首页

> 期刊论文知识库

首页 期刊论文知识库 问题

电力机车的研究论文

发布时间:

电力机车的研究论文

SS4G型电力机车整备

电力机车在我国的国民经济和社会发展中起着大动脉的作用,同时对国家经济持续增长和社会安全所起的作用也是其他运输方式所无法替代的。下面是我整理的电力机车新技术论文2500字,希望你能从中得到感悟!

电力机车新型智能真空主断路器的研制

[摘要]针对现有电力机车主断路器的不足,研制一种新型电力机车真空主断路器,以“1+1”方式安装,在某主断路器发生故障时,司机可通过开关切换到另一台主断路器,保证机车不因为主断路器故障而发生机破。

[关键词]“1+1” 电力机车 智能 真空主断路器

主断路器是用来接通和分断电力机车的高压电路,是机车的电源总开关,同时,当机车发生故障时它又可迅速切断机车总电源以保护其他设备,是机车最主要的保护装置,所以主断路器具有控制和保护的双重功能,其可靠性直接影响机车的安全运行。

目前,电力机车安装的主断路器分空气断路器和真空断路器。由于空气断路器结构复杂、故障率高而不被新型机车采用,但普通真空断路器也存在绝缘强度薄弱等不足,

因此我们于2008年9月立项研制一种电力机车新型真空主断路器,以“1+1”安装方式,即两台主断路器安装在同一底座上,控制装置也相互独立。实现一台机车上有两台主断路器交替工作,避免因单台主断路器发生故障而引起的机破,保证机车安全运行。

1设计思路

两台主断路器、两套装置

目前,电力机车上主断路器只有一台,无论是空气断路器还是真空断路器,在运行中一旦主断路器发生故障,则机车只能停止运行等待救援。因此我们设计增加一台主断路器,当一台主断路器发生故障时可以有另一台替代使用,确保机车正常运行。同时为了不过多地改变机车原有的构造和尺寸,我们设计将两台主断路器放置在同一台底座固定板上,以便于安装。

采用真空灭弧

为提高主断路器的使用寿命和减小主断路器的体积,我们取消原空气断路器的隔离开关,并把灭弧室改用真空灭弧室。真空灭弧的电性能和机械性能高,绝缘强度比大气的绝缘强度要高得多,同时由于采用真空灭弧,所需的间隙很小,可以实现提高使用寿命和减小体积的设想。

采用永磁机构

为保证主断路器分合闸动作的可靠性,我们将传统的

电空机械装置改成永磁机构,使整个操动机构结构简单可靠、工作寿命长、操作功率小、作用特性与断路器的反力特性很好匹配,且能做到合闸速度较小而分闸速度较高的理想结构。

2结构和原理

“1+1”电力机车智能真空断路器以底座为界,分为高压和低压两部分。高压部分位于机车顶部,由引出线和断路器主体组成。低压部分由永磁机构和智能控制装置组成。永磁机构的运动部件只有一个,具有合闸、分闸两种状态。永磁机构的拉杆带动真空灭弧室作直线运动。

图3新型智能真空主断路器结构示意图

灭弧室单元由长寿命真空灭弧室和复合绝缘材料组成,通过固体绝缘密封技术和连接件组成一体,永磁机构通过连接螺杆直接安装在开关体上,通过控制得电动作,控制连接螺杆上推和下拉。合闸时,连接螺杆上推,压动开关体内绝缘拉杆,带动触头弹簧和传动件,使真空灭弧室动触头闭合,并以恒定压力压紧,使动静触头紧密接触;分闸时,连接螺杆下拉,同样通过开关体内绝缘拉杆和传动件拉开灭弧室动触头,使开关打开。在开关动作的同时,安装在永磁机构上的联锁拨杆同时上下移动,带动直线凸轮,使联锁开关打开或闭合。

Ⅰ、Ⅱ、Ⅲ―磁力线分布图;

①―静铁芯;②―动铁芯;③―合闸线圈;④―永久磁铁;⑤―分闸线圈;⑥―导向轴。

永磁机构处于合闸位置,永久磁铁产生的磁力线如图中Ⅰ。这时,下部磁路磁阻远大于上部磁路,动铁芯②保持在合闸位置。分闸时,分闸线圈⑤通电,分闸线圈中的电流产生磁场,其磁力线方向如图中磁力线Ⅱ。分闸线圈在上部工作气隙产生的磁场方向与永久磁铁所产生的磁场方向相反。当分闸线圈中的电流达到某一值时,机构上端的磁力线被抵消殆尽,动铁芯开始在触头簧(或分闸簧)及少量电磁力的作用下向下运动。随着底部气隙的减小,气隙磁阻也逐渐减小,当下部气隙的磁感应强度远远大于上部气隙的磁感应强度时,动铁芯向下将呈加速运动。当动铁芯运动至行程一半后,线圈电流和永久磁铁产生的合成磁场,其方向是向下的,于是,又进一步加速了动铁芯的运动,直到断路器分闸到位。断路器分闸到位后,连锁装置将信号返回控制器,自动切断分闸线圈⑤中的电流,动铁芯保持在分闸位置上。

3各部件的设计

灭弧室的设计

普通真空灭弧室还不能直接应用到电力机车上。因为普通灭弧室的寿命为1万次,而电力机车上断路器分合动作频繁,1万次的寿命使用期限也就一年左右,所以我们采用双断口串联,可提高分断高电压的能力;触头间距为小开距,可极大地提高灭弧室的寿命。为了保证断口同步断开,设计采用特殊的传动机构,使不同步度小于1ms,小于2ms的安全值。另外,我们还采用特殊结构的波纹管,以配合小开距,使灭弧室的寿命>30万次。大量的动态分析试验证明,本文所述的真空断路器的机械寿命达到20万次以上。

我们设计分断最大短路电流为10kA,但灭弧能力为20kA,实际裕度为l倍之多。灭弧室中,动静触头材料选择铬铜合金,截断电流为5A以下,可有效防止操作过电压的发生。

操作机构及传动的设计

在各种条件下都应可靠地分、合闸,是主断路器对操动机构的基本要求之一。目前广泛使用的操动机构有电磁、弹簧、气动、液压电动,但其机械故障率占主断路器总故障的70%左右。为此,我们采用无磨耗件精密型永磁机构,不但保证了主断路器长期动作的可靠性,而且满足主断路器分、合闸及灭弧特性要求。灭弧室需要的闭合力为1000~1200kN,永磁机构闭合力设计为3300kN,足以确保机构的正常动作,传动中的触头弹簧寿命>500万次,机构动作安全可靠。

我们采用钕铁硼(Nd-Fe-B)永磁体,因为它有高的剩余磁感应强度,Br可以达到(退磁曲线上磁场强度H为零时,相应的磁感应强度,也成为剩磁)以及高的矫顽力,使永磁体很不容易退磁。永磁机构的压力和触头压力相比,留了100%的裕量,以保证足够的安全性。

永磁机构通过电磁机构和永磁铁的特殊结合实现传统机构的功能,电磁线圈和磁路为静止机构,只要设计合理,没有外力破坏,一般它不会损坏。大量试验证明,只要选材合理,精心设计,永磁机构本身机械寿命可以达到100万次以上。

永久磁铁与分、合闸线圈相配合,较好地解决了合闸时需要大功率能量的问题,因为永久磁铁可以提供磁场能量,作为合闸之用。永磁机构工作时,只需瞬时供电,一般小于60ms,在分、合闸状态时,线圈没有电流通过,保持力由永磁铁提供,不再消耗能量。这就使我们可以减小合闸线圈的尺寸和工作电流。因此,永磁操动机构可以做到真正意义上的免维修、少维护、长寿命。

绝缘设计

高压开关的绝缘设计至关重要。由于车顶空间的限制,绝缘距离不能很大。电瓷绝缘材料绝缘优良、价格便宜,但联接须采用金属连接件,体大物重,不耐碰撞,内外温差大时容易开裂。根据电力机车上的使用环境条件,我们选用粘接力强,机械强度高,有较高的耐寒、耐热、耐化学稳定性的APG工艺复合绝缘材料,双断口上进上出,在空气湿度100%饱和情况下,空气间绝缘距离>400mm,电压等级,外爬距、内爬距,对地耐压80kV/lmin,断口间耐压85kV/lmin。APG工艺复合绝缘材料与水不亲和,可防止因雨水绝缘放电,从而有效地防止瓷瓶放电事故的发生。

智能控制器及联锁设计

永磁操动机构必须在控制器的驱动下才能实现开关的分合操作,因此,控制器的性能优劣对断路器的性能有很大的影响,要保证断路器的可靠工作,就必须要有一个可靠的控制器。

系统组成的原理

智能控制器主要由5部分组成:电源模块、输入模块、输出模块、CPLD智能控制模块、驱动模块。我们采用复杂可编程逻辑器件CPLD作为智能控制部件,借助于计算机,在EDA工具软件quartus II平台上,以硬件描述语言VHDL为系统逻辑描述手段,自动完成逻辑编译、逻辑化简、逻辑分割、逻辑综合、结构综合、以及逻辑优化和仿真测试,直至实现规定的电子线路系统功能。这种纯硬件的实现方式在工作可靠性方面有很大的优势,这是因为硬件电路不管受到什么干扰,其电路结构不会发生变化。采用EDA技术的全硬件实现方式,由于非法状态的可预测性以及进入非法状态的可判断性,从而确保了从非法状态恢复到正常状态的各种措施的可行性。

可靠性设计

电磁兼容性设计

永磁操动机构在运行中由于开关大电流而产生很大的电磁干扰,永久磁铁和线圈均会产生很大的磁场干扰,另外,开通和关断过程中,电容充放电亦会产生幅值很大的脉冲电压和脉冲电流,会通过电源通道耦合到控制器自身,所以抗干扰问题对于控制器来说非常重要。我们在设计中采取的措施主要有:①电源输入加有性能优良的电源滤波器,可以防止通过电源线的传导干扰;②专用芯片通过光电电路完全与外部I/O部分隔离,以保证专用芯片安全运行;③模拟电路滤波和专用芯片数字滤波同时使用,确保不会发生误动的情况;④电路板精心设计,精心布线,避免线路之间的串扰。

电力电子电路的可靠性设计

电力电子电路是控制器的另一个关键部件,它的负载是一个大的电感,在开通和关断过程中会产生很大的动态dv/dt,加之工作电流很大,使器件有可能同时受到大电流、高电压和寄生电容中的位移电流的作用,所以确保这部分电路稳定可靠的工作亦很关键。

①在设计中使用抗冲击能力强、dv/dt性能好的IR公司生产的IGBT和IGBT控制芯片;

②精心设计电路参数,反复测试,保证输出波形好;

③精心设计和调试吸收电路,保证驱动电路稳定工作;

④过流保护电路,确保电力电子电路的安全运行;

⑤为防止长时间通电,采用的控制算法是:正常时采用最短时间与开关位置信号控制,在位置信号失效时采用最长时间控制。

智能自诊断、自检测设计

控制器采用全硬件状态机作为整个系统的工作调度,这就使其可以充分发挥全硬件电路容错技术的优势,在运行中可以对各种状态进行跟踪,可以监视各种非法状态,由非法状态转入正常状态只需要几个微秒,因而不会因进入非法状态而对系统造成影响,确保在运行中不会出现死机现象,即确保控制器永远保持在运行状态。

零位断合

利用电子操控计算机的多余功能和精密性永磁结构优势,设计零电流打开和零电压闭合的智能控制技术,即适时采样,计算发令,自适应修正等,使断合点在零位正负2ms以内。经模拟试验表明,该项技术达到了预期效果,较好地抑制了过电压的产生。

传动关节点的固体润滑技术

为了使断路器实现其真正意义上的少维护、不检修,甚至不维护,断路器的几个转动关节,采用了二硫化铝加石墨的固体润滑技术,寿命试验的结果基本达到了预期的目标。

4主要技术指标

工作电压:AC25kV;最大工作电压:AC30kV;

工作电流:ACl000A;最大工作电流:AC1250A;

工作频率:50Hz;

额定短路开断电流:ACl0kA;

额定峰恒耐受电流:;

最大开断电流:AC20kA;

控制器工作电压:DC110V;

开关动作反应时间:≤20ms;

开关动作时间:≤50ms;

开关动作控制器永磁机构通电时间:≤25ms。

5执行标准

TB/(机车车辆电气设备、第四部分,电工器件交流断路器规则)

TB/T2055-1999(机车真空断路器技术条件)

TB/T3021-2001(铁道机车车辆电子装置)

GB/(电磁兼容试验和测量技术浪涌(冲击)抗扰度试验)

6主要技术特点

①采用先进的复合绝缘材料,具有抗老化、防紫外线、高强度及优良的电气绝缘性能;

②断路器主体采用先进的APGP注射成型工艺加工技术;

③专门研制的长寿命的真空灭弧室;

④国家专利技术的永磁操动机构;

⑤开关内部结构简洁、稳定性好;

⑥可靠性高;

⑦与机车原有主断路器有互换性。

7结束语

“1+1”电力机车智能真空主断路器于2009年5月19日在福州机务段的SS3B4045机车上安装试用,运用至今仅出现过一次真空断路器控制预备中间继电器联锁线断,导致继电器不得电,机车无压无流。但正因为这种断路器有两台断路器,运行中司机通过切换,启用另一台断路器,照常运行,回段处理,不造成机破。这也正体现了这种断路器的优越性。

浅析电力机车空转原因及处理

[摘 要]本文通过对电力机车空转故障分类、故障原因、故障判断检测以及故障处理方法进行分析,为保证机车运行安全,确保铁路提速和重载牵引能够顺利进行提供一定的理论依据。

[关键词]电力机车 空转故障 处理方法

中图分类号:U269 文献标识码:A 文章编号:1009-914X(2016)07-0330-01

铁路在我国的国民经济和社会发展中起着大动脉的作用,同时对国家经济持续增长和社会安全所起的作用也是其他运输方式所无法替代的。随着机车运行速度的提高和牵引定数的增加,机车出现空转故障的几率越来越大,对机车安全运行的影响也越来越明显,因此,完善机车控制系统和提高乘务员操作水平,防止机车空转故障的发生,是保证机车运行安全,确保铁路提速和重载牵引能够顺利进行的关键所在。

1.电力机车空转现象及防空转系统

空转故障分类

轮对产生的轮周牵引力大于轮轨间的黏着力时车轮就会发生空转。根据机车实际运用中空转故障发生的情况,机车空转故障分两类:一是非正常空转,即大空转或真空转,恶化后会导致轮轨擦伤:二是正常空转,即假空转,及时采取人工补砂的措施会有明显的效果。

防空转系统

电力机车电子柜或微机柜均设置了微机防空转系统,该系统是以提高黏着利用率及防止大空转为主,允许一定程度的微小空转。当轮对空转趋势达到一定程度,就将相应的电机电流高速大幅度削减,可使空转很快得到抑制,然后再以一定规律恢复牵引电流。

2.电力机车空转故障的原因分析

正常空转的原因

(1)机车转向架到司机室端子排的光电传感器接线断路或绝缘破损,引起速度信号异常,导致假空转。

(2)光电传感器故障引起假空转。电力机车上目前使用的光电传感器大部分是TQG15B型传感器,当传感器芯片烧损或绝缘破损、传感器引出线绝缘破损,线路断路、短路或接触不良等,瞬间无速度信号输出或速度信号受干扰,都会引起假空转。

(3)光电传感器接线盒进水,引起线路接地或短路将导致假空转。

(4)电子插件故障。防空转系统电子元件超出使用寿命期限,造成插件程序故障。

非正常空转的原因

(1)电力机车轮缘喷油装置喷油量太大、线路道岔油润过多等也会引起机车真空转,伴随空转灯亮、撒砂、减载等。这种情况下,机车检修部门应适当调节轮缘喷脂装置的喷油量或改为干式轮缘润滑装置,防止真空转。

(2)司机操作不当。电力机车在运行中,司机操作不当,手柄指令过高,容易发生真空转。因此,机车在雨天或坡道上起车或行驶时,指令不应一次给得太高,当速度起来后再继续追加电流。当发生真空转或滑行时,司机应适当降低手柄级位,待速度起来后再追加电流,抑制真空转发生。

3.电力机车空转故障判断及检测方法

一般故障的显示

机车在运行中遇到启车加速、持续大坡道大电流运行、过岔区、曲线运行、轨面有油、冰、雨、雪天气经常会发生空转、滑行或电流电压波动等现象,机车乘务员可采取人工补砂的措施。发生大空转时,空转灯亮、自动撒砂、电流电压波动频繁,而且电流电压波动弧度大。发生小空转时有时空转灯不亮、不下砂,只是电流电压在小范围内波动。这种情况下,机车乘务员只需切除电子柜上方或微机防空转上的“空转保护”开关即可或将电子柜倒B组维持运行即可让防空转系统正常保护动作。

机车进行库内检测

机车在运行中发生空转故障回段报修时,可利用光电传感器动态检测仪。光电传感器动态检测仪简单来说是一个在机车静止的状态下,能给光电传感器提供均匀的速度信号,并且能实时观察速度及频率大小、变化情况,速度信号输出波形的检测设备。利用该设备,可以在库内对机车光电传感器及相关线路进行检测,可以较准确地判断出造成空转故障的故障点,并在库内做相应的处理,大大提高了处理空转故障的效率,同时减少了机车试运行,减少了检修或技术人员跟车处理的次数,节约了人力资源,提高了机车的运用效率。在库内进行检测无结果的就要跟车用便携式示波器进行动态检测。

跟车进行动态检测

由于机车在运行中产生剧烈振动,使空转保护系统某些线路瞬间接触不良,引起速度信号丢失,从而造成空转,这种情况是极少数的。这类故障在库内机车静止的情况下是很难检测到故障点,因此,必须派人跟车使用携式示波器进行动态检测,另外也可用示波器检测。

4. 空转故障的处理方法

运行中对空转故障的处理

(1)如果是正常空转,乘务员只需及时采取人工补砂的措施就会有明显的效果。

(2)机车电流、速度大于某值,空转、撒砂不止,电流卸载不能恢复,可能是某一速度传感器发生故障,乘务员可根据防空转系统自动查找出故障传感器,自动切除该位置速度传感器,并在插件面板上显示,然后可正常操作机车运行,回段后向检修人员报修。

(3)微机防空转插件板故障可能使电机电流达到某一值而卸载,机车并没有发生空转就发出减载指令,牵引时无恒速控制。此类故障乘务员可通过将防空转故障开关转到故障位运行来判断,如果正常,就可判断为防空转系统故障,回段后报修。

回段对空转故障的处理

(1)机车回段后,检修人员对报空转故障的机车要详细了解运行中的情况,例如空转发生区段的自然状况,乘务员是否采取自诊断功能,是否切除防空转功能等。

(2) 光电传感器信号线故障的检测及处理

若在司机室端子上检测到某轴位传感器信号不良,而光电传感器下车检测又正常的情况下,可以判定为该位传感器的信号线故障。表现在线路断路、短路、接地。可以通过数字万用表进行检测线路的通断,用250V兆欧表检测其线路绝缘状态。确定线路不良时,必须进行换线才能彻底处理。换线时应注意不要损伤插头及线,接线时应按照接线表对应接线,防止接错线。

(3)光电传感器故障的检测及处理

电力机车光电传感器可以通过车下检测设备进行检测,确定传感器故障后,则可更换光电传感器。光电传感器在安装上车时,传感器与轴箱之间要加防水胶垫,同时传感器引出线应斜向下,防止进水,同时要避免引出线过度弯曲。光电传感器接线插头与接线盒插接应牢固,用绝缘粘胶带包扎好,防止进水。

总而言之,能够根据电力机车空转的具体情况,对机车产生空转故障的原因进行正确综合的分析,并提出故障处理方法,可减少因空转引起的机车故障及行车事故发生率,提高机车的运用效率,确保机车运行的安全性。

参考文献:

[1] 王迁.浅谈电力机车的空转故障[J].机车电传动,2009(6):60-61.

我来帮你写一下即可。1、摘要中应排除本学科领域已成为常识的内容;切忌把应在引言中出现的内容写入摘要;一般也不要对论文内容作诠释和评论(尤其是自我评价)。2、不得简单重复题名中已有的信息。比如一篇文章的题名是《几种中国兰种子试管培养根状茎发生的研究》,摘要的开头就不要再写:“为了……,对几种中国兰种子试管培养根状茎的发生进行了研究”。

机车牵引电机的研究论文

机车车辆整车可靠性指标的探讨摘要:通过对机车车辆整车的可靠性指标进行探讨,提出了MDBF、MDBFF和上线率作为机车车辆制造企业产品可靠性指标的建议,为制造企业进一步满足用户要求、开展产品可靠性的研究奠定基础。关键词:机车车辆;可靠性指标;平均故障间隔距离;平均功能故障间隔距离;基本可靠性;任务可靠性0引言随着我国国民经济的快速发展,交通、物流与日俱增。铁路运输担负了全国货运总量的70%和客运总量的60%。作为承担铁路运输的装备———机车车辆运用的安全准点,是保证铁路运输的关键因素之一。因此要求机车车辆具有很高的可靠性。最新的国际铁路行业标准IRIS更是明确提出了对RAMS(可靠性、可用性、可维护性和安全性)的要求。因此提高产品的可靠性,已是铁路装备制造企业参与国际竞争的关键因素。由于我国对机车车辆整车可靠性的相关研究还处于初步阶段,目前只能参照其他系统的可靠性标准,凭经验及大致的统计数据来提出可靠性的要求,尚未建立成熟的可靠性指标和验收体系,使得机车车辆整车可靠性管理不尽人意。因此开展机车车辆可靠性要求的研究,建立科学规范的机车车辆可靠性指标和验收体系对于机车车辆制造企业具有深刻的意义。由于机车车辆整车的可靠性指标及其验证方法极为复杂,本文仅对其可靠性指标的建立进行探讨,并提出建议。1机车车辆整车可靠性指标现状目前从机车车辆整车的技术文件中可以看到,涉及到的可靠性指标基本上为机破率、临修率和碎修率。然而,在具体使用机破率、临修率和碎修率来考核机车车辆整车的可靠性时将存在着一些问题。根据IEC60050(191)的定义,可靠性是“产品在规定的条件下和规定的时间区间(t1,t)2内完成规定功能的能力”,它的定量化指标———可靠度,就是“产品在规定的条件下和规定的时间内完成规定的功能的概率”。因此,实际上讨论可靠性就是讨论故障概率。机车车辆机破率,是以在用机车车辆总运行公里数除以从时间t=0至时间t=t1的累计机破故障数量而得到的比率。机车车辆临修率,是以在用机车车辆总运行公里数除以从时间t=0至时间t=t1的累计机车非修程入库检修的故障数量而得到的比率。机车车辆碎修率,是以在用机车车辆总运行公里数除以从时间t=0至时间t=t1的累计机车非修程不入库检修的故障数量而得到的比率。这都是一种累积故障概率(F()t)。首先,由于这种累积故障概率考核的是所有在用的特定机型的机车车辆,那么在用的机车车辆的运行公里数的大小对累积故障概率的影响很大。运行公里数越大,累积故障概率越小。同时由于每一台(批)机车车辆投入运用的时间不同,按照产品故障浴盆曲线的原理,出现的故障类型和概率是不同的。而我们就特定时间统计所有机车车辆的运用,就可能出现故障类型和概率的偏差。其次,可靠性分为固有可靠性和使用可靠性,也可分为基本可靠性和任务可靠性。机破率、临修率和碎修率,考核的是固有可靠性、基本可靠性,还是考核使用可靠性、任务可靠性,必须加以说明,否则容易对可靠性产生不同的理解,从而采取不同的可靠性保证方案。第三,机破率的统计,以导致任一列车晚点5 min(以京广线为例)的设备故障为机破故障。然而,在实际运行中,当设备故障后,影响列车晚点的因素是多方面的,它不仅与故障类型、系统的可维修性有关,还与司乘人员的技术水平、产品设计的冗余等有密切关系。如:机车运行途中硅机组因电容击穿显示主接地故障,司乘人员隔离部分电机维持运行,正点到达,未造成机破,但实际上产品出现了故障;有时,也可能因培训不到位,司乘人员对产品不熟悉,可能操作不当,使得列车晚点而导致机破,但产品本身却未出现故障。从上述分析可以看出,机破率、临修率和碎修率难以真实、全面的反映产品的可靠性,对推动制造企业提高产品可靠性的作用有限。因此,有必要对机车车辆整车的可靠性指标加以研究与探讨。2机车车辆整车可靠性指标国际电工委员会(IEC)、欧洲标准(EN)均针对轨道交通制定了可靠性要求,即IEC 62278、EN 50126、EN50128、EN 50129等。但这些标准仅给出了轨道交通适用的可靠性典型参数示例,不具有实际的操作指导意义。通过对比IEEE有关标准和机车车辆实际运行经验,在考虑机车车辆整车可靠性指标时,建议使用平均功能故障间隔距离(Mean Distance Between Functional Failure,MDBFF)、平均故障间隔距离(Mean Distance Between Fail-ure,MDBF)以及机车车辆上线率(On Line Service Rate)三个指标来综合衡量机车车辆整车的可靠性。MDBF作为机车车辆整车基本可靠性的特征量,可以反映出整车运用对维修人员、维修时间、维修费用、备品备件需求的要求。一个系统基本可靠度低,即使能够满足任务可靠度的要求,也会导致系统维护成本高。或者说通过设备冗余的保证,虽然能够满足任务可靠度,但其后发生的维修成本也是不可忽视的,由此带来的系统复杂程度增加,系统基本可靠性也会降低。从国际轨道交通装备制造企业设立的质量指标来看,有6项指标属于MDBF要衡量的范围。具体如下:1)零公里故障:产品到段尚未正式投入运用阶段出现的故障。2)早期故障:产品投入运用至定义的最短修程阶段出现的故障。3)运行故障:产品在正常运行中出现故障但能到达目的地。4)非定期检修:不在规定的修程时间所进行入库检修和不入库检修。5)停机故障:产品在运行中突然停机,但因重联或连挂的原因能够被牵引到达目的地。6)使命故障:产品在运行中故障而不能到达目的地。MDBFF作为机车车辆整车任务可靠性的特征量,可以反映出整车在规定的时间段内或任务段内完成规定功能的能力。这个特征量与我们现行通用的机破率有近似之处,但量纲不同。作为制造企业,为了保证整车的任务可靠,不得不在整车设计中考虑一定的设备冗余,同时又得兼顾系统的简化,这是一对矛盾。MDBF和MDBFF两项可靠性指标反映的是机车车辆在承担运输任务过程中的质量状况,它们均不能反映机车车辆不承担运输任务时的质量状况。有时,上线运行的机车车辆质量状况良好,没有出现故障,但在段备用的机车车辆质量状况却不佳,甚至不能上线运行。虽然MDBF和MDBFF两项可靠性指标能满足要求,但备用机车车辆的质量状况却无法满足用户的要求。因此,国际铁路行业引入了上线率这一指标。机车车辆上线率的定义是上线运行的机车车辆数与良好的备用机车车辆数之和除以总机车车辆数。上线率指标客观地反映了制造企业的服务质量、产品的可维护性和可用性水平,也影响了用户运输的可靠性,是用户目前关注的焦点之一。因此,机车车辆整车上线率也应当作为可靠性的指标。综上所述,可以将MDBF作为基本可靠性指标,衡量机车车辆整车对维修人员、维修时间、维修费用、备品备件需求的要求。将MDBFF作为任务可靠性指标,衡量机车车辆整车完成规定功能的能力。上线率作为整车可靠性的关联指标。3 MDBF和MDBFF的测算由于机车车辆是大型机电产品,不能简单以电子零部件或机械零部件来测算可靠性数据。虽然零部件本身故障模式的种类并不多,但成为整机产品后,需考虑的因素就比较多了,如各零部件所具有的故障模式的组合,由于零部件的组合而组成的(不是来自零部件的故障)故障模式的复合。因此从整机来看,形成大量近似函数的复合,其形式变得复杂。实际测算中,可以用威布尔概率纸测算故障概率直线的斜率,以获得形状参数m来确定故障的性质(m=1,偶然性故障;m>1,耗损性故障)。用指数分布来概算故障率λs,系统的每个单元都服从指数分布,则单元可靠度R(i)t=e-λit系统可靠度R(st)=e-λ1te-λ2te-λ3t……e-λnt=e-λst系统故障率λs=λi平均故障间隔时间MTBF=1/λs考虑到传统上机车车辆故障是按照运行公里数进行统计,加之机车车辆在段备用的时间对平均故障间隔时间将产生影响,因此建议采用平均无故障间隔距离(MDBF)来代替平均故障间隔时间进行可靠性的概算,仍然要统计1/λs。以配属三个机务段的某车型某年十月份的故障统计,来测算该车的MDBF和MDBFF,可以看出其与机破、临修的差异,如表1和表2所示。通时,RC回路中的冲击电流过大(为电容器最大工作电流的倍),使电容器加速老化,出现降级或损坏。电阻的功率为最大工作功率的倍,不能满足电阻的工作要求。2)采用改造后参数(R=Ω,C=18μF),在整流桥90°开放,晶闸管导通时,电容的放电电流的峰值只为改造前取值的1/3,电阻的功率也比改造前参数取值下降100 W左右。晶闸管关断时,电容器的放电电流峰值为改造前的1/2,更好地改善了整流元件的工作条件。3)改造后,在整流桥90°导通时,电容器的极限工作电流值只为最大工作电流的倍,电阻的极限工作功率为最大工作功率的倍。考虑到整流桥90°换向为瞬时发热,电阻有一定的散热时间,电阻出现烧损的可能性较小。4结语2007年底在新乡机务段和准格尔机务段,按照上述改造方案各试改了5台SS4改型机车,运行至今没有再次出现RC回路电阻和电容烧损击穿问题。说明该改造方案能解决SS4改型机车RC回路电阻和电容烧损击穿故障。并且该改造方案简单,改造成本低,适合在其他SS4改型机车进行批量改造。参考文献:[1]张有松,朱龙驹.韶山4型电力机车[M].北京:中国铁道出版社,[2]2001.[2]蒋家久.电力机车牵引绕组阻尼电路参数匹配对设备安全的影响[2][J].铁道机车车辆,2005(4).

我给你拟定的题目是《轨距对机车车辆稳定性影响的研究》下面是文章的大体框架,你可以看一下。基于惯性力与轮对蛇行频率及波长间的关系,研究轨距对机车车辆稳定性的影响,并通过对各种轨距下单轮对走行部和转向架式走行部的特征值计算,验证分析结果.结果表明:对于单轮埘走行部,轨距越宽,车辆稳定性临界速度越高,对于转向架式走行部,轨距越宽,机车车辆稳定性临界速度越低;采用弹性定位后,可以提高单轮对走行部的稳定性临界速度;转向架采用弹性定位之后,优化的悬挂设计可以使机车车辆达到很高的稳定性临界速度;对于转向架式走行部,速度对稳定性的影响程度与轴距的影响程度相当,在其他条件不变的情况下,轴距增大20%,相当于其稳定性临界速度可提高20%;车轮踏而等效锥度和名义滚动圆半径对单轮对或转向架式走行部稳定性临界速度的影响与轨距的影响程度相同,锥度加大或轮径减小,均会降低机车车辆的稳定性。如果你觉得可以。望采纳。机 联车 系车 我辆论文哪里找!

楼主的要求不太现实呵~~15000到16000之间?百度里回答的字数是9999个。怎么可能答的完?这样,我倒是找到了一点:内燃机车介绍及其发展史内燃机车(diesel locomotive)以内燃机作为原动力,通过传动装置驱动车轮的机车。根据机车上内燃机的种类,可分为柴油机车和燃气轮机车。由于燃气轮机车的效率低于柴油机车以及耐高温材料成本高、噪声大等原因,所以其发展落后于柴油机车。在中国,内燃机车的概念习惯上指的是柴油机。发展20世纪初,国外开始探索试制内燃机车。1924年,苏联制成一台电力传动内燃机车,并交付铁路便用。同年,德国用柴油机和空压缩机配接,利用柴油机排气余热加热压缩空气代替蒸汽,将蒸汽机车改装成为空气传动内燃机车。1925年,美国将一台220 kW电传动内燃机车投入运用,从事调车作业。30年代,内燃机车进入试用阶段,直流电力传动液力变扭器等广泛采用,并开始在内燃机车上采用液力耦合器和液力变扭器等热力传动装置的元件,但内燃机车仍以调车机车为主。30年代后期,出现了一些由功率为900~1 000 kW单节机车多节连挂的干线客运内燃机车。第二次世界大战以后,因柴油机的性能和制造技术迅速提高,内燃机车多数配装了废气涡轮增压系统,功率比战前提高约50%,配置直流电力传动装置和液力传动装置的内燃机车的发展加快了,到了20世纪50年代,内燃机车数量急骤增长。60年代期,大功率硅整流器研制成功,并应用于机车制进,出现了交—直流电力传动的2 940 kw内燃机车。在70年代,单柴油机内燃机车功率已达到4 410kW。随着电子技术的发展,联邦德国在1971年试制出1 840 kW的交一直一交电力传动内燃机车,从而为内燃机车和电力机车的技术发展提供了新的途径。内燃机车随后的发展,表现为在提高机车的可靠性、耐久性和经济性,以及防止污染、降低噪声等方面不断取得新的进展。中国从1958年开始制造内燃机车,先后有东风型等3 种型号机车最早投入批量生产。1969年后相继批量生产了东风4等15种新机型,同第一代内燃机车相比较,在功率、结构、柴油机热效率和传动装置效率上,都有显著提高;而且还分别增设了电阻制或液力制动和液力换向、机车各系统保护和故障诊断显示、微机控制的功能;采用了承载式车体、静液压驱动等一系列新技术;机车可靠性和使用寿命方面,性能有很大提高。东风11客运机车的速度达到了160 km/h。在生产内燃机车的同时,中国还先后从罗马尼亚、法国、美国、德国等国家进口了不同数量的内燃机车,随着铁路高速化和重载化进程的加快,正在进一步研究设计、开发与之相适应的内燃机车。分类按用途可分客运、货运、调车内燃机车。接走行部形式分为车架式和转向架式内燃车。 按传动方式分为机械传动、液力传动、电力传动内燃机车。现代机车多采用电力和液力传动。电力传动又可分为直流电力传动和交—直流电力传动和交—直—交电力传动内燃机车。基本结构内燃机车由柴油机、传动装置、辅助装置、车体走行部(包括车架、车体、转向架等)、制动装置和控制设备等组成。柴油机内燃机车的动力装置,又称压燃式内燃机。主要结构特点包括汽缸数、汽缸排列形式、汽缸直径、活塞冲程、增压与否等。现代机车用的柴油机都配装废气涡轮增压器,以利用柴油机废气推动涡轮压气机,把提高了压力的空气经中间冷却器冷却后送入柴油机进气管,从而大幅度提高了柴油机功率和热效率。柴油机工作有四冲程和二冲程两种方式,同等转速的四冲程机的热效率一般高于二冲程,所以大部分采用四冲程。从转速来看,分为高速机(1 500 r/min左右)、中速机(1 000 r/min)和低速机(中速机转速以下)。为满足各种功率的需要,生产有相同汽缸直径和活塞的各种缸数的产品。功率较小用6缸、8缸直列或8缸V型,功率较大用12、16、18和20缸V型,其中以12、16缸的最为常用。传动装置为使柴油机的功率传到动轴上能符合机车牵引要求而在两者之间设置的媒介装置。柴油机扭矩—转速特性和机车牵引力—速度特性完全不同,不能用柴油机来直接驱动机车动轮:柴油机有一个最低转速,低于这个转速就不能工作,柴油机因此无法启动机车;柴油机功率基本上与转速成正比,只有在最高转速下才能达到最大功率值,而机车运行的速度经常变化,使柴油机功率得不到充分利用;柴油机不能逆转,机车也就无法换向。所以,内燃机车必须加装传动装置来满足机车牵引要求。常用的传动方式有机械传动、液力传动和电力传动。①机械传动装置是由离合器、齿轮变速箱、轴减速箱等组成的。因其功率受到限制,在铁路内燃机车中不再采用。②液力传动装置主要由液力传动箱、车轴齿轮箱、万向轴等组成。液力变扭器(又称变矩器)是液力传动机车最重要的传动元件,由泵轮、涡轮、导向轮组成。泵轮和柴油机曲轴相连,泵轮叶片带动工作液体使其获得能量,并在涡轮叶片流道内流动中将能量传给涡轮叶片,由涡轮轴输出机械能做功,通过万向轴、车轴齿轮箱将柴油机功率传给机车动轮;工作液体从涡轮叶片流出后,经导向轮叶片的引导,又重新返回泵轮。液力传动机车(图2)操纵简单、可靠,特别适用于多风沙和多雨的地带。③电力传动分为三种:(a)直流电力传动装置。牵引发电机和电动机均为直流电机,发动机带动直流牵引发电机,将直流电直接供各牵引直流电动机驱动机车动轮。(b)交—直流电力传动装置。发动机带动三相交流同步发电机,发出的三相交流电经过大功率半导体整流装置变为直流电,供给直流牵引电动机驱动机车动轮。(c)变—直—交流电力传动装置。发动机带动三相同步交流牵引发电机,发出的直流通过整流器到达直流中间回路,中间回路中恒定的直流电压通过逆变器调节其振幅和频率,再将直流电逆变成三相变频调压交流电压,并供给三相异步牵引电动机驱动机车动轮。电力传动机车的应用最为广泛。车体走行部包括车架、车体、转向架等基础部件。①车架是机车的骨干,安装动力机、车体、弹簧装置的基础。车架为一矩形钢结构,由中梁、侧梁、枕梁、横梁等主要部分组成,上面安装有柴油机、传动装置、辅助装置和车体(包括司机室),下面由两个转向架支撑并与车架相连,车架中梁前后两端的中下部装设车钩、缓冲装置。车架承受荷载最大,并传递牵引力使列车运行,因此,车架必须有足够的强度和刚度。②车体是车架上部的外壳,起保护机车上的人员和机器设备不受风、沙、雨雪的侵袭和防寒作用。按其承受载荷情况,分为整体承载式和非整体承车体;按其外形分为罩式和棚式车体。③转向架是机车的走行装置,又称台车。由构架、旁承、轴箱、轮对、车轴齿轮箱(电力传动时包括牵引电机)、弹簧、减振器、均衡梁,以及同车架的连结装置、基础制动装置等主要部件组成。其作用是承载车架及其上面装置的重量,传递牵引力,帮助机车平衡运行和顺利通过曲线。内燃机车一般为具有两个2 轴或3 轴的转向架。辅助装置用来保证柴油机、传动装置、走行部、制动装置和控制调节设备等正常工作的装置。主要设备包括:燃油系统——保证给柴油机供应燃油的设备及管路系统;冷却系统——保证柴油机和液力传动装置能够正常工作的冷却设备和管路系统;机油管路系统——给柴油机正常润滑的设备及管路系统;空气滤清器——过滤空气中灰尘等赃物的装置;压缩空气系统——供给列车的空气制动装置、砂箱、空气笛及其他设备压缩空气的系统;辅助电气设备——蓄电池组、直流辅助发电机、柴油机起动电机等。制动设备内燃机车都装有一套空气制动机和手制动机。此外,多数电力传动机车增设电阻制动装选,液力传动机车装有液力制动装置。控制设备控制机车速度、行驶方向和停车的的设备。主要有机车速度控制器、换向控制器、自动控制阀和辅助制动阀。操纵台上的监视表和警告信号装置有:空气、水、油等压力表,主要部位温度表,电流表、电压表,主要部位超温、超压或压力不足等音响和显示警告信号。为了保证安全,便于操作,内燃机车上还装设有机车信号和自动停车装置。工作原理燃料在汽缸内燃烧,所产生的高温高压气体在汽缸内膨胀,推动活塞往复运动,连杆带动曲轴旋转对外做功,燃料的热能转化为机械功。柴油机发出的动力传输给传动装置,通过对柴油机、传动装置的控制和调节,将适应机车运行工况的输出转速和转矩送到每个车轴齿轮箱驱动动轮,动轮产生的轮周牵引力传递到车架,由车架端部的车钩变为挽钩牵引力来拖动或推送车辆。据报载,从1992年6月1日起,北京铁路分局结束了使用蒸汽机车牵引客车的历史,改用内燃机车,以提高列车的速度和正点率。 人们在使用蒸汽机车的过程中发现,这种机车的一个致命弱点是它的锅炉既大又重,严重影响了它的发展前途。在锅炉里,用煤将水加热成蒸汽,再通入汽缸里,从而推动机车前进。有人设想,如果将这种笨重的锅炉去掉,使燃料直接在汽缸内燃烧,用所产生的气体来推动车轮旋转,就可以克服蒸汽机车的主要缺点。于是,一些科学家便开始进行研究试验。 1866年,德国人奥托首先制成了一种燃烧煤气的新型发动机。这种发动机和蒸汽机在汽缸外面的锅炉里燃烧燃料不同,它是在汽缸内点燃煤气的,然后利用气体的压力推动活塞,从而使曲轴旋转。因此,就给它起了个形象的名字,叫做“内燃机”。内燃机的出现,为火车的进一步发展带来了生机。 后来到了1894年,德国就制造出世界上第一台内燃机车。这种没有大锅炉的新机车,既不烧煤,也不烧煤气,而是用柴油作燃料。它所用的柴油机是德国人鲁道夫·狄塞尔发明的。从此,内燃机车就成了火车家族中的一位重要成员,并得到了广泛的应用。 内燃机车虽然出世较晚,但它后来居上,比火车家族中的大哥哥蒸汽机车的本领高强,受到人们的重视。它的突出优点是:1.速度快。内燃机车起动迅速,加速又快。通常,蒸汽机车的最大时速为110公里,而内燃机车的最大时速可达180公里,使铁路通过能力提高25%以上。 2.马力大。蒸汽机车的功率一般为3000马力左右,而内燃机车可以达到4000~5000马力,因而运载量就多。 3.能较好地利用燃料的热能。蒸汽机车的热效率一般仅为7%左右,而内燃机车可达到28%左右,提高了4倍,从而节省了大量的燃料。 4.适合缺水地区使用。蒸汽机车是个用水“大王”,一列火车平均每行驶10公里,就得消耗水3~4吨。通过干旱的缺水地区,火车就需要自带用水。据统计,在缺水地区运行一列火车,如果有10节车厢,其中有3节车厢是用来装水的。而内燃机车用来冷却的水仅需要几百公斤,供循环使用,内燃机车上一次水,可连续行驶1000公里,因而它被人们誉为“铁骆驼”。 5.司机驾驶操作方便。内燃机的司机不需要像蒸汽机车那样加煤加水,而且驾驶室内明亮宽敞,司机操作时视野开阔,既方便又安全。 有的人可能认为内燃机车和汽车都是使用的内燃机,两者的结构原理应是相同的。其实,它们是不完全一样的。汽车是利用内燃机产生的动力直接推动车轮转动,而内燃机车则是先通过内燃机带动发电机产生电能,再用电能使电动机旋转,从而驱动机车前进。所以,通常也将内燃机车称做“电传动内燃机车”。 内燃机车出世后,以其明显的优势很快就压倒了蒸汽机车。特别是第二次世界大战结束后,由于内燃机车所用的燃料——石油价格较低,能大量供应,因而有力地促进了内燃机车的发展。一些国家如美国、日本、法国、加拿大等国都用继制成了内燃机车,并且在10年左右的时间内实现了铁路机车内燃化,使内燃机车得到了较广泛的使用。 我国于1958年研制成了第一台内燃机车。到1969年,已制造出4000马力的大功率内燃机车,如“东风型”、“东方红型”和“北京型”内燃机车等。现在,我国在许多铁路线上已有各种类型的内燃机车牵引着长长的列车在驰骋着,一些主要干线的直达客车基本上实现了内燃机车牵引。 内燃机车除了通常使用的电传动内燃机车外,还有液力传动内燃机车和适用于寒冷缺水地区的燃气轮机车。液力传动内燃机车是将内燃机产生的动力,通过液力变速箱、万向轴、车轴齿轮箱等设备,使车轮转动,从而带动车辆前进。早期的液力传动内燃机车,采用类似于蒸汽机车的连杆驱动。 燃气轮机车是现代化内燃机车的一种。这种机车的内燃机与喷气式飞机的原理相同。它比一般内燃机车的马力大,振动小,结构简单,行驶安全可靠,而且容易制造。世界上第一台燃气轮机车是1941年在瑞士制成的。由于它特别适用于高寒、缺水地区使用,近年来发展很快。法国已研制成并投人使用第二代和第三代燃气轮机车,其中第二代燃气轮机车的最高时速就已达到260公里。目前,燃气轮机车已成为引人注目的现代化机车的一个

电力机车论文模板

电力机车司机室噪声控制研究 随着人们对噪声危害认识的不断深入和环保意识的加强,司乘人员对机车司机室乘坐舒适性也提出了更高的要求。如GB/T3450- 2006徽道机车和动车组司机室噪声限值及测量方%})规定电力机车司机室内噪声限值78 dB }!},参照LJIC651标准,HXDl型机车技术合同规定该机车司机室内部噪声限值为75 dB C}。同时,机车司机室的噪声水平也直接影响到司机的观察能力和反应能力,与行车安全有着密切的关系。所以,电力机车司机室噪声控制研究变得十分迫切。测点位置测点距司机室地板上表而而高度位置/m分析说明0315 入口门40 46 50走廊门39 4043 38侧窗3R 42 48噪声测试及分析前窗42 41 45隔声量在敏感频率段较低,山于内面板穿孔所致,改为无孔板可以大大提高该部分隔声量800 Hz对应36 dB,波动剧烈,说明该处「1的隔声量和密封差,需提高隔声量800 Hz对应44 dB,波动剧烈,说明该处窗的隔声量、密封和窗下移动开口部分漏声,需加强该部分设计250 Hz对应37 dB. 800 Hz对应38 dB.波动剧烈,该处窗有共振现象,需设法避兔此现象发生 木研究以HXD 1型机车为研究对象,分别于2008年3月和7月对}D 1型机车进行了静态和大秦线正常运营动态噪声测试,为电力机车司机室噪声控制研究提供了依据。隔声量测试分析 在静态测试过程中,对HXD 1型机车的入口门、走廊门、侧窗、前窗进行了隔声量测试,测试结果及分析说明如表1所示。噪声源测试分析测点布置 在机车底架靠变压器梁的轮轨处布置两个测点,用于测试轮轨噪声。机械间布置一个测点,用于测试机械间噪声。在司机室按不同高度布置4个测点,用于测试司机室包括司机座椅、侧窗、入口门、走廊门位置的不同位置没有明显的变化。其总声压级大小均为90 dB <},主要频率范围出现在3155 000 Hz之间,呈明显的宽频带特性。与图1比较可以发现,机械间内的噪声峰值和轮轨噪声峰值频率基本一致,说明机械间的噪声有一部分来源于轮轨噪声,但由于机车底架地板等的隔声作用,传到机械间的轮轨噪声在传递过程中得到了较大的衰减,因此可以推断,机械间的噪声主要是机械间里面的设备产生的。 如图3所示,机车不行驶,压缩机运行,在变频风机以频率30 Hz运行时,测点频率、声压曲线变化比较平滑;当变频风机以60 Hz频率运行时,测点声压值160 Hz以下的低频声压值增加较大。在1 600 Hz频率范围出现尖点,最大声压值为102 dB (}。说明变频风机以60 Hz运行时在1 600 Hz频率范围左右的噪声声压值影响最敏感。-闷卜-匀速15 knvh一‘一匀速7U km!h┌───────────────────┐│资 │├───────────────────┤│/\ │├───────────────────┤│户犷曰汉,。\. │├───────────────────┤│ ‘冲声褚一-一卜叫以冻 ││心峪_尸尸r1‘.、‘ │├───────────────────┤│」.。尸今杯、 │├───────────────────┤│”/、压缩机运行,变”风机:;OI-Iz运行 │├───────────────────┤│‘月一~压缩机运行,变领风机tif)H:运行 │└───────────────────┘10帕卯豹7060旬

电空制动机采用电信号作为控制指令,动力源则采用压力空气。下面是我为大家推荐的浅谈电力机车制动机论文,欢迎浏览。

《 防止SS4改型电力机车非正常制动的对策 》

摘要:非正常制动在机车运用中时有发生,给 安全生产 带来了极大的隐患。本文阐述了一种防止电力机车非正常制动的报警装置,该装置在SS4改型电力机车上的使用,有效地减少了此类问题的发生,为机车的安全运用提供了有力的保障。

关键词:SS4改型电力机车;非正常制动;报警装置

中图分类号:

一 引言

机车非正常制动报警装置采用双语音报警盒,多传感器,重联设计。以单片机为核心,采用智能语音芯片,具有语音声光报警提示功能,适合各型内电机车,安装简便。可有效的防止因乘务员误操作、误打手制动、制动系统故障等因素,造成的机车动轮长时间制动,从而预防动轮弛缓或轮对擦伤故障的发生,保障了机车安全运行。

二 工作原理

机车非正常制动报警装置包括速度信号检测、第一转向架空气制动信号检测、第二转向架空气制动信号检测、手制动检测、单片机电路、语音报警、信息显示、数据设置、电源模块、重联输入输出、存储电路等部分。

机车非正常制动报警装置原理框图

1、速度信号检测

速度信号取自机车速度传感器,经隔离后进行整形,输出两路信号,一路为开关信号,表示机车有速度信号,另一路为脉冲信号,送入单片机电路,计算出机车制动后的走行距离。

2、制动信号检测

a. 采用压力开关检测机车空气制动信号。安装在制动风管上。当机车空气制动时,输出开关信号,送入逻辑判断电路。每台机车安装两个,任何一个动作,均表示机车处于制动状态。

b. 采用接近开关检测机车手制动信号,安装在带有手制动机位置的制动缸鞲鞴上,当机车手制动时,输出开关信号,送入逻辑判断电路。

3、单片机电路

单片机单元是报警器的核心。它一方面负责机车各项参数数据的设定和初始化,另一方面单片机电路会根据设定好的参数数据对速度信号脉冲进行计算,计算机车的制动距离,根据检测的制动信号,输出部位信号指示。当制动距离达到设定值时,输出制动距离信号。其报警逻辑为:

报警模式1=速度×制动

报警模式2=速度×制动×制动距离

即:机车运行中,当速度≥3Km/h时,如果机车制动,则语音提示三遍“机车制动”(报警模式1);当机车制动距离超过报警距离时,语音连续提示“注意,机车制动”(报警模式2)。

4、重联输入输出

重联输入输出负责监测重联信号的输入,并在有制动信号的情况下输出重联信号。

5、参数设置单元

该部分负责机车参数数据设置,分为三项:

a. 机车类型设置(电力机车或内燃机车);

b. 传感器类型设置(光电传感器或磁电传感器);

d. 报警距离设置(100M-900M)。

6、存储电路

负责存储设定好的机车各项参数,使报警装置在非使用状态下(断电),可存储已设定好的参数,包括机车类型,传感器类型,制动报警距离。

7、显示电路

本设置采用数码管显示加LED显示电路,用于显示报警器工作状态、报警状态、制动信号状态和机车运行状态,在设置功能下显示参数设置的状态。

8、语音电路

负责报警器的语音报警,在设置状态下,语音提示当前的设置状态。

三 技术指标

1、电源

电源电压: DC 110V±30%

功率:10W

2、制动报警距离

距离计程分度:10 M

报警距离设定:100―900 M(可以100M为进制选择)

3、速度通道:

适用测速电机:可选择光电或磁电速度传感器(独立供电或并联供电)。

采样灵敏度: 300 mV AC

输入阻抗: >10 KΩ

4、闸缸制动传感器(压力开关)

工作电压: DC 15±2 V

动作压力:± bar

5、停车制动缸传感器(接近开关)

工作电压: DC 15±2 V

动作距离:4±1 mm

6、绝缘电阻: >20 MΩ

7、报警模式:制动信号显示、语音提示、声光同时报警。

8、使用环境条件符合TB/T 3021-2001《机车电子装置》要求。

四 安装 方法

每台机车安装两套机车非正常制动报警装置,包括两个报警盒、2个压力开关传感器、2个接近开关传感器和连接电缆。

1、报警盒安装:

报警盒安装在司机室侧墙面上。通过P0(10芯电缆)和P1(5芯电缆)引入1号端子柜内的接线盒上,由接线盒引出线接到端子柜内。

2、接线盒安装:

将接线盒安装在一号端子柜右侧,用Φ4自攻螺丝固定;

3、压力开关的安装:

压力开关安装在机车制动柜202BP压力传感器

下方,将202BP拆下,安装转接座(SS4压力开关

三通),202BP和压力开关安装到位。所有接头缠绕

密封胶带,安装时用力适当。 压力开关

4、接近开关的安装:

将机车处于缓解状态下,接近开关安装在右2轮的制动缸鞲鞴的一侧,用于监视鞲鞴动作判断机车上闸、缓解状态,同时监视机车手制动动作。

五 使用方法

1、接通电源,报警装置处于工作状态。报警器首先进行数据的初始化并提示开机提示音,之后显示电路工作。当机车静止时,可设置报警装置的各项参数,包括机车类型、传感器类型和制动报警距离。

2、当机车无制动时,数码管显示“0000”。当机车制动时,报警器上对应的“本节手制动”、“本节空气制动”、“后节手制动”“后节空气制动”指示灯亮,分别表示机车本节或后节制动。当报警装置重联使用时,有重联制动时,数码管显示“H000”。

3、机车运行中(速度≥3Km/h),如果机车制动,语音提示三遍“机车制动”。

4、机车运行中,机车制动后,报警装置上“数码管”将显示制动走行距离,当机车制动距离超过报警距离时,报警装置开始语音连续报警“注意,机车制动”。此时如果机车停车或缓解,报警停止。

5、本报警装置,只对司机起报警作用,不参与机车控制。当出现报警时,乘务员应检查报警装置上对应的制动信号,检查前后节机车闸缸压力,及时排除故障处所。

6、当本装置故障后,可将报警装置上的插头拔下,即可切除。如果一节车报警装置故障,不影响另一节车工作。如果传感器故障,可以将接近开关防水插头(或压力开关接线)拔下,不影响另一传感器工作。

六 综述

机车非正常制动报警装置,通过压力开关和接近开关检测制动信号。不仅可以利用压力开关检测制动缸压力信号,判断机车空气制动;也可以利用接近开关采检测制动缸鞲鞴行程信号,判断机车手制动。机车非正常制动报警装置,只有在机车运行中超过了设定的制动距离的情况下才报警。对于停车制动和正常制动情况不报警,符合机车运用状态。

《 阿根廷机车制动系统的设计 》

【摘 要】本文介绍出口阿根廷机车的制动系统的组成、制动机主要部件、综合作用、主要参数等。

【关键词】阿根廷机车;制动系统;综合作用;26L

1 概述

阿根廷SDD7型内燃机车是我公司于2012年设计研发的一种双司机室内走廊的机车,它用于阿根廷圣马丁铁路线的客运牵引,该机车是以纯空气制动为主的制动系统,辅助动力制动及手制动。主要使用司机室内手动操作制动系统。

2 SDD7型内燃机车制动系统的组成

SDD7型内燃机车制动系统包括风源系统、空气制动系统、辅助用风系统、基础制动和手制动。

风源系统

机车风源系统的主要作用是产生和储备具有一定压力的清洁压缩空气,它是机车上各种风动设备和制动机的动力。风源系统主要由空气压缩机(以下简称空压机)、散热器、空气干燥器、安全阀、止回阀、总风缸、空气压力调节器等组成。其主要任务是及时向机车及列车制动系统,机车撒砂系统、风喇叭和刮雨器系统、控制用风管路及 其它 辅助用风装置等提供足够的、符合压力规定和质量等级要求的压缩空气。现将各部件的用途简述如下:

(1)3CDCB A型 空压机。3CDCBA型空压机为空气制动系统提供压缩空气,它由柴油机经过传动机构来驱动. 空压机的工作主要由总风缸管路上装有的压力调节器自动调节,它将总风缸压力转换为电信号来控制空压机控制电磁阀的通断,从而实现空压机的加载和卸载。

(2)散热器。散热器装在空压机后,其作用是将压缩空气从空压机的出口温度冷却到不大于空气干燥器进口温度的最小值。

(3)止回阀。风源系统安装了两个止回阀,一个止回阀装在空压机和总风缸之间,防止总风缸压力空气倒流。另一个安装在第一总风缸与第二总风缸之间,阻止总风从第二总风缸倒流至第一总风缸。

(4)SJKG-C B型 干燥器。SJKG-CB型空气干燥器是一种双塔交替工作、无热再生的除湿装置,,此干燥器是根据本车中空压机的特殊情况,在原SJKG-C系列空气干燥器的基础上加再生风流量自动调节阀,再生风流量自动调节阀控制出气,并按照实时的流量信号控制再生风量的大小,使干燥剂再生,保持再生耗气率小于或等于18�。空气干燥器设在空压机组和总风缸之间,目的是为了确保制动系统的可靠性,去除空气中的油、水和灰尘等杂质,其过滤精度位5μm。

(5)总风缸:根据整个空气管路系统的用风要求,本机车设有两个容积均为500L的总风缸,用来储存压缩空气。两个总风缸都带有排水阀。

(6)高压安全阀。高压安全阀装在两个总风缸之间,其作用是防止总风压力超过规定值(950±20)kPa,关闭动作值不低于850 kPa。

空气制动系统的主要部件

空气制动系统由26-L型制动机、管路附件等组成。该系统符合AAR RP-505-2001相关标准的要求,具有机车制动重联、断钩保护、紧急安全控制、电阻制动和空气制动连锁等功能。26-L型制动机的主要部件分三部分:

(1)基础制动部分: 30-CDW空气制动阀、30-CW模块、26F控制阀和J-1继动阀。

操纵30-CDW空气制动阀,通过30-CW模块由总风给列车管充、排气,26F控制阀受列车管空气压力的变化和单独缓解和作用管充、排气的控制,使J-1中继阀控制机车制动缸的充气和排气,使机车得到制动和缓解。

(2)紧急制动部分:紧急制动阀和A-1充气遮断控制阀。

紧急制动阀安装在主操纵台一侧的地板上,用于紧急情况下实施制动。

A-1充气遮断控制阀是列车断钩分离时的保护装置。当列车分离或其他非自阀的原因,使列车发生紧急制动时,此阀能实现以下特性:

1)切断列车管充气、保证总风缸的风不被排到大气,不因此浪费系统的空气压力。

2)自动撒砂:在紧急制动作用过程中,能对车轮即刻实施撒砂辅助制动作用。

3)切断动力:保证切除牵引电机的动力。这可以减少列车拉断的可能。

4)电阻制动切断:通过切断电阻制动,使系统仅处于紧急制动。一旦紧急制动作用启动将不能停止。

(3)重联部分:MU-2A阀和F-1选择阀。F-1选择阀受MU-2-A阀的控制,实现机车的重联功能。

26L空气制动机的综合作用

26L空气制动机的综合作用是通过操纵自动制动阀和单独制动阀,使制动机各部件产生动作,从而使机车实现制动、缓解、紧急制动等功能。26L空气制动机的综合作用包括充气、自动制动、自动缓解、单独制动、单独缓解、紧急制动、断钩保护、电空制动连锁、紧急安装控制等。本文着重介绍断钩保护、电空制动连锁、紧急安装控制和紧急制动的缓解。

(1)断钩保护

断钩保护装置是在发生非自阀原因所造成的列车紧急制动(如紧急制动阀实施紧急制动,或由警惕装置、超速、断钩和其它装置发出惩罚紧急制动命令)时,列车管内的压力空气迅速排出,A-1充气遮断控制阀的作用鞲鞴处于紧急制动位,切断鞲鞴充入总风并上移,列车管遮断管充风,列车管充气通路被遮断,当列车管遮断管的空气压力达到设定值,动力切断开关断开,机车牵引动力和电阻制动自动切除并撒砂,以保证列车迅速停车。

(2)电空制动连锁

将自动制动阀手柄置紧急位或紧急制动阀实施紧急制动、或由警惕装置、超速、按紧急按钮、断钩和其它装置发出惩罚紧急制动命令后,当12号管的压力升到压力开关5KP的动作值约160kPa时,电阻制动或牵引动力自动卸载或加不上载并开始自动撒砂。 当制动缸压力达到(100±10 )kPa时,电阻制动卸载或加载无效。制动缸压力小于85kPa时,施行电阻制动有效。

将自动制动阀手柄移到制动区的任何位置后,机车施行电阻制动时,自动常用制动与电阻制动联锁电磁阀3YV得电,制动缸压力自动缓解,并降到0。机车施行电阻制动后,自动常用制动与电阻制动联锁电磁阀3YV得电,将自动制动阀手柄从缓解位移到制动区内的任何位置,制动缸压力均为0。当电阻制动切除以后,制动缸压力立刻由0升到自动制动阀手柄所在位置所对应的压力值。 (3)紧急安全控制

由警惕装置、超速、按紧急按钮和其它装置发出惩罚紧急制动命令后,当21号管的空气压力降到550kPa时,紧急安全控制空气压力调节器常开触头断开,紧急制动电磁阀失电,机车或列车实施空气紧急制动。如要缓解由紧急安全控制引起的紧急制动作用,需操作如下:将制动阀的选择阀手柄置OUT位,移自动制动阀手柄到紧急位,停留时间超过30s,移自动制动阀到手柄HO位或SUP位,直到状态显示屏上的紧急制动状态显示灯熄灭后,(大约30~60s),(完成以上操作以后,21号管的压力逐步建立,直到升至690 kPa,紧急安全控制空气压力调节7KP重置),移动动阀的选择阀手柄到FRT或PASS位,再将自动制动阀手柄移到缓解位,使机车或列车空气紧急制动缓解。

(4)紧急制动的缓解

由自动制动阀手柄、警惕装置、超速、按紧急制动按钮、断钩和其它装置发出惩罚的紧急制动作用的缓解,需将制动阀的选择阀手柄置OUT位,再将自动制动阀手柄移到紧急位,停留时间超过30s后,移自动制动阀手柄到HO位或SUP位,待状态显示屏上的紧急制动状态显示灯熄灭后,移制动阀的选择阀手柄到FRT或PASS位,再将自动制动阀手柄移到缓解位,当12号管的压力降到压力调节器5KP的释放值约80kPa时,电阻制动或牵引动力加载功能恢复并停止撒砂。

26L制动系统主要参数

26L制动系统主要参数如表1所示:

辅助用风系统

(1)解钩

本机车装有自动车钩,通过操作操纵台上的解钩按钮来控制解钩电磁阀的通断,从而控制解钩管的充、排风,实现自动车钩的解钩。

(2)撒砂系统

撒砂有自动和人为撒砂,人为撒砂由设在机车操纵台下的脚踏开关来控制。主台及副台分别都配有一个脚踏开关,当需要人为撒砂时,踏下脚踏开关,行驶方向的撒砂器撒砂。自动撒砂是由微机控制在紧急制动、机车空转或滑行时自动撒砂。

(3)风喇叭系统

风喇叭安装在司机室顶部,每端各装有1个高音喇叭和一个低音喇叭。由设在机车操纵台上的按钮开关及操纵台下的脚踏开关来控制。按下操纵台上的喇叭按钮或踏下脚踏开关,操纵端风喇叭电磁阀得电,风喇叭鸣响,并通过微机记录风喇叭工作状态。

(4)控制用风系统

控制用风系统主要是给电气系统空电开关等辅助用风装置提供符合压力和清洁度要求的压力空气。

基础制动

每个转向架有3根轴,装有6个独立作用的单元制动器,其中中间轴采用可连接手制动装置的单元制动器。每个单元制动器装有2块闸瓦,方便更换,且有利于制动时的接触与散热。SDD7型内燃机车使用的是我公司自行研制的QB-11和QB-11S型单元制动器,其中,QB-11S型单元制动器能与手制动装置相连。该单元制动器利用不自锁梯形螺纹结构实现闸瓦间隙自动调整。

手制动

手制动装置是利用人力操纵产生制动作用的装置。用于在线路上机车的停放,防止溜逸。顺时针旋转手制动手轮实施机车制动,逆时针旋转手制动手轮实施机车缓解。手制动装置的能力能够保证在15‰的坡道上驻车。

3 机车线路考核

本SDD7型内燃机车已于2013年初运抵阿根廷,并陆续开展了机车的静态试验、线路上的动态试验和运用考核,在圣马丁线运用考核结果初步表明,该制动系统满足用户的使用要求。

参考文献:

[1]胡艾平.太行型内燃机车遥控电空制动系统[J].内燃机车,2010(438).

[2]夏寅荪.ND5型内燃机车[M].河北:中国铁道出版社,1988.

[3]智廉清. 关于26-L、JZ-7、DK-1等三种机车制动机的浅析[J].中国铁道科学,1985(02).

[4]戚墅堰机车车辆厂.东风11型内燃机车[M].北京.中国铁道出版社,1997.

有关浅谈电力机车制动机论文推荐:

1. 电力机车制动相关论文

2. 有关电力行业技术论文

3. 浅谈电气工程及自动化论文

4. 浅谈部队车辆安全管理论文

5. 浅谈交通安全教育论文

6. 有关大专机械专业毕业论文

7. 电力工程建设管理论文

电力车驱动机构分析与研究论文

电力机车主断路器常见故障现象.原因分析及改进建议:电力机车主断路器常见故障现象

电力机车司机室噪声控制研究 随着人们对噪声危害认识的不断深入和环保意识的加强,司乘人员对机车司机室乘坐舒适性也提出了更高的要求。如GB/T3450- 2006徽道机车和动车组司机室噪声限值及测量方%})规定电力机车司机室内噪声限值78 dB }!},参照LJIC651标准,HXDl型机车技术合同规定该机车司机室内部噪声限值为75 dB C}。同时,机车司机室的噪声水平也直接影响到司机的观察能力和反应能力,与行车安全有着密切的关系。所以,电力机车司机室噪声控制研究变得十分迫切。测点位置测点距司机室地板上表而而高度位置/m分析说明0315 入口门40 46 50走廊门39 4043 38侧窗3R 42 48噪声测试及分析前窗42 41 45隔声量在敏感频率段较低,山于内面板穿孔所致,改为无孔板可以大大提高该部分隔声量800 Hz对应36 dB,波动剧烈,说明该处「1的隔声量和密封差,需提高隔声量800 Hz对应44 dB,波动剧烈,说明该处窗的隔声量、密封和窗下移动开口部分漏声,需加强该部分设计250 Hz对应37 dB. 800 Hz对应38 dB.波动剧烈,该处窗有共振现象,需设法避兔此现象发生 木研究以HXD 1型机车为研究对象,分别于2008年3月和7月对}D 1型机车进行了静态和大秦线正常运营动态噪声测试,为电力机车司机室噪声控制研究提供了依据。隔声量测试分析 在静态测试过程中,对HXD 1型机车的入口门、走廊门、侧窗、前窗进行了隔声量测试,测试结果及分析说明如表1所示。噪声源测试分析测点布置 在机车底架靠变压器梁的轮轨处布置两个测点,用于测试轮轨噪声。机械间布置一个测点,用于测试机械间噪声。在司机室按不同高度布置4个测点,用于测试司机室包括司机座椅、侧窗、入口门、走廊门位置的不同位置没有明显的变化。其总声压级大小均为90 dB <},主要频率范围出现在3155 000 Hz之间,呈明显的宽频带特性。与图1比较可以发现,机械间内的噪声峰值和轮轨噪声峰值频率基本一致,说明机械间的噪声有一部分来源于轮轨噪声,但由于机车底架地板等的隔声作用,传到机械间的轮轨噪声在传递过程中得到了较大的衰减,因此可以推断,机械间的噪声主要是机械间里面的设备产生的。 如图3所示,机车不行驶,压缩机运行,在变频风机以频率30 Hz运行时,测点频率、声压曲线变化比较平滑;当变频风机以60 Hz频率运行时,测点声压值160 Hz以下的低频声压值增加较大。在1 600 Hz频率范围出现尖点,最大声压值为102 dB (}。说明变频风机以60 Hz运行时在1 600 Hz频率范围左右的噪声声压值影响最敏感。-闷卜-匀速15 knvh一‘一匀速7U km!h┌───────────────────┐│资 │├───────────────────┤│/\ │├───────────────────┤│户犷曰汉,。\. │├───────────────────┤│ ‘冲声褚一-一卜叫以冻 ││心峪_尸尸r1‘.、‘ │├───────────────────┤│」.。尸今杯、 │├───────────────────┤│”/、压缩机运行,变”风机:;OI-Iz运行 │├───────────────────┤│‘月一~压缩机运行,变领风机tif)H:运行 │└───────────────────┘10帕卯豹7060旬

机车牵引电机论文的研究方案

摘要:随着近几年我国高速铁路的投入运营和快速发展,人们出行变得方便快捷。动车组安全运用与维修的问题就变得更加突出。结合CRH5型动车组多年的运用经验积累,对CRH5型动车组的牵引传动系统的特点及原理进行深入研究、探讨,为 CRH5型动车组现场作业人员对牵引传动系统的知识学习及应急故障处理提供指导。 关键词:CRH5动车组 牵引 传动系统 1 牵引传动系统原理 CRH5型动车组牵引传动系统简介 牵引传动系统相当于动车组的心脏,将电能从接触网吸收下来,传输到各个电气设备,使之正常工作。如果牵引传动系统故障,列车可能会影响运行速度,旅客服务品质,甚至无法开动,更严重会造成救援等后果。 CRH5型动车组牵引系统使用交-直-交传动方式,主要由受电弓、主断路器、牵引变压器、牵引变流器及牵引电机组成。受电弓通过电网接入25kV的高压交流电,输送给牵引变压器,降压成1770V的交流电。降压后的交流电再输入牵引变流器,逆变成电压和频率均可控制的三相交流电,输送给牵引电机牵引整个列车。 牵引基本动力单元由1台牵引变压器、2台牵引变流器、8台牵引电机构成,1台牵引变流器驱动4台牵引电机。四台牵引电机并联使用。四台牵引电机特性差异控制在±5%以内,以便电流负荷分配均匀。 CRH5型动车组有两个相对独立的主牵引动力单元。正常情况下,两个牵引单元均工作。当设备故障时,M1车和M2车可分别使用。另外,整个基本单元可使用VCB(断路器)切除,不会影响其它单元工作。 型动车组牵引传动系统布置 主牵引系统布置:3、6号车车下各设一台牵引变压器,而1号车、2号车(M1)、4号车(M2)、7号车(M1s)、8号车的车底下均悬挂一台牵引变流器,及车下转向架分别安装4台牵引电机。 其中3号车和6号车车顶均设受电弓、保护接地开关EGS、故障隔离开关一套,3、4号车之间和5、6号车之间的车顶上设置高压电缆连接器,4、5号车之间的车顶上,设置了高压电缆用倾斜型电缆连接器。 型动车组牵引传动系统单元构成 CRH5型动车组牵引传动系统每个动力单元的牵引设备都由下列设备组成: 1.一个高压单元,具有受电设备、保护装置和主变压器,安装在TTP和TTPB车上。 2.一个主变压器,采用强制油冷却,安装在TTP和TTPB车上。 3.第一牵引动力单元具有3个牵引/辅助变流器,第二牵引动力单元具有2个牵引/辅助变流器,每台牵引/辅助变流器驱动2台牵引电机。牵引/辅助变流器获得可调节的直流电压,并驱动异步牵引电机的牵引和再生制动。在过电分相时由于再生制动短时停止工作,过渡的制动电阻器投入使用。每辆动车配置2台异步牵引电动机,底架悬挂,单台电机设计持续功率可达到550kW,并且车轮的直径差(在相同车轴上)接近3mm时也能够提供500kW的负载。 2 牵引传动系统受电弓 受电弓系统的概述及工作原理 压缩空气通过电控阀经过滤器进入精密调压阀,精密调压阀用于调节受电弓接触压力,输出压力恒定的压缩空气,其精度偏差为± Mpa。因为气压每变化(㎡)会使接触压力变化10N。期刊文章分类查询,尽在期刊图书馆 注:精密调压阀调压阀在工作过程中,为保证输出压力穏定,溢流孔和主排气孔始终有压缩空气间歇性排出,属正常现象。 压力表显示值仅作为参考,应以实测接触压力为准。单向节流阀用于调节升弓时间,单向节流阀用于调节降弓时间。如果精密调压阀出现故障,安全阀会起到保护气路的作用。 注:精密调压阀运用中不得随意改变其调整值,为保证各种控制阀正常使用,应严格防止水和其它杂质渗入。 3 CRH5型动车组牵引变流器 牵引变流器的概述及控制原理 牵引/辅助变流器系阿尔斯通技术引进经国产化后用于CRH5型动车组的变流装置,内部分别有两组四象限整流器(4QC)和逆变器,同时还有一组辅助逆变器,每一组逆变器控制一台568kW 牵引电机,辅助逆变器向车载三相400V/50Hz用电设备供电。变流器的主要功能是将25KV/50Hz的单相交流电压通过牵引变压器降压后,输出单相AC1770V/50Hz的电压,经四象限整流得到3600V的中间直流电压,再经逆变器输出电压频率可调的0~2808V的三相交流电压来控制每台电机;同时辅助逆变器从中间回路输入直流3600V电压经斩波降压逆变后输出三相400V/50Hz的交流电压,为辅助系统的设备供电。变流器由8个组件平台构成,它们分别是两个辅助组件平台,两个牵引模块组件平台,两个用户组件平台,一个冷却系统平台,一个电阻组件平台,8 个平台通过中央线槽连接形成一个整体。 牵引/辅助变流器主要由两组四象限整流器(4QC)、牵引逆变器和一组辅助逆变器组成。每一组牵引逆变器控制一台568KW牵引电机,辅助逆变器向车载三相400V/50HZ用电设备供电。变流器的主要功能是将牵引变压器降压后输出单相AC1770V/50HZ的电压,经四象限整流得到3600V的中间直流电压,再经牵引逆变器输出电压频率可调的0~2808V的三相交流电压来控制每台电机;同时辅助逆变器从中间回路输入直流3600V电压经斩波降压逆变后输出三相400V/50HZ的交流电压,为辅助系统的设备供电。 4 CRH5型动车组牵引电机 牵引电机概述及控制原理 列车上使用的电机是一种三相异步、六电极、强迫通风型电机,带有定子开启式分层,不带机壳。每节动车装有2个牵引电机。每个牵引电机由一个牵引逆变器提供能源8 车编组的每列列车上有1 0个电机。6FJA3257A 牵引电机是一个交流鼠笼式电机,敞开式的并且是强制风冷的。 该电机结构简单,重量轻,性能可靠,故障率低,功率大,符合列车运行对电机的要求型号YJ87A(6 FJA3257 A),是三相鼠笼式异步电机,六极,采用开放式强迫风冷,通过两台可提供恒定风量的风机冷却,通风装置设在电机两侧。电机安装一套速度检测系统供监控之用,并且在定子线圈上预埋温度传感器用来电机定子温度测量,牵引电机采用弹性吊架吊装于车体底架上,电机通过万向轴与转向架上的齿轮箱连接。 电机与车辆的机械连接是通过带弹性悬挂装置的支架实现的。运动是通过一个适当的万向轴和变速箱向电机轮对传输的。 牵引电机和万向轴之间通过一个安全装置机械性连接,假设在牵引电机两相线圈之间发生短路,安全接头将会保护万向轴和齿轮箱避免过转矩。当过转矩时,安全装置中连接部分滑动,内部油压增大, 剪切阀的顶部被打开,这时在安全装置内释放油压,这个过程在几毫秒内发生,释放后安全装置将会在轴上自由转动。 5 结论 随着高寒动车组的大量投入使用,CRH5型动车组的相关知识、技术和应急处理技能的普及迫在眉睫,对于各个层面都是十分重要的,尤其是CRH5动车组牵引传动系统的知识和应急处理技能尤为重要。本论文结合CRH5型动车组多年的运用经验积累,对CRH5型动车组的牵引传动系统进行深入研究、探讨,希望通过本文的介绍能提高CRH5型动车组现场作业人员对牵引传动系统的学习及应急故障处理的能力,保证CRH5型动车组的运行稳定性。

机车车辆整车可靠性指标的探讨摘要:通过对机车车辆整车的可靠性指标进行探讨,提出了MDBF、MDBFF和上线率作为机车车辆制造企业产品可靠性指标的建议,为制造企业进一步满足用户要求、开展产品可靠性的研究奠定基础。关键词:机车车辆;可靠性指标;平均故障间隔距离;平均功能故障间隔距离;基本可靠性;任务可靠性0引言随着我国国民经济的快速发展,交通、物流与日俱增。铁路运输担负了全国货运总量的70%和客运总量的60%。作为承担铁路运输的装备———机车车辆运用的安全准点,是保证铁路运输的关键因素之一。因此要求机车车辆具有很高的可靠性。最新的国际铁路行业标准IRIS更是明确提出了对RAMS(可靠性、可用性、可维护性和安全性)的要求。因此提高产品的可靠性,已是铁路装备制造企业参与国际竞争的关键因素。由于我国对机车车辆整车可靠性的相关研究还处于初步阶段,目前只能参照其他系统的可靠性标准,凭经验及大致的统计数据来提出可靠性的要求,尚未建立成熟的可靠性指标和验收体系,使得机车车辆整车可靠性管理不尽人意。因此开展机车车辆可靠性要求的研究,建立科学规范的机车车辆可靠性指标和验收体系对于机车车辆制造企业具有深刻的意义。由于机车车辆整车的可靠性指标及其验证方法极为复杂,本文仅对其可靠性指标的建立进行探讨,并提出建议。1机车车辆整车可靠性指标现状目前从机车车辆整车的技术文件中可以看到,涉及到的可靠性指标基本上为机破率、临修率和碎修率。然而,在具体使用机破率、临修率和碎修率来考核机车车辆整车的可靠性时将存在着一些问题。根据IEC60050(191)的定义,可靠性是“产品在规定的条件下和规定的时间区间(t1,t)2内完成规定功能的能力”,它的定量化指标———可靠度,就是“产品在规定的条件下和规定的时间内完成规定的功能的概率”。因此,实际上讨论可靠性就是讨论故障概率。机车车辆机破率,是以在用机车车辆总运行公里数除以从时间t=0至时间t=t1的累计机破故障数量而得到的比率。机车车辆临修率,是以在用机车车辆总运行公里数除以从时间t=0至时间t=t1的累计机车非修程入库检修的故障数量而得到的比率。机车车辆碎修率,是以在用机车车辆总运行公里数除以从时间t=0至时间t=t1的累计机车非修程不入库检修的故障数量而得到的比率。这都是一种累积故障概率(F()t)。首先,由于这种累积故障概率考核的是所有在用的特定机型的机车车辆,那么在用的机车车辆的运行公里数的大小对累积故障概率的影响很大。运行公里数越大,累积故障概率越小。同时由于每一台(批)机车车辆投入运用的时间不同,按照产品故障浴盆曲线的原理,出现的故障类型和概率是不同的。而我们就特定时间统计所有机车车辆的运用,就可能出现故障类型和概率的偏差。其次,可靠性分为固有可靠性和使用可靠性,也可分为基本可靠性和任务可靠性。机破率、临修率和碎修率,考核的是固有可靠性、基本可靠性,还是考核使用可靠性、任务可靠性,必须加以说明,否则容易对可靠性产生不同的理解,从而采取不同的可靠性保证方案。第三,机破率的统计,以导致任一列车晚点5 min(以京广线为例)的设备故障为机破故障。然而,在实际运行中,当设备故障后,影响列车晚点的因素是多方面的,它不仅与故障类型、系统的可维修性有关,还与司乘人员的技术水平、产品设计的冗余等有密切关系。如:机车运行途中硅机组因电容击穿显示主接地故障,司乘人员隔离部分电机维持运行,正点到达,未造成机破,但实际上产品出现了故障;有时,也可能因培训不到位,司乘人员对产品不熟悉,可能操作不当,使得列车晚点而导致机破,但产品本身却未出现故障。从上述分析可以看出,机破率、临修率和碎修率难以真实、全面的反映产品的可靠性,对推动制造企业提高产品可靠性的作用有限。因此,有必要对机车车辆整车的可靠性指标加以研究与探讨。2机车车辆整车可靠性指标国际电工委员会(IEC)、欧洲标准(EN)均针对轨道交通制定了可靠性要求,即IEC 62278、EN 50126、EN50128、EN 50129等。但这些标准仅给出了轨道交通适用的可靠性典型参数示例,不具有实际的操作指导意义。通过对比IEEE有关标准和机车车辆实际运行经验,在考虑机车车辆整车可靠性指标时,建议使用平均功能故障间隔距离(Mean Distance Between Functional Failure,MDBFF)、平均故障间隔距离(Mean Distance Between Fail-ure,MDBF)以及机车车辆上线率(On Line Service Rate)三个指标来综合衡量机车车辆整车的可靠性。MDBF作为机车车辆整车基本可靠性的特征量,可以反映出整车运用对维修人员、维修时间、维修费用、备品备件需求的要求。一个系统基本可靠度低,即使能够满足任务可靠度的要求,也会导致系统维护成本高。或者说通过设备冗余的保证,虽然能够满足任务可靠度,但其后发生的维修成本也是不可忽视的,由此带来的系统复杂程度增加,系统基本可靠性也会降低。从国际轨道交通装备制造企业设立的质量指标来看,有6项指标属于MDBF要衡量的范围。具体如下:1)零公里故障:产品到段尚未正式投入运用阶段出现的故障。2)早期故障:产品投入运用至定义的最短修程阶段出现的故障。3)运行故障:产品在正常运行中出现故障但能到达目的地。4)非定期检修:不在规定的修程时间所进行入库检修和不入库检修。5)停机故障:产品在运行中突然停机,但因重联或连挂的原因能够被牵引到达目的地。6)使命故障:产品在运行中故障而不能到达目的地。MDBFF作为机车车辆整车任务可靠性的特征量,可以反映出整车在规定的时间段内或任务段内完成规定功能的能力。这个特征量与我们现行通用的机破率有近似之处,但量纲不同。作为制造企业,为了保证整车的任务可靠,不得不在整车设计中考虑一定的设备冗余,同时又得兼顾系统的简化,这是一对矛盾。MDBF和MDBFF两项可靠性指标反映的是机车车辆在承担运输任务过程中的质量状况,它们均不能反映机车车辆不承担运输任务时的质量状况。有时,上线运行的机车车辆质量状况良好,没有出现故障,但在段备用的机车车辆质量状况却不佳,甚至不能上线运行。虽然MDBF和MDBFF两项可靠性指标能满足要求,但备用机车车辆的质量状况却无法满足用户的要求。因此,国际铁路行业引入了上线率这一指标。机车车辆上线率的定义是上线运行的机车车辆数与良好的备用机车车辆数之和除以总机车车辆数。上线率指标客观地反映了制造企业的服务质量、产品的可维护性和可用性水平,也影响了用户运输的可靠性,是用户目前关注的焦点之一。因此,机车车辆整车上线率也应当作为可靠性的指标。综上所述,可以将MDBF作为基本可靠性指标,衡量机车车辆整车对维修人员、维修时间、维修费用、备品备件需求的要求。将MDBFF作为任务可靠性指标,衡量机车车辆整车完成规定功能的能力。上线率作为整车可靠性的关联指标。3 MDBF和MDBFF的测算由于机车车辆是大型机电产品,不能简单以电子零部件或机械零部件来测算可靠性数据。虽然零部件本身故障模式的种类并不多,但成为整机产品后,需考虑的因素就比较多了,如各零部件所具有的故障模式的组合,由于零部件的组合而组成的(不是来自零部件的故障)故障模式的复合。因此从整机来看,形成大量近似函数的复合,其形式变得复杂。实际测算中,可以用威布尔概率纸测算故障概率直线的斜率,以获得形状参数m来确定故障的性质(m=1,偶然性故障;m>1,耗损性故障)。用指数分布来概算故障率λs,系统的每个单元都服从指数分布,则单元可靠度R(i)t=e-λit系统可靠度R(st)=e-λ1te-λ2te-λ3t……e-λnt=e-λst系统故障率λs=λi平均故障间隔时间MTBF=1/λs考虑到传统上机车车辆故障是按照运行公里数进行统计,加之机车车辆在段备用的时间对平均故障间隔时间将产生影响,因此建议采用平均无故障间隔距离(MDBF)来代替平均故障间隔时间进行可靠性的概算,仍然要统计1/λs。以配属三个机务段的某车型某年十月份的故障统计,来测算该车的MDBF和MDBFF,可以看出其与机破、临修的差异,如表1和表2所示。通时,RC回路中的冲击电流过大(为电容器最大工作电流的倍),使电容器加速老化,出现降级或损坏。电阻的功率为最大工作功率的倍,不能满足电阻的工作要求。2)采用改造后参数(R=Ω,C=18μF),在整流桥90°开放,晶闸管导通时,电容的放电电流的峰值只为改造前取值的1/3,电阻的功率也比改造前参数取值下降100 W左右。晶闸管关断时,电容器的放电电流峰值为改造前的1/2,更好地改善了整流元件的工作条件。3)改造后,在整流桥90°导通时,电容器的极限工作电流值只为最大工作电流的倍,电阻的极限工作功率为最大工作功率的倍。考虑到整流桥90°换向为瞬时发热,电阻有一定的散热时间,电阻出现烧损的可能性较小。4结语2007年底在新乡机务段和准格尔机务段,按照上述改造方案各试改了5台SS4改型机车,运行至今没有再次出现RC回路电阻和电容烧损击穿问题。说明该改造方案能解决SS4改型机车RC回路电阻和电容烧损击穿故障。并且该改造方案简单,改造成本低,适合在其他SS4改型机车进行批量改造。参考文献:[1]张有松,朱龙驹.韶山4型电力机车[M].北京:中国铁道出版社,[2]2001.[2]蒋家久.电力机车牵引绕组阻尼电路参数匹配对设备安全的影响[2][J].铁道机车车辆,2005(4).

车体底架上5型动车组牵引电机固定车体底架上面。

相关百科

热门百科

首页
发表服务