首页

> 期刊论文知识库

首页 期刊论文知识库 问题

计算机视觉领域期刊

发布时间:

计算机视觉领域期刊

CVPR是计算机视觉领域最高级别的会议(CCFA类会议),收录的论文代表了计算机视觉领域的最新发展方向和最高研究水平。cvpr录用标准相当严格,通常会议整体的录取率不超过25%,而口头报告的论文比例更只占5%不到。其会议的组织方是一个循环的志愿群体,其成员遴选一般会在某次会议召开的三年前进行。cvpr的审稿过程中会议的审稿方与投稿方均不知道对方的信息。而且一篇论文经常需要由三位审稿者进行审读。最后再由会议的领域主席(areachair)决定是否接收。所以在各类学术会议统计中,cvpr也被认为有着很强的影响力和很高的排名。自然,cvpr论文的级别就可想而知了,cvpr论文什么级别,可以说其级别相当于顶级SCI期刊论文级别同等甚至更高。cvpr录用标准相当严格,通常会议整体的录取率不超过25%,而口头报告的论文比例更只占5%不到。其会议的组织方是一个循环的志愿群体,其成员遴选一般会在某次会议召开的三年前进行。cvpr的审稿过程中会议的审稿方与投稿方均不知道对方的信息。而且一篇论文经常需要由三位审稿者进行审读。最后再由会议的领域主席(areachair)决定是否接收。所以在各类学术会议统计中,cvpr也被认为有着很强的影响力和很高的排名。自然,cvpr论文的级别就可想而知了,cvpr论文什么级别,可以说其级别相当于顶级SCI期刊论文级别同等甚至更高。

ijcv期刊的水平是比较高的。IJCV是International Journal of Computer Vision(计算机视觉国际期刊)的英文缩写。国际期刊计算机视觉,详细描绘了信息科学与工程这一领域的快速发展。一般性发表的文章提出广泛普遍关心的重大技术进步。短文章提供了一个新的研究成果快速发布通道。综述性文章给与了重要的评论,以及当今发展现状的概括。

主要内容包括:数学,物理,计算机视觉计算方面:图像的形成,处理,分析和解释;机器学习方法,统计方法,传感器。

应用:基于图像的绘制,计算机图形学,机器人,照片判读,图像检索,视频分析和注释,多媒体等。

计算机软件领域的论文期刊

我知道的有计算机科学与应用,愿能帮到你

如果是你自己想投稿的话,个人之见,估计《读者》比较适合你。这本杂志里的文章大多比较简单,却重视文章揭露的人生道理。如果你的文章是这一类型的,可以试试!早前我有找 壹品优刊帮忙,一下子就搞定了。

关于计算机的期刊有很多,楼主不必为此想太多了,最重要还是你的论文质量够不够好。我可以介绍你一个不错的论文网,京都名师论文网。你可以先在这里检测一下你的论文,然后咨询一下发到哪个期刊会比较好,他们会给你好的建议的。

电脑知识与技术 电脑迷 软件导刊 科学与信息化 等等

计算机领域期刊排名前十名

这个你自己看看,有分级别的,一个初级一个中级 。《计算机测量与控制》《计算机应用与研究》等都是的

计算机三大顶级期刊分别是《计算机仿真》,《计算机测量与控制》,《计算机工程与应用》。

计算机三大顶级期刊以应用为中心、以微处理器为基础,软硬件可裁剪的,适应应用系统对功能、可靠性、成本、体积、功耗等综合性严格要求的专用计算机系统。

计算机三大顶级期刊一般由嵌入式微处理器、外围硬件设备、嵌入式操作系统以及用户的应用程序等四个部分组成。

相关信息:

《计算机仿真》创刊于1985年,月刊,是由中国航天科工集团公司主管、中国航天科工集团公司第十七研究所主办的电子信息科学综合类期刊。

据2019年6月期刊官网显示,《计算机仿真》编辑委员会拥有委员40人、顾问20人,设编委会主任/社长/主编1人、名誉主任1人,副主任20人。

评职称,初级还是高级,《信息与电脑》这个是国家级的还可以的。

《中国新通信》《网络安全技术与应用》《计算机光盘软件与应用》《电子技术与软件工程》,较推荐《中国新通信》,很多人提到这个杂志,仅供参考。杂志编辑按,了解详细的情况可以私信。

电机领域期刊

非常高兴能外您解答!国内的权威性机电类杂志有:宝钢技术,宽厚板,电子质量,湖南有色金属,模具制造,铁路节能环保与安,山西煤炭,天津冶金,能源技术与管理,山西焦煤科技,特钢技术,机械工程与自动化,热处理,过滤与分离,材料研究与应用,江西煤炭科技,包钢科技,钛工业进展等等,,不知道有无您要寻找的那种杂志。国外的权威性机电类杂志有:电机与控制学报,电工技术学报,电力系统自动化,电力系统保护与控制,电力自动化设备等等,希望您能满意。期望我的回答对您有所帮助,有问题请追问,满意望采纳,万分感谢!

国家级电力期刊排名如下:

1.中国电机工程学报。

2.电工技术学报。

3.电力系统自动化。

4.电网技术。

5.高电压技术。

推荐电力方面的报纸和杂志如下:

1、《电力建设》杂志,所刊发的论文内容都是跟电力建设有关的技术和经验,创刊时间:1985年,出版发行地点:北京,主管单位是国家电网公司。现被俄罗斯、美国、英国等一些期刊数据库收录为检索期刊。

2、《电力电子技术》是电力电子领域的核心期刊,杂志是陕西省核心期刊,兼顾了理论和应用,也多次荣获科技期刊一等奖。美国、波兰、日本一些期刊数据库收录并可检索。

3、《电力系统自动化》杂志同样是国家电网公司主管的电力期刊,1977年江苏省南京市创刊,是江苏省核心期刊,多次荣获期刊奖项,该刊的创办利于促进电力工业科技进步。

以职业精神客观报道电业实践,以特别方式真诚参与能源实践,以多种形式准确、及时、深刻地反映电力/能源工业的改革和发展,以深度调查和理论探讨形成独到风格,在国际国内及电力/能源行业内外都有较大影响,在电力/能源媒体中长期处于领军位置。

电工技术学报和电机与控制学报都很好。《电工技术学报》是中国电工技术学会主办的电气工程领域综合性学术期刊,报道基础理论研究、工程应用等方面具有国际和国内领先水平的学术及科研成果。《电机与控制学报》在国内外有广泛的覆盖面,题材新颖,信息量大、时效性强的特点,其中主要栏目有电力电子与电力传动、高电压绝缘技术、测试讲师技术及仪器等。电工技术学报和电机与控制学报都是很好的学术期刊。

计算机视觉检测论文

Automatic Pixel-Level Crack Detection on Dam Surface Using Deep Convolutional Network 论文笔记 论文:Automatic Pixel-Level Crack Detection on Dam Surface Using Deep Convolutional Network Received: 大多数坝面裂缝检测只能实现裂缝分类及粗略的定位。像素级语义分割检测可以提供更加精确直观的检测结果。作者提出一种基于深度卷积网络的坝面裂缝检测算法。首先使用无人机进行数据采集,然后对采集到的图像进行预处理(包括裁剪、手动标注),最后对设计好的CDDS 网络结构进行训练、验证和测试。 与ResNet152-based SegNet U-Net FCN 进行了比较。  大坝是水电站的重要水利建筑物。大坝的安全运行对于水电站有着重要的意义。由于结构变形、地震、水流引起的裂缝对大坝坝体产生严重的影响并威胁到水电站的安全运行。因此,对大坝结构的定期健康评估,特别是对大坝裂缝的检测任务变得尤为重要。 根据大坝裂缝的结构特征以及裂缝强度,人们可以对大坝的结构健康进行评估和监测。传统的大坝裂缝的巡检任务通常基于人工进行检测,但是效率低下、耗时费力,浪费了大量的人工成本,因此对裂缝的自动高效检测是非常必要的。 基于计算机视觉的裂缝检测算法得到了广泛的研究。这些方法大多采用传统的图像处理技术和机器学习方法,以识别出一些简单的结构损伤。这些方法利用手工提取的特征从图像中提取特征,然后评估提取的特征是否表示缺陷。然而,上述方法的结果不可避免地受到主观因素的影响 卷积神经网络(CNN)在图像分类和识别领域取得很大的进步,基于CNN的裂缝检测算法也展示出更优异的表现。大坝裂缝的特点: 修补痕迹、噪声大、背景纹理复杂、非结构化的、分布不均匀、裂缝位置随机、背景模糊等缺点 提出了一种像素级的大坝表面裂缝检测方法,利用深卷积网络进行特征提取。利用浅卷积层的定位特征和深卷积层的抽象特征,进行 多尺度卷积级联融合和多维损失值计算 ,实现裂纹缺陷像素级分割,并以高精度、高效率等优点解决了坝面明显裂缝检测问题,消除了可能存在的安全隐患,确保了坝面安全。实验结果表明,该方法对大坝表面像素级裂缝的检测是最优的。 语义分割 PSPNet [42],ICNet [43], Deeplabv3[44],UNet [45] and SegNet [46] 语义分割网络通常分为编码网络和解码网络。 编码网络: 卷积层:用于提取输入图像的特征 池化层:减小feature map的规模,减轻计算负担。 解码网络: 反卷积层(反褶积层):上采样还原feature map大小与输入图像相同,并输出预测结果。 编解码网络结构高度对称:同时利用稀疏feature map和稠密feature map。 为了融合sparse 和 dense feature ,采用跳跃模块以连接编解码网络。编码网络:     15 卷积层:3*3  步长1     4 池化层: 2*2 步长2 解码网络:     15 反卷积层 1*1     4池化层     采用dropout和BN防止过拟合。     Skip branch     4个,1*1卷积和反卷积     每个branch计算 branch loss,4个branch loss级联为总损失的一部分。     Skip branch 的输入输出图像大小不变。卷积核的通道数必须等于输入张量的通道数。降采样 取矩阵最大值 卷积核大小 2*2 步长为2。反褶积也叫做转置卷积 通过上采样还原feature map与输入图像大小相同。 上采样方法:反褶积法、 插值法 反褶积法:对张量进行zero-padding填充最外层,再用反褶积核进行反褶积,修剪第一行和最后一行。1000副5472*3648图像使用LEAR软件手动标记。 得到504张数据集,404用于训练,50用于验证,50用于测试。 在Linux系统上使用TensorFlow构建的 在配置了8 GB GPU的HP工作站上执行培训、验证和测试 利用Anaconda建立了CDDS网络的虚拟python环境评价指标: Precision精度表示在所有预测破裂的样本中,样本的基本真实性也被破解的概率。 Recall召回表明在所有标记为开裂的样本中,样本被预测为开裂的概率。当正负样本数量存在较大差距时,仅使用精确性或召回率来评估性能是不合理的。TPR表示所有标记为裂纹的样本中被正确预测为裂纹的概率。TNR代表以标签为背景的所有样本中被正确预测为背景的概率.F-measure考虑到查全率和查准率的综合影响,F-测度是一个综合指标。IoU是目标检测领域中常用的评价定位精度的方法。IoU表示预测结果与地面真实值的交集与联合的交集的比率。大坝表面裂缝图像分为背景和裂缝两类。背景像素的数目远大于裂纹像素的数目。通常情况下,我们会同时计算背景arrears和裂缝arrears,然后以两张arrears的平均数作为最终arrears。IoU值是由背景像素决定的,不能准确表达裂纹的定位精度。使用三种学习速率10^4,10^5,10^6 使用softmax函数计算概率 使用Dice loss计算网络损失。 裂缝骨架提取:快速细化算法 调用OpenCV库,进行计算。 计算裂缝面积及长度宽度。使用其他裂缝数据集进行补充验证 ,在测试数据集上,提出的CDDS网络的裂纹IOU和F测度分别达到和 略。

推荐下计算机视觉这个领域,依据学术范标准评价体系得出的近年来最重要的9篇论文吧: (对于英语阅读有困难的同学,访问后可以使用翻译功能) 一、Deep Residual Learning for Image Recognition  摘要:Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation. 全文链接: 文献全文 - 学术范 () 二、Very Deep Convolutional Networks for Large-Scale Image Recognition 摘要:In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision. 全文链接: 文献全文 - 学术范 () 三、U-Net: Convolutional Networks for Biomedical Image Segmentation 摘要:There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at . 全文链接: 文献全文 - 学术范 () 四、Microsoft COCO: Common Objects in Context 摘要:We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model. 全文链接: 文献全文 - 学术范 () 五、Rethinking the Inception Architecture for Computer Vision 摘要:Convolutional networks are at the core of most state of-the-art computer vision solutions for a wide variety of tasks. Since 2014 very deep convolutional networks started to become mainstream, yielding substantial gains in various benchmarks. Although increased model size and computational cost tend to translate to immediate quality gains for most tasks (as long as enough labeled data is provided for training), computational efficiency and low parameter count are still enabling factors for various use cases such as mobile vision and big-data scenarios. Here we are exploring ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization. We benchmark our methods on the ILSVRC 2012 classification challenge validation set demonstrate substantial gains over the state of the art: 21:2% top-1 and 5:6% top-5 error for single frame evaluation using a network with a computational cost of 5 billion multiply-adds per inference and with using less than 25 million parameters. With an ensemble of 4 models and multi-crop evaluation, we report 3:5% top-5 error and 17:3% top-1 error on the validation set and 3:6% top-5 error on the official test set. 全文链接: 文献全文 - 学术范 () 六、Mask R-CNN 摘要:We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, ., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without tricks, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code will be made available. 全文链接: 文献全文 - 学术范 () 七、Feature Pyramid Networks for Object Detection 摘要:Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But pyramid representations have been avoided in recent object detectors that are based on deep convolutional networks, partially because they are slow to compute and memory intensive. In this paper, we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A top-down architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using a basic Faster R-CNN system, our method achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 5 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available. 全文链接: 文献全文 - 学术范 () 八、ORB: An efficient alternative to SIFT or SURF 摘要:Feature matching is at the base of many computer vision problems, such as object recognition or structure from motion. Current methods rely on costly descriptors for detection and matching. In this paper, we propose a very fast binary descriptor based on BRIEF, called ORB, which is rotation invariant and resistant to noise. We demonstrate through experiments how ORB is at two orders of magnitude faster than SIFT, while performing as well in many situations. The efficiency is tested on several real-world applications, including object detection and patch-tracking on a smart phone. 全文链接: 文献全文 - 学术范 () 九、DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs 摘要:In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First , we highlight convolution with upsampled filters, or ‘atrous convolution’, as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second , we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third , we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed “DeepLab” system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online. 全文链接: 文献全文 - 学术范 () 希望对你有帮助!

计算机视觉技术自20世纪70年代产生以来就得到了全世界的广泛关注。下面是我整理了计算机视觉技术论文,有兴趣的亲可以来阅读一下!

计算机视觉技术的应用研究

摘 要 文章在介绍计算机视觉技术相关内容的基础上,对该技术在工业、农业、林业和农产品检测这四个领域的具体应用进行简要分析。

关键词 计算机;视觉技术;应用研究

中图分类号:TP212 文献标识码:A 文章编号:1671-7597(2013)16-0114-01

计算机视觉技术自20世纪70年代产生以来就得到了全世界的广泛关注。作为一种多学科综合应用下的新技术,随着专家对其研究会的不断深入,其应用领域也越来越广,给人们的生产生活带来了极大方便。

1 计算机视觉技术

计算机视觉技术是在计算机技术应用下发展起来的一种新技术,主要用来研究计算机模拟生物的宏观或外显功能。该技术在应用过程中会涉及到计算机科学、神经生物学、人工智能、模式识别以及图像处理等多个学科,多学科技术的综合运用使得计算机具有了“感知”周围世界的能力,这也正是该技术发挥作用的核心所在。计算机视觉技术的特点就在于,首先,它能在不接触被测者的前提下完成对被测者的检测;其次,该技术应用的领域和检测的对象非常广,能在敏感器件的应用下,完成对人类难以观察到的超声波、微波和红外线等的检测;最后,该技术还突破了人在视觉观察上长时间工作的限制,能对检测对象进行长时间观察。

2 计算机视觉技术在各领域的应用分析

随着计算机视觉技术研究的不断加深,该技术的应用领域也越来越广,下面,本文就选取工业、农业、林业、农产品检测、电力系统自动化及图书馆工作这6个方面对计算机视觉技术的应用进行简要分析。

在工业领域中的应用

工业生产对产品的质量要求极高,计算机视觉技术在工业上的应用主要集中在以下3方面:1)产品形状和尺寸的检测上。对制造业而言,产品的形状和尺寸是否合格直接影响到产品在实际应用过程中作用的发挥。计算机视觉技术的应用能对产品进行二维和三维等几何特征的检测,如产品的圆度、位置及形状等。2)产品零部件缺失情况的检测。在生产线运行过程中,计算机视觉技术能准确检测出产品在生产过程中是否存在铆钉、螺丝钉等零部件的缺失以及产品内部是否在生产过程中掺进杂质等。3)产品表面质量的检测。为了从各个方面保证产品的合格性,对其进行表面质量的检测也是一个极其重要的环节。计算机视觉技术实现了对产品表面的纹理、粗糙度、划痕、裂纹等各方面的有效检测。

在农业生产领域中的应用

该技术在农业领域的应用主要集中在以下两方面:1)对病虫害的预测预报。预测预报作用发挥的关键环节是建立起计算机视觉技术对所有昆虫的识别体系。对昆虫图像识别系统进行数字化建模所使用的方法主要以下2种,一种是运用数学形态学的方法对害虫的边缘进行检测,进而提取害虫的特征;第二种是从昆虫的二值化图像中提取出昆虫的周长、面积和复杂度等基本信息,并对这些信息建立害虫的模板库以实现对昆虫的模糊决策分析。2)对农作物生长的监测。常用的方法就是运用计算机视觉技术下的非接触式监测系统对农作物生长环境下的光照、温度、湿度、风速、营养液浓度等相关因素进行连续地监测,进而判断出农作物长势。

在林业生产中的应用

该技术在林业生产中的应用主要集中在农药喷洒和林木球果采集这两方面。就林业的农药喷洒而言,常规的农药喷洒方式易造成农药的大量流失,不仅达不到防止林业有害生物的目的,还浪费了大量的人力、物力和财力。计算机视觉技术的应用能通过对施药目标图像进行实时分析,得出具体的施药量和准确的施药位置,该技术指导下的施药工作极大发挥了农药的效果。就林木球果采集而言,该采集工作的操作难度一直都很大,我国当前使用的方法主要是人工使用专业工具下的采集以及机械设备运用下的高空作业车采集和摇振采种机采集,这两种方式都存在一定的安全性和效率问题。计算机视觉技术的应用能通过对需要进行采集的林木球果进行图像采集来得出球果所处的具体位置,再结合专业机械手的使用完成球果采集。该技术不仅节省了大量劳动力,还极大提高了采摘效率。

在农产品检测中的应用

农产品在生产过程中受自然环境的影响比较大,所以农产品不仅会产生质量上的差异,还会造成颜色、大小、形状等外观上的极大不同。由于农产品在出售时大多要进行产品等级的划分,所以将计算机视觉技术运用到对其颜色和外形尺寸的检测上,有效达到了对农产品进行检测的目的。通过对外观大小尺寸的检测,不仅提高了对农产品进行分门别类地等级划分的效率,还在很大程度上减少了对产品的损坏;通过对西瓜等农产品进行颜色上的检测,能准确判断其是否成熟,有效避免了人工操作下的失误。

在电力系统自动化中的应用

计算机视觉技术在电力系统自动化应用的表现当前主要表现在以下2个方面:1)在人机界面中的应用。人机界面在运行过程中更加强调人的主体地位,实现了用户对各种效应通道和感觉通道的运用。具体来讲,计算机视觉技术在用户向计算机的输入方面,效应通道实现了手动为主向手、足、口、身体等的转变;在计算机向用户的输出方面,感觉通道实现了视觉为主向触觉、嗅觉、听觉等的转变。2)在电厂煤粉锅炉火焰检测中的应用。对煤粉锅炉火焰的检测既能有效判断锅炉的运行状况,又能在很大程度上实现电厂的安全性运营。由于煤的负荷变化和种类变化会在使着火位置发生移动,所以为了保证炉膛火焰检测的准确性,必须弥补之前单纯应用火焰检测器只能判断有无火焰开关量信号的弊端。计算机视觉技术的应用,就在弥补火焰检测器应用弊端的基础上,实现了对火焰形状的进一步检测。

在图书馆工作中的应用

随着当前数字图书馆和自动化管理系统的建立,计算机技术在图书馆方面的应用越来越广泛。当前计算机视觉技术在图书馆方面的应用主要集中在古籍修补和书刊剔旧这两方面。就古籍修补而言,古籍图书等在收藏的过程中,受温度、湿度、光照等的影响,极易导致纸张变黄、变脆以及虫洞等现象的出现。在进行修补时,依靠计算机视觉技术开展具体的修补工作,能在很大程度上提高修补工作的效率。就书刊剔旧而言,由于图书馆藏书众多,对那些使用率低且较为陈旧的文献资料进行及时地剔除,能实现图书资源的及时更新。计算机视觉技术在该方面的应用,极大地保证了工作的准确性和效率性。

3 结束语

通过以上对计算机视觉技术在工业、农业、林业、农产品检测、电力系统自动化及图书馆工作这6个方面的研究可以看出,随着计算机技术的进一步发展以及计算机与各专业学科的不断渗透,该技术的发展前景和应用领域都将更加广阔。

参考文献

[1]郑加强.基于计算机视觉的雾滴尺寸检测技术[J].南京林业大学学报,2009(09).

[2]沈明彼.计算机视觉技术在社会各领域应用的发展与展望[J].农业机械学报,2012(03).

点击下页还有更多>>>计算机视觉技术论文

相关百科

热门百科

首页
发表服务