首页

> 期刊论文知识库

首页 期刊论文知识库 问题

面条质构特性研究论文

发布时间:

面条质构特性研究论文

泡面这东西,仿佛充满了魔力。

但凡一段时间没吃,再想起来就会馋得不行。

撕开包装、倒入碗里、冲入热水……最快 3 分钟,你就能饱餐一顿。

然而,这一幕要是被老妈发现,你可能又会听到那句耳熟能详的话:

泡面是垃圾食品

不要吃!

那么问题来了——

泡面究竟有多不好?

说到泡面,那就是有万般不好。例如,网上就有这么一个段子:

而在泡面的众多「危害」中,最广为人知、言之凿凿的还要数:吃一包方便面要解毒 32 小时。

据说,媒体工作者 Stefani Bardin 和肠胃病专家 Braden Kuo 合作进行了一个「实验」:让 2 名受试者分别吞下微型摄影胶囊,观察吃下去的方便面和手工拉面的消化情况。

结果是:32 小时后,手工拉面已经消化得差不多了,但方便面仍有残余。

图片来源:

这个实验确实存在,然而它和上面的结论可以说毫无关系。

实验本身的目的,是为了观察「精加工食品」和「天然食物」在消化过程中的差别。为了证明天然食物更健康,实验本身和文案就带有一定的倾向性。

除此之外,更扯的是:

微型摄影胶囊的摄影时间通常不会超过 8 小时,压根观察不到 32 小时之后胃里的状况。

实验结果就更是错得离谱,事实是——2 小时内,方便面和手工拉面都已经被基本消化。

只不过吃方便面的那位受试者的肠壁皱褶中,存在星点的油脂、色素痕迹与方便面残渣。

泡面本身的名声就不太好,这个实验一出,结论不知为何就从「2 小时内,方便面已经被基本消化」变成了

除此之外,关于泡面的谣言还有很多:

炸方便面用的油都是地沟油;

泡面桶上有石蜡,热水泡过会中毒;

经常吃泡面,尸体放一百年也不会腐烂……

当然,这些说法,没一个靠谱。

泡面并不是你想的那样

泡面可以说是人类食品加工史上的伟大发明。

它由华裔日本人安藤百福发明,最初的灵感据说来源于一种中国传统美食——伊面。

简单来说,最初的方便面,就是一份加了调味料包的油炸面条,而它的优势和劣势也来源于此:

不可以。经常吃方便面会对肠胃不好,平时应该多吃膳食纤维的蔬菜水果,有助于调理肠胃。

为了降低生产耗能,提高能源的利用率,该文通过引入保温加热工序以及优化速冻工艺参数,得到冷冻面条的节能加工工艺。从质构特性、白度值、糊化特性以及水分状态等方面,结合感官和单位耗电量对冷冻面条工艺参数进行了优化。得到最佳工艺参数:煮制3 min保温加热4 min,在?40℃下速冻20 min。此工艺下的感官得分为(>75),单位质量耗电量为 kW·h/kg。与原生产工艺相比:在色泽、表现状态、适口性、光滑性、食味、总分等感官指标上没有显著性差异(P>),在能耗方面降低(P<)。结果表明:在保证一定品质的前提下,通过保温加热和减少速冻时间来达到节能的目的是可行的。成本分析结果表明:使用节能工艺生产冷冻熟制面条可节省805元/t。以上研究结果为探索冷冻面条的节能工艺提供生产依据和参考。

根本原因是蛋白质为基础的网状结构在面条中支撑。这种结构的形成与加工工艺和原辅料都有关系。题主问什么物质,那自然回答是小麦蛋白,也就是俗称的面筋, 但是蛋白质是有三维结构的,所以。。。这是一个很长的故事。。。有一门具体的学科叫淀粉改性学,这不是我的专长,干货没有,只能引用别人的著作。    蛋白质的质量反映了麦谷蛋白质和醇溶蛋白的类型以及在粗蛋白中所占的比例。1820年,Taddei用乙醇把小麦面筋分成两部分,溶于乙醇的部分定义为醇溶蛋白(Gliadin),不溶于乙醇的部分定义为麦谷蛋白(Gluten)。后来的研究表明,醇溶蛋白约占小麦蛋白的50,以单聚体形式存在,亚基之间不形成二硫键,分子量为30~78 KD,可根据A一PAGE的迁移率分为α,β,γ和ω四类,亚基数目多达111个。它具有粘性,但弹性较差。麦谷蛋白既具有粘性又具有延伸性,分子量较大。麦谷蛋白经硫基乙醇还原后,通过十二烷基硫酸钠聚丙烯酞胺凝胶电泳(SDS - PAGE)分级分离为组,即高分子量麦谷蛋白亚基(HMW-GS)和低分子量亚基(LMW-GS),前者约占麦谷蛋白的20 %,分子量麦谷蛋白亚基(HMW-GS)和低分子量亚基(LMW-GS),前者约占麦谷蛋白的20 %,分子量为90 ~150KD,主要决定面团的强度;后者约占80%,分子量为30~51 KD,主要决定面团的延展性。近20多年来,国内外学者对HMW一 GS进行了广泛深人的研究,证明HMW-GS的构成不仅与焙烤品质关系密切,而且与小麦面粉的其它加工品质也有很大关系。5+10亚基有助于提高面团的强度。有些LMW-C'TS对面条煮制品质也有正效作用。

变质岩岩石特性研究论文

游振东

[中国地质大学(武汉)]

1999年,庆祝新中国成立50周年之际,笔者曾著文回顾50年来的中国变质岩石学的进展[1]。进入21世纪,传统的地质学正在转向以“地球系统科学”为核心内容的现代地质学。在全球地质一体化的[2]形势下,中国地质调查局不仅在内地开展了新一轮的1:25万区域地质调查,而且大力在西部地区青藏、新疆等地,开展 1:25万 区域地质调查,对西部一些重要的变质地区,如藏南、昆仑、天山等地区进行了详细的填图,获得了许多珍贵的第一手资料,为我国变质岩石学和变质地质学的研究打下了坚实的基础[3]。本文拟从岩石学学科发展的角度来观察变质岩石学的成就和展望。

一、极端条件下的变质作用

如若从变质岩石学自身发展来看,近10年来极端条件下的变质作用(metamorphism under extreme conditions)研究逐渐受到研究者的重视。所谓“极端条件”是指变质温度、压力等外部因素有异于常规变质作用的范围(即t=250~800℃,p= 1~ GPa)。超高压变质作用、超高温变质作用甚低级变质作用以及冲击变质作用等极端条件下的变质作用,近年来在国内都得到长足的发展。

1.超高压变质作用

在变质地质学中,人们习惯用变质的地温梯度(geothermal gradient)来划分变质作用的类型,超高压变质作用是指地温梯度很低(小于10℃/km)、变质压力大于以上的变质作用,以致在石榴子石、锆石等矿物中能够出现柯石英、金刚石等通常变质岩石中不可能出现的高压矿物。

20世纪80年代以来,在大别山—苏鲁一带发现的超高压变质作用,便是一种极端条件下的变质作用。它以榴辉岩及与之共生的片麻岩中普遍发现超高压标志性矿物——金刚石和柯石英的微细包裹体为特征,成为世界上出露条件最好、规模最大的超高压变质带,引起国内外学者的注意。近10年来的研究证明,此类岩石具区域性分布,西起天山,东延至阿尔金—祁连、东秦岭—大别山—苏鲁,构成横跨中国的“中央构造带”。超高压变质岩石的存在,揭示了陆壳物质可以深俯冲于地幔的深度。为了探索此类不寻常的造山带的深部构造,中国地质科学院地质研究所在国土资源部支持下,自2001年起,在江苏东海实施第一口中国大陆科学钻探(科钻一井),历时4年,终孔深度5000余米。全岩心钻进,加以地球物理等多学科交叉研究,获得了如下成果:大别-苏鲁汇聚板块边界的三维构造、组成及地球物理性质;探索超高压变质作用的性质与年代;探索超高压变质岩形成、折返过程中的地壳动力学与壳幔相互作用;研究地壳和地幔流体循环过程和矿化作用;建立研究地壳动力学和深部大陆地壳演化的长期观测实验室[4]。

超高压变质作用已经成为国际地质科学研究的热点,当前已发现的各个超高压变质地区研究日益深入,不断有新成果涌现;通过实验岩石学等手段探索岩石圈板块俯冲的深度;壳幔相互关系及流体循环等重大科学问题的研究都在深入开展。

2.超高温变质作用(ultrahigh temperature metamorphism)

属于麻粒岩相变质范畴,但不同于一般的麻粒岩的是变质温度大于800℃。以出现假蓝宝石(saphirine)、大隅石(osumilite)等高温矿物为特征。目前在南极、印度等地已有发现,国内仅黑龙江麻山群中有过假蓝宝石的报道。近年来,北京大学与日本Koshi大学 Santosh 合作,对内蒙古孔兹岩带重新进行研究,通过变质矿物组合、流体包裹体特征、独居石、锆石同位素年代学等方面,确定在原先认识的麻粒岩相岩石组合中,发现了如下超高温矿物组合:

假蓝宝石+石英;低Zn/Fe3+尖晶石+石英;高铝斜方辉石+矽线石+石英以及 高温中条纹长石。运用常规矿物温压计,据最新研究假剖面作相平衡模拟,查明该区变质作用的温度可达 1000℃,变质压力约 GPa。峰期变质之后继以近等压冷却过程 而后折返,形成近等温减压的途径。镜下显微构造、矿物反应和相平衡模拟说明岩石经历了逆时针的pT轨迹。

超高温变质矿物中保存有古流体,成分为 CO2,这与岩石中广泛出现无水矿物组合相一致。据独居石、锆石单矿物样品所作的化学和同位素年代学定年,超高温事件年龄为,属于古元古代的高温变质作用,并且发现从西部到东部,超高温变质事件年龄从 变到,显然有变新的趋势。据此,作者推测:内蒙古缝合带中的超高温变质事件,是古元古时期华北克拉通焊合进入哥伦比亚超大陆时,南面的鄂尔多斯陆块与北面的阴山陆块作斜向碰撞和剪刀式的闭合所引起的[5]。

内蒙古超高温变质带的确定,是我国变质地质学的一大进展。

3.甚低级变质作用(very low grade metamorphism)

甚低级变质作用,是指变质温度条件介于成岩作用与低级变质之间的变质作用。利用沸石、黏土矿物、绿泥石等低温变质矿物及其矿物组合,可以填绘出甚低级变质的等变线从而揭示其热构造,这对于碳氢资源远景预测可以起一定作用,因为一般认为:如果地温达到变质作用的范畴,碳氢资源的远景就要大大降低了。

在甚低级变质地区,因为变质温度低,矿物结晶粒度很细,一般岩石显微镜都很难辨识。伊利石结晶度是在甚低级变质地区定量划分岩石变质程度的重要方法,X射线衍射分析是测量伊利石结晶度最有效的方法。1962年以来,西方文献出现了不同的伊利石结晶度指数,如Weaver指数、Weber指数和Kubler指数等。北京大学王河锦,从X射线理论角度,确定出这些指数之间的关系式,改善了伊利石结晶度的测定方法和精度。

我国甚低级变质作用研究薄弱,20世纪90年代末索书田等曾运用甚低级变质的方法[6]研究广西右江的低温金矿床。进入21世纪,我国甚低级变质研究逐渐与油气地质研究相结合,有了显著进展。毕先梅等曾论述极低级变质作用与成矿作用的关系[7]。王河锦、朱明新以层状硅酸盐的结构变化与变质温压条件的关系,如伊利石、绿泥石结晶度,伊利石多型、结晶轴b0。值及应变特征等,分析研究了湖南广泛分布的板溪群及其上的下古生界页岩及川西北三叠系复理石的甚低级变质[8,9]。其中湖南湘东、湘西等地 4个剖面垂直面理应变沿剖面变化,同时用与国际可对比的伊利石结晶度等数据资料,确定中新元古界—下古生界的区域低温甚低级变质温度为250~400 ℃,但变质压力因时代不同而异,中元古界为中压型,新元古界—下古生界为中低压型。这些都加深了地质界对扬子地台这些古老岩石的认知水平。

4.冲击变质作用(impact metamorphism)

陨石撞击地球或其他天体,造成陨石坑,其周围岩石在极高的应变速率(106~109S-1)、瞬时高温(1000~10000℃)、动态高压(10~100 GPa)下产生的变质作用为冲击变质作用。从嫦娥1号等发回的数据解译出的照片可知,月球表面布满了大大小小的陨石坑,地球不同于月球和其他天体,在于其表面有厚约1000km的大气层,所以陨击地球的较小天体,进入大气层后因强烈摩擦而烧毁。所以地球上保留的陨石坑较少,据统计,全球已知的陨石坑有160多个。不少大型陨石坑是世界著名金属矿床的所在地,如加拿大的Sudbury,大多数小型陨石坑被开发成为旅游胜地,如德国南部的Ries、美国亚利桑那州的Meteor Crater[10]。

因为地表沉积物的覆盖,一个陨石坑的确定,需要做大量的研究工作。目前,我国已确定的陨石坑有海南的白沙,是1997年公开报道的[11];辽宁岫岩陨石坑,20世纪70年代就已发现,曾被认为是个旋转构造。经过40年反复研究,最近广州地球化学研究所与辽宁冶金地质公司合作,实施深达307m的科学钻探,在107~149m深度发现了一系列冲击波所产生的冲击效应:石英击变面状页理、含熔体玻璃的多相角砾岩和陨击玻璃等,陨击构造的性质得以确定。该成果 2009年公开发表[12],是我国在冲击变质方面的一大进展。

二、变质岩石学的教学

由于变质岩石学各个领域都获得了长足的进步,我国变质岩石学教学也有很大的进展。表现在:①不少中国学者的研究成果已被国外领先的变质岩石学教科书所采用;②中国地质大学(武汉)率先进行了《变质岩石学》英语教学试点,获得成功。

1.不少国内学者变质岩石学研究成果进入国外的教科书

长期以来国外学者对我国国内研究现状了解甚少,以致在国外出版的《变质岩石学》教科书中引用的普遍是国外学者的成果。近年来随着改革开放的步伐加大,中西方学术交流频繁。现在我国学者的成果渐渐在国外出版的教科书中出现了。

以 2011年Springer-Verlag 出版的 Kurt Bucher 和Rodney Grapes 合作编写的“Petro-genesis of Metamorphic Rocks”(8thed.)为例,就引用了12篇国内学者的成果。

1)吴春明教授2004~2007关于高级变质岩中地质温压计方面的论文有4篇被该书第4章“Metamorphic Grade”所引用。

2)张立飞教授(2003)发表了关于西天山超高压变质岩系深俯冲达150km发生极低地温梯度的组合,白云石反应生成菱镁矿+文石,属于变质岩中的“禁区”。该文被多次引用,该书第3章“变质作用过程”将其作为指定参考文献供读者阅读,在第6章“白云岩和石灰岩的变质”则被列为“Cited Reference”。

3)在第9章“变质基性岩”中还引用了7篇中国学者关于超高压变质的论文。在此就不一一列举。

2.《变质岩石学》的英语教学

国内《变质岩岩石学》的教学一向是作为《岩石学》的一个部分进行的,讲课时数高时达40学时,2001年以后《岩石学》从220学时减至150学时,变质岩更要相应缩减。为了加快我国高等教育与国际接轨,加快专业人才国际化培养,中国地质大学(武汉)地球科学学院,对理科基地班的《变质岩岩石学》课程进行了双语教学的改革,10年来,在桑隆康教授等的努力下,很好地发挥了英国岩石学家Roger Mason的作用,进行英语《变质岩岩石学》教学,克服重重困难,取得良好的成绩,在教育部理科教学评估中得到充分肯定[13]。

Roger Mason教授在教学中除了介绍我国国内典型变质岩产地之外,还详细介绍英国苏格兰的巴罗带、挪威sulitjelma 变质带、英国skidaw花岗岩接触带的接触变质等,极大开阔了学生的视野,深入了解掌握了变质地质学的工作方法。桑隆康与 Roger Mason 合作编著的《变质地质学》也于2007年作为中国地质大学“十一五”规划教材出版,并获得2009年度湖北省教学成果二等奖[14]。

《变质地质学》的问世,《变质岩石学》双语教学的成果,为今后《变质岩岩石学》的教学质量的提高,奠定了良好的基础。

回顾近10年来变质岩石学研究的进展,可以发现:①与解决社会经济发展重大问题相结合,在生产实际中发现问题、解决问题,是变质岩石学进一步发展的原动力;②密切注意学科发展前沿,抓住热点问题,投入研究力量,是提高学科理论水平的必由之路;③加强国际学术交流,开阔研究视野,是保证学科水平、提升国际竞争力的必要手段。

当前我国地质研究正从地质大国向地质强国迈进,加强变质岩石学、结晶岩岩石学、变质地质学的研究,是我国地质科学发展的关键之一。

参考文献

[1]游振东.五十年来中国的变质岩石学.见:王鸿祯主编.中国地质科学五十年.武汉:中国地质大学出版社,1999,144~152

[2]游振东.地质一体化——区域地质研究的新纪元.见:中国地质学会地质学史专业委员会第20 届学术年会论文汇编,2008,70~72

[3]孟宪来.在青藏高原空白区1:25万区域地质调查成果报告会暨“十一五”工作重点研讨会开幕式上的讲话.地质通报,2006,(2)

[4]Zhiqin Xu,Jingsui drilling in the Dabie-Sulu Ultrhigh pressure metamorphic belt,China EOS,Transactions,AGU 22th ,86(8):77~78

[5]Santosh S Tet ultrahigh-temperaturemetamorphism granulites in North China craton:implications for tectonic models on extreme crustal Research,2011

[6]索书田,毕先梅,周汉文.极低级变质作用:以右江中生代构造带为例.北京:地质出版社,1999

[7]毕先梅,莫宣学.成岩-极低级变质-低级变质作用及有关矿产.地学前缘,2004,11(4)

[8]Wang H,Rahn M,Tao X F et and metamorphism of Triassic flysch along Northwest Sichuan, Geologica Sinica 2008,82:17~926

[9]朱明新,王和锦.长沙-醴陵-浏阳一带冷家溪群及板溪群的甚低级变质作用.岩石学报,2001,17(2)

[10]游振东,刘嵘.陨石撞击构造作用的研究现状与前景.地质力学学报,2008,14(1):22~36

[11]王道经.海南白沙陨石坑.海口:海南出版社,1997

[12]陈鸣,肖万生,谢先德.岫岩陨石坑的证实.科学通报,2009,54:2777~2780

[13]杨坤光,龚一鸣,桑隆康,等.中国地质大学地质学专业主干课程建设与人才培养.武汉:中国地质大学出版社,2012

[14]Roger Mason,Sang Longkang.变质地质学(英文版).Wuhan:China University of Geosciences Press,2007

变质岩区地质构造环境比较复杂,但是变质岩区的地质构造活动和成矿关系十分密切,因此必须对变质岩区地质构造环境开展必要的深入的研究工作,编制变质岩区地质构造图。由于我国区域地质调查工作大部分从20世纪60年代到80年代完成,不同时期填制的地质图对地质特征的认识水平差别较大,因此必须按照新的理论观点对原有的资料进行综合分析,必要时应当开展野外补充调查工作,才能对变质岩区地质构造环境达到一定的认识程度,满足矿产预测工作的基本要求。变质岩区地质构造研究工作方法适用于陆块基底和造山带的构造研究。

一、区域变质作用特征研究

1.变质岩岩石学研究

岩石矿物成分组合、结构构造、矿物形成世代、标型特征、岩石化学特征、地球化学特征、包括微量元素稀土配分等。恢复原岩建造,分析变质作用过程中物质成分的迁移特征。

2.划分变质相带

确定空间分布特征,编制变质相带图。根据变质相带分布特征,分析构造热事件期次及空间分布特征,确定热中心。

3.常见区域变质相矿物组合(据马文璞,1992)

(1)蓝片岩相:高压低温变质作用形成。

发育蓝闪石+硬玉、蓝闪石+绿辉石、蓝闪石+硬玉+石英等特征组合。和绿泥石、多硅白云母、黑硬绿泥石、绿帘石、榍石、钠长石和石英共生。

(2)绿片岩相:重结晶作用早期阶段。

钠长石+绿帘石+石英,原岩为泥质岩中可见多硅白云母、绿泥石、榍石,有时出现黑云母。原岩为基性时可见绿泥石、阳起石、黑硬绿泥石、方解石。原岩为镁质岩石时可见叶蛇纹石、滑石和透闪石。

(3)绿帘石-角闪石相:变质作用中低级阶段,在绿片岩相和角闪岩相间过渡。

钠长石+绿帘石+普通角闪石。

(4)角闪石相,变质作用进入高级阶段。

普通角闪石+斜长石,典型矿物组合和原岩成分有关。

泥质岩:石英+硅线石+黑云母+白云母。

钙质岩:方解石+透辉石+透闪石(+钙铝榴石+黝帘石)

中基性岩:普通角闪石+斜长石+绿帘石+硅线石

镁质岩:透闪石+叶蛇纹石+滑石+直闪石。

(5)麻粒岩相:区域变质作用最高级阶段。典型矿物组合和原岩成分有关。

泥质岩:石英+条纹长石+矽线石+铁铝榴石(+黑云母、蓝晶石)

中基性岩:斜长石+透辉石+紫苏辉石(+石榴石)

钙质岩:方解石+透辉石+镁橄榄石(+方柱石、刚玉)

镁质岩:镁橄榄石+顽火辉石+尖晶石。

二、绿岩地体研究

绿岩带是指分布于太古宙古老陆块中的变质火山岩及变质沉积岩组成的变质地体。对成矿作用关系极为密切。现以绿岩带研究为主,同时对与其相关的花岗质岩石,以及高级变质基底区岩石特征简要介绍如下:

1.绿岩带地体特征

(1)绿岩带地体一般为宽数km至数十km,长数百km的带状或不规则带状地体,形成大量铁镁质矿物,呈向形构造,分布于大片花岗质岩石之中,变质一般为中低变质相,(高绿片岩相-低角闪岩相)。

(2)绿岩带下部层位为变质火山岩系列,主要岩石成分为拉斑玄武岩系列至钙碱性火山岩系列的变玄武岩、变安山岩为主。在火山岩系底部常见超镁铁质岩,有的地区发育有特殊的鬣刺结构,称为科马提岩,我国发现的主要是科马提质玄武岩相似的超镁铁质岩,也有发现科马提岩的报道。火山岩系上部成分为长英质火山岩类,由变粒岩、浅粒岩、云母石英片岩、绢云绿泥片岩等组成。绿岩带上部层位为变质沉积岩系,成分以碎屑岩、泥质岩类为主,有的地区发育碳酸盐类。

(3)构造特征:经历了强烈的多期变形作用,形成复杂的推覆片体,褶皱片体,常见岩浆底辟作用,韧性剪切带发育。经历了多期叠褶,发生强烈的构造置换作用,经常形成等斜褶皱造成的假单斜堆垛岩系。

2.花岗质岩石特征

构成花岗绿岩地体的另一部分主要是花岗质岩石、花岗质岩石分布范围比较广,一般形成时代和绿岩地体形成时代相近或稍晚,主要有片麻状花岗质杂岩体,底辟式花岗质岩基,钾质花岗岩侵入体。

(1)片麻状花岗质杂岩体占花岗绿岩地体中花岗质岩石的主体,岩性由片麻状英云闪长岩、奥长花岗岩、片麻状花岗闪长岩、片麻状二长花岗岩等岩石组成,和绿岩带接触带呈不规则状或过渡变化,岩体内常见绿岩包体。属绿岩带同构造岩浆活动产物。

(2)底辟式花岗质岩基:岩性由花岗闪长岩、英云闪长岩、奥长花岗岩组成、一般是等轴状分布。和围岩界线清楚,边部发育绿岩包体。一般在绿岩带变质-变形早期侵位。

(3)钾质花岗岩侵入体:呈小型长条状、不规则状、岩性为:二长花岗岩、钾长花岗岩等组成。属绿岩带变质变形作用晚期侵入。

3.绿岩带基底构造特征

研究花岗-绿岩地体必然涉及基底构造,称为高级变质区,属于太古宙陆核最古老的地体。变质程度达到高角闪岩相-麻粒岩相。该类地体过去往往和花岗绿岩地体没有严格划开,以“混合岩”处理,随着研究的深入,与花岗-绿岩地体之间存在显著的区别。其特征如下:

(1)“高级区”面积达到几百到上千km2,主要形成大小不等的椭圆形和不规则花岗质岩石构成的穹隆,其中80%以上由花岗岩类组成;由斜长角闪岩等岩类组成的表壳岩,呈包裹体赋存于花岗质岩石之中。

(2)花岗质岩石特征:高级区花岗质岩石岩性一般为灰色片麻岩、紫苏花岗岩组成,按照矿物成分和岩石化学、地球化学特征可以恢复为3种花岗岩:英云闪长岩、奥长花岗岩、花岗闪长岩、称为TTG组合。其主要特征为SiO2含量高,Na2O>K2O,矿物含量以斜长石为主,微量元素,稀土元素特征均反映岩浆深源成因特征。

(3)麻粒岩包体特征:高级区经常发育麻粒岩包体,主要成分由石榴石、斜长石、单斜辉石、紫苏辉石、角闪石、黑云母等组成。低Si,高Al,高FeO,贫Mg、低碱特征。此外,还可见到角闪岩包体由镁角闪石、斜长石、透辉石、黑云母组成。

(4)表壳岩:在高级区残留有面积较小的支离破碎的表壳岩。主要岩性为:超镁铁质岩类,辉石岩、角闪石岩等基性岩类,斜长辉石岩,斜长角闪岩,基性麻粒岩等。中酸性岩类包括中性斜长角闪岩类、斜长变粒岩、浅色麻粒岩类、斜长片麻岩类、变粒岩类、浅粒岩类等。此外有磁铁石英岩类。例图见图2-5、图2-6。

图2-5清原-夹皮沟花岗岩-绿岩带地质图

(据李俊建、沈保丰等,1994)

1.晚太古界绿岩带(清原群、夹皮沟群、和龙群);2.中太古界高级区表壳岩(辉南群、龙岗群);3.晚太古代钠质花岗岩;4.晚太古代钾质花岗岩;5.中太古代钠质花岗岩;6.紫苏花岗岩;7.燕山期花岗岩;8.华力西期花岗岩;9.韧性剪切带;10.断层及推测断层

图2-6清原地区太古宙地质图

(据李俊建、沈保丰等,1994)

1.后太古宙地层及岩浆岩;2.清原群组透由组;3.清原群金凤岭组;4.浑南群石棚子组;5.浑南群景家沟组;6.英云闪长岩;7.花岗闪长岩;8.英云闪长-奥长花岗岩;9.英云闪长质片麻岩;10.花岗闪长质片麻岩;11.奥长花岗质片麻岩;12.紫苏花岗岩;13.燕山期花岗岩;14.华力西期花岗岩;15.钾质花岗岩;16.变质花岗岩;17.粗斑状糜棱岩;18.糜棱岩;19.岩相界线;20.断层及推测断层;21.不整合;22.地理界线

三、变质核杂岩构造

(1)变质核杂岩的概念不同的研究者认识不完全相同。现将描述性特征说明如下:一般指深变质基底构造呈穹状或长垣状出露,形成“背形”构造,周边被盖层环绕基底,由古老深变质岩类(包括变质火山岩、沉积岩和侵入岩)组成,其顶部发育剪切滑脱带。

(2)变质核杂岩一般认为由于深部岩浆上拱而形成,或者由于伸展构造造成岩层减薄,深部基底上隆而形成。反映了深部热动力作用。

四、韧性剪切带

变质岩区控制构造格架,变质作用,岩浆活动的主要构造是韧性剪切带,因此识别韧性剪切带十分重要。韧性剪切带,规模大小不等,大者达数百上千km。某些板块主要边界多受韧性剪切带控制。其主要特征:

(1)韧性剪切带由线性强变形带与其间弱变形断片或岩块相间组成,强变形带主要形成糜棱岩类岩石,发育面理、线理、形成不同强度的线状带。

(2)韧性剪切带形成的构造岩石主要为糜棱岩类,根据其基质动态重结晶程度又可划分为各类由初糜棱岩到糜棱岩、超糜棱岩,直至形成构造片岩、构造片麻岩。高压应力矿物常见有:蓝闪石、硬柱石、柯石英、硬绿泥石、多硅白云母等。岩石中常可见平行面理的条带状长英质细脉、石英细脉等。

(3)韧性剪切带有关的宏观标志:

a.鞘褶皱,一般发育于剪切带强烈剪切部位,拉伸线理与褶皱平行。

b.新生面理:由矿物及矿物集合体定向分布形成面理。

c.拉伸线理:柱状矿物,板状矿物、平行定向,有的矿物颗粒被拉长,如所谓石英“扒丝”。

五、剥离断层

(1)主要指向深部变缓的大规模低角度正断层,向上和高角度正断层联合,剖面上造成部分地层缺失。

(2)上下盘岩石变形有明显区别,上盘以脆性伸展变形为主,下盘为韧性流变变形,发育糜棱岩,下盘岩石变质较深,上盘岩石弱变质或不变质。

(3)剥离断层经常成为不同构造层分界面。地表常常形成类似“飞来峰”和“构造窗”的“残留峰”,“剥离窗”。

六、构造混杂岩带

构造混杂岩带主要发育于不同板块接合带之间,一般长达数百km,宽数km至数十km。特征如下:

(1)不同时代,不同成因岩石互相混杂,包括深海相蛇绿岩、玄武岩、硅质岩、薄层远洋灰岩及陆缘沉积、杂砂岩、砂岩、泥岩类相互混杂堆积。

(2)多相变质岩混杂,可见高压变质岩类如榴辉岩相岩石、发育蓝闪石、硬柱石等应力矿物,有的形成含有柯石英、金刚石等标志矿物的超高压变质带。

(3)地层叠置关系混乱,形成基体和岩块两部分,基体物质一般由千枚岩、板岩、片岩等碎屑物组成,外来岩块由大小不等的包体组成,有榴辉岩、榴闪岩、镁铁质岩、蓝闪石片岩、硅质岩、灰岩、砂岩等等。

(4)有的地区出现低温高压变形变质带和高温低压结晶带并列的双变质带。

七、走滑剪切带

(1)走滑剪切带一般指近直立的断裂面,两侧岩块发生相对水平剪切运动,规模较大,长达上千公里或数千公里,位移达数十至上百km,一般浅部以脆性变形为主,深部以韧性变形为主。

(2)一般分为纵向走滑和横向走滑两类。纵向走滑主要与造山带平行延伸,经常沿地体拼合带发生,横向走滑,贯穿造山带或大陆地块。

八、多期褶皱研究

变质岩区褶皱叠加十分常见,因此应加以判别。一般通过编制岩性图的方法进行判别。根据特殊标志层,在图面上勾绘包络面的地质界线,如果发现异常形态(如穹盆状、弯钩状等),即应加以分析,必要时,通过野外调查寻找转折端,收集必要的面理、线理资料,以确定褶皱期次,以及构造应力场。

叠加褶皱的识别标志:

(1)早期褶皱轴面有规律的再褶皱;

(2)早期褶皱伴生的面理和韧性剪切面有规律地弯曲;

(3)两组不同类型和不同方向的面理有规律地交切;

(4)褶皱枢纽和伴生线理有规律地弯曲;

(5)褶皱位态有规律地倾竖或斜卧;

(6)大型褶皱转折端处存在横卧小褶皱,且大小褶皱轴面正交;

(7)大型褶皱岩层内发育有无根褶皱,香肠构造呈有规律地弯曲并在转折端横卧;

(8)穹隆和构造盆地呈等间距规律分布;

(9)褶皱平面或剖面形态各异,地质界线回曲,甚至呈镰状、耳状、蘑菇状和复杂多样形态。

九、古断裂的判别

(1)新断裂追踪,迁就古断裂;

(2)断层岩重新挫碎,成分复杂,结构构造被改造,新老断层岩共存。

(3)断层标志多样化,发育多向擦痕,断层角砾岩透镜体化等;

(4)多期次侵入岩体共存于断裂带中或与其成生联系有关的同一构造体系中;

(5)新断层重接、斜接、反接、截接古断裂。

以上第(二)、(三)、(四)、(五)、(六)、(七)、(八)、(九)等部分的内容根据傅昭仁、蔡学林(1996)。

十、变质岩区地质构造图的编制

例图见图2-7。

图2-7豫西秦岭群构造地质图

(据刘国惠、张寿广等,1993)

1.白垩系;2.上三叠统;3.上古生界;4.下古生界;5.秦岭岩界;6.大理岩;7.片麻岩;8.中生代花岗岩;9.古生代或元古宙花岗岩;10.闪长岩;11.超基性岩;12.韧性剪切带;13.构造混杂岩;14.片(面)理;15.断层;16.推覆构造

(1)根据区调资料详细收集变质岩岩石学资料。

(2)编制变质相带图,根据变质相以及原岩建造划分不同矿物组合的相带。

(3)太古宙变质岩区划分高级区及花岗-绿岩地体。

(4)进行构造解析工作,分析区域构造变形特征、判断构造组合:剥离断层及滑脱断层系、变质核杂岩构造、堆垛层构造,构造混杂岩带、韧性剪切带、韧性走滑构造。并在图面上加以表达。

(5)变质岩地质构造图的内容

a.岩性组合及产状分布;

b.变质相带界线;

c.由岩性层表示的褶皱构造;

d.伸展、收缩、剪切等大型构造组合,包括变质核杂岩构造、韧性剪切带、韧性走滑构造、剥离断层及滑脱断层系、堆垛层构造、构造混杂岩带等;

e.片麻理、片理等区域性面理构造;

f.岩浆侵入体;

g.不同变形特征的构造群落分区界线;

h.太古宙变质岩区应表示花岗绿岩地体。

(6)编写说明书。

岩质边坡是全部由岩体组成的边坡(土质边坡全部由土体组成)。《建筑边坡工程技术规范》适用于高度在30m以下的岩质边坡。而高于30m则称为高边坡。讲边坡的特征主要是研究边坡的变形、破坏以及稳定性分析。相较于土质边坡经常发生的坡面局部破坏和整体性破坏,岩质边坡的变形是指边坡岩体只发生局部位移或破坏,没有显著的滑移或滚动,不致引起整体失稳。而岩质边坡的破坏则是岩体以一定速度发生较大位移的现象(如,整体滑动、滚动和倾倒)。1.岩质边坡破坏的基本形式可概括为松动、松弛张裂、蠕动、剥落、崩塌、滑坡等。2.影响岩质边坡稳定性的因素主要有 岩体类型、地质构造、岩体结构(有时是决定性的影响)、水文条件、风化作用、人类活动等(1)岩体类型:岩石边坡的稳定性与构成边坡的岩石类型有较为明显的关系,一般:岩浆岩比沉积岩强,由沉积岩变成的变质岩较原岩强,单一岩比复杂岩石稳定,颗粒细的较粗的稳定,块状较片状稳定。(2)地质构造:区域地质构造复杂、褶皱较强烈、大的断裂带发育、地震等新构造运动活跃的地区,边坡稳定性差。(3)岩体结构影响:岩体结构对稳定性的影响有时是决定性的。沉积岩、副变质岩中存在的层理面,当岩层产状与边坡一致时,常成为岩石边坡破坏的滑动面。(4)水的影响:一是软化、侵蚀,二是对边坡的冲刷、冲蚀。(5)风化作用:使岩体强度减小,边坡稳定性降低;(6)人类活动:不适当开挖、植被破坏、地表或地下水动力条件的人为改变,都可能造成边坡破坏。好了,就敲这些吧。顺便查的资料,共同进步。

靶点蛋白结构与性质研究论文

G蛋白偶联受体(G Protein-Coupled Receptors, GPCRs),是一大类膜蛋白受体的统称。这类受体的共同点是其立体结构中都有七个跨膜α螺旋,且其肽链的C端和连接第5和第6个跨膜螺旋的胞内环上都有G蛋白(鸟苷酸结合蛋白)的结合位点。目前为止,研究显示G蛋白偶联受体只见于真核生物之中,而且参与了很多细胞信号转导过程。在这些过程中,G蛋白偶联受体能结合细胞周围环境中的化学物质并激活细胞内的一系列信号通路,最终引起细胞状态的改变。已知的与G蛋白偶联受体结合的配体包括气味,费洛蒙,激素,神经递质,趋化因子等等。这些受体可以是小分子的糖类,脂质,多肽,也可以是蛋白质等生物大分子。一些特殊的G蛋白偶联受体也可以被非化学性的刺激源激活,例如在感光细胞中的视紫红质可以被光所激活。与G蛋白偶联受体相关的疾病为数众多,并且大约40%的现代药物都以G蛋白偶联受体作为靶点。[1]G蛋白耦联受体的下游信号通路有多种。与配体结合的G蛋白耦联受体会发生构象变化,从而表现出鸟苷酸交换因子(GEF)的特性,通过以三磷酸鸟苷(GTP)交换G蛋白上本来结合着的二磷酸鸟苷(GDP)使G蛋白的α亚基与β、γ亚基分离。这一过程使得G蛋白(特别地,指其与GTP结合着的α亚基)变为激活状态,并参与下一步的信号传递过程。具体的传递通路取决于α亚基的种类(Gαs,Gαi/o,Gαq/11,Gα12/13).其中两个主要的通路分别涉及第二信使环腺苷酸(cAMP)和磷脂酰肌醇。参见AC系统(腺苷酸环化酶系统)。根据对人的基因组进行序列分析所得的结果,人们预测出了近千种G蛋白耦联受体的基因。这些G蛋白耦联受体可以被划分为六个类型,分属其中的G蛋白耦联受体的基因序列之间没有同源关系。A 类 (或 第一类) (视紫红质样受体)B 类 (或 第二类) (分泌素受体家族)C 类 (或 第三类) (代谢型谷氨酸受体)D 类 (或 第四类) (真菌交配信息素受体)E 类 (或 第五类) (环腺苷酸受体)F 类 (或 第六类) (Frizzled/Smoothened家族)其中第一类即视紫红质样受体包含了绝大多数种类的G蛋白耦联受体。它被进一步分为了19个子类A1-A19。[11]最近,有人提出了一种新的关于G蛋白耦联受体的分类系统,被称为GRAFS,即谷氨酸(Glutamate),视紫红质(Rhodopsin),粘附(Adhesion),Frizzled/Taste2以及分泌素(Secretin)的英文首字母缩写。[12]一些基于生物信息学的研究着眼于预测那些具体功能尚未明了的G蛋白偶联受体的分类。研究者使用被称为伪氨基酸组成的方法利用G蛋白偶联受体的氨基酸系列来预测它们在生物体内可能的功能以及分类。G蛋白偶联受体均是膜内在蛋白(Integral membrane protein),每个受体内包含七个α螺旋组成的跨膜结构域,这些结构域将受体分割为膜外N端(N-terminus),膜内C端(C-terminus),3个膜外环(Loop)和3个膜内环。受体的膜外部分经常带有糖基化修饰。膜外环上包含有两个高度保守的半胱氨酸残基,它们可以通过形成二硫键稳定受体的空间结构。有些光敏感通道蛋白(Channelrhodopsin)和G蛋白耦联受体有着相似的结构,也包含有七个跨膜螺旋,但同时也包含有一个跨膜的通道可供离子通过。与G蛋白偶联受体相似,脂联素受体(例如ADIPOR1和ADIPOR2)也包含七个跨膜域,但是它们以相反的方向跨于膜上(即N端在膜内而C端在膜外),并且它们也不与G蛋白相互作用。早期关于G蛋白偶联受体结构的模型是基于他们与细菌视紫红质(Bacteriorhodopsin)之间微弱的相似(Analogy)关系的,其中后者的结构已由电子衍射(蛋白质数据库资料编号:PDB2BRD和PDB1AT9)和X射线晶体衍射(PDB1AP9)实验所获得。在2000年,第一个哺乳动物G蛋白偶联受体——牛视紫红质的晶体结构(PDB1F88)被解出。2007年,第一个人类G蛋白耦联受体的结构(PDB2R4R和PDB2R4S)被解出。随后不久,同一个受体的更高分辨率的结构(PDB2RH1)被发表出来。这个人G蛋白耦联受体——β2肾上腺素能受体,显示出与牛视紫红质的高度相似,不过两者在第二个膜外环的构象上完全不同。由于第二膜外环组成了一个类似盖子的结构罩住了配体结合位点,这个构象上的区别使得所有对从视紫红质建立G蛋白耦联受体同源结构模型的努力变得困难重重。一些激活的即结合了配体的G蛋白耦联受体的结构也已经被研究清楚。这些结构显示了G蛋白耦联受体的膜外部分与配体结合了之后会导致膜内部分发生构象变化。其中最显著的变化是第五和第六跨膜螺旋之间的膜内环会向外移动,而激活的β2肾上腺素能受体与G蛋白形成的复合体的结构显示了G蛋白α亚基正是结合在了上述运动所产生的一个空穴处。G蛋白耦联受体参与众多生理过程。包括但不限于以下例子:感光:视紫红质是一大类可以感光的G蛋白耦联受体。它们可以将电磁辐射信号转化成细胞内的化学信号,引导这一过程的反应称为光致异构化(Photoisomerization)。具体细节为:由视蛋白(Opsin)和辅因子视黄醛共价连接所构成的视紫红质在光源的刺激下,分子内的视黄醛会发生异构化,从“11-顺式”变成“全反式”,这个变化进一步引起视蛋白的构象变化从而激活与之耦联的G蛋白,引发下游的信号传递过程。嗅觉:鼻腔内的嗅上皮(Olfactory epithelium)和犁鼻器上分布有很多嗅觉受体,可以感知气味分子和费洛蒙。行为和情绪的调节:哺乳动物的脑内有很多掌控行为和情绪的神经递质对应的受体是G蛋白耦联受体,包括血清素,多巴胺,γ-氨基丁酸和谷氨酸等。免疫系统的调节:很多趋化因子通过G蛋白耦联受体发挥作用,这些受体被统称为趋化因子受体。其它属于此类的G蛋白耦联受体包括白介素受体(Interleukin receptor)和参与炎症与过敏反应的组胺受体(Histamine receptor)等。自主神经系统的调节:在脊椎动物中,交感神经和副交感神经的活动都受到G蛋白耦联受体信号通路的调节,它们控制着很多自律的生理功能,包括血压,心跳,消化等。细胞密度的调节:最近在盘基网柄菌中发现了一种含有脂质激酶活性的G蛋白耦联受体,可以调控该种黏菌对细胞密度的感应。维持稳态:例如机体内水平衡的调节。当配体与受体结合,三聚体G蛋白解离,并发生GDP与GTP交换,游离的Ga—GTP处于活化的开启态,导致结合并激活效应器蛋白,从而传导信号;当Ga—GTP水解成Ga—GDP时,则处于失活关闭态,终止信号传递并导致三聚体G蛋白的重新组装,系统恢复进入静息状态北京时间2012年10月10日下午5点45分,2012年诺贝尔化学奖揭晓, 两位美国科学家罗伯特·莱夫科维茨(Robert J. Lefkowitz)和布莱恩·克比尔卡(Brian K. Kobilka)因“G蛋白耦联受体研究”获奖。[3]Brian K. Kobilka美国斯坦福大学医学院的教授,分子和细胞生理学和医学博士。他也是ConfometRx,一家专注于G-蛋白耦联受体的生物技术公司的共同创办人。2011年入选美国国家科学院院士。G蛋白耦联受体最新研究成果:今年Kobilka教授领导组成的国际研究团队一连公布了三篇论文,报道了G蛋白耦联受体(GPCR)作用复合物的详细晶体结构,这一发现被称为是一项真正具有突破意义的成果。G蛋白耦联受体(GPCR)是与G蛋白有信号连接的一大类受体家族,是最著名的药物靶标分子,调控着细胞对激素,神经递质的大部分应答,以及视觉,嗅觉,味觉等。目前世界药物市场上至少有三分之一的小分子药物是GPCR的激活剂或者拮抗剂,据报道,目前上市的药物中,前50种最畅销的药物20%就属于G蛋白受体相关药物,比如充血性心力衰竭药物Coreg,高血压药物Cozaar,乳腺癌药物Zoladex等等。由于GPCR属于膜蛋白——穿插细胞膜多达7次,而且构象形态多,因此其结构生物学分析不容易开展,而这篇文章完成了GPCR跨膜信号作用复合物的X-射线晶体结构,实现了许多人未能完成的任务,正如密苏里州大学的Stephen Sprang所说的那样:这是一篇真正具有突破意义的文章,多年以来,我们这行里的人都在梦想得到这个结构图,因为它最终会告诉我们GPCR受体是如何发挥作用的。在这篇文章中,研究人员利用X线晶体成像技术(X-ray crystallographic)对与G蛋白耦联的β2肾上腺素能受体复合物进行了研究,据报道,G蛋白是一种由三个不同亚单位组成的蛋白,它很容易与GPCR蛋白分开,并且解离成三个独立的亚单位,而且这个复合物的大小大约是β2肾上腺素能受体蛋白的2倍。如果要拿到β2肾上腺素能受体蛋白——G蛋白复合物的晶体结构首先就得开发出纯化该复合物并且让它稳定存在的新技术,比如让复合物与抗体结合,或者对数千种不同的结晶条件进行系列实验等等。另外一篇Nature文章则介绍了利用“肽酰胺氢-氘交换质谱”对这一信号作用复合物的蛋白动态所做的探测研究,同期Nature杂志还发表了特写文章“It's all about the structure”,称要确定这些复合物的结构特别具有挑战性。不过也有科学家表示,由于这项研究实验采用的是经过人工改造的,并且与抗体结合的GPCR蛋白复合体,这可能不能反应天然蛋白的真实情况。对此,Kobilka等人则认为他们已经做过蛋白功能实验,实验结果表明他们使用的蛋白与天然蛋白在功能上没有差异。领导这项研究的是著名的结构生物学,斯坦福大学Brian K. Kobilka教授,他曾2007年与另外一位科学家Raymond C. Stevens,利用T4溶菌酶融合蛋白方法解析了第一个非视紫红质GPCR晶体结构:人β2肾上腺素受体,这篇发表在Sciene上的文章被引上千次,后来他还独立地通过抗体片段介导法解析了人β2肾上腺素受体的结构。

我不知道你们的论文是什么要求,但可以给你些建议:论文应先写摘要,再写正文。从目的、方法、结果、结论这几方面写。具体的可参考范文,以下为蛋白质的结构,希望对你有所帮助。蛋白质一级结构(primary structure) 是指多肽链的氨基酸残基的排列顺序,也是蛋白质最基本的结构。它是由基因上遗传密码的排列顺序所决定的,各种氨基酸按遗传密码的顺序通过肽键连接起来。每一种蛋白质分子都有自己特有的氨基酸的组成和排列顺序即一级结构,由这种氨基酸排列顺序决定它的特定的空间结构,也就是蛋白质的一级结构决定了蛋白质的二级三级等高级结构。胰岛素(Insulin)由51个氨基酸残基组成,分为A、B两条链。A链21个氨基酸残基,B链30个氨基酸残基。A、B两条链之间通过两个二硫键联结在一起,A链另有一个链内二硫键。 蛋白质二级结构(secondary structure)二级结构是指多肽链借助于氢键沿一维方向排列成具有周期性的结构的构象,是多肽链局部的空间结构(构象),主要有α-螺旋、β-折叠、β-转角等几种形式,它们是构成蛋白质高级结构的基本要素。 α-螺旋(α-helix)是蛋白质中最常见最典型含量最丰富的二级结构元件.在α螺旋中,每 个螺旋周期包含 个氨基酸残基,残基侧链伸向外侧,同一肽链上的每个残基的酰胺氢原子和位于它后面的第4个残基上的羰基氧原子之间形成氢键。这种氢键大致与螺旋轴平行。一条多肽链呈α-螺旋构象的推动力就是所有肽键上的酰胺氢和羰基氧之间形成的链内氢键。在水环境中,肽键上的酰胺氢和羰基氧既能形成内部(α-螺旋内)的氢键,也能与水分子形成氢键。如果后者发生,多肽链呈现类似变性蛋白质那样的伸展构象。疏水环境对于氢键的形成 没有影响,因此,更可能促进α-螺旋结构的形成。β-折叠(β-sheet)也是一种重复性的结构,可分为平行式和反平行式两种类型,它们是通过肽链间或肽段间的氢键维系。可以把它们想象为由折叠的条状纸片侧向并排而成,每条纸片可看成是一条肽链, 称为β折叠股或β股(β-strand),肽主链沿纸条形成锯齿状,处于最伸展的构象,氢键主要在股间而不是股内。α-碳原子位于折叠线上,由于其四面体性质,连续的酰氨平面排列成折叠形式。需要注意的是在折叠片上的侧链都垂直于折叠片的平面,并交替的从平面上下二侧伸出。平行折叠片比反平行折叠片更规则且一般是大结构而反平行折叠片可以少到仅由两个β股组成。β-转角(β-turn)是种简单的非重复性结构。在β-转角中第一个残基的C=O与第四个残基的N-H氢键键合形成一个紧密的环,使β-转角成为比较稳定的结构,多处在蛋白质分子的表面,在这里改变多肽链方向的阻力比较小。β-转角的特定构象在一定程度上取决与他的组成氨基酸,某些氨基酸如脯氨酸和甘氨酸经常存在其中,由于甘氨酸缺少侧链(只有一个H),在β-转角中能很好的调整其他残基的空间阻碍,因此使立体化学上最合适的氨基酸;而脯氨酸具有换装结构和固定的角,因此在一定程度上迫使β-转角形成,促使多台自身回折且这些回折有助于反平行β折叠片的形成。蛋白质三级结构(tertiary structure)三级结构主要针对球状蛋白质而言的是指整条多肽链由二级结构元件构建成的总三维结构,包括一级结构中相距远的肽段之间的几何相互关系,骨架和侧链在内的所有原子的空间排列。在球状蛋白质中,侧链基团的定位是根据它们的极性安排的。蛋白质特定的空间构象是由氢键、离子键、偶极与偶极间的相互作用、疏水作用等作用力维持的,疏水作用是主要的作用力。有些蛋白质还涉及到二硫键。如果蛋白质分子仅由一条多肽链组成,三级结构就是它的最高结构层次。蛋白质四级结构(quaternary structure)四级结构是指在亚基和亚基之间通过疏水作用等次级键结合成为有序排列的特定的空间结构。四级结构的蛋白质中每个球状蛋白质称为亚基,亚基通常由一条多肽链组成,有时含两条以上的多肽链,单独存在时一般没有生物活性。亚基有时也称为单体(monomer),仅由一个亚基组成的并因此无四级结构的蛋白质如核糖核酸酶称为单体蛋白质,由两个或两个以上亚基组成的蛋白质统称为寡聚蛋白质,多聚蛋白质或多亚基蛋白质。多聚蛋白质可以是由单一类型的亚基组成,称为同多聚蛋白质或由几种不同类型的亚基组成称为杂多聚蛋白质。对称的寡居蛋白质分子可视为由两个或多个不对称的相同结构成分组成,这种相同结构成分称为原聚体或原体(protomer)。在同多聚体中原体就是亚基,但在杂聚体中原体是由两种或多种不同的亚基组成。蛋白质的四级结构涉及亚基种类和数目以及各亚基或原聚体在整个分子中的空间排布,包括亚基间的接触位点(结构互补)和作用力(主要是非共价相互作用)。大多数寡聚蛋白质分子中亚基数目为偶数,尤以2和4为多;个别为奇数,如荧光素酶分子含3个亚基。亚基的种类一般是一种或两种,少数的多于两种。稳定四级结构的作用力与稳定三级结构的没有本质区别。亚基的二聚作用伴随着有利的相互作用包括范徳华力,氢键,离子键和疏水作用还有亚基间的二硫键。亚基缔合的驱动力主要是疏水作用,因亚基间紧密接触的界面存在极性相互作用和疏水作用,相互作用的表面具有极性基团和疏水基团的互补排列;而亚基缔合的专一性则由相互作用的表面上的极性基团之间的氢键和离子键提供。

量性研究和质性研究论文

量性研究是指先规定收集资料的方法,通过数字资料来研究现象的因果关系。

量性研究在确定课题后要对研究形成假设方法:量性研究在确定课题后要对研究形成假设和科研设计,并规定收集资料的方法。意义是应用普遍,具有一定的客观性和代表性。量性研究一般只能解释所提出的研究问题变量之间的因果关系,验证理论或进一步发展某理论或模式。

研究对象的选择方法:

1、抽样方法。量性研究强调随机抽样,质性研究通常采用目的抽样、理论抽样等方法,研究对象往往被称为“参与者”。目的抽样是指研究者根据自己对研究对象特征的判断,有目的地选取某些研究对象进行研究。

2、样本量的确定。量性研究通常在研究设计时即确定好样本量,并且可用公式进行估算。在质性研究中,研究者在研究开始前通常无法明确具体的样本量,也无法用公式来估算。这种状态称为信息饱和。在质性研究中,当信息饱和现象出现时,即可停止资料的收集。

以上内容参考:百度百科-量性研究

都可以,看您擅长那个方面虽然您打算做量化研究,但在前期打基础时最好看一些比较经典的关于质性研究的论文,这样在前期时你可以将质性研究和量化研究进行对比,总结出相同点和相似点,这样更有利于您开展后续的量化研究。定量研究一般是为了对特定研究对象的总体得出统计结果而进行的。定性研究具有探索性、诊断性和预测性等特点,它并不追求精确的结论,而只是了解问题之所在,摸清情况,得出感性认识。定性研究的主要方法包括:与几个人面谈的小组访问,要求详细回答的深度访问,以及各种投影技术等。在定量研究中,信息都是用某种数字来表示的。在对这些数字进行处理、分析时,首先要明确这些信息资料是依据何种尺度进行测定、加工的,史蒂文斯()将尺度分为四种类型,即名义尺度、顺序尺度、间距尺度和比例尺度。

量性研究是考察和研究事物的量,用数学的工具对事物进行数量的分析。

量性研究建立在实证论的基础上,强调客观、严密和控制。认为现实是绝对的,只有一个由仔细测量决定的现实;所有个人行为都是客观的、可测量的;强调用正确的测量工具去测量行为,应避免个人价值观、感受或观点对测量过程的影响。

而质性研究建立在诠释主义的基础上,认为理解一个过程的最佳途径是去经历和体验这一过程。

质性研究的方法论以整体观为指导,认为任何现实都不是唯一的,每个人的现实观都不同,并随时间推移而有改变;由于每个人对事物的感受和认识不同,因此同一事物可以存在不同的意义;对事物的认识只有在特定的情形中才有意义。

扩展资料

量性研究的资料收集与资料分析是两个独立的过程,通常在资料收集完成后,运用统计学分析方法对数字资料进行定量分析。而质性研究的资料分析与资料收集常同步进行,是一个不断回圈的连续过程。

资料分析以语言文字为基础,研究者需运用自己的归纳和推理能力,对资料进行分类、综合和诠释。资料分析过程大致包括下列基本步骤。

1、将资料转录为文字 将录音或观察资料整理为文字。

2、反覆阅读文字资料 研究者反覆阅读整理好的文字资料、反覆听取录音、回忆当时的情形,找出其中有意义的陈述,进行反思、分析,寻找其间的关联。

3、进行编码 对有意义的句子或段落进行命名。在进行编码时,一般先反覆阅读前3份访谈资料,建立编码纲要和编码原则。然后以此为依据,反覆阅读其馀的资料,适当进行比较和修改。

4、提炼类别和主题 分析编码之间的关系,将相关的编码归为一个类别。随著分析的深入,各类别、研究对象、行为、事件之间的相互关系逐渐出现,这时可根据编码和类别进一步提炼出主题。

5、确认资料的准确性 在完成资料分析后,研究者通常会将形成的最终资料返回给研究对象,以请他们确认资料的准确性。

参考资料来源:百度百科-定量研究

一、性质不同 1、质性研究是以研究者本人作为研究工具,在自然情境下,采用多种资料收集方法(访谈、观察、实物分析),对研究现象进行深入的整体性探究,从原始资料中形成结论和理论,通过与研究对象互动,对其行为和意义建构获得解释性理解的一种活动。 2、量性研究是指先规定收集资料的方法,通过数字资料来研究现象的因果关系。 二、研究的目的不同 1、质性研究的目的在于描述和理解,是用系统的、互动的、主观的方法来描述生活经验,并赋予一定的意义。强调对研究对象有重要意义的观点和事实,而不是对研究者有重要意义的结果。质性研究着重探索现象的深度、丰富性和复杂性,有助于护理理论的发展以及发现新知识。 2、量性研究的目的是预测和控制。这种方法主要用来描述变量,检测变量间的关系,决定变量间的因果关系,可用于验证理论。 三、结果呈现方式不同 1、质性研究以叙述性的文字报告结果,将提炼的各个类别或主题内容描述出来。注重从参与者的自身感受出发来描述,常引用研究对象的原话,以支持类别或主题的内容。 2、量性研究的结果以数字资料为主,强调统计分析的正确性、数据的准确性和客观性。

研究性质论文

针对某一个(些)问题现象进行深入分析讨论并得到有意义结论的文章.研究性论文的基本原则:架构要清晰,表述要清楚,逻辑要合理,证据要客观,态度要严谨,尊重他人的贡献.设置研究标准,学术八股文,很明确的表达问题,研究方法要设置良好并很好的实施,数据假设要合理,有用促进知识.政策含义和建议,精确易懂有说服力恰当的语气!前人的研究,与客户的利益相关者有关,客观独立和谐,全面完整创新持久.研究性论问的写作技巧:1.题目必须,反映文章的研究内容,吸引人,选小题目,切忌大而空.摘要长文章必须.第三人称写,只讲结论,不要论述.简单明了,不讲意义.忌:"本文研究了什么,对什么有什么重要的意义的套路,因为这不能为别人提供任何你研究结论的信息.2.关键词必须:3-5个,便于检索,不要太偏僻.3.正文必须,参考文献必须!:"明确交代所要研究的问题,不要饶圈子;交代研究背景(为什么研究,目前的研究状况,有不要的话可在文献回顾中详细评述,仍可能取得的创新点)自己的文章的新颖处;文章的结构安排.(1).文献回顾:评述已有的研究进展,包括成绩与不足;客观公正评价,不要太动感情;还存在哪些有待开拓的领域.(不长一般不要有.)(2)模型的构建,或者假的提出;模型分析证明,数据分析或设计检验.对结果的分析或扩展的分析,结论(对政策的意义!)(3)正文的写作技巧:语言简练不要拖泥带水;开门见山,不要春秋笔法;多用短句,少用长句.最好一章节或第一句话概括;尽量避免连续用转折句或承接句;思路一定要清晰;分析问题要体现框架;一篇文章最好致力于解决一个问题.4.参考文献一定遵循学术规范,注释出引证的文献.

研究型论文的话呢,其实写的也就是对于某些事情,事物或者是科学观念进行深入研究,而写的论文,就叫研究型论文。

针对某一个(些)问题、现象进行深入分析、讨论并得到有意义结论的文章。研究性论文的基本原则:架构要清晰,表述要清楚,逻辑要合理,证据要客观,态度要严谨,尊重他人的贡献;设置研究标准,学术八股文,很明确的表达问题,研究方法要设置良好并很好的实施,数据假设要合理、有用,促进知识;建议要精确、易懂、有说服力、语气恰当。研究性学习的意义和特征:素质教育是要培养人的创造能力和创造意识,而培养创造能力的关键是对信息的加工、处理能力。在教学过程中创设一种类似于科学研究的情景和途径,让学生通过主动地探索、发现和体验,学会对大量信息的收渠、分析和处理,从而增进思维能力和创造能力,即研究性的学习。研究性学习是在素质教育和创新思维观念下出现的一种全新的教学方式,有效改变了学生的学习方式、教师观念、教师的教学方式。与传统的教学方式相比,研究性学习以学生发展为本,更有效地突出学生学的方式,形成一种让学生主动探求知识并重视解决实际问题的积极的教学方式。同样传统的高效学习十分重视学习方法的学习,但其主要目的是提高学习的效率。而研究性学习重过程、重应用、重体验、重全员参与,它把学生置于一个动态、开放、主动、多元的学习环境中。是给学生提供了更多的获取知识的方式和渠道。

就是按照科研设计,选题,收集样本,发现规律,进行统计处理,论证,写成论文,研究性论文就是原著。

相关百科

热门百科

首页
发表服务