设计 326. 超声波测距器设计 327. 4-15V直流电源设计 328. 家用对讲机的设计 329. 流速及转速电路的设计 330. 基于单片机的家电远程控制系统设计 331. 万年历的设计 332. 单片机与计算机USB接口通信 333. LCD数字式温度湿度测量计 334. 逆变电源设计 335. 基于单片机的电火箱调温器 336. 表面贴片技术SMT的广泛应用及前景 337. 中型电弧炉单片机控制系统设计 338. 中频淬火电气控制系统设计 339. 新型洗浴器设计 340. 新型电磁开水炉设计 341. 基于电流型逆变器的中频冶炼电气设计 342. 6KW电磁采暖炉电气设计 343. 64点温度监测与控制系统 344. 电力市场竞价软件设计 345. DS18B20温度检测控制 346. 步进电动机驱动器设计 347. 多通道数据采集记录系统 348. 单片机控制直流电动机调速系统 349. IGBT逆变电源的研究与设计 350. 软开关直流逆变电源研究与设计 351. 单片机电量测量与分析系统 352. 温湿度智能测控系统 353. 现场总线控制系统设计 354. 加热炉自动控制系统 355. 电容法构成的液位检测及控制装置 356. 基于CD4017电平显示器 357. 无线智能报警系统 358. 可编程的LED(16×64)点阵显示屏 359. 多路智力抢答器设计 360. 8×8LED点阵设计 361. 电子风压表设计 362. 智能定时闹钟设计 363. 数字音乐盒设计 364. 数字温度计设计 365. 数字定时闹钟设计 366. 数字电压表设计 367. 计算器模拟系统设计 368. 定时闹钟设计 369. 电子万年历设计 370. 电子闹钟设计 371. 单片机病房呼叫系统设计 372. 家庭智能紧急呼救系统的设计 373. 自动车库门的设计 374. 异步电动机功率因数控制系统的研究 375. 普通模拟示波器加装多功能智能装置的设计 376. 步进电机运行控制器的设计 377. 80C196MC控制的交流变频调速系统设计 378. 汽车防盗系统 379. 简易远程心电监护系统 380. 智能型充电器的电源和显示的设计 381. 电气设备的选择与校验 382. 论供电系统中短路电流及其计算 383. 论工厂的电气照明 384. 论无线通信技术热点及发展趋势 385. 浅论10KV供电系统的继电保护的设计方案 386. 试论供电系统中的导体和电器的选择 387. 大棚仓库温湿度自动控制系统 388. 自行车车速报警系统 389. 智能饮水机控制系统 390. 基于单片机的数字电压表设计 391. 多用定时器的电路设计与制作 392. 智能编码电控锁设计 393. 串联稳压电源的设计 394. 红外恒温控制器的设计与制作 395. 自行车里程,速度计的设计 396. 等精度频率计的设计 397. 浮点数运算FPGA实现 398. 人体健康监测系统设计 399. 基于单片机的音乐喷泉控制系统设计 400. 基于LabVIEW的虚拟频谱分析仪的研究与设计 401. 感应式门铃的设计与制作 402. 电子秤设计与制作 403. 电动车三段式充电器 404. SB140肖特基二极管制造与检测 405. SMT技术 406. 基于单片机的温度测量系统的设计 407. 龙门刨床的可逆直流调速系统的设计 408. 公交车站自动报站器的设计 409. 单片机波形记录器的设计 410. 音频信号分析仪 411. 基于单片机的机械通风控制器设计

我也是这个专业的,去年写的论文,记得当时还是找品学论文网的老师帮忙的,很不错,从开题报告到最后的修改定稿,帮我省了好多事,老师一会让我改任务书,一会让我给他看修改的稿件,品学论文的王老师都不厌其烦的帮我弄好,搞得我都不好意思了。如果想咨询这方面的文章,可以参考下哦。~嘻嘻

[论文关键词]铁路 电力 远动终端 干扰 [论文摘要]研究分析电磁干扰产生的原因、特点及干扰对电力远动系统的影响,从设计的角度对铁路电力远动监控系统进行抗干扰分析研究。 抗干扰设计是电力远动监控系统安全运行的一个重要组成部分,在研制综合自动化系统的过程中,如果不充分考虑可靠性问题,在强电场干扰下,很容易出现差错,使整个电力远动监控系统无法正常运行或出错误(误跳闸事故等),无法向站场和区间供电,影响铁路行车安全。 一、电磁干扰产生的原因及特点 (一)传导瞬变和高频干扰 1.由于雷击、断路器操作和短路故障等引起的浪涌和高频瞬变电压或电流通过变(配)电所二次侧进入远动终端设备,对设备正常运行产生干扰,严重还可损坏电路。2.由电磁继电器的通断引起的瞬变干扰,电压幅值高,时间短、重复率高,相当于一连串脉冲群。3.铁路电力供电中,特别是现代高速铁路对电力要求都比较高,一般都是几路电源供电,母线投切转换比较频繁,振荡波出现的次数较多。 (二)场的干扰 1.正常情况下的稳态磁场和短路事故时的暂态磁场两种,特别是短路事故时的磁场对显示器等影响比较大。2.由于断路器的操作或短路事故、雷击等引起的脉冲磁场。3.变电所中的隔离开关和高压柜手车在操作时产生的阻尼振荡瞬变过程,也产生一定的磁场。4.无线通信、对讲机等辐射电磁场对远动终端会产生一定的干扰,铁路中继站通常会和通信站在一处,通信发射塔对中继站电力远动终端设备的干扰比较大。 (三)对通信线路的干扰 1.铁路变电所远动终端的数据由串口通信经双绞线进入车站通信站,再经过转换成光信号沿铁通专用通信光缆送至电力远动调度中心,遥信和遥控数据在变电所到通信站的过程走的是电信号,由于变电所高低压进出线缆很多,远动终端受的干扰比较大。2.中继站一般距铁路都比较近,列车通过时的振动对远动终端设备有一定的干扰。 (四)继电器本身原因 继电器本身可能由于某种原因一次性未合到位而产生干扰的振动信号,或负荷开关、断路器、隔离开关等二次侧产生振动信号。 二、干扰对电力远动系统的影响 无论交流电源供电还是直流供电,电源与干扰源之间耦合通道都相对较多,很容易影响到远动终端设备,包括要害的CPU;模拟量输入受干扰,可能会造成采样数据的错误,影响精度和计量的准确性,还可能会引起微机保护误动、损坏远动终端设备和微机保护部分元器件;开关量输入、输出通道受干扰,可能会导致微机和远动终端判断错误,远动调试终端数据错误远动终端CPU受干扰会导致CPU工作不正常,无法正常工作,还可能会导致远动终端程序受到破坏。 三、抗干扰设计分析 (一)屏蔽措施 1.高压设备与远动终端输入、输出采用有铠装(屏蔽层)的电缆,电缆钢铠两端接地,这样可以在很大程度上减小耦合感应电压。2.在选择变电所和中继站电力设备时尽量选设有专门屏蔽层的互感器,也有利于防止高频干扰进入远动终端设备内部。3.在远动终端设备的输入端子上对地接一耐高压的小电容,可以有效抑制外部高频干扰。 (二)系统接地设计 1.一次系统接地主要是为了防雷、中性点接地、保护设备,合适的接地系统可以有效的保障设备安全运行,对于断路器柜接地处要增加接地扁铁和接地极的数量,设备接地处增加增加接地网络互接线,降低接地网中瞬变电位差,提高对二次设备的电磁兼容,减少对远动终端的干扰。2. 二次系统接地分为安全接地和工作接地,安全接地主要是为了避免工作人员因设备绝缘损坏或绝缘降低时,遭受触电危险和保证设备安全,将设备外壳接地,接地线采用多股铜软线,导电性好、接地牢固可靠,安全接地网可以和一次设备的接地网相连;工作接地是为了给电子设备、微机控制系统和保护装置一个电位基准,保证其可靠运行,防止地环流干扰。3.由于高低压柜本身都是多都是采用镀锌薄钢板材料,本身也有屏蔽作用,将高低高柜都可靠接地。4.远动终端微机电源地和数字地不与机壳外壳相连,这样可以减小电源线同机壳之间的分布电容,提高抗共模干扰的能力,可明显提高电力远动监控系统的安全性、可靠性。 (三)采取良好的隔离措施 1.为避免远动终端自身电源干扰采取隔离变压器,电源高频噪声主要是通过变压器初、次级寄生电容耦合,隔离变压器初级和次级之间由屏蔽层隔离,分布电容小,可提高抗共模干扰的能力。2.电力远动监控系统开关量的输入主要断路器、隔离开关、负荷开关的辅助触点和电力调压器分接头位置等,开关量的输出主要是对断路器、负荷开关和电力调压器分接头的控制。3.信号电缆尽量避开电力电缆,在印刷远动终端的电路板布线时注意避免互感。4.采用光电耦合隔离,光电耦合器的输入阻抗很小,而干扰源内阻大,且输入/输出回路之间分布电容极小,绝缘电阻很大,因此回路一侧的干扰很难通过光耦送到另一侧去,能有效地防止干扰从过程通道进入主CPU。 (四)滤波器的设计 1.采用低通滤波去高次谐波。2.采用双端对称输入来抑制共模干扰,软件采用离散的采集方式,并选用相应的数字滤波技术。 (五)分散独立功能块供电,每个功能块均设单独的电压过载保护,不会因某块稳压电源故障而使整个系统破坏,也减少了公共阻抗的相互耦合及公共电源的耦合,大大提高供电的可靠性。 (六)数据采集抗干扰设计 1.在信息量采集时,取消专门的变送器屏柜,将变送器部分封装在RTU内,减少中间环节,这样可以减少变送器部分输出的弱电流电路的长度。2.遥信由于合闸一次不到位或由于二次侧振动而产生的误遥信干扰信号,并且还会产生尖脉冲信号,也可能对遥信回路产生干扰误遥信号。 (七)过程通道抗干扰设计 (八)印刷电路板设计。在印刷电路板设计中尽量将数字电路地和模拟地电路地分开;电源输入端跨接10~100μF的电解电容。 (九)控制状态位的干扰设计 (十)程序运行失常的抗干扰设计 (十一)单片机软件的抗干扰设计 (十二)对于终端至通信站的数字通信电缆加穿钢管,特别是穿越其他电力电缆时,避免和其他电力电缆等同沟敷设并保持一定的交叉距离。 (十三)对于特殊的变(配)电所或区间信号站的环境 (十四)提高远动信息传输的可靠性,在电力调度中心和远动终端之间建立出错重发技术直到住处确认信息为止。

我给你一个题目,如果你写出来了,我保你论文得优秀。因为当年我就是选这个题目得的优秀。刚才我在网上搜了一下,网上还是没有与这个系统相关的论文。 《高考最低录取分数线查询系统》基本思想很简单,现在的高考分数线查询是很繁琐的,需要先把分数查出来,然后根据录取指南再找你的分数能被录取的学校,高考过的都知道,高考报考指南是一本多么厚的书。所以,这个系统的思想就是:你用所有高校近十年的录取分数线建立一个数据库,然后开发一个系统,当你输入查询命令的时候(查询命令可以用1,2,3这三个数来代替,用flog实现;输入1,查询的是符合你所输入的分数以下的所有高校信息;输入2,查询的是符合你所输入分数段之间的所有高校信息;输入3,查询大于你所给的分数线的高校信息。)当然,你可以再加上一些附加的功能。大致思想就这些。 郑州今迈网络部竭诚为你解答,希望我的答案能帮到你!

滤波器论文

1、百度文库下载几篇本科的现成论文 你就知道了2、仿真就秒杀吧低通巴特沃斯模拟滤波器设计。通带截至频率3400 Hz,通带最大衰减3dB阻带截至频率4000 Hz,阻带最小衰减40dBIir2:模拟低通滤波器转换为数字低通滤波器,脉冲响应不变法和双线性变换法。Iir3:切比雪夫二型低通数字滤波器设计通带边界频率π,通带最大衰减1dB阻带截至频率π,阻带最小衰减80dBIir4:椭圆带通数字滤波器设计Iir5:高通和带通巴特沃思数字滤波器设计双线性变换%低通巴特沃斯模拟滤波器设计clear; close allfp=3400; fs=4000; Rp=3; As=40;[N,fc]=buttord(fp,fs,Rp,As,'s')[B,A]=butter(N,fc,'s');[hf,f]=freqs(B,A,1024);plot(f,20*log10(abs(hf)/abs(hf(1))))grid, xlabel('f/Hz'); ylabel('幅度(dB)')axis([0,4000,-40,5]);line([0,4000],[-3,-3]);line([3400,3400],[-90,5])%用脉冲响应不变法和双线性变换法将模拟滤波器离散化clear; close allb=1000;a=[1,1000];w=[0:1000*2*pi];[hf,w]=freqs(b,a,w);subplot(2,3,1); plot(w/2/pi,abs(hf)); grid;xlabel('f(Hz)'); ylabel('幅度'); title('模拟滤波器频响特性')Fs0=[1000,500];for m=1:2Fs=Fs0(m)[d,c]=impinvar(b,a,Fs)[f,e]=bilinear(b,a,Fs)wd=[0:512]*pi/512;hw1=freqz(d,c,wd);hw2=freqz(f,e,wd);subplot(2,3,2); plot(wd/pi,abs(hw1)/abs(hw1(1))); grid on; hold ontitle('脉冲响应不变法')subplot(2,3,3); plot(wd/pi,abs(hw2)/abs(hw2(1))); grid on; hold ontitle('双线性变换法')end%切比雪夫Ⅱ型低通数字滤波器设计clear; close allwp=; ws=; Rp=1; Rs=80;[N,wc]=cheb2ord(wp,ws,Rp,Rs)[B,A]=cheby2(N,Rs,wc)freqz(B,A)%直接设计带通数字椭圆滤波器clear; close allWp=[]; Ws=[];Rp=; Rs=60;[N,wc]=ellipord(Wp,Ws,Rp,Rs)[b,a]=ellip(N,Rp,Rs,wc)[hw,w]=freqz(b,a);subplot(2,1,1); plot(w/pi,20*log10(abs(hw))); gridaxis([0,1,-80,5]); xlabel('w/π'); ylabel('幅度(dB)')subplot(2,1,2); plot(w/pi,angle(hw)); gridaxis([0,1,-pi,pi]); xlabel('w/π'); ylabel('相位(rad)')%用双线性变换法设计数字高通和带通滤波器clear; close allT=1; wch=pi/2;wlc=*pi; wuc=*pi;B=1; A=[1,];[h,w]=freqz(B,A,512);subplot(2,2,1); plot(w,20*log10(abs(h))); grid%axis([0,10,-90,0]); xlabel('w/π'); title('模拟低通幅度(dB)')%高通omegach=2*tan(wch/2)/T;[Bhs,Ahs]=lp2hp(B,A,omegach);[Bhz,Ahz]=bilinear(Bhs,Ahs,1/T);[h,w]=freqz(Bhz,Ahz,512);subplot(2,2,3); plot(w/pi,20*log10(abs(h))); gridaxis([0,1,-150,0]); xlabel('w/π'); title('数字高通幅度(dB)')%带通omegalc=2*tan(wlc/2)/T;omegauc=2*tan(wuc/2)/T;wo=sqrt(omegalc*omegauc); Bw=omegauc-omegalc;[Bbs,Abs]=lp2bp(B,A,wo,Bw);[Bbz,Abz]=bilinear(Bbs,Abs,1/T);[h,w]=freqz(Bbz,Abz,512);subplot(2,2,4); plot(w/pi,20*log10(abs(h))); gridaxis([0,1,-150,0]); xlabel('w/π'); title('数字带通幅度(dB)')

最近看了一篇文章,觉得写的浅显易懂,推荐你看看:《An Introduction to the Kalman Filter》作者:Greg Welch and Gary Bishop网址:其中,首先介绍了Kalman滤波,接着类比介绍了扩展卡尔曼滤波,个人觉得写的很好。而且本文的引用次数很高。 如果有需要,我也以通过邮箱发给你。

摘 要 FIR数字滤波器是数字信号处理的经典方法,其设计方法有多种,用DSP芯片对FIR滤波器进行设计时可以先在MATLAB上对FIR数字滤波器进行仿真,所产生的滤波器系数可以直接倒入到DSP中进行编程,在编程时可以采用DSP独特的循环缓冲算法对FIR数字滤波器进行设计,这样可以大大减少设计的复杂度,使滤波器的设计快捷、简单。关键词 FIR;DSP;循环缓冲算法1 引言在信号处理中,滤波占有十分重要的地位。数字滤波是数字信号处理的基本方法。数字滤波与模拟滤波相比有很多优点,它除了可避免模拟滤波器固有的电压漂移、温度漂移和噪声等问题外,还能满足滤波器对幅度和相位的严格要求。低通有限冲激响应滤波器(低通FIR滤波器)有其独特的优点,因为FIR系统只有零点,因此,系统总是稳定的,而且容易实现线性相位和允许实现多通道滤波器。2 FIR滤波器的基本结构及设计方法 FIR滤波器的基本结构设a i(i=0,1,2,…,N一1)为滤波器的冲激响应,输入信号为 x(n),则FIR滤波器的输入输出关系为: FIR滤波器的结构如图1所示:图 FIR滤波器的设计方法 (1) 窗函数设计法 从时域出发,把理想的无限长的hd(n)用一定形状的窗函数截取成有限长的h(n),以此h(n)来逼近hd(n),从而使所得到的频率响应H(ejω)与所要求的理想频率响应Hd(ejω) 相接近。优点是简单、实用,缺点是截止频率不易控制。 (2) 频率抽样设计法从频域出发, 把给定的理想频率响应Hd(ejω)以等间隔抽样,所得到的H(k)作逆离散傅氏变换,从而求得h(k),并用与之相对应的频率响应H(ejω)去逼近理想频率响应Hd(ejω)。优点是直接在频域进行设计,便于优化,缺点是截止频率不能自由取值。(3) 等波纹逼近计算机辅助设计法前面两种方法虽然在频率取样点上的误差非常小,但在非取样点处的误差沿频率轴不是均匀分布的,而且截止频率的选择还受到了不必要的限制。因此又由切比雪夫理论提出了等波纹逼近计算机辅助设计法。它不但能准确地指定通带和阻带的边缘,而且还在一定意义上实现对所期望的频率响应实行最佳逼近。3 循环缓冲算法对于N级的FIR滤波器,在数据存储器中开辟一个称之为滑窗的N个单元的缓冲区,滑窗中存放最新的N个输入样本。每次输入新的样本时,一新样本改写滑窗中的最老的数据,而滑窗中的其他数据不需要移动。利用片内BK(循环缓冲区长度)寄存器对滑窗进行间接寻址,环缓冲区地址首位相邻。下面,以N=5的FIR滤波器循环缓冲区为例,说明循环缓冲区中数据是如何寻址的。5级循环缓冲区的结构如图所示,顶部为低地址。……由上可见,虽然循环缓冲区中新老数据不很直接明了,但是利用循环缓冲区实现Z-1的优点还是很明显的:它不需要数据移动,不存在一个极其周期中要求能进行一次读和一次写的数据存储器,因而可以将循环缓冲区定位在数据存储器的任何位置(线性缓冲区要求定位在DARAM中)。实现循环缓冲区间接寻址的关键问题是:如何使N个循环缓冲区单元首位相邻?要做到这一点,必须利用BK(循环缓冲器长度)器存器实现按模间接寻址。可用的指令有:… *ARx+% ;增量、按模修正ARx:addr=ARx,ARx=circ(ARx+1)… *ARx-% ;减量、按模修正ARx:addr=ARx,ARx=circ(ARx-1)… *ARx+0% ;增AR0、按模修正ARx:addr=ARx,ARx=circ(ARx+AR0)… *ARx-0% ;减AR0、按模修正ARx:addr=ARx,ARx=circ(ARx-AR0)… *+ARx(lk)% ;加(lk)、按模修正ARx:addr=circ(ARx+lk),ARx=circ(ARx+AR0)其中符号“circ”就是按照BK(循环缓冲器长度)器存器中的值(如FIR滤波其中的N值),对(ARx+1)、(ARx-1)、(ARx+AR0)、(ARx-AR0)或(ARx+lk)值取模。这样就能保证循环缓冲区的指针ARx始终指向循环缓冲区,实现循环缓冲区顶部和底部单元相邻。循环寻址的算法可归纳为:if 0 index + step < BK: index = index + stepelse if index + step BK: index = index + step – BKelse if index + step < BK: index = index + step + BK上述算法中,index是存放在辅助寄存器中的地址指针,step为步长(亦即变址值。步长可正可负,其绝对值晓予或等于循环缓冲区长度BK)。依据以上循环寻址算法,就可以实现循环缓冲区首位单元相邻了。 为了使循环缓冲区正常进行,除了用循环缓冲区长度寄存器(BK)来规定循环缓冲区的大小外,循环缓冲区的起始地址的k个最低有效位必须为0。K值满足2k>N,N微循环缓冲区的长度。4 FIR滤波器在DSP上的实现对于系数对称的FIR滤波器,由于其具有线性相位特征,因此应用很广,特别实在对相位失真要求很高的场合,如调制解调器(MODEM)。例如:一个N=8的FIR滤波器,若a(n)=a(N-1-n),就是对称FIR滤波器,其输出方程为:y(n)= a0x(n)+ a1x(n-1)+ a 2x(n-2)+ a 3x(n-3)+ a 3x(n-4)+ a 2x(n-5)+ a1x(n-6)+ a0x(n-7)总共有8次乘法和7次加法,如果改写成: y(n)= a0 [x(n)+ x(n-7)]+ a1 [ x(n-1)+ x(n-6)]+ a 2 [ x(n-2)+ x(n-5)]+ a 3 [ x(n-3)+ x(n-4)]则变成4次乘法和7次加法。可见,乘法运算的次数减少了一半。这是对称FIR的又一个优点。对称FIR滤波器C54X实现的要点如下:(1)数据存储器中开辟两个循环缓冲算区:新循环缓冲区中存放新数据,旧循环缓冲区中存放老数据。循环缓冲区的长度为N/2。 (2)设置循环缓冲区指针:AR2指向新循环缓冲区中最新的数据,AR3指向旧循环缓冲区中最老的数据。 (3)在程序存储器中设置系数表。 (4)AR2+ AR3 AH(累加器A的高位),AR2-1AR2,AR3-1 AR3 (5)将累加器B清零,重复执行4次(i=0,1,2,3):AH*系数ai+B B,系数指针(PAR)加1。AR2+ AR3AH,AR2和AR3减1。 (6)保存和输出结果。 (7)修正数据指针,让AR2和AR3分别指向新循环缓冲区中最老的数据和旧循环缓冲区中最老的数据。 (8)用新循环缓冲区中最老的数据替代旧循环缓冲区中最老的数据,旧循环缓冲区指针减1。 (9)输入一个新的数据替代新循环缓冲区中最老的数据。 重复执行第(4)至(9)步。 在编程中要用到FIRS(系数对称有限冲击响应滤波器)指令,其操作步骤如下: FIR Xmem,Ymem,Pmem 执行 Pmad PAR 当(RC)≠0 (B)+(A(32-16))×(由PAR寻址Pmem)B ((Xmem)+(Ymem))<<16A (PAR)+1PAR (RC)-1RC FIRS指令在同一个及其周期内,通过C和D总线读2次数据存储器,同时通过P总线读一个系数 本文对FIR滤波器在DSP上的实现借助了MATLAB,其设计思路为:(1)MATLAB环境下产生滤波器系数和输入的数据,并仿真滤波器的滤波过程,可视化得到滤波器对动态输入数据的实时滤波效果;(2)将所得滤波器系数直接导入CCStudio中,再把滤波器的输入数据作为CCStudio设计的滤波起的输入测试数据存储在C54x数据空间中; (3)在CCStudio环境下结合FIR滤波的公式适用汇编语言设计FIR滤波程序,使用MATLAB产生的滤波器系数和输入测试数据进行计算,把输入数据和滤波结果借助CCStudio菜单中的View/Graph/Time/Frequency子菜单用图形方式显示出来(结果如图2);图2 (a)输入数据(Input)图2(b)滤波后的数据(Output) 将FIR滤波的入口数据地址改为外部I/O空间或McBSP口的读写数据地址,或数据空间内建缓冲地址;将FIR滤波的结果数据地址改为外部I/O空间或McBSP口的输出数据地址,或数据空间内建缓冲地址,则完成了基于C54xDSP的实时数据FIR滤波程序。参考文献:[1] 程佩青.数字信号处理教程[M].北京:清华大学出版社 1999年[2] 孙宗瀛,谢鸿林.TMS320C5xDSP原理设计与应用[M].北京:清华大学出版社.2002年[3] 陈亚勇等 编著.MATLAB信号处理详解[M].北京:人民邮电出版社.2001年[4] Texas Assembly Language Tools User’s Guide[5] Texas DSP Programmer’s Guide

匹配滤波器毕业论文

在通信技术中需要在噪声中发现或分辨弱信号,一般来说信号通过系统获得的信噪比是系统有效性的一个度量。1943年,诺兹提出了匹配滤波器原理,匹配滤波器能够在信道是加性噪声的情况下,输出的信噪比最大。 下面是信号接收框图,先从时域来推导匹配滤波器形式:匹配滤波器不能等效成相关器的情况 先说结论 :发送信号波形没有限制在一个符号发送间隔的时候,匹配滤波器不能等效成相关器。 假设信道是理想限带信道,我们采用满足奈奎斯特准则的根号升余弦滤波器: 接收和发送滤波器进行匹配得到升余弦滤波器,图形如下(符号间隔为),在抽样点处均为0,没有码间干扰。实际中,我们不会发送无限长的波形,进行适度截短,这里选取整个波形宽度为6Ts=如果用相关器,式中s(t)为截短后根号升余弦波形: 在T时刻采样的话,并不能取到所有信号能量,因此匹配滤波器不能等效成相关器。 噪声是有色噪声 如果输入噪声不是白噪声,而是有色噪声(功率谱密度不是平的),再来看匹配滤波器的形式。 从频域推导: 分析一下结论,滤波器本质是将输入信号频谱s(f)进行加权,信号越强,噪声越弱,H(f)的幅度值越大,共轭的作用是将不同频率处的不同相位转化为同相,使得抽样时刻信噪比最大。 匹配滤波器 - 刘梳子的文章 - 知乎

匹配滤波器是为了输出信号的信噪比最大,数学原理就是利用输出信号的功率比上噪声功率,输出信号是滤波器响应与输入信号的时域卷积,然后利用不等式得出一个最大信号瞬时功率与噪声平均功率之比,再反解出滤波器响应

传统匹配滤波算法存在的问题及原因分析

下面进行一组数值实验,目的是分析上述方法难以解决的问题。为了方向性更强,只合成存在时间 差的数据,图,图是时间2地震记录相对于时间1地震记录存在负延迟和正延迟的两组数据,以时间1为参考,分别用上面推导出的匹配滤波方法处理,对应结果为图,图。处理结果表明 负延迟的匹配结果好于正延迟的匹配结果,正延迟的匹配结果误差过大。

图 负延迟数据匹配前数据

图 正延迟数据匹配前数据

图 负延迟数据直接匹配结果

图 正延迟数据直接匹配结果

上面的模拟数据存在同一因素(1-时间)差异,只有初始时间延迟方向不同,匹配结果截然不同,有效的匹配算法应将这两组数据校正到相同结果。

上面试算结果不一致,因此,必须重新分析公式()~()的适用范围。首先分析公式(),方程组左边是由时期Y2地震记录在设计窗口中的自相关序列RY2Y2(m-n)组成的矩阵,自相关序列具 有对称性:

海上时移地震油藏监测技术

因此构成Toeplitz矩阵。矩阵中包含了算子设计窗口内所有的自相关信息。方程组右边则只有时期Y1地 震记录和时期Y2地震记录在算子设计窗口中的互相关序列的正半边RY1Y2(n),n = 1,2,…L组成。

对于上面的数值试验,方程组左边相同,但右边互相关序列不同,对于图所示的负向延迟数据,互相关序列的正半边在计算过程中包含了延迟信息。而对于图所示的正向延迟数据,互相关正半边 序列的计算过程中不包含延迟信息。所以二者通过相关信息计算的滤波算子不同。这是直接从公式()分析两组数据的差异。图所示的正向延迟数据的正向互相关序列中不包含延迟信息,而其负向互相 关序列中恰包含延迟信息,已有的匹配滤波算法只能接收正向互相关序列信息,忽略负向互相关序列,所以在这种情况下设计出的滤波因子匹配效果不好。匹配滤波中算子设计过程中只有包含互相关序列中 与校正量相关的信息,才能达到好的效果。下面根据以上的分析推导适用性更广的匹配滤波算法。

推广的匹配滤波算法

同样设同一地区不同时期Y1,Y2得到的地震数据分别为GY1(t),GY2(t),取Y1年份的地震记录 为参考地震道,使Y2年份相应的地震记录与之匹配。选取归一化算子P使得目标泛函:

海上时移地震油藏监测技术

极小。考虑离散处理方法,求匹配滤波器{P(m),m=-m0,-m0+1,…,-m0+L-1}使

海上时移地震油藏监测技术

计算泛函E关于P(n)的Frechet导数 ,令 则得到

海上时移地震油藏监测技术

简化成

海上时移地震油藏监测技术

因此得到关于求解匹配滤波器{P(m)}的L个方程的方程组:

海上时移地震油藏监测技术

对上面的公式进一步简化,令

海上时移地震油藏监测技术

上两式中:RY2Y2(m-n)为时间延迟为m-n时期Y2地震记录在设计窗口中的自相关函数,RY1Y2(n)为时间延迟为n的时期Y1与时期Y2地震记录在设计窗口中的互相关函数,于是方程()可以进一步 写成

海上时移地震油藏监测技术

求解方程组()得到匹配滤波器算子{P(m),m=-m0,-m0+1,…,-m0+L-1}。

海上时移地震油藏监测技术

用公式()校正相应的地震剖面。

新给出的匹配滤波算法与传统匹配滤波算法不同之处在于滤波算子序列的起始时间不同,这样应用 互相关序列信息不同。m0取不同值,应用的信息不同,L始终取正整数。当m0=-1时,公式()退化为公式(),式()是式()的特例。下面讨论m0取不同值时与滤波算子性质的对应关系。

设存在P-且满足

海上时移地震油藏监测技术

式中:GY1和GY2分别为Y1与Y2两次不同时期的地震记录,P-与P为能量有限信号;P为要设计的滤波 算子;P-与P互为反滤波运算。公式()是应用匹配滤波进行不同时期地震资料互均衡的假设条件。公式()为滤波器的设计准则。P-与P满足下式:

海上时移地震油藏监测技术

下面针对P-的不同情况进行讨论。

(1)P-为最小相位

此时严格的反滤波因子P只有正半边的值,即P(n)=0,n≤0,P为物理可实现信号。它的能量 主要集中在[1,L]之间,作为近似的反滤波因子,希望它能反映真正的反滤波因子的主要部分,因此取 m0=-1。这正是公式()对应的情况。因此应用公式()应该在当P-最小相位的情况下才能取 得好的效果,反之违背了这条假设,难以得到好的处理效果。

(2)P-为混合相位

此时反滤波因子P正负半边都有值,一般取m0>0,-m0+L-1>0同时包含正负相关序列。

(3)P-为最大相位

这种情况下,反滤波因子P只有负半边,通常取m0=L,此时滤波因子为{P(m),m=-L,-L +1,…,-1}。设计滤波因子只用到了互相关序列的负半边。

实际中最常遇到的是P-为最小相位和混合相位两种情况,P-为最小相位直接采用公式()即 可。P-为混合相位时,虽然采用()式,令m0>0,-m0 +L-1>0,理论上能解决问题,但 如何有效地确定m0却又是一个问题。另外,滤波因子P为要求取的对象,P求出之前无法判断P-的特征。能否解决上面两个问题决定着改进算法的适用性。

基于误差准则和循环迭代的求解方法

直接判断P-的特点有困难,即使可以通过间接的方法得到P-的信息,如果P-是混合相位还要确定 m0的值,实际地震处理中涉及的数据量非常大,而且是P-为混合相位、最小相位、最大相位的混合情况,如果分步处理,先确定P-再确定m0,一方面准确确定这些参数有困难,另一方面分步处理或人工干预 也影响处理效率。为此提出了基于误差准则和循环迭代的求解方法,即达到处理效果,又减少人工干预。

匹配滤波最终的目的是得到合适的滤波算子,衡量滤波算子的标准可采用匹配后结果的均方根能量 的大小,称为误差准则。因为P-的特点受待匹配地震记录位置、波形的制约,改变地震记录的位置、波 形便能改变P-的相位特点,因此可以通过调整地震记录的位置和波形,把P-从混合相位调整到最小相位,从而无需确定m0直接应用公式()和()求解。不断调整地震记录的位置、波形,比较误差能量,只要调整的范围足够大,总能找到最优的滤波算子,满足误差能量最小。这是解决问题的总体思路。

地震记录的波形可以通过相位调整,位置可以通过延迟时间调整,可以同时调整延迟时间和相位。另外时间和相位又是相耦合的,也可以单独调整时间延迟。当两信号位置相差太大,搜索时间加大,可 以借助互相关方法将两信号校正到大体相同的位置,然后以此位置为中心,先在小范围内调整时间延迟,记录最小误差和滤波因子,不满足期望误差时再加大调整范围,最终选择误差能量最小的滤波算子。

理论模型数据验证

首先给出两个理想化模型对应于时间1与时间2,两次时间模型上部阻抗不变,下部阻抗有变化。通 过同一子波与两模型的反射系数褶积得到期望合成地震记录,改变子波参数,与时间2模型反射系数褶积,得到同时存在时间、振幅、相位、频率的差异的时间2地震记录,如图,图所示。以前60采样 点为滤波算子设计窗口(波阻抗不变部分),分别采用直接匹配、时间校正+直接匹配、循环迭代匹配 进行校正。

图,图为直接匹配后的结果,误差较大。图,图为先采用互相关进行时延校正,再进行匹配滤波后的结果,匹配效果得到改善。图,图为采用基于误差准则和循环迭代方法的 校正结果,表明一方面在设计窗口处理后的地震记录与参考地震记录达到一致,另一方面在油藏区(60 采样点之后)处理后结果与期望结果一致,达到了去除不一致恢复期望差异的目的。在所用的几种方法 中基于误差准则和循环迭代方法精度最高。

实际资料处理验证

图 匹配滤波前波形

图 匹配滤波振幅差异

图 直接匹配后波形

图 直接匹配振幅差异

图 延校正+直接匹配后波形

图 时间校正+直接匹配后振幅差异

图 循环迭代匹配后波形

图 循环迭代匹配后差异

实际资料处理验证

选择同一地区两次不同时间测得的两条二维测线,选取油藏上方长度为300ms的窗口作为滤波算子 设计窗口,取其中139道构成验证互均衡算法的数据体(图,图),分别采用直接匹配滤波、时延校正+匹配滤波、基于误差准则和循环迭代匹配三种方法进行校正。比较差异剖面的平均能量,结 果见图。从图中可知基于误差准则和循环迭代匹配方法误差最小,效果最好。

图 某地区时间1地震记录

图 某地区时间2地震记录

图 处理结果对比图

本节在分析传统匹配滤波算法不足的基础上,推导出通用公式,分析了公式的参数选取条件。提出 适用实际资料处理的基于误差准则和循环迭代的求解方法。理论和实际数据都验证了该方法的有效性。

有源滤波器毕业论文

已经发送了查收下望采纳

有源电力滤波器控制策略综述 李建林,张仲超 (浙江大学玉泉校区,浙江 杭州 310027) 摘 要: 针 对 空 间 矢 量 最 优 控 制 、 定 频 滞 环 电 流 控 制 、 单 周 控 制 、 变 结 构 控 制 等 几 种 目 前 在 有 源 电 力 滤 波 器 ( APF) 控 制 中 较 新 、 应 用 较 广 的 方 法 进 行 了 对 比 分 析 , 指 出 了 它 们 各 自 的 优 缺 点 及 应 用 范 围 。 提 出 了 基 于 单 位 功 率 因 数 (UPF)控 制 和 组 合 变 流 器 相 移 SPWM两 种 控 制 策 略 , 并 进 行 了 仿 真 验 证 。 关键词: 单 周 控 制 ; 变 结 构 控 制 ; 单 位 功 率 因 数 控 制 ; 组 合 变 流 器 相 移 SPWM 1 引 言 近 年 来 , 随 着 电 力 电 子 技 术 的 发 展 , 电 力 电 子 装 置 的 应 用 越 来 越 广 , 它 所 产 生 的 谐 波 和 无 功 功 率 给 电 网 带 来 的 各 种 危 害 也 越 来 越 大 。 为 了 抑 制 高 次 谐 波 和 补 偿 无 功 功 率 , 近 几 年 出 现 了 许 多 新 型 的 无 功 补 偿 装 置 和 有 源 滤 波 系 统 。 这 些 装 置 虽 然 各 有 不 同 , 但 有 一 点 是 共 同 的 , 即 要 求 准 确 快 速 地 检 测 出 谐 波 和 无 功 功 率 , 从 而 实 现 快 速 补 偿 。 有 源 电 力 滤 波 器 ( APF) 的 关 键 技 术 之 一 就 是 逆 变 器 的 PWM技 术 , 目 前 常 用 的 PWM技 术 有 : 1) 基 于 正 弦 波 对 三 角 波 调 制 的 SPWM技 术 ; 2) 基 于 消 除 特 定 次 数 谐 波 的 HEPWM技 术 ; 3) 基 于 电 流 滞 环 跟 踪 控 制 的 PWM技 术 。 第 一 种 方 法 适 用 于 模 拟 系 统 , 在 微 机 控 制 系 统 中 很 少 采 用 ; 第 二 种 方 法 需 要 预 先 计 算 出 要 消 除 的 若 干 次 指 定 谐 波 , 在 负 载 经 常 变 化 的 情 况 下 , 跟 随 特 性 难 以 保 证 ; 第 三 种 方 法 比 较 适 合 微 机 控 制 , 其 原 理 为 实 时 检 测 逆 变 器 的 输 出 、 并 与 跟 踪 目 标 进 行 比 较 , 当 偏 差 超 出 允 许 的 边 带 时 , 控 制 器 动 作 , 使 偏 差 减 小 。 一 般 来 说 , 波 形 质 量 , 开 关 损 耗 , 电 压 利 用 率 等 是 衡 量 PWM方 法 的 几 个 重 要 指 标 , 随 着 现 代 大 功 率 器 件 开 关 频 率 的 不 断 提 高 , 波 形 质 量 问 题 己 得 到 了 较 好 的 解 决 , 而 开 关 损 耗 问 题 却 日 益 严 重 , 以 电 路 拓 扑 改 进 为 代 表 的 软 开 关 技 术 在 解 决 开 关 损 耗 问 题 的 同 时 也 带 来 电 路 结 构 复 杂 化 的 问 题 , 对 复 杂 电 路 尤 其 如 此 。 所 以 , 如 何 从 PWM控 制 方 法 的 优 化 上 减 小 开 关 损 耗 , 是 一 个 值 得 探 讨 的 问 题 。 针 对 APF的 控 制 , 相 关 文 献 提 出 了 各 种 控 制 方 法 , 如 正 弦 三 角 波 调 制 , 代 价 函 数 最 小 PWM法 和 空 间 矢 量 PWM法 、 单 周 控 制 、 无 差 拍 控 制 、 变 结 构 控 制 等 。 这 里 简 单 介 绍 几 种 较 好 、 较 新 的 控 制 方 法 。 2 各 种 控 制 策 略 综 述 2. 1 空 间 矢 量 最 优 控 制 空 间 电 压 矢 量 法 (SVPWM)也 叫 磁 通 正 弦PWM法 。 它 以 三 相 对 称 正 弦 波 电 压 供 电 时 交 流 电 动 机 的 理 想 磁 通 圆 为 基 淮 , 用 逆 变 器 不 同 的 开 关 模 式 所 产 生 实 际 磁 通 去 迫 近 基 准 圆 磁 通 。 由 它 们 的 比 较 结 果 决 定 逆 变 器 的 开 关 , 形 成 PWM波 形 。 此 法 从 电 动 机 的 角 度 出 发 , 把 逆 变 器 和 电 机 看 作 一 个 整 体 , 使 电 机 获 得 幅 值 恒 定 的 圆 形 磁 场 。 通 过 控 制 磁 通 或 电 压 矢 量 导 通 时 间 , 用 尽 可 能 多 的 多 边 形 磁 通 去 逼 近 正 弦 磁 通 。 具 体 方 法 又 分 为 磁 通 开 环 式 和 磁 通 闭 环 式 。 磁 通 开 环 法 用 两 个 非 零 矢 量 和 一 个 零 矢 量 合 成 一 个 等 效 的 电 压 矢 量 , 若 采 样 时 间 足 够 小 , 可 合 成 任 意 电 压 矢 量 。 此 法 输 出 电 压 正 弦 波 调 制 时 提 高 l5% , 谐 波 电 流 有 效 值 之 和 接 近 最 小 。 磁 通 闭 环 式 引 入 磁 通 反 馈 , 控 制 磁 通 的 大 小 和 变 化 的 速 度 。 在 比 较 估 算 磁 通 和 给 定 磁 通 后 , 根 据 误 差 决 定 产 生 下 一 个 电 压 矢 量 , 形 成 PWM波 形 。 这 种 方 法 克 服 了 磁 通 开 环 法 的 不 足 , 解 决 了 电 机 低 速 时 , 定 子 电 阻 影 响 大 的 问 题 , 减 小 了 电 机 的 脉 动 和 噪 音 。 有 的 学 者 提 出 一 种 应 用 于 新 型 三 电 平 PWM高 频 整 流 系 统 的 电 压 空 间 矢 量 PWM调 制 控 制 方 式 [1], 使 得 系 统 不 仅 能 控 制 有 功 功 率 的 传 输 , 而 且 能 提 供 无 功 功 率 的 吞 吐 。 它 不 仅 优 化 开 关 矢 量 , 降 低 开 关 频 率 , 提 高 直 流 侧 电 压 利 用 率 , 减 小 AC侧 输 入 电 流 的 总 谐 波 畸 变 率 , 而 且 在 中 点 电 位 控 制 方 面 也 易 于 实 现 。 将 开 关 矢 量 划 分 为 4类 : 小 开 关 矢 量 , 零 开 关 矢 量 , 中 开 关 矢 量 , 大 开 关 矢 量 ( 见 图 1) 。 开 关 矢 量 选 择 及 优 化 的 原 则 如 下 : 1) 为 了 优 化 开 关 频 率 , 开 关 矢 量 选 择 应 该 是 每 次 开 关 矢 量 变 化 时 , 只 有 一 个 开 关 函 数 变 动 , 而 且 变 动 值 循 环 ; 2) 在 一 个 开 关 周 期 中 , 开 关 矢 量 的 选 择 是 对 称 的 ; 3) 零 矢 量 或 等 效 零 矢 量 的 作 用 时 间 是 等 分 分 配 的 ; 4) 考 虑 正 开 关 矢 量 和 负 开 关 矢 量 的 协 调 作 用 来 平 衡 中 点 电 位 的 浮 动 。 基 于 电 压 矢 量 的 控 制 方 法 本 身 就 有 较 高 的 直 流 电 压 利 用 率 和 控 制 精 度 , 利 用 该 方 法 能 方 便 地 判 定 参 考 电 压 矢 量 所 在 区 域 , 从 而 应 用 最 优 电 压 矢 量 进 行 控 制 , 使 得 SVPWM性 能 进 一 步 提 高 。 2. 2 滞 环 电 流 控 制 滞 环 电 流 控 制 是 一 种 简 单 的 Bang� bang控 制 , 它 集 电 流 控 制 与 PWM于 一 体 。 实 际 电 流 与 指 令 电 流 的 上 、 下 限 相 比 较 , 交 点 作 为 开 关 点 。 指 令 电 流 的 上 、 下 限 形 成 一 个 滞 环 。 滞 环 电 流 控 制 具 有 以 下 特 点 : 1) 滞 环 电 流 控 制 是 基 于 电 流 暂 态 的 控 制 , 具 有 动 态 响 应 速 度 快 、 鲁 棒 性 好 的 优 点 ; 2) 滞 环 电 流 控 制 本 质 是 一 种 隐 含 载 波 的 变 频 SPWM调 制 方 式 , 在 三 相 高 功 率 因 数 整 流 器 中 , 滞 环 控 制 的 隐 含 载 波 频 率 随 电 网 电 压 做 周 期 性 变 化 , 变 化 频 率 为 工 频 的 2倍 ; 3) 滞 环 电 流 控 制 输 出 频 谱 范 围 宽 , 滤 波 较 困 难 , 谐 波 能 量 均 匀 分 布 在 较 宽 的 频 带 范 围 内 。 该 方 法 将 指 令 电 流 值 与 实 际 补 偿 电 流 的 差 值 输 入 到 具 有 滞 环 特 性 的 比 较 器 中 , 然 后 用 比 较 器 的 输 出 来 控 制 逆 变 器 的 开 关 器 件 。 与 三 角 载 波 控 制 方 式 相 比 , 该 方 法 开 关 损 耗 小 , 动 态 响 应 快 。 但 是 , 该 方 法 使 开 关 频 率 变 化 较 大 , 容 易 引 起 脉 冲 电 流 和 开 关 噪 声 。 后 来 , 为 限 定 开 关 频 率 的 最 大 值 而 提 出 了 变 滞 环 带 宽 的 改 进 算 法 , 这 必 将 影 响 响 应 速 度 和 补 偿 电 流 跟 踪 精 度 。 为 了 解 决 滞 环 电 流 控 制 变 频 的 缺 点 , 仍 有 不 少 学 者 在 探 索 改 进 的 方 案 , 比 如 : 限 制 最 高 开 关 频 率 , 通 过 改 变 滞 环 宽 度 实 现 恒 频 控 制 等 。 目 前 应 用 于 有 源 滤 波 器 的 电 流 控 制 方 法 一 般 有 两 类 , 即 滞 环 电 流 控 制 方 法 和 三 角 波 电 流 控 制 方 法 。 前 者 精 度 较 高 且 响 应 快 , 但 开 关 频 率 可 能 波 动 很 大 , 后 者 开 关 频 率 恒 定 , 装 置 安 全 性 较 高 , 但 响 应 较 慢 , 精 度 较 低 。 而 基 于 电 压 矢 量 的 控 制 方 法 有 较 高 的 直 流 电 压 利 用 率 和 控 制 精 度 。 为 解 决 既 能 保 持 恒 定 的 开 关 频 率 , 有 较 高 的 直 流 电 压 利 用 率 , 又 能 同 时 提 高 有 源 滤 波 器 性 能 和 效 率 的 难 题 ,有 人 提 出 一 种 新 的 基 于 优 化 电 压 矢 量 的 有 源 滤 波 器 定 频 滞 环 电 流 控 制 方 法 [2]。 它 的 主 要 原 理 是 保 持 一 相 开 关 合 于 下 臂 不 动 , 用 其 余 两 相 开 关 去 独 立 控 制 相 应 的 相 间 电 流 , 并 不 需 要 估 计 阻 抗 参 数 , 便 能 实 现 两 相 解 耦 , 进 而 在 传 统 的 滞 环 控 制 中 实 现 了 开 关 定 频 。 该 方 法 的 特 点 , 一 是 能 快 速 正 确 判 定 参 考 电 压 矢 量 的 区 域 , 从 而 选 择 优 化 电 压 矢 量 去 控 制 电 流 , 二 是 可 选 择 逆 变 器 中 的 两 个 适 当 的 开 关 去 独 立 控 制 相 应 的 两 个 相 间 电 流 , 不 需 估 计 阻 抗 值 即 可 实 现 开 关 定 频 化 。 在 达 到 较 高 的 控 制 精 度 、 保 证 较 高 的 输 出 电 压 的 同 时 , 还 实 现 了 开 关 的 定 频 化 , 从 而 使 有 源 滤 波 器 的 综 合 性 能 有 明 显 提 高 。 2. 3 单 周 控 制 单 周 控 制 法 , 又 称 积 分 复 位 控 制 ( Integration Reset Control, 简 称 IRC) 作 为 一 种 非 线 性 控 制 法 , 最 早 由 美 国 学 者 Keyue 和 S1obodan Cuk提 出 。 该 技 术 同 时 具 有 调 制 和 控 制 的 双 重 性 , 通 过 复 位 开 关 、 积 分 器 、 触 发 电 路 、 比 较 器 达 到 跟 踪 指 令 信 号 的 目 的 。 单 周 控 制 器 由 控 制 器 、 比 较 器 、 积 分 器 及 时 钟 组 成 , 其 中 控 制 器 可 以 是 RS触 发 器 , 其 控 制 原 理 如 图 2所 示 。 图 2中 , K可 以 是 任 何 物 理 开 关 , 也 可 是 其 它 可 转 化 为 开 关 变 量 形 式 的 抽 象 信 号 。 单 周 控 制 法 作 为 一 种 新 型 非 线 性 控 制 技 术 , 它 可 应 用 于 PWM控 制 、 软 开 关 等 。 这 种 方 法 的 基 本 思 想 是 控 制 开 关 占 空 比 , 在 每 个 周 期 内 强 迫 开 关 变 量 的 平 均 值 与 控 制 参 考 量 相 等 或 成 比 例 。 单 周 控 制 在 控 制 电 路 中 不 需 要 误 差 综 合 , 它 能 在 一 个 周 期 内 自 动 消 除 稳 态 、 瞬 态 误 差 , 前 一 周 期 的 误 差 不 会 带 到 下 一 周 期 , 因 此 , 克 服 了 传 统 的 PWM控 制 方 法 的 不 足 , 适 用 于 各 种 脉 宽 调 制 软 开 关 等 开 关 逆 变 器 , 具 有 反 应 快 、 开 关 频 率 恒 定 、 鲁 棒 性 强 、 易 于 实 现 、 控 制 电 路 简 单 等 优 点 , 此 外 , 单 周 控 制 还 能 优 化 系 统 响 应 、 减 小 畸 变 和 抑 制 电 源 干 扰 , 是 一 种 很 有 前 途 的 控 制 方 法 。 在 DC/DC变 换 器 中 已 经 得 到 充 分 的 研 究 。 作 为 一 种 调 制 方 式 , 该 技 术 最 近 在 向 三 相 变 流 器 方 面 , 如 电 流 型 PFC、 电 压 型 APF探 索 。 IRC具 有 电 路 简 单 可 靠 、 控 制 效 果 好 的 优 点 、 不 仅 具 有 重 要 的 理 论 意 义 , 而 且 也 具 有 很 好 的 工 程 应 用 价 值 。 2. 4 变 结 构 控 制 [3][5] 目 前 , 混 合 型 电 力 滤 波 器 ( HAPF) 是 一 种 效 率 较 高 , 应 用 极 为 广 泛 的 APF。 其 中 , 无 源 滤 波 器 对 负 载 的 谐 波 电 流 进 行 滤 波 , 并 提 供 一 定 的 基 波 无 功 补 偿 ; 而 有 源 滤 波 器 则 起 改 善 无 源 滤 波 器 特 性 的 作 用 。 因 而 , 以 非 常 小 容 量 的 有 源 滤 波 器 , 就 可 以 弥 补 无 源 滤 波 器 特 性 的 一 些 固 有 缺 陷 。 这 样 既 可 以 改 善 无 源 滤 波 器 的 滤 波 效 果 , 防 止 其 与 电 网 之 间 发 生 谐 振 , 又 避 免 了 并 联 有 源 滤 波 器 的 谐 波 电 流 注 入 并 联 的 无 源 滤 波 器 形 成 谐 波 短 路 的 现 象 , 提 高 了 有 源 滤 波 器 的 有 限 容 量 的 利 用 率 。 而 HAPF的 控 制 策 略 , 大 多 以 上 世 纪 80年 代 初 H. Akagi等 人 提 出 的 瞬 时 无 功 理 论 为 基 础 。 通 过 对 电 力 系 统 中 无 功 和 谐 波 电 流 的 检 测 计 算 来 实 现 无 功 功 率 和 谐 波 电 流 的 补 偿 。 不 仅 计 算 、 控 制 复 杂 , 而 且 由 于 未 对 期 望 的 电 源 电 流 实 现 闭 环 跟 踪 控 制 , 测 量 和 计 算 误 差 得 不 到 补 偿 , 影 响 了 其 补 偿 性 能 的 提 高 。 变 结 构 控 制 (Variable Structure Control, 简 称 VSC)理 论 , 对 系 统 的 变 化 和 外 部 干 扰 不 敏 感 , 具 有 很 强 的 鲁 棒 性 , 文 献 [4]应 用 VSC理 论 , 在 建 立 空 间 矢 量 数 学 模 型 的 基 础 上 , 推 出 一 种 混 合 型 电 力 滤 波 器 的 变 结 构 控 制 方 法 , 避 免 了 较 复 杂 的 谐 波 电 流 计 算 , 实 现 了 对 电 源 电 流 和 电 容 电 压 的 闭 环 控 制 , 具 有 良 好 的 控 制 性 能 , 是 一 种 简 单 有 效 且 易 于 实 现 的 方 法 。 2. 5 无 差 拍 控 制 [5][6] 无 差 拍 控 制 ( Dead Beat Control, 简 称 DBC) 是 一 种 全 数 字 化 的 控 制 技 术 , 其 基 本 思 想 是 将 输 出 参 数 波 形 等 间 隔 地 划 分 为 若 干 个 取 样 周 期 。 根 据 电 路 在 每 一 取 样 周 期 的 起 始 值 , 预 测 在 关 于 取 样 周 期 中 心 对 称 的 方 波 脉 冲 作 用 下 某 电 路 变 量 在 取 样 周 期 末 尾 时 的 值 。 适 当 控 制 方 波 脉 冲 的 极 性 与 宽 度 , 就 能 使 输 出 波 形 与 要 求 的 参 数 波 形 重 合 。 不 断 调 整 每 一 取 样 周 期 内 方 波 脉 冲 的 极 性 与 宽 度 , 就 能 获 得 谐 波 失 真 小 的 输 出 。 其 优 点 是 动 态 响 应 很 快 , 易 于 计 算 机 执 行 。 无 差 拍 控 制 逆 变 器 也 存 在 如 下 诸 多 缺 点 : 1) 对 系 统 参 数 依 赖 性 较 大 ; 2) 鲁 俸 性 较 差 ; 3) 瞬 态 响 应 的 超 调 量 大 ; 4) 计 算 的 实 时 性 强 , 对 硬 件 要 求 高 。 为 克 服 DBC的 以 上 种 种 不 足 , 国 内 外 学 者 做 了 一 些 大 胆 尝 试 。 文 献 [7]中 提 出 了 一 种 带 负 载 电 流 观 测 器 的 DBC, 假 定 负 载 电 流 变 化 率 在 采 样 间 隔 保 持 不 变 , 用 两 个 二 阶 观 测 器 分 别 观 测 状 态 变 量 ( 通 常 为 输 出 电 压 和 滤 波 电 感 电 流 ) 和 负 载 电 流 , 提 高 了 对 不 同 负 载 性 质 的 适 应 性 。 随 着 数 字 信 号 处 理 单 片 机 (DSP)应 用 的 不 断 普 及 , 这 是 一 种 很 有 前 途 的 控 制 方 法 。 在 APF中 , 跟 踪 参 考 信 号 的 控 制 方 法 是 决 定 有 源 滤 波 器 补 偿 质 量 的 关 键 。 因 为 , 只 有 求 得 补 偿 信 号 参 考 值 后 , 才 能 通 过 反 馈 环 节 和 控 制 变 流 器 的 开 关 元 件 使 变 流 器 产 生 与 参 考 信 号 相 等 的 实 际 信 号 。 文 献 [8]表 明 : 用 基 于 DBC的 APF变 流 器 的 输 出 可 以 很 好 地 跟 踪 参 考 谐 波 电 压 信 号 , 使 负 载 端 的 电 压 波 形 接 近 于 正 弦 波 , 这 种 APF即 使 在 开 关 频 率 比 较 低 的 情 况 下 也 有 着 良 好 的 动 静 态 响 应 。 2. 6 基 于 单 位 功 率 因 数 (UPF)的 控 制 策 略 该 控 制 策 略 的 目 的 是 使 非 线 性 负 载 和 滤 波 器 的 并 联 等 效 为 一 电 阻 性 负 载 。 假 设 电 网 电 压 无 畸 变 傅 里 叶 展 开 为 如 加 上 滤 波 器 后 负 载 侧 的 输 入 阻 抗 呈 电 阻 性 则 补 偿 后 的 网 侧 电 流 可 表 示 为 式 中 : k为 复 合 非 线 性 负 载 和 滤 波 器 的 组 合 电 导 。 电 网 电 流 是 与 电 网 电 压 同 频 同 相 的 正 弦 波 且 没 有 谐 波 成 分 , 功 率 因 数 为 1( 单 位 功 率 因 数 ) 。 为 验 证 本 文 所 提 的 基 于 单 位 功 率 因 数 控 制 策 略 , 利 用 Matlab构 造 图 3所 示 的 实 验 电 路 , 相 应 参 数 见 表 1, 结 果 见 图 4, 图 5及 图 6。 2. 7 组 合 变 流 器 相 移 SPWM 有 源 滤 波 和 无 功 补 偿 装 置 要 求 具 有 良 好 的 调 节 性 能 和 足 够 的 输 出 功 率 , 以 提 供 电 流 的 超 前 和 滞 后 补 偿 , 同 时 要 求 系 统 具 有 足 够 的 频 带 宽 度 以 达 到 消 除 高 次 谐 波 的 目 的 。 为 了 实 现 对 无 功 电 流 和 高 次 谐 波 电 流 的 有 效 补 偿 , 需 要 开 关 器 件 工 作 在 较 高 的 频 率 下 。 但 大 功 率 正 弦 波 脉 宽 调 制 ( SPWM) 变 流 器 开 关 频 率 会 受 限 制 , 原 因 为 1) 大 功 率 半 导 体 器 件 的 开 关 频 率 较 低 ; 2) 高 的 开 关 频 率 会 导 致 较 大 的 开 关 损 耗 , 降 低 系 统 效 率 。 而 多 重 化 的 功 率 变 换 器 调 节 性 能 较 差 , 不 能 完 全 满 足 现 代 电 网 的 要 求 。 为 此 , 由 本 文 作 者 之 一 和 加 拿 大 . Ooi教 授 共 同 提 出 [9]了 组 合 变 流 器 相 移 SPWM技 术 。 相 移 SPWM技 术 的 基 本 思 想 是 : 在 变 流 器 单 元 数 为 Lx的 电 压 型 SPWM组 合 装置 中 , 各 变 流 器 单 元 采 用 共 同 的 调 制 波 信 号 sm, 其 频 率 为 fm。 各 变 流 器 单 元 的 三 角 载 波 频 率 为 fc, 将 各 三 角 载 波 的 相 位 相 互 错 开 三 角 载 波 周 期 的 1/Lx, 如 图 7(a)所 示 (变 流 器 单 元 数 Lx=5, SPWM频 率 调 制 比 fc/fm=3, 幅 度 调 制 比 ma=)。 图 7(b)所 示 的 Lx个 波 形 分 别 为 Lx个 变 流 器 单 元 的 输 出 , 上 述 Lx个 变 流 器 单 元 交 流 输 出 叠 加 形 成 整 个 组 合 变 流 器 的 输 出 波 形 , 如 图 7(c)所 示 。 对 输 出 进 行 频 谱 分 析 , 变 流 器 单 元 之 一 的 输 出 波 形 频 谱 如 图 7(d)所 示 , 叠 加 后 整 个 组 合 变 流 器 输 出 波 形 频 谱 如 图 7(e)。 比 较 图 7(d)和 图 7(e)可 见 各 变 流 器 单 元 输 出 叠 加 后 形 成 的 组 合 变 流 器 总 输 出 波 形 中 谐 波 得 到 了 有 效 的 抑 制 。 该 技 术 的 实 质 是 多 重 化 和 PWM技 术 的 有 机 结 合 , 能 够 在 低 开 关 频 率 下 实 现 大 功 率 变 流 器 SPWM技 术 , 而 且 显 著 地 减 少 了 输 出 谐 波 , 改 善 了 输 出 波 形 , 从 而 减 少 滤 波 器 的 容 量 。 同 时 , 相 移 SPWM变 流 器 具 有 良 好 的 动 态 响 应 和 较 高 的 传 输 频 带 , 使 得 许 多 先 进 的 控 制 手 段 得 以 应 用 , 控 制 性 能 得 以 提 高 。 电 流 型 变 流 器 由 于 具 有 直 接 提 供 电 流 , 运 行 可 靠 , 保 护 简 单 等 优 点 , 而 在 许 多 大 功 率 场 合 得 到 应 用 。 例 如 : 电 网 有 源 补 偿 装 置 , 如 果 采 用 电 流 型 相 移 SPWM技 术 可 以 达 到 结 构 简 单 , 控 制 特 性 好 , 响 应 快 , 频 带 宽 , 消 除 谐 波 能 力 强 等 优 点 。 文 献 [10]中 应 用 于 SVG和 SMES的 这 项 技 术 称 为 相 移 SPWM。 这 就 解 决 了 大 功 率 装 置 与 器 件 开 关 频 率 较 低 的 矛 盾 , 可 使 GTO等 特 大 功 率 器 件 组 成 的 变 流 器 用 于 APF装 置 。 因 此 , 这 种 技 术 在 APF等 大 功 率 场 合 中 具 有 广 阔 的 应 用 前 景 。 3 结 语 本 文 提 及 的 几 种 比 较 新 颖 的 APF控 制 策 略 。 在 电 压 矢 量 基 础 上 实 行 滞 环 电 流 控 制 可 在 同 样 的 控 制 精 度 下 , 有 效 地 降 低 开 关 频 率 , 减 小 APF的 开 关 损 耗 ; 单 周 控 制 在 一 个 周 期 内 消 除 稳 态 、 瞬 态 误 差 , 具 有 反 应 快 、 抗 电 源 干 扰 、 控 制 电 路 简 单 等 优 点 , 是 一 种 很 有 前 途 的 控 制 方 法 ; 变 结 构 控 制 对 系 统 的 变 化 和 外 部 干 扰 不 敏 感 , 具 有 很 强 的 鲁 棒 性 ; 无 差 拍 控 制 是 一 种 全 数 字 化 的 控 制 技 术 。 有 关 APF的 控 制 策 略 正 随 着 DSP技 术 和 智 能 控 制 理 论 的 发 展 而 不 断 涌 现 。 随 着 控 制 策 略 的 改 进 , APF的 特 性 也 将 不 断 提 高 , 而 相 应 的 价 格 也 必 将 下 降 。 参 考 文 献 [1] 高 景 德 . 电 机 过 渡 过 程 的 基 本 理 论 及 分 析 方 法 (上 、下 册 )[M].北 京 :科 学 出 版 社 , 1983. [2] Malesani L.,Mattavelli P.,Tomasin P.. High� performance Hysteresis Modulation Technique for Active Filters[J].IEEE Trans. on PE,1997,12(5):876- 884. [3] Casini D., Marchesoni M., et al. Sliding Mode Multilevel Control for Improved Performances in Power Conditioning Systems[J].IEEE PE,1995,10(4):453- 463. [4] 童 梅 .一 种 混 合 型 电 力 滤 波 器 的 变 结 构 控 制 [J]. 电 工技 术 学 报 ,2002, (17)1:59- 63. [5] , L. Malesani, and P. Mattavelli. Dead beat Current Control for Active Power[C].in Proc. IECON′ 98, Aachen, Germany, 1998:1859- 1864. [6] Gokhale A..Dead Beat Microprocessor Control of PWM Inverter for Sinusoidal Output Waveform Synthesis[J].IEEE (5):901- 910. [7] Yokoyama T. and Kawamura A..Disturbance Observer Based Fully Digital Controlled PWM Inverter for CVCF Opeeration[J]. IEEE Trans. on PE,1994,9(5):473- 480. [8] 李 玉 梅 , 马 伟 明 .无 差 拍 控 制 在 串 联 电 力 有 源 滤 波器 中 的 应 用 [J].电 力 系 统 自 动 化 ,2001, 25( 8) : 28- 30. [9] Zhong� chao Zhang, . Ooi. Multi� modular Current Source SPWM Converter for SMES[J]. IEEE trans. PE, 1993,8(3): 250- 256. [10] Zhang Ooi Commutated HVDC and SVC Based on Phase� shifted Multi converter Modules[J]. IEEE Trans. on PE, 1993,8(4):712- 715. 电源技术应用

另一方面来看,至少我们学到了很多的知识,丰富了论文内容,这样在以后写其他论文的时候就会比这一次更好,投稿的时候就会更加顺利,审核的时间也会更快。我学姐推荐的北京译顶科技那边做的不错,你可以考虑一下。你可以加速去知道了解下

进入二十一世纪以来,我国的电力发展取得了举世瞩目的成就,为我国的经济社会发展作出了重大贡献,这得益于电力技术的快速发展。下文是我为大家搜集整理的关于电力技术论文参考的内容,欢迎大家阅读参考!电力技术论文参考篇1 浅析电力技术监督管理 摘要 电力企业的技术监督管理作为电力企业管理中的重要组成部分,对整个企业技术监督的发展以及企业管理的发展都有着重要的影响作用。笔者联系我国电力技术监督管理的发展现状,结合自身工作经验,对电力技术监督管理的问题进行论述,主要突出电力技术监督管理的对策,更好促进电力企业的发展。 关键词 电力企业;技术监督;管理创新 技术监督作为企业生产中的重要组成部分,是企业管理中不可忽视的内容。作为国家重要战略资源管理的电力企业,其技术监督管理更是面临着更高的要求。电力企业一直坚决执行国家的相关管理方针和政策,贯彻电力行业的相关规定,不断建立和完善企业技术监督管理体系,注重企业技术监督管理工作人员综合素质的提高,尽力完善企业技术监督管理综合评价体系,确保企业技术监督管理的全面健康发展。在我国社会不断发展进步的背景下,电力企业面临着节能减排的高效要求,因此,电力技术监督管理工作也要求电力技术向着更低能耗的方向发展。立足于这样的趋势下,笔者作为一名电力企业工作人员,更加体会到技术监督管理的创新要求,因此,下面将对电力技术监督管理进行系统论述,主要突出其创新内容。 1 电力企业技术监督管理工作的发展现状 在我国社会不断发展进步的趋势下,我国电力行业的发展取得了一定的成绩,也还存在一定的缺陷,下面,笔者将对我国电力企业技术监督管理的现状进行论述。 电力企业不断重视企业技术监督管理工作 电力企业作为生产电能的重要产业,其生产出来的产品质量和安全系数都是备受关注的问题。在国家不断加强管理,社会不断加强监督的趋势下,电力企业也更加注重企业技术监督管理的发展了。在电力企业不断重视技术监督管理发展的背景下,企业技术监督管理得到很快发展。 电力企业的安全生产和经济效益相适应 安全生产与企业的经济效益是相互制约、相互影响的,只有在安全生产的前提下才能实现企业的经济效益,也只有确保了企业的经济效益,才能为企业安全生产提供有效保障。企业技术监督管理是保证企业安全生产的重要手段之一,在企业技术监督管理不断发展的条件下,企业的安全生产也得到了长足进步,使得企业的安全生产与经济效益得到平衡。 电力行业之间的技术监督得到协调发展 在社会不断发展的条件下,电力行业与其他行业之间的联系也不断密切了,因此,电力行业的技术监督不仅仅是电力行业自身的工作,也是电力行业与其他行业之间一起面临的工作。在电力技术监督不断发展的趋势下,电力行业与其他行业之间的技术监督也更加联系密切,并且促进了与其他行业之间的技术监督协调发展。 2 如何促进电力技术监督管理工作的发展 不断建立和完善企业技术监督管理体系 由于条件的限制,很多电力企业的技术监督管理体系还在不断探索建立和完善过程中,还没有形成完善的技术监督管理体系,因此,不断建立和完善电力企业技术监督管理体系是尤为重要的。笔者在认真调查的基础上,联系自身工作经验认为,电力技术监督管理可以建立起包括技术监督三级网络和技术监督管理部门以及技术监督深化扩展的技术研究部门的管理体系。其中,技术监督三级网络可以由电力企业的专业技术监督工作团队来担任;而电力技术监督管理部门可以由电力企业的发电运营部、项目管理部和技术监督管理的归口部门来承担,主要任务是理清三级技术监督网络的工作内容和范围,根据国家的相关规定和监督管理标准监督企业技术监督管理工作的开展,保证企业技术监督管理目标的有效实现;技术监督的研究部门主要有企业的研究部门来承担工作任务。 制度适合企业自身的技术监督标准,确保企业技术监督管理按标准进行 任何企业的技术监督管理工作都应该有相应的标准来严格要求管理工作,所以电力企业也不例外,作为国家的重要战略资源,电力的技术监督管理更是应该按照具体的标准来保证工作的顺利进行,因此,笔者提倡电力企业建立适合企业自身的技术监督管理标准。电力企业技术监督管理标准应该对发电公司的技术监督工作进行全面的界定,划清技术部门的各项职责和权限,并对企业技术监督进行全面合理的评价,确保企业技术监督管理目标的实现。 推动电力技术监督管理的信息化发展 在全球信息化不断发展的趋势下,众多企业技术监督管理都向着信息化迈进,为应对时代发展的趋势,电力企业技术监督管理也应该向着信息化发展,不断推动技术监督管理的规范化、信息化体系建设。企业根据自身发展的现状,结合企业技术监督管理模式,在企业实行按照级别管理的责任制,实现数据的有效及时管理和资源的共享。在企业技术监督管理目标指导下,促进企业技术监督信息发布平台的建设,为企业技术监督管理提供更加科学合理的支持。笔者认为电力企业的技术监督管理信息系统可以分为两个层级,即电力公司的技术监督管理信息系统以及发电公司的技术监督管理信息系统。两个层级的主要工作任务各有不同,电力公司的技术监督管理主要是对结果进行管理,而发电公司的技术监督管理则主要是完成对过程进行管理。 3 结论 在我国不断强化和谐发展战略的趋势下,电力企业也面临着更艰巨的挑战,要向着更加节能环保的方向发展。电力技术监督管理在电力企业中发挥着重要的作用,对电力企业的管理有着深刻的影响作用。笔者在文中论述了电力企业技术监督管理的发展现状,并结合自身工作经验提出了促进电力技术监督管理发展的对策。 参考文献 [1]肖云莲,王敏.做好电力技术监督的措施[J].云南电力技术,2006(1). [2]洪波,魏杰.用信息化手段建立新型电力技术监督管理体系[J].云南电业,2007(7). [3]胡青波.电力技术监督现状与发展的思考[J].天津电力技术,2004(1). 电力技术论文参考篇2 浅论电力滤波技术 【摘要】本文以电力滤波器的基本原理为分析对象,并对电力滤波技能的运用进行了阐述,最后对电力滤波器技能的发展进行了探讨。 【关键词】电力,滤波技术,探究 一、前言 电力滤波技术管理工作的主要任务是运用科学的方法建立技术管理体系,完善电力滤波技术,卓有成效地开展技术工作。 二、电力滤波器的基本原理 一般来说,谐波是沟通体系中的概念,而纹波是关于直流体系来讲的,二者有差异,更有联系。沟通滤波,是期望滤除工频(基波)重量以外的一切谐波重量,确保电源的正弦性。沟通体系的电流畸变首要是由非线性负载导致的。而直流滤波,是期望滤除负载中直流重量以外的一切纹(谐)波重量,这些纹(谐)波重量首要是由直流电(压)源(一般是由沟通电源整流取得)中的纹波电压重量在负载中导致的。而经过傅里叶剖析可知,直流体系中的纹波重量也是由各次谐波重量构成的。在这个意义上讲,沟通体系和直流体系中按捺谐波的意图是相同的:按捺不期望在电源或负载中出现的谐波重量。直流有源电力滤波器(DCAPF)与沟通有源电力滤波器,也即是咱们一般所说的有源电力滤波器(APF),都是选用自动的而不是被迫的办法或手法去吸收或消除谐(纹)波。因而直流有源电力滤波器和沟通有源电力滤波器的作业原理是相同或相近的。可是,因为效果的目标不相同,直流有源电力滤波器也有本身的特点。 三、电力滤波技能的运用 1、PPF的运用 到当前为止,高压大功率谐波管理范畴最首要的滤波办法仍然是无源电力滤波器。PPF选用LC单调谐滤波器或许高通滤波器,电感、电容接受的电压等级比电力电子开关要高得多,并且抵偿容量也要比APF大得多,因而,在高压大功率的运用场合,PPF得到了广泛运用。 2、APF的运用 依照APF的容量和运用规模可将有源滤波器分为小功率运用体系和中等功率运用体系以及大功率运用体系三大类。小功率运用体系首要是指额定功率低于100 kVA的体系,首要运用于负载和电机驱动体系。在这类运用中,一般选用技能领先的动态有源滤波器,如开关频率较高的PWM电压型逆变器或电流型逆变器,其呼应时刻相应来说一般很短,从十几微秒到毫秒。小功率的谐波管理体系运用对比灵敏,能够选用单相有源滤波器,也能够选用三相电力滤波器。当运用于单相电力体系时,选用单相有源滤波器,并且很简单经过改动电路布局完结不相同的抵偿意图。电力电子器材难以接受几百千伏的超高压,即使是最领先的半导体器材也只能接受几千伏,因而,和中等功率运用相同,因为缺少大功率高频电力器材,完结大功率的体系动态逆变器很不经济,也就约束了有源逆变器在大功率体系中的运用。有人提出选用多重化技能和相序脉宽调制技能,来处理功率和开关频率的矛盾,这是一个极好的主意,可是很难完结,并且性价比也很低。 四、电力滤波器技能的发展 1、电力滤波器的接入拓扑 电力滤波器的接入拓扑的基本方式为并联型APF和串联型APF ,并联型滤波器首要用于理性电流源型负载的抵偿,它也是工业上已投入运转最多的一种计划,但因为电源电压直接加在逆变桥上,因而对开关元件的电压等级需求较高。为战胜单独运用时面对的缺点,并联型APF常常与PF混合运用。 2、谐波检测技能 电力滤波器的抵偿效果在很大程度上依赖于能否检测到真实反映欲抵偿的谐波重量的参考信号。因而,电力滤波器规划中的关键技能之一即是找到一种可由负载电流中精确地获取谐波重量的幅值和相位的算法。这种检测办法的速度也是需要考量的重要要素。一般,谐波的检测获取技能可分为直接法和间接法两种。 (一)、基干傅立叶改换的检测办法 选用傅立叶改换(FFT)对电网电流进行核算,得到电网电流中的谐波重量。它是一种纯频域的剖析办法,其长处是能够恣意挑选拟消除的谐波次数,可是核算量大,具有较长的时刻延迟,实时性较差。 (二)、瞬时无功功率法 此办法的实时性较好,但因为检测时选用了数字低通滤波器,因而检测出的成果会有必定的延时。瞬时无功功率理论是当前电力滤波器中选用最多的一种谐波检测办法。 (三)、依据自适应的检测办法 依据自适应搅扰抵消原理,具检测精度高和对电网电压畸变及电网参数改变不灵敏的长处,但动态呼应速度较慢。其改善办法包含用神经网络完结的自适应检测法。检测精度和实时性是判断谐波检测办法的重要指标,各种检测办法都有其长处,但也都存在局限性。跟着各种谐波检测办法的不断改善,以及新的检测办法。 3、电力滤波器的电流盯梢操控战略 当精确地检测出电网中的谐波电流后,怎么操控APF主电路,使APF输出电流盯梢谐波电流改变,是电流盯梢操控战略所需完结的作业。因为谐波电流具有时变和高改变率的特点,这就需求APF电流操控器具有较快动态呼应功能和较高的操控精度,电流操控器的稳定性也是必需要思考的要素。 4、主电路布局及参数规划 当前,电力滤波器主电路首要选用PWM变流器的方式,当选用单个变流器不能满意体系容量需求时,能够选用多重化或多电平的主电路布局方式。 (一)、单个PWM变流器的主电路 布局依据主电路直流侧储能元件的不相同,能够分为电压型和电流型两种。电压型PWM变流器直流侧电容损耗较小,适宜构成大容量电力滤,也是当前干流的PWM布局。实践规划中,储能电容和接入电感的巨细对APF设备的本钱和功能有很大的影响。 (二)、多重化主电路布局方式 多重化布局是经过将多个PWM变流器串联或并联的办法,以完结运用较低开关频率,较小容量的开关器材。 (三)、多电平主电路布局方式 经过添加电力电子器材,规划多电平主电路拓扑布局,将变流器的输出由传统的两电平输出变为多电平输出。其长处是开关频率低,开关器材所接受的电压应力小,因为不运用变压器和电抗器,体积减小而功率进步。多电平主电路操控办法较为杂乱,是当前研讨和运用的方向。 (四)、参数规划 因为APF布局多样,抵偿的谐波源也多种多样,对APF的容量和谐波抵偿的功能指标也有不相同的需求。当前,关于APF主电路各项参数的规划没有一致的理论,参数的挑选过程为:首要依据被抵偿的谐波源挑选主电路布局方式。 (五)、电力滤波技能的研讨方向 怎么经过对谐波理论的进一步研讨,找出非常好的谐波检测算法是进步APF功能的有用手法;优化体系操控战略:寻求非常好的操控战略,如依据体系能量平衡的操控战略,到达对输出电流/电压的精确操控;优化电路规划:改善抵偿功能,操控体系本钱,如多电平主电路布局的研讨。这些研讨的首要意图是进步体系运转的功率,进一步削减抵偿设备的制造本钱和损耗,进步设备的可靠性和易用性,并完结一机多用。 五、结束语 电力滤波技术管理在施工生产中呈面极其重要的地位,我们不仅要努力做好各项工作,还要与其它方面协调一致、相辅相成。从而使技术工作不断得到完善和提高,为工程项目的顺利实施提供可靠的技术保障。 参考文献 [1]粟梅.矩阵变换器――异步电动机高性能调速系统控制策略研究[D].长沙:中南大学信息科学与工程学院, 2005. [2]谭甜源,罗安,唐欣,等.大功率并联混合型有源电力滤波器的研制[J]中国电机工程学报,2004 [3]姜齐荣,谢小荣,陈建业.电力系统并联补偿――结构、.原理、控制与应用[M]北京:机械工业出版社,2004. 猜你喜欢: 1. 电力技术论文范文 2. 电力技术毕业论文范文 3. 浅谈电力技术论文 4. 有关电力行业技术论文 5. 电力电气论文参考

相关百科

热门百科

首页
发表服务